Loading...
Thumbnail Image

Acharya N G Ranga Agricultural University, Guntur

The Andhra Pradesh Agricultural University (APAU) was established on 12th June 1964 at Hyderabad. The University was formally inaugurated on 20th March 1965 by Late Shri. Lal Bahadur Shastri, the then Hon`ble Prime Minister of India. Another significant milestone was the inauguration of the building programme of the university by Late Smt. Indira Gandhi,the then Hon`ble Prime Minister of India on 23rd June 1966. The University was renamed as Acharya N. G. Ranga Agricultural University on 7th November 1996 in honour and memory of an outstanding parliamentarian Acharya Nayukulu Gogineni Ranga, who rendered remarkable selfless service for the cause of farmers and is regarded as an outstanding educationist, kisan leader and freedom fighter. HISTORICAL MILESTONE Acharya N. G. Ranga Agricultural University (ANGRAU) was established under the name of Andhra Pradesh Agricultural University (APAU) on the 12th of June 1964 through the APAU Act 1963. Later, it was renamed as Acharya N. G. Ranga Agricultural University on the 7th of November, 1996 in honour and memory of the noted Parliamentarian and Kisan Leader, Acharya N. G. Ranga. At the verge of completion of Golden Jubilee Year of the ANGRAU, it has given birth to a new State Agricultural University namely Prof. Jayashankar Telangana State Agricultural University with the bifurcation of the state of Andhra Pradesh as per the Andhra Pradesh Reorganization Act 2014. The ANGRAU at LAM, Guntur is serving the students and the farmers of 13 districts of new State of Andhra Pradesh with renewed interest and dedication. Genesis of ANGRAU in service of the farmers 1926: The Royal Commission emphasized the need for a strong research base for agricultural development in the country... 1949: The Radhakrishnan Commission (1949) on University Education led to the establishment of Rural Universities for the overall development of agriculture and rural life in the country... 1955: First Joint Indo-American Team studied the status and future needs of agricultural education in the country... 1960: Second Joint Indo-American Team (1960) headed by Dr. M. S. Randhawa, the then Vice-President of Indian Council of Agricultural Research recommended specifically the establishment of Farm Universities and spelt out the basic objectives of these Universities as Institutional Autonomy, inclusion of Agriculture, Veterinary / Animal Husbandry and Home Science, Integration of Teaching, Research and Extension... 1963: The Andhra Pradesh Agricultural University (APAU) Act enacted... June 12th 1964: Andhra Pradesh Agricultural University (APAU) was established at Hyderabad with Shri. O. Pulla Reddi, I.C.S. (Retired) was the first founder Vice-Chancellor of the University... June 1964: Re-affilitation of Colleges of Agriculture and Veterinary Science, Hyderabad (estt. in 1961, affiliated to Osmania University), Agricultural College, Bapatla (estt. in 1945, affiliated to Andhra University), Sri Venkateswara Agricultural College, Tirupati and Andhra Veterinary College, Tirupati (estt. in 1961, affiliated to Sri Venkateswara University)... 20th March 1965: Formal inauguration of APAU by Late Shri. Lal Bahadur Shastri, the then Hon`ble Prime Minister of India... 1964-66: The report of the Second National Education Commission headed by Dr. D.S. Kothari, Chairman of the University Grants Commission stressed the need for establishing at least one Agricultural University in each Indian State... 23, June 1966: Inauguration of the Administrative building of the university by Late Smt. Indira Gandhi, the then Hon`ble Prime Minister of India... July, 1966: Transfer of 41 Agricultural Research Stations, functioning under the Department of Agriculture... May, 1967: Transfer of Four Research Stations of the Animal Husbandry Department... 7th November 1996: Renaming of University as Acharya N. G. Ranga Agricultural University in honour and memory of an outstanding parliamentarian Acharya Nayukulu Gogineni Ranga... 15th July 2005: Establishment of Sri Venkateswara Veterinary University (SVVU) bifurcating ANGRAU by Act 18 of 2005... 26th June 2007: Establishment of Andhra Pradesh Horticultural University (APHU) bifurcating ANGRAU by the Act 30 of 2007... 2nd June 2014 As per the Andhra Pradesh Reorganization Act 2014, ANGRAU is now... serving the students and the farmers of 13 districts of new State of Andhra Pradesh with renewed interest and dedication...

