Loading...
Thumbnail Image

Chaudhary Charan Singh Haryana Agricultural University, Hisar

Chaudhary Charan Singh Haryana Agricultural University popularly known as HAU, is one of Asia's biggest agricultural universities, located at Hisar in the Indian state of Haryana. It is named after India's seventh Prime Minister, Chaudhary Charan Singh. It is a leader in agricultural research in India and contributed significantly to Green Revolution and White Revolution in India in the 1960s and 70s. It has a very large campus and has several research centres throughout the state. It won the Indian Council of Agricultural Research's Award for the Best Institute in 1997. HAU was initially a campus of Punjab Agricultural University, Ludhiana. After the formation of Haryana in 1966, it became an autonomous institution on February 2, 1970 through a Presidential Ordinance, later ratified as Haryana and Punjab Agricultural Universities Act, 1970, passed by the Lok Sabha on March 29, 1970. A. L. Fletcher, the first Vice-Chancellor of the university, was instrumental in its initial growth.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Morphogenetic and biochemical studies in callus cultures of devil’s thorn (Tribulus terrestris Linn.)
    (CCSHAU, 2013) Manogya; Goyal, S.C.
    Present investigation was carried out on Tribulus terrestris Linn. for the selection of suitable nutritive medium and explant for callus induction, growth and differentiation. In vitro studies were conducted with employing different explants viz. leaf, internode and node used for callogenesis and growth, node explant was found to be the best for callus induction and growth. Best callus growth was obtained on MS medium fortified with 2,4-D (2.0 mg/l) in combination with Kn (0.5 mg/l) depending on fresh and dry weight of callus. This callus selected for further studies of biochemicals and protein profile during differentiation. MS medium supplemented with BAP (3.0 mg/l) + NAA (1.5 mg/l) enabled the early regeneration of shoot from callus. Early root emergence from callus obtained on medium MS+NAA (2.0 mg/l). Biochemicals like starch and total soluble sugars decreased while reducing sugar, total phenol and total protein increased during root differentiation from callus. Enzyme activity viz. α- amylase, acid invertase, peroxidase and acid phosphatase increased during root differentiation. In shoot differentiating calli, all these metabolites were increased and enzyme activity of α-amylase and acid phosphatase increased while acid invertase and peroxidase activity decreased during shoot differentiation. SDS-PAGE studies revealed that there was synthesis of three root specific polypeptide bands with (MW 40.64, 19.23 and 11.81 kDa) and three shoot specific bands (MW 28.10, 17.02 and 12.46 kDa) during differentiation. MW 24.96 kDa and 21.20 kDa bands were common bands which disappeared during root and shoot differentiation. TLC analysis showed that the diosgenin and hecogenin were present in the calli as well as in natural fruits. They were further confirmed by IR spectroscopy. The incorporation of cholesterol in the medium was observed to be effective for the increased steroidal sapogenins (hecogenin and diosgenin) production in calli than natural fruits.