Loading...
Thumbnail Image

Dr. Rajendra Prasad Central Agricultural University, Pusa

In the imperial Gazetteer of India 1878, Pusa was recorded as a government estate of about 1350 acres in Darbhanba. It was acquired by East India Company for running a stud farm to supply better breed of horses mainly for the army. Frequent incidence of glanders disease (swelling of glands), mostly affecting the valuable imported bloodstock made the civil veterinary department to shift the entire stock out of Pusa. A British tobacco concern Beg Sutherland & co. got the estate on lease but it also left in 1897 abandoning the government estate of Pusa. Lord Mayo, The Viceroy and Governor General, had been repeatedly trying to get through his proposal for setting up a directorate general of Agriculture that would take care of the soil and its productivity, formulate newer techniques of cultivation, improve the quality of seeds and livestock and also arrange for imparting agricultural education. The government of India had invited a British expert. Dr. J. A. Voelcker who had submitted as report on the development of Indian agriculture. As a follow-up action, three experts in different fields were appointed for the first time during 1885 to 1895 namely, agricultural chemist (Dr. J. W. Leafer), cryptogamic botanist (Dr. R. A. Butler) and entomologist (Dr. H. Maxwell Lefroy) with headquarters at Dehradun (U.P.) in the forest Research Institute complex. Surprisingly, until now Pusa, which was destined to become the centre of agricultural revolution in the country, was lying as before an abandoned government estate. In 1898. Lord Curzon took over as the viceroy. A widely traveled person and an administrator, he salvaged out the earlier proposal and got London’s approval for the appointment of the inspector General of Agriculture to which the first incumbent Mr. J. Mollison (Dy. Director of Agriculture, Bombay) joined in 1901 with headquarters at Nagpur The then government of Bengal had mooted in 1902 a proposal to the centre for setting up a model cattle farm for improving the dilapidated condition of the livestock at Pusa estate where plenty of land, water and feed would be available, and with Mr. Mollison’s support this was accepted in principle. Around Pusa, there were many British planters and also an indigo research centre Dalsing Sarai (near Pusa). Mr. Mollison’s visits to this mini British kingdom and his strong recommendations. In favour of Pusa as the most ideal place for the Bengal government project obviously caught the attention for the viceroy.

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    Stability study in spring planted early maturing sugarcane clones for higher yield
    (Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur (Bihar), 2018) Kumar, Praveen; Pandey, S.S.
    Fifteen early maturing sugarcane genotypes were planted in spring season at two different locations viz. Pusa and Madhopur for two consecutive years (2016 and 2017) to assess their stability across four environments viz. E1 – Pusa‟2016, E2 – Madhopur‟2016, E3 – Pusa‟2017 and E4 – Madhopur‟2017, in Randomized Block Design with three replications for yield and attributing traits. The genotypes showed high amount of variability present in individual (E1, E2, E3 and E4) and pooled over environments for most of the characters. Genotypes viz. CoP 16437, CoP 16436, CoP 11437 and CoP 16438 showed superiority for most of the traits including sugar and cane yield. PCV was found higher than GCV revealed environmental influence, sugar yield exhibited high heritability coupled with high GAM revealing preponderance of additive effects of gene while cane yield at harvest showed high heritability coupled with moderate GAM. Significant G × E interaction including environment (linear), linear component of G × E interaction and pooled deviation (non-linear) were significant indicating considerable genetic variability for most of the studied traits. Role of the environmental variation was observed for most of the attributes except for the number of shoots at 120 days, plant height (PH) at 240 days, single cane weight (SCW), number of milliable cane (NMC) and cane yield (CY) at harvest revealing no effect of environment or similar behaviour and response of studied genotypes. As per estimated stability parameters, six genotypes were found stable viz. CoP 16437, CoP 11438 and BO 153 stable for CY and SY in rich environment. CoP 16436 stable in poor environment for CY while in rich environment stable for SY. CoP 16438 stable in poor and rich environment for SY and CY respectively whereas CoP 11437 was stable for CY in rich environment. In AMMI analysis, G × E interaction was found highly significant for most of the traits, IPCA I and IPCA II were also found highly significant for most of the traits. IPCA I and IPCA II cummulatively contributed more than 80 percent of the total G × E interaction for all traits. All four environments E1, E2, E3 and E4 were identified as favourable for cane yield and sugar yield at harvest and fall into two groups i.e. one group (E2 and E4) and another group (E1 and E3) were preferred for most of the traits and had similar effects on genotypes. Biplot analysis revealed that genotypes CoP 16437, CoP 16436, CoP 11437, CoP 16438, BO 153 and CoP 11438 were found the most desirable and favourable across different environments. As per both the stability model the genotypes viz. CoP 16437, CoP 16436, CoP 11438, CoP 16438 and CoP 11437 were identified as stable one for yield and yield attributing traits in their respective environments.
  • ThesisItemOpen Access
    Evaluation of high Sucrose containing Sugarcane Clones under Water-Logging Condition
    (Rajendra Agriculrural University, Pusa (Samastipur), 2015) Kumar, Praveen; Kumar, Balwant
    The present study was undertaken with evaluation of high sucrose containing sugarcane clones under water logging condition (water depth 45 to 60 cm from July to October) involved eighteen sugarcane clones including two checks (BO 91 and CoLk 94184), were planted in Paddy block at Rajendra Agricultural University, Pusa, Bihar, in a Randomized Block Design with three replications during 2014 - 15. The characters studied namely germination % at 45 DAP, number of shoots at 120 DAP, plant height at 150, 240 and 360 days, cane diameter at harvest, number of millable canes, brix, pol and purity % at 10 & 12 month stage, single cane weight, number of aerial roots/ node, length of aerial root, dry weight of aerial roots during the water-logging period and cane yield. Observed data for all the traits of 18 high sucrose containing sugarcane clones were assessed for statistical analysis viz., analysis of variance, genotypic and phenotypic coefficient of variance, heritability, genetic advance as per cent of mean, correlation coefficient analysis and path coefficient analysis. The analysis of variance revealed highly significant differences among the clones for fourteen traits and significant for rest traits viz., germination % at 45 DAP, plant height at 150 days, single cane weight and purity % at 10 month stage. Variability studies showed high estimates of GCV and PCV for traits viz., length of aerial root and dry weight of aerial roots. In present set of materials high heritability with high genetic advance as per cent of mean were found in single cane weight and length of aerial root indicating preponderance of additive gene effect. Traits namely plant height at 150, 240 & 360 days, single cane weight, brix % at 10 & 12 month stage, pol % at 10 & 12 month stage, showed significant positive correlation and number of aerial roots/ node had significant negative correlation with cane yield. Number of shoot at 120 days, plant height at 150 and 360 days, cane diameter at harvest, number of millable canes, single cane weight, pol % at 10 month stage, brix % at 12 month stage, pol % at 12 month stage, length of aerial root, showed positive direct effect towards cane yield at genotypic level showed importance of these characters for further yield improvement. On the basis of mean performance of cane yield and other productive traits under water logging condition only four clones namely CoX 12137, CoX 12164, CoX 12191 and CoX 12348 were selected. These clones may be utilize for further breeding programme so that recovery and productivity of sugarcane will enhance for water logging condition.