Loading...
Thumbnail Image

Dr. Rajendra Prasad Central Agricultural University, Pusa

In the imperial Gazetteer of India 1878, Pusa was recorded as a government estate of about 1350 acres in Darbhanba. It was acquired by East India Company for running a stud farm to supply better breed of horses mainly for the army. Frequent incidence of glanders disease (swelling of glands), mostly affecting the valuable imported bloodstock made the civil veterinary department to shift the entire stock out of Pusa. A British tobacco concern Beg Sutherland & co. got the estate on lease but it also left in 1897 abandoning the government estate of Pusa. Lord Mayo, The Viceroy and Governor General, had been repeatedly trying to get through his proposal for setting up a directorate general of Agriculture that would take care of the soil and its productivity, formulate newer techniques of cultivation, improve the quality of seeds and livestock and also arrange for imparting agricultural education. The government of India had invited a British expert. Dr. J. A. Voelcker who had submitted as report on the development of Indian agriculture. As a follow-up action, three experts in different fields were appointed for the first time during 1885 to 1895 namely, agricultural chemist (Dr. J. W. Leafer), cryptogamic botanist (Dr. R. A. Butler) and entomologist (Dr. H. Maxwell Lefroy) with headquarters at Dehradun (U.P.) in the forest Research Institute complex. Surprisingly, until now Pusa, which was destined to become the centre of agricultural revolution in the country, was lying as before an abandoned government estate. In 1898. Lord Curzon took over as the viceroy. A widely traveled person and an administrator, he salvaged out the earlier proposal and got London’s approval for the appointment of the inspector General of Agriculture to which the first incumbent Mr. J. Mollison (Dy. Director of Agriculture, Bombay) joined in 1901 with headquarters at Nagpur The then government of Bengal had mooted in 1902 a proposal to the centre for setting up a model cattle farm for improving the dilapidated condition of the livestock at Pusa estate where plenty of land, water and feed would be available, and with Mr. Mollison’s support this was accepted in principle. Around Pusa, there were many British planters and also an indigo research centre Dalsing Sarai (near Pusa). Mr. Mollison’s visits to this mini British kingdom and his strong recommendations. In favour of Pusa as the most ideal place for the Bengal government project obviously caught the attention for the viceroy.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Development of ready to use powder from plant based clarificants for production of quality jaggery
    (DRPCAU, Pusa, 2020) Tekam, Amit; Kumar, Vishal
    Sugarcane (Saccharum officinarum L.) is commercial cash crops used for the Jaggery production. The process involves extraction of juice, clarification and concentration. The raw juice contains impurities and non-soluble solids which affect the quality of the jaggery. Hence clarification process is done. Plant based clarificant are effective clarificants and produces good quality jaggery. Due to non-availability of any plant based clarificants during jaggery manufacturing period, an attempt was made to develop ready-to-use clarificant powder prepared from different plant based clarificants which can be available throughout the year. The selected clarificant materials - fenugreek seeds, flax seeds, soybean seeds, semal bark and okra stem were dried and milled into powder using grinder. The mucilage was prepared from seeds and plant sources powder by soaking in water at ratio of 1:5 (w/v) for 6 h, then boiling in water bath for 5 h and then cooling below 20 oC. The mixtures were then filtered with muslin cloth and the filtered was used for jaggery production at three different concentrations namely 0.1%, 0.3% & 0.5% (w/w) to sugarcane juice. The effect of the clarificants and their levels on each quality parameters such as moisture content, jaggery yield, processing time, scum removal, TSS, pH, colour, reducing sugar, non-reducing sugar and sensory score were found using one-way analysis of variance (ANOVA) at 5 per cent level of significance. It was observed that jaggery yield, processing time, scum removed, colour and sensory were affected significantly by the type of clarificants used while reducing sugar, non-reducing sugar, pH, TSS and moisture content had non-significant effect. Okra stem clarificants had maximum effect on quality parameters in order to yield-12.2%, processing time-72.33 min, colour-74.56%, non-reducing sugar-83.14%, reducing sugar- 8.02%, TSS-81.3% and moisture content-5.34%. Soybean seeds had maximum effect on scum removed and pH. Sensory attributes were maximum for fenugreek seeds. Okra stem, soybean seed and fenugreek seeds were selected for the preparation of mixture clarificants which will bear all the quality parameters for the production of quality jaggery. The mixture clarificants were optimized using Response surface methodology to determine the mixtures proportion based on quality parameters. A total 16 combinations were formed with three levels of each clarificants [okra stem-0.1, 0.3 and 0.5%, soybean seeds-0.1, 0.3& 0.5%, Fenugreek seeds-0.1, 0.3& 0.5%] and the effect of mixtures were determined on different dependent variables like yield, processing time, scum removal, colour, and sensory score of these independent variables. Second order multiple regression equations were also developed for all the dependent variables. The optimize mixture clarificant of okra stem- 0.5 per cent, soybean seeds- 0.1 per cent and fenugreek seeds - 0.4 per cent emerged out as better than other mixture in order to obtain optimized yield - 12.16 per cent, scum remove - 6.58 percent, colour-74.31 per cent, sensory score-8.72, and minimum processing time-75.42 min.