News

https://angrau.ac.in/ANGRU/Library_Resources.aspx

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    EFFECTS OF APPLICATION OF NANOPARTICULATE ZINC AND BORON ON GROWTH, YIELD AND NUTRIENT UPTAKE BY GROUNDNUT – SUNFLOWER CROPPING SYSTEM IN ALFISOLS
    (guntur, 2022-08-12) DEEPIKA, JANGAM; PRASAD, T.N.V.K.V.
    The present investigation on “Effects of Application of Nanoparticulate Zinc and Boron on Growth, Yield and Nutrient Uptake by Groundnut – Sunflower Cropping System in Alfisols” was conducted at RARS, Tirupathi, during 2018 and 2019. The nanoscale ZnO was prepared using oxalate decomposition technique, whereas nano boron was prepared using encapsulation method. The synthesized nanoscale ZnO and boron was characterized using the different techniques like UV-Vis, HR-TEM, XRD, FT-IR and DLS analysis. The synthesized nanoscale ZnO and boron was 37.2 and 53.6 nm in size with zeta potential of -37.7 mV and -28.3 mV, respectively. Pot culture experiment was conducted as a pilot study to know the phytotoxicity of foliar applied nanoparticulate ZnO and boron on groundnut. After completion of phytotoxic studies, a field experiment was carried out with groundnut – sunflower cropping system during kharif and rabi seasons of 2019, respectively in the R.A.R.S. farm, Regional Agricultural Research station, Tirupati. The experiment was laid out in Randomized Block Design with fourteen treatments and replicated thrice. Foliar application of nano ZnO and nano boron were done at 45 DAS of groundnut and ray floret opening stage of sunflower. Soil application treatments are given only for groundnut and residual effect was seen in sunflower crop. The results from the pot culture experiment revealed that application of 500 ppm nano ZnO (T5) produced taller plants with higher chlorophyll content and dry matter production of groundnut. Foliar application of 500 ppm nano ZnO (T5) showed significantly highest peroxidase, catalase and super oxide dismutase enzyme activities of groundnut measured at peg formation stage. Yield attributes of groundnut was xxi found maximum with the foliar spray of 500 ppm nano ZnO (T5). Significantly highest pod and haulm yield of groundnut was recorded with foliar application of 500 ppm nano ZnO (T5) which was on par with 400 ppm nano ZnO (T4), 300 ppm nano ZnO (T3), 500 ppm nano boron (T10) and 400 ppm nano boron (T9). Oil and protein content of groundnut was not significantly affected. However, highest oil content and protein content of groundnut was noticed with 500 ppm nano ZnO (T5). Nitrogen, phosphorus and potassium content at peg formation, pod development, pod and haulm of groundnut were significantly affected by foliar application of various concentrations of nanoparticulate zinc and boron. 500 ppm nano ZnO (T5) showed significantly highest nitrogen and potassium content whereas application of 500 ppm nano boron (T10) recorded highest phosphorus content of groundnut. Significantly highest zinc and boron content at all growth stages of groundnut was found with the foliar application of 500 ppm nano ZnO (T5) and 500 ppm nano boron (T10), respectively. Macro and micronutrient uptake by groundnut was significantly influenced by foliar application of various concentrations of nanoparticulate zinc and boron. 500 ppm nano ZnO (T5) showed significantly highest nitrogen, potassium, zinc, iron, manganese and copper uptake by groundnut at peg formation, pod development, pod and haulm of groundnut whereas phosphorus and boron uptake was recorded maximum with foliar application of 500 ppm nano boron (T10). A field experiment was conducted with the groundnut – sunflower cropping system. Results showed that RDF + foliar application of nano ZnO @ 200 ppm + nano boron @ 200 ppm (T14) recorded significantly highest plant height and dry matter production of groundnut and sunflower which was on par with RDF + foliar application of nano ZnO @ 150 ppm + nano boron @ 150 ppm (T13). Yield parameters viz., number of pods plant-1 and number of filled pods plant-1 of groundnut were significantly highest