Loading...
Thumbnail Image

Dr. Rajendra Prasad Central Agricultural University, Pusa

In the imperial Gazetteer of India 1878, Pusa was recorded as a government estate of about 1350 acres in Darbhanba. It was acquired by East India Company for running a stud farm to supply better breed of horses mainly for the army. Frequent incidence of glanders disease (swelling of glands), mostly affecting the valuable imported bloodstock made the civil veterinary department to shift the entire stock out of Pusa. A British tobacco concern Beg Sutherland & co. got the estate on lease but it also left in 1897 abandoning the government estate of Pusa. Lord Mayo, The Viceroy and Governor General, had been repeatedly trying to get through his proposal for setting up a directorate general of Agriculture that would take care of the soil and its productivity, formulate newer techniques of cultivation, improve the quality of seeds and livestock and also arrange for imparting agricultural education. The government of India had invited a British expert. Dr. J. A. Voelcker who had submitted as report on the development of Indian agriculture. As a follow-up action, three experts in different fields were appointed for the first time during 1885 to 1895 namely, agricultural chemist (Dr. J. W. Leafer), cryptogamic botanist (Dr. R. A. Butler) and entomologist (Dr. H. Maxwell Lefroy) with headquarters at Dehradun (U.P.) in the forest Research Institute complex. Surprisingly, until now Pusa, which was destined to become the centre of agricultural revolution in the country, was lying as before an abandoned government estate. In 1898. Lord Curzon took over as the viceroy. A widely traveled person and an administrator, he salvaged out the earlier proposal and got London’s approval for the appointment of the inspector General of Agriculture to which the first incumbent Mr. J. Mollison (Dy. Director of Agriculture, Bombay) joined in 1901 with headquarters at Nagpur The then government of Bengal had mooted in 1902 a proposal to the centre for setting up a model cattle farm for improving the dilapidated condition of the livestock at Pusa estate where plenty of land, water and feed would be available, and with Mr. Mollison’s support this was accepted in principle. Around Pusa, there were many British planters and also an indigo research centre Dalsing Sarai (near Pusa). Mr. Mollison’s visits to this mini British kingdom and his strong recommendations. In favour of Pusa as the most ideal place for the Bengal government project obviously caught the attention for the viceroy.

Browse

Search Results

Now showing 1 - 9 of 9
  • ThesisItemOpen Access
    NUTRIENT DYNAMICS IN DIFFERENT DENSITY PLANTATIONS OF SEMAL (Bombax ceiba L.) WITH SESAMUM-LENTIL CROPPING SYSTEM
    (Dr.RPCAU, Pusa, 2021) DEVI, RODDA CHANDANA; Das, Dipty Kumar
    The present investigation was carried out at agro forestry research area of Dr. Rajendra Prasad Central Agricultural University, Pusa (Samastipur) in calciorthent of the north-west alluvial plain of north Bihar. Yield performance of sesamum-lentil cropping system during Kharif and Rabi season of 2020-21, changes in physicochemical properties of soil, litterfall, nutrient return, litter decomposition, and nutrient release pattern were studied under different densities of 6-year-old Bombax ceiba plantations. The experiment was in randomized block design comprising five treatments (5 × 2 m, 5 × 3 m, 5 × 4 m, 5 × 5 m, and treeless control) replicated 4 times. The soil texture of the research area is sandy loam with a pH of 8.5, low level of organic carbon (0.36%), available N (169 kg ha-1), P2O5 (24.2 kg ha-1) and K2O (132.3 kg ha-1) with the higher percentage of free calcium carbonate (36%). The carbon storage and carbon sequestration potential of the plantations have been also estimated. In Kharif season sesamum (Sesamum orientale var. Krishna) and in Rabi season lentil (Lens culinaris var. HUL 57) were grown as intercrops applied with the recommended doses of fertilizers. The crop yield, tree growth, biomass yield, and carbon sequestration potential were tested by one-way analysis, whereas soil physicochemical properties and soil carbon stock was tested by two-way analysis of variance, where agroforestry systems were considered as the first factor and soil depth as the second factor. The yield parameters were measured after the harvest of each crop and soil properties were measured before sowing and after harvesting of each crop. The yield of intercrops decreased under the agroforestry systems. Yield decrement was 14.0 to 46.2% and 9.81 to 34.5% in grain and straw of sesamum, whereas 17.8 to 37.7% and 13.5 to 23.7% in grain and straw of lentil, respectively. The nutrient content in grain and straw of sesamum and lentil was found higher in the agroforestry system and uptake was found higher in sole cropping. The relative light intensity was recorded higher in the Kharif season and among the treatments, sole crops received maximum light intensity. There was a noticeable improvement in soil properties (pH, EC, and BD), nutrient status (N, P2O5, and K2O), soil organic carbon (SOC), SOC stock, and active carbon. Availability of plant nutrients was higher in the upper (0 - 15 cm) soil layer than the lower soil layer (15 - 30 cm). The yield of the crops, nutrient uptake by grain and straw, and average light intensity were found lower in higher density (5 × 2 and 5 × 3 m), whereas nutrient content in grain and straw, soil properties improvement found maximum in higher density. There was a 24.79 to 41.81% increase in SOC stock after harvest of lentil crop up to 0-30 cm soil depth. In the winter and rainy seasons, there were 54.38 to 59.81% and 41.44 to 49.73% litterfall occurred, respectively. The nutrients returned by litterfall was in the sequence of Ca > N > K > Mg > P and the higher litterfall and nutrient return occurred in lower spacings. For the total decomposition of leaf litter, it took 11 and 12 months in higher and lower density, respectively and it took 71 to 86 days for half decay of litter. The widest spacings (5 × 4 and 5 × 5 m) had height and diameter at breast height on average 19 % and 26 % higher. The volume of the tree was significantly superior under the plantations in higher spacings. The total biomass (26.5 Mg ha-1) was maximum in the higher density (5 × 2 m) plantations, followed by 5 × 4 m (25.8 Mg ha-1). Total carbon storage varied from 10.0 to 12.6 Mg ha-1 in 5 × 3 and 5 × 2 m spacing respectively. The maximum carbon sequestration rate was 1.53 Mg C ha-1 year-1 in both 5 × 2 and 5 × 4 m spacing.
