Loading...
Thumbnail Image

Chaudhary Charan Singh Haryana Agricultural University, Hisar

Chaudhary Charan Singh Haryana Agricultural University popularly known as HAU, is one of Asia's biggest agricultural universities, located at Hisar in the Indian state of Haryana. It is named after India's seventh Prime Minister, Chaudhary Charan Singh. It is a leader in agricultural research in India and contributed significantly to Green Revolution and White Revolution in India in the 1960s and 70s. It has a very large campus and has several research centres throughout the state. It won the Indian Council of Agricultural Research's Award for the Best Institute in 1997. HAU was initially a campus of Punjab Agricultural University, Ludhiana. After the formation of Haryana in 1966, it became an autonomous institution on February 2, 1970 through a Presidential Ordinance, later ratified as Haryana and Punjab Agricultural Universities Act, 1970, passed by the Lok Sabha on March 29, 1970. A. L. Fletcher, the first Vice-Chancellor of the university, was instrumental in its initial growth.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Physiological and biochemical evaluation of rice genotypes under aerobic and anaerobic direct seeded conditions
    (CCSHAU, Hisar, 2023-01) Goyal, Alisha; Sharma, P. C.
    A total of 44 rice genotypes were evaluated in controlled and field conditions with three replications over two seasons (2020 and 2021) at ICAR - Central Soil Salinity Research Institute, Karnal to study the physiological and biochemical attributes of rice genotypes under aerobic and anaerobic direct seeded conditions for which three experiments were performed. In the 1st exp. based on germination (%), shoot length, root length, seedling length, seedling vigor index, alpha amylase activity and sucrose synthase activity, genotypes CSR 53, PS5, IR-4630-CSR11-175 and CSR 2748-4441-195 were the best performer under aerobic and anaerobic direct seeded conditions respectively. In the 2nd exp., best performing genotypes were CSR MAGIC-167, CSR 49 and CRS 56 based on gas exchange attributes, NDVI, CT, CAT, POX, APX and yield traits i.e. 1000 grain weight, spikelet fertility, total no. of tillers per plant, panicle length, biomass and grain yield under direct seeded condition. Overall, on the basis of physiological, biochemical and yield traits, two genotypes were selected for proteomic experiment in which total no. of proteins were found more in tolerant genotype CSR MAGIC-167 (1050, 1152) as compared to sensitive genotype CSR 27SM-132 (814, 794) under both DSR and non-DSR conditions respectively. Total 195 proteins were differentially expressed under DSR condition out of which 90 proteins were up-regulated and 119 proteins were down-regulated whereas in non-DSR condition, 288 proteins were differentially expressed out of which 105 proteins were up-regulated and 169 proteins were down-regulated. The KEGG pathway of DEPs revealed that a number of pathways are involved in DSR condition but none in non-DSR condition viz., methane metabolism, plant hormone signal transduction, RNA degradation, fatty acid degradation, alpha- linolenic acid metabolism etc. Further, these lines need to be evaluated in larger and multilocation trails of AICRP under DSR conditions, so that stable and best performing lines could be released as commercial varieties for direct seeded conditions.