with the RDF + foliar application of nano ZnO @ 200 ppm + nano boron @ 200 ppm (T14) however, 100 kernel weight was observed to be non significant. Whereas in succeeding sunflower, treatment T14 (RDF + foliar application of nano ZnO @ 200 ppm + nano boron @ 200 ppm) recorded significantly highest number of filled seeds per head and number of unfilled seeds per head. Head diameter and 1000 seed weight was found to be non significant. Significantly highest pod, kernel, haulm yield of groundnut and seed, stover yield of sunflower was recorded with RDF + foliar application of nano ZnO @ 200 ppm and nano boron @ 200 ppm (T14) followed by RDF + foliar application of nano ZnO @ 150 ppm and nano boron @ 150 ppm (T13). Quality parameters of groundnut (oil and protein content) and sunflower (oil content) was found to be non significant due to foliar application of nanoparticulate zinc and boron. However, RDF + foliar application of nano ZnO @ 200 ppm + nano boron @ 200 ppm (T14) recorded higher quality parameters of both the crops. Significantly highest nitrogen, phosphorus, potassium, zinc and boron content at peg formation, pod development, pod and haulm of groundnut was recorded with RDF + foliar application of nano ZnO @ 200 ppm + nano boron @ 200 ppm (T14) followed by RDF + foliar application of nano ZnO @ 150 ppm + nano boron @ 150 ppm (T13). Whereas RDF + foliar application of nano ZnO @ 200 ppm + nano boron xxii @ 200 ppm (T14) significantly enhanced the nitrogen, phosphorus, potassium, zinc and boron content at vegetative, flowering, seed and stover of sunflower. Iron, manganese and copper content of both the crops were not significantly influenced by the foliar application of nanoparticulate zinc and boron. Macro and micronutrient uptake by groundnut and sunflower was significantly influenced by foliar application of nanoparticulate zinc and boron. RDF + foliar application of nano ZnO @ 200 ppm + nano boron @ 200 ppm (T14) showed significantly highest nitrogen, phosphorus, potassium, zinc, iron, manganese, copper and boron uptake at all stages of crop growth. Soil physical (bulk density, porosity and water holding capacity) and physico-chemical (pH, electrical conductivity and organic carbon content) properties after harvest of groundnut and sunflower did not vary significantly due to treatment effect. There was significant in available N, P2O5, K2O, zinc and boron status in soil with soil application of ZnSO4 @ 50 kg ha-1 + borax @ 10 kg ha-1 (T5) after the harvest of groundnut and sunflower and it was on par with RDF + Soil application of ZnSO4 @ 50 kg ha-1 (T3) and RDF + Soil application of borax @ 10 kg ha-1 (T4). Non significant difference was recorded in available iron, copper and manganese content, microbial population and enzyme activities in soil at harvest of groundnut and sunflower crops. The gross returns and net returns of groundnut and sunflower were higher in RDF + foliar application of nano ZnO @ 200 ppm + nano boron @ 200 ppm (T14). The B:C ratio of groundnut was found higher in RDF + foliar application of nano ZnO @ 150 ppm (T9) and RDF + foliar application of nano ZnO @ 200 ppm (T10) whereas in case of sunflower significant increase in benefit cost ratio was observed with RDF + foliar application of nano boron @ 200 ppm (T12). The poor growth, low productivity and a lesser amount of returns in groundnut and sunflower was as usual with the crop not received any fertilizers. Based on the outcome of pot culture experiment, it was concluded that no phytotoxicity was observed in all the concentrations and nanoscale materials tested in the present study which indicates use of nanoscale materials for field studies in a safest manner to agricultural crops. The concentration of 500 ppm of nanoparticulate ZnO and boron was identified as optimum dose. The field experiment concluded that foliar application of nano ZnO and nano boron @ 150 and 200 ppm in combination or alone found to be best treatment for getting maximum yields with higher monetary returns for groundnut - sunflower cropping system.