  • ThesisItemOpen Access
    Efficient utilization of organic waste for quality vermicompost production and its impact on soil health and crop productivity
    (Dr.RPCAU, Pusa, 2022) Kumar, Rajesh; Jha, Shankar
    The catastrophic growth in population has led to massive urbanization, industrialization, with noticeable advancement in agriculture; increased the economic growth on one hand but gave the ways for generating more municipal and other solid wastes on other, affected soil-water-plant ecosystem ultimately the whole environment and the population. There is a need for effective waste management, as unscientific disposal of organic waste has not only negative impact on the environment and public health but also a cause of untapped nutrient loss adhered with these wastes. The untapped nutrients of the waste may be utilized for further crop and soil improvement vide adopting suitable techniques of vermicomposting. Among various methods of composting, one of the best options for treating domestic household waste is vermicomposting. Scientific utilization of organic solid wastes can provide nutrients for plant growth as well as improve soil health, for utilizing these wastes, vermicomposting can be an eco-friendly and economically viable technology. However, ordinary vermicompost is low in nutrients (macro and micronutrients) and by introducing some low-grade minerals, such as Rock-phosphate as well as utilizing organic waste (crop residues and household waste); its quality may be enhanced. Maize is grown in Bihar in all the three seasons (Kharif, Rabi, and Zaid). However, Rabi is the most widely grown followed by Kharif while Zaid season is the least grown and land remains fallow for most of the time. Hence, growing maize as Zaid crops not only increase crop productivity but also enhance fallow land utilization. Keeping in view the above facts, an experiment was conducted at vermicompost production unit, RPCAU, Pusa during the year 2021 and 2022 with an objective to efficiently utilize organic waste by vermicomposting and further use of the prepared vermicompost for improving soil health and crop productivity. Under this experimental study in the first approach, a vermicomposting experiment was carried out with enriched (RP) and without enriched household wastes, organicresidue waste and cow dung at 65:35 proportions, followed by a quality, maturity and stability analysis of the vermicompost. On the basis of nutrients contents (macro and micro nutrient), physical parameters (water holding capacity and bulk density) and recovery per cent, the vermicompost prepared from enriched (RP) and without enriched household wastes, organic-residue waste and cow dung proportions (65:35) on weight basis was considered the best one. In the second approach, a field experiment was conducted with maize as Zaid crop in calcareous soil in Randomized Block Design with fourteen treatments replicated thrice to evaluate the effect of prepared vermicompost integrated with chemical fertilizers (75% N through chemical fertilizer + 25% N through prepared vermicompost) including a sole treatment with only recommended dose of fertilizer (RDF-120:60:40) on soil health parameters i.e. soil physical, chemical, biological properties and enzymatic activities, productivity, nutrient uptake and nutrient use efficiency. During field experiment, enriched organic residue vermicompost with combination of chemical fertilizers led to significant build-up of organic carbon (OC), available N, P, K and micronutrient Zn, Cu, Fe & Mn as well as improved water holding capacity (36.89%) and bulk density (1.38 Mgm-3) of soil followed by enriched household vermicompost. With application of enriched (RP and Zn) household and organic residue vermicompost in combination with chemical fertilizers, the soil microbial biomass carbon, soil respiration, dehydrogenase and alkaline phosphatase activities increased by 24.78%, 75.86%, 81.57% and 61.50% over control in post-harvest soil, respectively. Application of enriched household vermicompost along with chemical fertilizers gave highest grain, stover, and stone yields which were statistically at par with application of enriched organic residue vermicompost along with chemical fertilizers and their magnitudes were 69.60 and 69.20 q ha-1 for grain, 81.32 and 79.92 q ha-1 for stover, 14.31 and 13.64 q ha-1 for stone, respectively in both the years i.e. 2021 and 2022. In the same fashion N, P, K and Zn uptake in grain, stover and stone of maize was significantly higher in the enriched household and organic residue vermicompost over control. However, the application of household and organic residue vermicompost and 75% N through chemical fertilizers yielded more as full dose of inorganic fertilizer (RDF) alone. Thus, combined application of enriched and without enriched vermicompost and inorganic fertilizer recorded greater nutrient use efficiency than control and RDF. Thus, 25% of chemical fertilizer could be saved with the combination of vermicompost and 75% RDF without reducing yields of grain, stover, and stones. It can be concluded from the present study that application of RP enriched vermicompost along with 75% NPK had pronounced impact on improving soil fertility as well as enzymatic activities and increased crop productivity under maize crop.
  • ThesisItemOpen Access
    INFLUENCE OF TRASH TREATMENTS ON SOIL C AND N INDICES UNDER SUGARCANE PLANT-RATOON SYSTEM
    (Dr.RPCAU, Pusa, 2022) Bairwa, Rajendra; Jha, C. K.
