Loading...
Thumbnail Image

Chaudhary Charan Singh Haryana Agricultural University, Hisar

Chaudhary Charan Singh Haryana Agricultural University popularly known as HAU, is one of Asia's biggest agricultural universities, located at Hisar in the Indian state of Haryana. It is named after India's seventh Prime Minister, Chaudhary Charan Singh. It is a leader in agricultural research in India and contributed significantly to Green Revolution and White Revolution in India in the 1960s and 70s. It has a very large campus and has several research centres throughout the state. It won the Indian Council of Agricultural Research's Award for the Best Institute in 1997. HAU was initially a campus of Punjab Agricultural University, Ludhiana. After the formation of Haryana in 1966, it became an autonomous institution on February 2, 1970 through a Presidential Ordinance, later ratified as Haryana and Punjab Agricultural Universities Act, 1970, passed by the Lok Sabha on March 29, 1970. A. L. Fletcher, the first Vice-Chancellor of the university, was instrumental in its initial growth.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Studies on salinity tolerance in clusterbean [Cyamopsis tetragonoloba (L.) Taub.] genotypes
    (CCSHAU, 2010) Suraj Kala; Goyal, S.C.
    The present investigation was aimed to find out the salinity tolerant genotype of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] using various physiological parameters and to detect the polypeptide pattern of radicle and plumule of tolerant genotype. Thirteen genotypes of guar (HG-75, HFG-119, HG-182, HG-258, FS-277, HG-365. HG-563, HG-867, HG-870, HG-884, HG-2-20, PNB, HG-2-30) were grown in Petri plates containing five salinity levels viz. 0 (control), 4, 8, 12 and 16 dSm-1. Results revealed that progressive increase of salinity levels not only decreased the imbibition rate at 2 and 12 h of imbibition but also declined the per cent seed germination as well as the speed of germination (maguire index). Effective reduction in seed germination was detected in genotype HG-258 at higher (16 dSm-1) level of salinity. However, genotype HG-2-20 showed 100 per cent germination at all the levels of salinity. A progressive increase in salinity levels caused the decrease in plumule length, vigour index, dry weight and relative water content of radicle as well as plumule while on the other hand radicle length and dry weight of cotyledonary leaf was enhenced. The maximum enhancement in radicle length and cotyledonary leaf dry weight was observed in genotype HG-258 and HG-2-20 respectively at higher level of salinity over control. An accumulation of metabolites such as proline and total soluble sugar (TSS) in the radicle and plumule of all the guar genotypes observed with increasing salinity levels. Accumulation of proline content in radicle and plumule was maximum in genotype HG-563 and HG-2-30 respectively at higher level (16 dSm-1) of salinity. Highest accumulation of TSS in radicle and plumule was found in genotype FS-277 and PNB respectively at higher level (16 dSm-1) of salinity over control. Sodium content of radicle as well as plumule of all the genotypes of guar increased with increasing salinity level; increase being found to highest in radicle of genotype HG-365 and plumule of genotype HG-75. Potassium content of radicle as well as plumule showed decreasing trend with increasing salinity levels. K+/Na+ ratio of radicle and plumule also decreased with increasing salinity level; decrease being highest in radicle of genotype HG-870 and plumule of genotype HFG-119. On the basis of the observations taken in the score-card i.e. germination and early seedling growth, it was found that genotype HG-884 was tolerant to salinity. SDS-PAGE of radicle and plumule of genotype HG-884 showed new band of 29.86, 72.46, 79.45 and 60.96, 79.45, 92.28 kDa respectively at all the levels of salinity.