  • ThesisItemOpen Access
    NITROGEN DYNAMICS AND NITROGEN USE EFFICIENCY WITH NEEM COATED UREA IN RICE CULTIVATION
    (Acharya N.G. Ranga Agricultural University, 2017) DEEPIKA, JANGAM; SUDHA RANI, Y
    A field experiment entitled “Nitrogen dynamics and nitrogen use efficiency with neem coated urea in rice cultivation” was conducted at Agricultural College Farm, Bapatla during kharif, 2016. The experimental soil was clay in texture, slightly alkaline in reaction and non-saline. The soil was medium in organic carbon and available nitrogen, high in available phosphorus and potassium and sufficient in sulphur. The soil was high in zinc, copper, manganese and iron. The experiment was laid out in RBD with nine treatments replicated thrice. The treatments comprised of T1- Control, T2-100% RDN through urea in 3 split doses, T3 - 75% RDN through neem coated urea in 3 split doses, T4 - 100% RDN through neem coated urea in 3 split doses, T5-125% RDN through neem coated urea in 3 split doses, T6-100% RDN through urea in 2 split doses, T7-75% RDN through neem coated urea in 2 split doses, T8-100% RDN through neem coated urea in 2 split doses, T9-125% RDN through neem coated urea in 2 split doses. Well decomposed farmyard manure @ 10 t ha-1 was applied to the field as per recommended dose ten days before transplanting. The inorganic nitrogen through urea and neem coated urea was applied in 3 splits (as basal and at tillering and panicle initiation stages) to four treatments i.e T2 to T5 and applied in 2 splits (as basal and in between tillering and panicle initiation stages) to four treatments i.e T6 to T9. Entire quantity of P2O5 in the form of SSP and K2O in the form of MOP were applied to all the treatments as basal dose at the time of transplanting. (Recommended dose of fertilizers was 120-60-40 kg NPK kg ha-1 ). The influence of various treatments on growth parameters, yield attributes, yield, soil properties (physical, physico-chemical properties and available nutrients), nutrient contents and uptake at different stages and forms of nitrogen at every three days and one week after application of fertilizers were determined by standard procedures. All growth parameters, productive tillers m-2 , filled grains per panicle, grain and straw yield were markedly influenced by the application of neem coated urea. Maximum grain yield was recorded with 125%RDN through neem coated urea in three split, which is on par with 100%RDN and 75%RDN through neem coated urea. The maximum nitrogen use efficiency and apparent N recovery was recorded in treatment 75% RDN through neem coated urea in 3 splits, while grain yield is on par with 125% RDN through neem coated urea. The soil properties viz., bulk density, pH, EC and organic carbon and micronutrients were not markedly influenced by the imposed treatments. There was a significant influence of the treatments on available nitrogen and phosphorus, but not on potassium. The available nitrogen and phosphorus contents were markedly influenced by the application of neem coated urea at all the crop growth stages. The nitrogen content of rice plants at all growth stages was markedly influenced by the treatments with highest N recorded in treatment supplied with 125% RDN through neem coated urea in three spits. The effect of treatments on other nutrients in plants was non-significant. The uptake of N, P, K, S and micro nutrients at all growth stages was markedly influenced by the treatments with higher values recorded with 125% recommended dose of neem coated urea in three spits which was at par with 100% RDN through urea applied in three and two splits. Application of neem coated urea showed significant influence on forms of nitrogen. Neem coated urea proved to be more efficient in maintaining the maximum amount of ammoniacal – N, total nitrogen and mineralizable – N and lower amount of nitrate – N than urea and control where no nitrogen was applied.