    Sugarcane crop generates around 8-12 t ha-1 trash. The trash an asset in sugarcane system which can be used as source of biomanure/mulching. The trash mulching regulates the rhizospheric environment and ultimately improves crop growth and yield. Nevertheless, the management of soil carbon and nitrogen is a major constraint in sugarcane based intensive system for sustaining soil health and sugarcane productivity. Thus, enhancing soil carbon and nitrogen in the sugarcane-based system has become an important concern due to declining factor productivity and nutrient availability. In view of the above facts present study was carried out at Dr. Rajendra Prasad Central Agricultural University Pusa (Bihar) during the year 2020-2022, to investigate the “Influence of Trash Treatments on Soil C and N Indices under Sugarcane Plant-Ratoon System”. The field investigation was conducted in randomised block design with eight treatments and three replications. The treatments comprised of trash mulching @10 t ha-1 either alone or activated with 25 kg N ha-1 (through urea) / farmyard manure (5t ha-1) / vermicompost (@2.5 t ha-1) / trash mulching inoculated with Trichoderma viride / Azotobacter + PSB and trash incorporated in soil with no trash control. The dose of chemical fertilizer for plant (150 N: 85 P2O5: 60 K2O kg ha-1) and ratoon (170 N: 60 P2O5: 60 K2O kg ha-1) has been applied as per recommendation in all the treatments. The results revealed that treatments of trash mulching either treated with urea/FYM/vermicompost or inoculated with Trichoderma/Azotobacter +PSB significantly enhanced CO2 evolution in soil over control. The CO2 evolution decreased continuously with the advancement of crop growth. The fractions of total organic carbon significantly increased due to trash mulching / incorporation as compared to no trash control. The very labile (1.62 – 2.76 g kg-1), labile (1.09 – 2.17 g kg-1), less labile (1.55 – 2.21 g kg-1) and non-labile carbon (2.18-2.95 g kg-1) varied significantly after two crop cycles. The carbon fractions were in order of non-labile-C (Fraction-IV) > very labile-C (Fraction-I) > less labile-C (Fraction-III) > labile-C (Fraction-II). The mean soil organic carbon (4.53-6.93 g kg-1), total organic carbon (6.26 - 9.79 g kg-1), organic carbon stock (14.70 – 20.76 Mg ha-1), microbial biomass carbon (110.73-265.16 mg kg-1) and microbial quotient (1.77 - 2.71%) differed significantly due to trash mulching treatments either activated with organics/inoculated with microbes after harvest of ratoon. carbon pool index (1.00-1.57) and carbon management index (138.36-238.30) varied and improved significantly in trash treated plots as compared to no trash control after ratoon. However, the soil carbon lability index was found non-significant. The maximum nitrate-N fraction observed in trash mulching treatment treated with urea, while other forms of nitrogen fractions dominated in trash mulching treatments activated with organics/microbial inoculants. The N-fractions viz. nitrate-N (15.70-18.03 mg kg-1), exchangeable ammonical-N (66.46-100.50 mg kg-1), total hydrolysable-N (242.92-363.95 mg kg-1), non-hydrolysable-N (140.55-200.69 mg kg-1) and total-N (447.76-699.01 mg kg-1) differed and found significant due to treatments of trash mulching. Among the hydrolysable-N, the highest value recorded for amino acid-N followed by ammonium-N, unidentified-N and least value for hexoseamine-N. The N-indices viz. nitrogen lability, nitrogen lability index and nitrogen pool index of soil significantly influenced by trash treatments while nitrogen management index did not differ. The nitrogen fractions were in a dynamic state of equilibrium and various nitrogen fractions behaving interchangeably, as indicated by the correlation coefficient (r value) among the nitrogen fractions. The trash mulching brings significant changes and enhancement in physical, chemical and biological environment of soil. The mean soil penetration resistance of surface (1.26 – 1.40 MPa) and sub-surface (3.68-4.09 MPa) varied significantly after harvest of ratoon crop. The significant improvement in bulk density, aggregate size distribution, pore space and water holding capacity of soil also observed in trash mulching treatments after two crop cycles. The availabilityof macro (N, P & K) and micro nutrients (Fe, Zn, Cu & Mn) enhanced significantly with positive balance of NPK due to trash mulching. The results revealed that plant height, dry matter, tiller, millable cane and cane length enhanced in plant and ratoon crop due to treatments of trash mulching. The mean cane yield of plant (65.96-83.31 t ha-1) and ratoon crop (54.20-71.99 t ha-1) differed significantly among treatments. Juice quality parameters viz., pol, purity coefficient and commercial cane sugar remains unaffected due to trash mulching. However, brix (%) improved significantly in ratoon crop only. The mean sugar yield varied significantly in plant (7.22-9.97 t ha-1) and ratoon crop (5.78-8.58 t ha-1) due to various trash mulching treatments. The higher sugar yield was recorded in plant crop as compared to ratoon crop. The positive relationship was found among cane and sugar yield with carbon and nitrogen indices. The increasing cane yield resulted more uptake of nutrients by plant and ratoon crop. The mean uptake of N (230.07-297.39 Kg ha-1), P (17.22-22.07 Kg ha-1), K (205.00-283.06 Kg ha-1), Fe (3663-5505 g ha-1), Zn (712-939 g ha-1), Cu ( 1417-1835 g ha-1), Mn (723-956 g ha-1) by plant crop and N (213.47-282.40 Kg ha-1), P (15.21-20.57 Kg ha-), K (163.55-246.34 Kg ha-1), Fe (3154-4963 g ha-1), Zn (646-841 g ha-1), Mn (1253-1739 g ha-1) and Cu (621-861 g ha-1) by ratoon crop varied significantly and increased due to mulching of trash. The mean B: C ratio for plant (1.51-1.89) and ratoon (1.71 – 2.20) varied significantly. The trash mulching treatment inoculated with Trichoderma viride recorded highest B: C ratio in plant (1.89) and ratoon (2.20) crop. In general, the higher B:C ratio was obtained in ratoon crop as compared to plant crop. The soil carbon pool parameters, soil carbon stock and nitrogen fractions get better with improvement in carbon and nitrogen indices due to trash mulching treatments. The trash mulching treatments either activated with urea/FYM/vermicompost or inoculated with Trichoderma /Azotobacter + PSB brings significant enhancement in quality of soil and productivity of sugarcane plant-ratoon system in sub-tropics. Based on B: C ratio trash mulching (10 t ha-1) treated with Trichoderma viride (500 g t-1 of trash) along with RDF produced maximum profitable cane and sugar yield in Calcareous soil.
  • ThesisItemOpen Access
    ASSESSING CARBON SEQUESTRATION POTENTIAL AND SOIL QUALITY INDEX (SQI) UNDER HORTICULTURE BASED LAND USE SYSTEMS IN AGRO-CLIMATIC ZONE-I OF BIHAR
    (Dr.RPCAU, Pusa, 2022) KUMAR, PRABHAT; Prasad, S.S.
