Loading...
Thumbnail Image

Dr. Rajendra Prasad Central Agricultural University, Pusa

In the imperial Gazetteer of India 1878, Pusa was recorded as a government estate of about 1350 acres in Darbhanba. It was acquired by East India Company for running a stud farm to supply better breed of horses mainly for the army. Frequent incidence of glanders disease (swelling of glands), mostly affecting the valuable imported bloodstock made the civil veterinary department to shift the entire stock out of Pusa. A British tobacco concern Beg Sutherland & co. got the estate on lease but it also left in 1897 abandoning the government estate of Pusa. Lord Mayo, The Viceroy and Governor General, had been repeatedly trying to get through his proposal for setting up a directorate general of Agriculture that would take care of the soil and its productivity, formulate newer techniques of cultivation, improve the quality of seeds and livestock and also arrange for imparting agricultural education. The government of India had invited a British expert. Dr. J. A. Voelcker who had submitted as report on the development of Indian agriculture. As a follow-up action, three experts in different fields were appointed for the first time during 1885 to 1895 namely, agricultural chemist (Dr. J. W. Leafer), cryptogamic botanist (Dr. R. A. Butler) and entomologist (Dr. H. Maxwell Lefroy) with headquarters at Dehradun (U.P.) in the forest Research Institute complex. Surprisingly, until now Pusa, which was destined to become the centre of agricultural revolution in the country, was lying as before an abandoned government estate. In 1898. Lord Curzon took over as the viceroy. A widely traveled person and an administrator, he salvaged out the earlier proposal and got London’s approval for the appointment of the inspector General of Agriculture to which the first incumbent Mr. J. Mollison (Dy. Director of Agriculture, Bombay) joined in 1901 with headquarters at Nagpur The then government of Bengal had mooted in 1902 a proposal to the centre for setting up a model cattle farm for improving the dilapidated condition of the livestock at Pusa estate where plenty of land, water and feed would be available, and with Mr. Mollison’s support this was accepted in principle. Around Pusa, there were many British planters and also an indigo research centre Dalsing Sarai (near Pusa). Mr. Mollison’s visits to this mini British kingdom and his strong recommendations. In favour of Pusa as the most ideal place for the Bengal government project obviously caught the attention for the viceroy.

