Loading...
Thumbnail Image

Dr. Rajendra Prasad Central Agricultural University, Pusa

In the imperial Gazetteer of India 1878, Pusa was recorded as a government estate of about 1350 acres in Darbhanba. It was acquired by East India Company for running a stud farm to supply better breed of horses mainly for the army. Frequent incidence of glanders disease (swelling of glands), mostly affecting the valuable imported bloodstock made the civil veterinary department to shift the entire stock out of Pusa. A British tobacco concern Beg Sutherland & co. got the estate on lease but it also left in 1897 abandoning the government estate of Pusa. Lord Mayo, The Viceroy and Governor General, had been repeatedly trying to get through his proposal for setting up a directorate general of Agriculture that would take care of the soil and its productivity, formulate newer techniques of cultivation, improve the quality of seeds and livestock and also arrange for imparting agricultural education. The government of India had invited a British expert. Dr. J. A. Voelcker who had submitted as report on the development of Indian agriculture. As a follow-up action, three experts in different fields were appointed for the first time during 1885 to 1895 namely, agricultural chemist (Dr. J. W. Leafer), cryptogamic botanist (Dr. R. A. Butler) and entomologist (Dr. H. Maxwell Lefroy) with headquarters at Dehradun (U.P.) in the forest Research Institute complex. Surprisingly, until now Pusa, which was destined to become the centre of agricultural revolution in the country, was lying as before an abandoned government estate. In 1898. Lord Curzon took over as the viceroy. A widely traveled person and an administrator, he salvaged out the earlier proposal and got London’s approval for the appointment of the inspector General of Agriculture to which the first incumbent Mr. J. Mollison (Dy. Director of Agriculture, Bombay) joined in 1901 with headquarters at Nagpur The then government of Bengal had mooted in 1902 a proposal to the centre for setting up a model cattle farm for improving the dilapidated condition of the livestock at Pusa estate where plenty of land, water and feed would be available, and with Mr. Mollison’s support this was accepted in principle. Around Pusa, there were many British planters and also an indigo research centre Dalsing Sarai (near Pusa). Mr. Mollison’s visits to this mini British kingdom and his strong recommendations. In favour of Pusa as the most ideal place for the Bengal government project obviously caught the attention for the viceroy.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Impact of intensive fertilizer use on soil health under maize based cropping system
    (Dr.RPCAU, Pusa, 2022) KANDARI, ABHISHEK SINGH; Tiwari, Sanjay
    A study was conducted in the block Khodawandpur (Begusarai) among farmers taking different cropping system (rice-maize, pigeon pea-maize, soybean-maize, maize-wheat and rice-wheat) to study the influence of fertilizer application on soil health. Several soil quality parameters were assessed during the experiment to assess the influence of five cropping systems on soil quality and then it was correlated with the yield of crops in different cropping system. The soil pH variations ranged from 8.01 to 8.26 at the surface layer (0-15cm) and from 8.18 to 8.32 at the sub surface layer (15-30cm). The rice-wheat cropping system had the lowest soil pH (8.01), followed by the rice-maize and pigeon pea-maize cropping system, which might be ascribed to soil submergence during rice cultivation and a higher amount of leaf litter falling over the field throughout crop life of the latter cycle. The range of electrical conductivity variations was determined to be 0.30 to 0.40 dS m-1. The low salt content observed in the pigeon pea cropping system at both soil layers exhibited greater variability than other cropping system. The pigeon pea cropping system has the highest organic carbon content (0.46%), followed by soybean-maize (0.41%) cropping system. The addition of organic carbon and the application of varied doses of inorganic fertilizers caused significant differences in soil available nitrogen in this study under different cropping systems. Nitrogen availability ranged from 137.98 to 178.12 kg ha-1. The maximum quantity of available nitrogen was reported in the pigeon pea cropping system might be attributed to plant biomass deposition and biological nitrogen fixing. Available phosphorus status in soil varied from 31.71 to 44.50 kg ha-1 and it followed the order: pigeon pea-maize>soybean-maize> maize-wheat> rice-wheat> rice-maize. At the surface soil layer, pigeon pea-maize cropping system had the highest soil available potassium (188.84 kg ha-1) and rice-maize cropping system had the lowest (148.24 kg ha-1). Micronutrients varied less in the cropping system. DTPA extractable Fe levels were found to be high in all the cropping systems. DTPA extractable Cu and DTPA extractable Mn were found to be higher in rice-wheat cropping systems, with mean values of 1.93 mg kg-1 and 4.87 mg kg-1, respectively. The large range in Zn concentration in surface soil (0-15cm) was observed under various farming systems. The highest levels of DTPA extractable Zn were found in pigeon pea-maize cropping systems (0.83 mg kg-1). Farmer’s fertilizer and other management techniques may be the reason behind Zn deficiency in soil. The bulk density of the pigeon pea-maize cropping system was found to be lowest (1.37 Mg m-3), whereas rice-wheat had the highest bulk density with a mean value of 1.41 Mg m-3.There was less variation in bulk density among all the cropping system. Relatively high density values were detected in the subsurface layer. Data from several cropping systems revealed that almost all the cropping systems had lower mean values of maximum water holding capacity attributed to intensive tillage and other cultural practices used by farmers. The top layer of a pigeon pea-maize cropping system had the maximum water holding capacity (32.04%), whereas the sub-surface layer of the same cropping system had 28.55%.. Water stable aggregates ranged between 23.23% to 31.03%. The pigeon pea-maize cropping system resulted in the highest mean values (31.03%), whereas the rice-maize cropping system was found to have lowest values (23.23%). Subsurface layer values were found to be lower than surface layer. Soil respiration was highest in the pigeon pea-maize cropping system (1.10 mg CO2 g-1) and lowest in the rice-maize cropping system (0.69 mg CO2 g-1). Organic material was not included during cultural activities in the majority of the farmer’s field resulting in lower soil biological parameters. Cropping systems had active C levels ranging from 169.20 mg kg-1 to 207.93 mg kg-1. In 0-15cm soil depth, the pigeon pea cropping system had the highest mean value, whereas the rice maize cropping system had the least. The dehydrogenase and fluorescein diacetate in the top surface layer ranged from 70.92 to 84.30 (μg TPF g-1 24 h-1) and 2.64 to 4.17 (μg Fluorescein g-1 soil hr-1). Legume based cropping system had the highest dehydrogenase and fluorescein diacetate in the soils of the cropping systems, while rice-maize had the least. The low quantities of dehydrogenase and fluorescein diacetate enzymes found in rice-maize might be linked to low organic carbon content and poor agricultural techniques. Yield of the crops under different cropping system was found to be significantly and positively correlated with most of the soil health parameters but in case of bulk density it was found to be negatively correlated.