    Soil carbon sequestration research has gained world focus as a cost effective and eco-friendly approach in mitigating elevated CO2 level of atmosphere. The various anthropogenic activities have impacted our fragile ecosystem, leading to an increased level of carbon dioxide in the earth’s atmosphere which has not only affecting our ecosystem but also poses threat to our human race. The research was formulated with the hypothesis that SOC quality, and quantity varies due to variability in input and loss of soil C under different LUS’s of agro-climatic zone –I of Bihar. The main objective of the research undertaken was to assess carbon sequestration and soil quality under dominant LUS’s by evaluating the variation in measurable soils properties with carbon and nitrogen storage patterns. The selected experimental area lies in the middle Gangetic alluvial plain having hot dry to moist sub-humid. Based on preliminary survey, five LUS’s namely litchi solo , mango solo, litchi intercrop, rice wheat, and uncultivated were selected and accordingly composite soil sample collected i.e. total 100 samples from different soil depth 0-15, 15- 30, 30-45 and 45-60 cm. The various soil measurable physico-chemical and biological parameters were analysed and the data revealed that soil carbon is the main driver influencing various soil characteristics. Among the different LUS selected, the superior LUS followed sequence mango solo >litchi solo > litchi intercrop > uncultivated > rice wheat. The analysed soil data revealed that soil pH in different LU was moderately alkaline and ranged from 7.91 to 8.26 while electrical conductivity ranged from 0.34 to 0.48 dS m-1 which is within the safer limit. The observed soil bulk density varied significantly and was found highest in uncultivated LU 1.46 Mg m-3 while lowest in 1.41 Mg m-3 in mango solo LU. The soil surface hardness was observed highest 1368.2 KPa in uncultivated LU having highest BD value compared to other LUS’s. Soil texture in selected LU was mainly sandy loam, silty loam and clay loam but the effect of LU was non-significant. Among different LU system, the available macro-nutrient N, P, K and micro-nutrient Fe, Zn, Cu, Mn were found to be more in horticulture based LUS’s compared to rice-wheat and uncultivated LU. Significant decreases in available nutrients were observed with increase in depth of soil. The biological soil properties assessed by DHA activity, SMBC, SMBN and soil protein and found significantly better microbial properties in all three horticulture-based LUS’s when compared to rice-wheat LUS. A marked difference in SOC fraction constituents were found among different LUS’s and observed sequence NLc>VLc> Lc>LLc carbon. Among the different LUS’s soil carbon stock 0-60 cm soil depth was found to be highest in mango LU at 71.34 Mg C ha-1 followed by litchi solo 61.34 Mg C ha-1, uncultivated LU 52.33 Mg C ha-1and least it was observed in rice-wheat LU 44.69 Mg C ha-1, while similar trend also was observed in soil nitrogen stock highest in mango LU 5408.01 kg N ha-1 and least 3771.51 kg N ha-1 observed in rice-wheat LU system. In the horticultural LUS’s the total tree biomass carbon (both above and below ground) was observed highest in mango solo 51.59 q tree-1 followed by litchi solo 16.32 q tree-1 and least 15.82 q tree-1 in litchi intercrop. Soil quality index was assessed among different LU and observed best in mango solo LU 1.15 then litchi solo 1.09, litchi intercrop 1.04, uncultivated 1.02 and least observed in rice-wheat LU 0.94. The soil quality data depicts sensitive indicators selected were soil carbon stock, metabolic quotient; soil respiration, clay% and sand% in assessing SQI which may be used in future research in related studies for assessing SQI. Finally, it may be concluded that over all soil quality and carbon sequestration followed sequence mango solo > litchi solo > litchi intercrop > uncultivated > rice wheat LUS. The problem of increased current fallow area under in ACZ-I may be addressed with incorporation of horticulture tree component and adoption of suitable agronomic management practices for maintaining sustainability in the region.
  • ThesisItemOpen Access
    SOIL HEALTH STUDY OF DIFFERENT SOIL TYPES UNDER PROMINENT CROPPING SYSTEMS OF BIHAR
    (Dr.RPCAU, Pusa, 2022) Nath, Debabrata; Laik, Ranjan
    There are many factors that contribute to soil health, including physical, chemical, and biological factors. Some of them are dynamic in nature and behave differently based on the agro-ecological zone in which they occur and therefore are quantified using a soil health index (SHI), which measures the soil health in various agroecological zones (ACZs). A study entitled “SOIL HEALTH STUDY OF DIFFERENT SOIL TYPES UNDER PROMINENT CROPPING SYSTEMS OF BIHAR” was conducted at the Department of Soil Science, Dr. Rajendra Prasad Central Agricultural University Pusa (Bihar) with the objective to evaluate the variability in soil health parameters, minimum data sets (MDSs) to construct a soil health index (SHI) and correlation and regression to find out the direct determinants yield which will be useful in evaluating the sustainability of crops in different agroecological zones of Bihar, under rice-wheat and rice-maize cropping systems including four different ACZs, namely Sitamarhi (ACZ-I), Saharsa (ACZ-II), Banka (ACZ-IIIA) and Rohtas (ACZ-IIIB). Based on the properties of the surface soil layer (0-15 cm) that were measured by Comprehensive Assessment of Soil Health (CASH), 20 parameters were utilized to develop the soil heath index (SHI). Under R-W and RM cropping system a wide range of variations were observed in soil properties in surface soil samples that was found by descriptive analysis. Pearson’s correlation studies revealed that strong significant correlation among SOC, available N, available P2O5, WAS, AWC, sand content, soil respiration and system yield (R-W and R-M). Stepwise regression analyses showed that under the R-M cropping systems, the key soil properties like SOC and available N were the main determinants for R-M system yield in all the four ACZs, available K2O in ACZ-I and II, WAS in ACZ-I and IIIA and AWC in ACZ-IIIB. However, stepwise regression analyses showed that under the R-W cropping system also SOC and available N were the main soil determinants for R-W system yield in all the four ACZs, along with available P2O5 in ACZ-I and II, Clay in ACZ-I, IIIA and IIIB and soil respiration in ACZ-IIIB. A scoring function (non-linear) was used to convert each indicator of the MDS into a dimensionless score which in turn was integrated into four separate SHIs based on scoring functions (nonlinear). Soil health index (SHI) of R-M system showed that the overall SHI varied from 0.41-0.49. The highest SHI was found in Rohtas (0.49) followed by Saharsa (0.48). Among all the soil health parameters SOC, available N, available P2O5, available K2O, available S, soil respiration and AWC were the main contributor for the SHI. Maximum contribution was found for SOC is 13.50% in Sitamarhi (ACZ-I) followed by 12.50% in Saharsa (ACZ-II). Soil health index (SHI) of R-W system revealed that the overall SHI varied from 0.43-0.51. The highest SHI was found in Rohtas (0.51) followed by Sitamarhi (0.50). Maximum contribution was found for SOC is 15 % in Rohtas (ACZ-IIIB) followed by 14 % in Sitamarhi (ACZ-I). Quantitative predictive relationship between R-W and R-M system yield and SHI showed a positive correlation. The results demonstrated that R2 values are 0.79, 0.54, 0.65 and 0.76 in R-W system and 0.70, 0.62, 0.65 and 0.64 in R-M system for Rohtas, Banka, Saharsa and Sitamarhi respectively. On the basis of this index, it was determined that prominent cropping systems were able to be used to quantify soil health under four different ACZs. Based on this result, it was determined what would be the most suitable cropping system. Thus, it can be concluded that SHI can be used as a tool for quantifying soil health to a satisfactory level. Based on the variability observed across 20 soil health indicators across two prominent cropping systems under four different agro-climatic zones (ACZs) of Bihar, this study provides a framework for the quantitative assessment of soil health throughout four ACZs. It also helps to identify which cropping system for a given ACZ is the most suitable among existing cropping systems carried out in a particular ACZ.