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    Characterization and micropropagation of Physalis minima L. in Bihar
    (DRPCAU, Pusa, Samastipur, 2018) Kumari, Anjani; Kumar, Harsh
    A study was undertaken to characterize populations of Physalis minima L. collected from the seven locations of Bihar. A list of 47 morphological characters were used to score the variations present in the plants. Qualitative and quantitative estimation for the presence of phytochemicals was done to determine the medicinal and nutritive value of the plant. Different populations were also characterized on the basis of their molecular study using ISSR and SSR markers. The superior plant populations were identified on the basis of these studies. The micropropagation of the plants was carried out for their multiplication and maintaining superior characters and also prevent the natural hybridization. The morphological characterization based on 24 qualitative and 13 quantitative characters revealed the presence of variations within and between populations. The variations not reported before were observed, which lead to the identification of new forms of the Physalis minima L. plants in Bihar. The quantitative morphological traits were found to be significantly correlated. The cluster analysis and Principal Component Analysis successfully grouped the populations into three groups. The presence of eight phytochemicals were detected in leaves, stem, fruits and roots of the plants from all the seven populations by using thirteen qualitative tests. The quantitative estimation revealed the presence of a high amount of total soluble sugar, ascorbic acid, protein, phenols, flavonoids and alkaloids in leaves and fruits of the seven populations. The populations showed significant variations in their phytochemical constitution. The dissimilarity coefficient and Principal Component analysis based on quantitative biochemical characters clustered the populations in three groups similar to the groups identified by morphological characterization. The biochemical profile highlighted the fruit and medicinal value of the plant. Three out of the eight SSR markers used in the study failed to achieve amplification in the forty two plants of Physalis minima, suggesting a lack of transferability of these primers. A total of 50 alleles were detected using the five SSR primer pairs. The plants were effectively diversified using the SSR primer based similarity coefficients and Principal Coordinate Analysis. The plants were grouped in three clusters having the plants from different populations. A total of 574 alleles were detected using fifteen ISSR primers. The results of ISSR marker based similarity coefficient and Principal Coordinate Analysis showed corresponding results. The plants were again grouped into three clusters. The similarity coefficients and Principal Coordinate Analysis based on both the markers revealed a similar result, suggesting the applicability of both the markers in scoring the genetic variation present in the Physalis minima L. plants. A high level of genetic heterogeneity was identified in the populations based on molecular studies. The results of the three studies were found to be related suggesting that the variations in morphological and biochemical parameters are a result of the genetic variations. The Selao was identified as the superior population based on the score of biochemical characters. Since the Physalis minima L. populations are highly heterogeneous, there is a need for purification of the populations which can lead to the development of superior genotypes. The tissue culture responses were found to be independent of the effect of population. The shoot apical bud followed by nodal stem were identified as the best explant for most of the tissue culture response except swelling and callogenesis for which leaves were the most effective. MS 30 (1 mg l-1 BAP and 1 mg l-1 2, 4-D) was identified as the best medium for differentiation of multiple shoots in shoot apex and nodal stem while MS 2 (1 mg l-1 BAP) was the best for leaves. MS 7 (1 mg l-1 KIN) was invariably identified as the best medium with the highest number of shoots per explant for all the explants. The leaves were the best explant for callogenesis. The in vitro flowering and fruiting were obtained from shoot apex and nodal stem culture. MS 32 (1.0 mg l-1 BAP and 1.5 mg l-1 2, 4-D) for flowering and MS 30 for fruiting was identified as the best medium for both the cultures. R3 (MS + 1 mg l-1 NAA) was identified as the best medium for rooting. The in vitro studies led to the development of a highly efficient protocol for micropropagation of Physalis minima L.
  • ThesisItemOpen Access
    In vitro morphological and molecular evaluation of rice genotypes and validation of markers for salinity tolerance
    (DRPCAU, Pusa, Samastipur, 2018) Kumari, Rima; Kumar, Harsh
    A set of thirty rice varieties including two tolerant (Pokkali and CSR-36) and two susceptible (IR-29 and IR-64) checks were screened for assessment of their salt tolerance at early seedling stage on the basis of in vitro seed germination and seedling growth at different salinity levels (0, 4, 8 and 16 dS m-1) created by application of salt mixture consisting of NaCl, CaCl2, Na2SO4 in 7:2:1 ratio. Seed germination and seedling growth were adversely affected with the increase of salt concentrations. The salt tolerance index (STI) of the rice varieties was calculated on the basis of seed germination, seedling shoot and root dry weights at different levels of salt stresses. Phenotypic grouping of the thirty rice varieties for their salt tolerance level on the basis of overall salinity tolerance indices across in vitro seed germination and seedling growth (shoot and root dry weight) under salt stress clearly reflected that seventeen varieties, namely, Pokkali, CSR-36, Mandakini, Kranthi, Jyothi, Bardhan, Pusa Sugandh-2, Duna Sankhi, Sanwal Basmati, Ratnagiri-4, Shanthi, Rajendra Dhan-102, Sahbhagi Dhan, Vaisak, Annada, Badami and Jyotrirmayee were highly tolerant to salt stress. Among the remaining entries, Pusa-834, Sarsa, Govind, Khira, Pusa Sugandh-5, MTU-7029 and Saraswathi were found to be moderately salt tolerant, whereas varieties IR-29, IR-64, Daya, Kalinga-3, Golaka and Shatabdi were highly susceptible to salt stress. Out of thirty rice varieties, eighteen rice varieties, namely, Pokkali, CSR-36, IR-29, IR-64, Mandakini, Pusa Sugandh-2, Saraswathi, Ratnagiri-4, Rajendra Dhan-102, Sahbhagi Dhan, Badami, Sarsa, Jyotrirmayee, MTU-7029, Golaka, Daya, Vaisak, and Shatabdi were further screened with the help of ISSR, SSR, salt stress responsive candidate genes and EST primer pairs for the purpose of their molecular profiling in relation to their salinity tolerance. Genetic profiling of entries with a panel of 14 ISSR markers generated altogether 483 allelic variants including 236 shared and 247 unique alleles with an average of 34.50 alleles per primer, revealing ample extent of genetic differentiation and divergence amongst the entries. Among these markers, 811, 814, 815, 823, 834, 836, 840, 841, 842, 872 were found to be highly polymorphic and informative on the basis of their PIC and PP values. However, using a panel of salt stress response related 24 SSR primer pairs, altogether 205 allelic variants including 114 shared and 91 unique alleles were detected with an average of 8.54 alleles per primer due to length variation of simple sequence repeats. Simple sequence repeat loci with di-nucleotide and tri-nucleotide repeat motifs detected greater number of alleles than the repeat loci with tetra-nucleotide and complex repeat motifs. Additionally, the simple sequence repeat loci with CT, GT, AT, AG and AC di-nucleotide repeat motifs detected greater number of alleles. Contrarily, the loci with GA and CA di-nucleotide repeat motifs appeared to detect relatively lesser number of alleles. Considering the number of alleles generated in conjunction with the level of polymorphism detected in the present study, the primers RM 302, RM 8094, RM 10665, RM 10694, RM 10748 and RM 10825 appeared to be highly polymorphic and comparatively more informative primers. Six SSR primer pairs, namely, RM 140, RM 1287, RM 3412, RM 10745, RM 10764 and RM 10772 were validated on the basis of their efficiency to distinguish salt tolerant varieties from susceptible varieties. These six primers can be utilized for the purpose of genetic differentiation and discrimination in relation to salt stress responsiveness of the rice genotypes. Similarly, microsatellite containing salt stress responsive candidate gene (OsHKT1;5, SNAC1, CDMK, CCC, SHMT1 and SHMT2) and microsatellite lacking salt stress responsive candidate gene (OsHKT1;1, OsHKT1;3, OsHKT2;3 and OsHKT2;4) specific markers based genetic profiling allowed unambiguous discrimination of salt stress responsive and tolerant entries, validating their utility for the purpose of differentiation and discrimination of salt stress sensitive and tolerant varieties. Principal coordinate analysis completely supported the results obtained from hierarchical classification of the varieties. Using a panel of eight salt stress responsive EST-contigs based markers, monomorphic bands amongst all the 18 varieties were recorded for six markers, namely, Contig2 (Ferritin superfamily), Contig54 (Plant peroxidase superfamily), Contig138 (ATPase expression protein), Contig314 (Exonuclease), Contig545 (Major latex protein) and Contig633 (Protein kinase), revealing genetic similarity with respect to primer binding sites and molecular size of targeted genomic regions. Remaining two markers specific to Ferritin superfamily (Contig43) and Microtubule associated protein (Contig215) genes revealed genetic polymorphism in the form of presence or absence of bands. Thus, combining in vitro morphological and molecular assessment, seventeen varieties were considered as salt tolerant varieties which can be used as parental donor in rice breeding programme to develop salt tolerant rice varieties.