  • ThesisItemOpen Access
    EFFECT OF LONG-TERM CROP ESTABLISHMENT AND RESIDUE MANAGEMENT ON N, P, K, S TRANSFORMATIONS AND SOIL HEALTH UNDER RICE-WHEAT CROPPING SYSTEM
    (Dr.RPCAU, Pusa, 2021) BORPATRAGOHAIN, BIDISHA; Kumar, Vipin
    The dominant agricultural system prevailing in the Indo-Gangetic Plain is the cereal based cropping system comprising of rice-wheat. Soil quality and health is in the limelight and considered as a vital component of conservation agriculture towards agricultural sustainability. The main challenges confronted by the farming community of Indo-Gangetic Plain (IGP) in Bihar under intensive conventional tillage rice-wheat based cropping system are shortage of manpower, water, energy; high cost of production, diminishing farm returns and unpredictable climatic conditions. To address these loopholes of conventional system, conservation agriculture management systems of crop production are being established. The implementation of conservation agriculture centered on least soil manipulation, surface crop residues retention with practical crop rotation is the need of the hour. The goal of our research was to study how crop establishment and residue management affected soil health indicators, and yield as well as different fractions of the macronutrients (N, P, K and S) through various crop establishment, tillage practices and crop residue combinations in the cropping system of rice-wheat. A long term experiment was established in collaboration with CIMMYT, India, since Monsoon, 2006 with eight different tillage, crop setup, and residue management combinations. The study was performed during 10th June 2019 to 12th October 2019 and 14th November 2019 to 25th March 2020 (two seasons). The site experiences hot and humid summers and has cold winters. The average rainfall of 1344 mm, 89.7 % (1107.8 mm) of which receives throughout the time of monsoon (mid-June to mid-September) while, the winter North-East monsoon rains are scanty and received during January-February. The soil of the experimental site belongs to order Entisol, texture being sandy loam with alkaline pH (8.86), medium SOC (0.48 %) and soil available N, P, K (205.62, 9.35, 136.10 kg ha-1). The trial was set up Randomized Block Design having eight treatment details replicated thrice within a block. The treatments were: puddled transplanted rice-conventional tillage wheat (T1); Puddled transplanted rice-zero tillage wheat (T2); Zero tillage rice-zero tillage wheat on permanent beds having 100 % crop residues (T3); Zero tillage rice-conventional tillage wheat without residues (T4); Zero tillage rice-zero tillage wheat on permanent bed (without residues) (T5); Zero tillage rice-Zero tillage wheat having 100% crop residues (T6); Direct seeded broadcasted rice-Zero tillage wheat (only rice residue in wheat cycle) (T7); Zero tillage rice with brown manuring-zero tillage wheat (without residues) (T8). The study aimed to assess how treatments affected yield, nutrient absorption, and the transformation of various pools of nitrogen, phosphorus, potassium and sulphur, as well as measure soil health in a rice-wheat system. The following are the findings of the present study which revealed that the adoption of zero tillage and crop residue amplified grain yield of rice by 3.91-15.49% although; treatment T8 showed the greatest improvement (by 15.49 percent) as compared to T1's standard procedures. While, in wheat, of zero tillage and residue retention practices increased the grain yield by 34.13- 63.94% over T1 and highest increment (by 63.94%) was established with T3. Treatments T6, T8, T3, T7, and T5 showed a significant increase in system yield by 33.12%, 32.46%, 31.78%, 22.64% and 21.96%, respectively over conventional practices. The nutrient uptake followed similar trend of yield with rice and wheat. The adoption of zero tillage and residue retention practices T3, T5, T6, T7 and T8 revealed higher total N, P, K, S uptake by rice crop by 38.39-26.00%, 10.25-26.64%, 11.05-31.29% and 10.04-37.70%, respectively over the conventional practice (T1). The total uptake of N, P, K and S by wheat crop was to the tune of 27.33-72.13%, 30.13-73.79%, 27.10-79.72% and 41.63-117.92% over conventional practices (T1) by T3, T4, T5, T6, T7 and T8, respectively. Similarly, total micronutrient uptake cations (Iron, manganese, copper and zinc) by rice crop were boosted with the involvement of zero tillage and residue retention to the tune of 11.12-34.83%, 12.73-37.56%, 9.91-41.77% and 10.04-37.71% over conventional practices for T3, T5, T6, T7 and T8, respectively. Likewise, the total uptake of iron, copper and zinc by wheat crop was to tune of 34.67%, 33.48%, 38.44% and 41.00%, respectively over conventional practices (T1). Different N-fractions in soil were ranked in order of dominance: Total N > Total hydrolysable-N > Non-hydrolysable-N > Hydrolysable ammonical-N > Exchangeable ammonical-N > Amino acid-N > Unidentified-N > Hexoseamine-N > Nitrate-N. The treatment ZTR-ZTW+ R showed the highest forms among most of the N fractions, along with ZTR-ZTW (B) + R and ZTR-ZTW (B) + R and ZTR+BM-ZTW being at par. The major pool of P in the soil was organic-P. Excluding Al-P and Fe-P, all the other forms of P was increased with zero tillage, residue management and brown manuring. The following was the average order of various fractions status of P: Organic-P > Ca-P > Mineral-P > Saloid-P > Fe-P > Al-P. The total-K ranged between 14800.2 mg kg-1 to 15643.0 mg kg-1 due to different treatments. Lattice-K contributed the major fraction of K in soil. Retaining residues on soil surface and zero tillage had increased the amount of all forms of K. The order of the availability of different K forms in the soil is as follows: Total-K > Lattice-K > Non-exchangeable-K > Exchangeable-K > Water soluble-K. The total-S varied from 225.27 to 294.43 mg kg-1 due to different treatments. Organically bound-S contributed the major fraction of S in soil. Retaining residues on soil surface and zero tillage had increased the amount of all form of S except residual-S. The availability of different S pools was in the order: total-S > organically bound-S > residual-S > inorganically bound-S > distilled water soluble-S > sulphate-S. The correlation coefficient study specified that all the fractions of N, P, K and S were in dynamic equilibrium showing positive significant relationship with the majority of plant and soil attributes. The pH and EC content at the commencement of the experiment in 2006 were higher as compared to values obtained under conservation agriculture plots. However, when conservation techniques were used, available macro and micronutrients were enhanced compared to their baseline data which were obtained before the trial began in 2006. Involvement of CA practices significantly altered the soil health parameters viz. soil physico-chemical and biological properties. After one cycle of rice-wheat, conservation agriculture increased the wet aggregate stability (%). The CA (ZTR-ZTW (B)+R, ZTR-ZTW(B)-R, ZTR-ZTW+R, DSR-ZTW+R.R and ZTR+BM-ZTW) practices recorded increase to the tune of 38.15%, 17.24%, 34.48%, 28.87% and 32.75%, respectively over the control. The CA practices increased the soil organic carbon with time as the increment in SOC (0- 15 cm soil depth) with conservation agriculture adoption (T2, T3, T4, T5, T6, T7 and T8) was by 16.37- 86.04% over conventional practices. The active carbon varied between 165.0 mg kg-1 in conventional plot to 373.3 mg kg−1 in ZTR-ZTW (B) +R. The treatment ZTR-ZTW (B) +R was significantly superior and at par with ZTR-ZTW+R (62.4 mg kg−1) and ZTR+BM-ZTW (61.6 mg kg−1). The magnitude of increase in active carbon was 4.36%, 15.57%, 46.66%, 95.81%, 97.87%, 106.06% and 126.24% over control. Soil respiration varied between 1.53 CO2 mg g−1soil in control plot to 1.88 CO2 mg g−1soil in ZTR-ZTW (B) +R. The magnitude of increase in soil respiration was 1.30%, 4.57%, 7.84%, 10.45%, 16.33%, 18.30% and 22.87% over control in treatments ZTR-CTW-R, PTR-ZTW, ZTR-ZTW(B)-R, DSR-ZTW+R.R, ZTR+BM-ZTW, ZTR-ZTW+R and ZTR-ZTW(B)+R, respectively. The magnitude of increase in ACE protein was 6.37%, 9.96%, 12.75%, 19.92%, 23.90%, 26.69% and 28.29 % over control in PTR-ZTW, ZTR-CTW-R, ZTR-ZTW(B)-R, DSR-ZTW+R.R, ZTR-ZTW+R, ZTR-ZTW(B)+R and ZTR+BM-ZTW, respectively. Hence, conservational agricultural system contributed to higher production of ACE protein. The ZT with residue retention was found to be superior over CT due to congenial crop-soil environment. Thus, long term effect of crop establishment with varying degrees of residue retention improved different pools of soil nitrogen, phosphorus, potassium and sulphur; soil health parameters and thereby, enhanced the soil health in the long run.
  • ThesisItemOpen Access
    “MID-INFRARED SPECTROSCOPY AS A TOOL FOR ASSESSMENT OF SOIL QUALITY IN CALCAREOUS SOILS
    (Dr.RPCAU, Pusa, 2021) Kumari, Vandana; Laik, Ranjan
    A study entitled “MID-INFRARED SPECTROSCOPY AS A TOOL FOR ASSESSMENT OF SOIL QUALITY IN CALCAREOUS SOILS” was carried out at Department of Soil Science, Dr, Rajendra Prasad Central Agricultural University, Pusa with the objective to evaluate the variability in soil quality parameters, soil quality index and feasibility of mid-infrared (MIR) spectroscopy for prediction of soil quality indicators under rice-wheat system in 275 soil samples collected from West Champaran, East Champaran, Muzaffarpur and Samastipur districts of Bihar which are calcareous in nature. Soil samples were analyzed in the laboratory for different physical, chemical and biological properties by Cornell Soil Health Laboratory Comprehensive Assessment of Soil Health (CASH) standard operating procedures. Soil textural class of the samples varied from clay to sand with most frequent textural class of silt loam. A wide variation was observed for soil quality parameters which included Wet Aggregate Stability (WAS) (0.24-88.93 %) with mean 24.78 %; pH (5.76-9.67) with mean 8.39 (±0.53); electrical conductivity (EC) (0.11-2.77 dSm-1) with mean 0.41 dSm-1 (±0.27); free calcium carbonate (CaCO3) (0.04-54.1%) with mean 18.78 % (±12.64) and soil organic carbon (SOC) (0.14-1.26 %) with mean 0.63 % (±0.20). Among the soil major nutrients, the variation of available N was between 120.35-315.30 kg ha-1 with mean 204.5 kg ha-1 (±34.24); available P2O5 was between 0.90- 422.62 kg ha-1 with mean 103.73 kg ha-1 (±91.77); available K2O was between 31.05-1471.01 kg ha-1 with mean 204.98 kg ha-1 (±146.35) and available S was between 0.37-538.44 ppm with mean 39.3 ppm (±61.41). The variation in available soil micronutrients were as follows: Zn between 0.04-3.30 ppm with mean 0.77 ppm (±0.66); Cu between 0.00-5.18 ppm with mean 1.45 ppm (±0.75); Fe between 2.42-31.65 ppm with mean 10.5 ppm (±5.13); Mn between 0.00-13.82 ppm with mean 4.14 ppm (±2.74); and B between 0.00-7.6 ppm with mean 0.52 ppm (±0.67). Among the soil biological properties, active C, autoclaved citrate extractable protein (ACE), and respiration varied between 6.96-731.38 mg kg-1, 0.32-4.26 g kg-1 and 0.05-4.25 mg CO2 g-1 respectively and their mean values were 256.46 mg kg-1 (±193.4), 1.72 g kg-1 (±0.80) and 0.54 mg CO2 g-1 (±0.34) respectively. The first seven principal components (PCs) factors obtained with principal component analysis (PCA) of twenty soil quality parameters with eigenvalues >1 explained that CaCO3, pH, sand, protein, Fe, S, EC, silt, SOC, N, clay, B and K2O contributed 67.86 % of the soil variability in calcareous soil of Bihar. The soil quality index (SQI) values of all the 275 samples of calcareous soils of Bihar lied between 0.29-0.64 with a mean 0.47, which belongs to a low class of SQ. In the MIR spectroscopy study, principal component regression (PCR) and partial least square regression (PLSR) algorithm in OPUS software were used for understanding the quality of prediction level of the soil studies. Best models for residual prediction deviation (RPD) values with ―MIR-PLSR‖ were obtained for SOC, available N, free CaCO3, sand, silt and clay. Prediction for pH, EC, micronutrients (except B), WAS, active C, protein and respiration were observed as fair models. This indicated that MIR spectroscopy has great potential for simultaneous estimation of a number of soil properties in larger soil sample size and is useful for the prediction of soil quality parameters.
  • ThesisItemOpen Access
    EFFECT OF ORGANIC AMENDMENTS ON SOIL CARBON POOL PARAMETERS, CANE PRODUCTIVITY AND JUICE QUALITY OF SUGARCANE IN CALCAREOUS SOIL
    (Dr.RPCAU, Pusa, 2021) Priyadarshi, Rashmi; Thakur, S.K.
    Sugarcane is a long duration and nutrient-exhaustive crop. The excessive and imbalanced use of chemical fertilizer has raised problems like deterioration of soil health. The soil organic carbon content is continuously declining due to the nonaddition of organic matter which is a matter of great concern. Restoration of organic matter is thus, needed for maintaining soil health and improving productivity through the addition of organic amendments. A field experiment was therefore, conducted during 2018-20 at Dr. Rajendra Prasad Central Agricultural University Pusa (Bihar) to assess the “Effect of organic amendments on soil carbon pool parameters, cane productivity and juice quality of sugarcane in calcareous soil”. The experiment was laid out in randomized block design with eight treatments and thrice replications. The organic treatments comprised of FYM @ 20 t ha-1, biocompost (BC) @ 20 t ha-1, vermicompost (VC) @ 5.0 t ha-1, green manure with moong, sugarcane trash @ 10 t ha-1, FYM + BC+ VC (1: 1: 0.5) @ 20 t ha-1. The results revealed that the application of organic amendments significantly increased the soil organic carbon content & stock and different organic carbon pool parameters in post-harvest soil. The percent increase in soil organic carbon content and stock due to the addition of the organic amendments over control ranged from 22.75 - 47. 25 and 6.49 - 23. 50 % after harvest of sugarcane ratoon, respectively. The significantly higher value of watersoluble carbon (49. 89 - 56. 22), water-soluble carbohydrate (193.07 - 203.63) soil microbial biomass carbon ( 238.80 - 243.15 mg kg-1) and CO2 evolution ( 52.56 - 65.04 mg 100 gm-1 soil day-1) was recorded in organic treated plots over control after harvest of the ratoon crop under sugarcane plant - ratoon system. In organic treatments, a significant decrease in bulk density (4.1 - 6.8 %) and increase in porosity (5.1 - 8.4%) were registered over control in post- harvest soil after the ratoon crop. The available N, P2O5 & K2O content in soil significantly increased due to the addition of the organic amendments over control which ranged from 236.25 - 266.28, 24.41 - 34.40 & 117.24 - 124.41 and 249.48 - 272.58, 30.15 - 40.18 & 119.26 - 127.05 kg ha-1, in sugarcane plant and ratoon crops, respectively. A positive and significant correlation was obtained between carbon pool parameters and soil quality parameters. The application of different organic amendments significantly increased the number of tillers & millable cane and cane yield in sugarcane plant and ratoon crops. However, a non-significant effect on cane germination, height, girth and single cane weight were observed. The addition of organic amendments showed higher cane and sugar yield which was at par with RDF. The plant and ratoon cane yield in organic treatments varied from 43.69 - 85.86 and 35.87 - 77.27 t ha-1 and sugar yield from 4.92 -10.70 & 4.06 - 10.56 t ha-1, respectively. The N, P & K uptake by sugarcane plant and ratoon crops varied from 200.01 - 292.7, 17.9 - 19.8 & 200.5 - 278. 9 and 152.0 - 255.6, 10.6 - 15.9 & 170.0 - 249.9 kg ha-1, respectively. The maximum B: C ratio in sugarcane plant and the ratoon crops was registered in the treatment receiving green manuring with moong (2.29 & 2.98) which was at par with treatments receiving sugarcane trash @ 10 t ha-1 (2.13 & 2.71), vermicompost @ 5.0 t ha-1 (1.93 & 2.37) and farmyard manure @ 20 t ha-1 (2.18 & 2.92), respectively. Thus, the application of FYM @ 20 t ha-1 or vermicompost @ 5.0 t ha-1 or sugarcane trash @ 10 t ha-1 or green manure with moong was beneficial for restoration of soil carbon stocks, maintaining soil health, enhancing cane & sugar yield and getting economic returns under sugarcane plant-ratoon system in calcareous soil of Bihar.
  • ThesisItemOpen Access
    Soil health and nutrient fractions (P, K, and Zn) as influenced by long-term application of organics and inorganics in calcareous soil under rice-wheat cropping system
    (Dr.RPCAU, Pusa, 2021) DAS, RAJESWARI; Kumar, Mukesh
    To examine the sustainability of any management practices long-term experiments are regarded as important tools. The long-term experiments could precisely evaluate the effect of continuous application of primary, secondary and micronutrients on overall soil health and crop productivity. Long-term fertiliser experiments could monitor the trends in crop yield resulting from changes in soil fertility. In India, several long-term studies have shown wide variability in crop productivity, and it is essential to monitor the long-term changes in crop yields, soil nutrient status, and nutrient supplying capacity to ensure and improve crop productivity. These considerations have prompted to undertake the present investigation, which was carried out in an on-going field experiment started in Rabi 1988-89 under AICRP on STCR project at Research Farm of Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, India. The experiment was carried out with rice (Cv. Rajshree) and wheat (Cv. HD- 2733) as test crops for Kharif (2019) and Rabi (2019-20), respectively. The experimental site experienced a sub-tropical climate with an average annual precipitation of 1345 mm, the summer was hot and humid and too cold winter and the experimental soil belonged to order entisols. The experiment was conducted in a split-plot design with four levels of fertilizers viz. no NPK (Fo), 50% of the recommended dose of NPK (F1), 100% of the recommended dose of NPK (F2) and 150% of the recommended dose of NPK (F3) were applied as treatments in main plots. The main plots were divided into four sub-plots in which treatments viz. no manures (M0), compost @ 10 t ha-1 (M1), crop residue (M2), and compost + crop residue (M3) were superimposed over NPK levels making a total of 16 treatment combinations with three replications. The study intended to assess the effect of the organic and inorganic treatments on soil health, nutrient fractions and crop performance in rice-wheat cropping system. Most of the observations were recorded thrice i.e., before transplanting of rice, after harvesting of rice and after wheat harvest. The experimental findings of the effect of long-term application of organics and inorganics on soil physical properties revealed a significant reduction in bulk density up to the application of 150% NPK as inorganics, and a 15% decline was observed due to conjoint application of compost and crop residue over control (no organics). Soil penetration resistance reduced significantly due to the application of compost and organics down to a depth of 60 cm, and the maximum reduction (19%) over control (no organics) was observed with the conjoint application of compost and crop residue. Water holding capacity and volumetric moisture content increased significantly up to 150% NPK as inorganics, and conjoint application of compost and crop residue recorded the highest percent increase (27.5% and 12.5%, respectively) over control (no organics). Mean weight diameter of water-stable aggregates increased due to conjoint application of organics and inorganics and a recorded 1.5-fold increase over absolute control (no NPK, no organics). No significant changes were observed with soil pH and EC. Whereas, Soil organic carbon increased up to 1.7-fold over absolute control (4.44-4.91 g kg-1), up to 2-fold over 31 years of continuous application of organics and inorganics over control and was recorded highest (8.22-8.42 g kg-1) with the conjoint application of 150% NPK + compost + crop residue. Availability of N and P2O5 increased significantly up to 150% NPK, and with organics were recorded highest with the conjoint application of organics and inorganics. Due to the interaction effect between organics and inorganics, a 2-fold increase in the soil available N and a 4.5 fold increase in available P2O5 was observed with 150% NPK + compost + crop residue over absolute control (187.36-190.71 kg ha-1 and 13.71-15.25 kg ha-1, N and P2O5 respectively). Conjoint application with organics performed better than the sole application of organics at all the three graded doses of NPK, i.e., 50%, 100% and 150%. No interaction effect was observed between organics and inorganics for available K2O content and responded up to 150% NPK and recorded highest with the conjoint application of compost and crop residue (144.12- 152.99 kg ha-1). After 31 years of continuous application of NPK, compost and crop residue available N, available P2O5 and available K2O were enhanced to a tune of 2-fold, 3.4-fold, and 1.6-fold, respectively, over control. Observations of soil biological properties revealed a 3-fold increase in soil microbial biomass carbon and nitrogen, a 2-fold increase in soil respiration and an 8-fold increase in soil dehydrogenase activity over absolute control due to the interaction effect of 150% NPK+ compost + crop residue. Also, 150% NPK+ compost + crop residue was 30% superior over absolute control for soil alkaline phosphatase activity. The distribution of different fractions of revealed that continuous application of organics and inorganics significantly affected all the fractions of P, and the highest total P was recorded with 150% NPK+ compost + crop residue. Among inorganic P fractions Ca10P and Ca8P (28% and 10%) contributed highest towards total P. Ca2P, and Ca8P increased by six times and 4.5 times, respectively over absolute control due to periodic application of 150%NPK + compost + crop residue. All the fractions of P were positively correlated with each other except for Ca10P. Among different forms of K, Structural K and non exchangeable K contributed highest (78% and 21%) towards total K. All the fractions of K increased due to increased application of inorganic fertilizers and organics, the treatments receiving 150% NPK and combined application of compost and crop residue recording the highest. Available K was highly correlated to non exchangeable and structural K. Most of the Zn in soil were present in form and was found as residual Zn (92% of total Zn). The highest rice yield (50 q ha-1) in terms of grain was observed with 150% NPK + compost + crop residue, and the same trend was followed with yields of wheat crop (46.11 q ha-1). Yield maximisation was observed with the conjoint application of compost and crop residue and inorganic fertilisers at all three doses as compared to the sole application of fertilisers. Nutrient uptake in terms of N, P, K and Zn followed the yield trend in both crops. Application of 100% NPK and 150% NPK performed equally in economic terms (B: C) though yield maximisation was observed with 150% NPK. Conjoint application of crop residue along with 150% NPK resulted in the best economics. This signifies the pronounced response of organics in calcareous soils. Balanced application of organics and inorganic fertilisers provided a favourable environment for rice and wheat crops growth in the experimental calcareous soil. For yield maximization, farmers can be recommended with 100% recommended dose of NPK, but for sustainable crop production and soil health in calcareous soil, 150% NPK + compost + crop residue should be recommended. 100% crop residue returning along with 150% NPK could be most economical to enhance crop yield beyond the recommended dose of fertilisers.