Loading...
Thumbnail Image

Chaudhary Charan Singh Haryana Agricultural University, Hisar

Chaudhary Charan Singh Haryana Agricultural University popularly known as HAU, is one of Asia's biggest agricultural universities, located at Hisar in the Indian state of Haryana. It is named after India's seventh Prime Minister, Chaudhary Charan Singh. It is a leader in agricultural research in India and contributed significantly to Green Revolution and White Revolution in India in the 1960s and 70s. It has a very large campus and has several research centres throughout the state. It won the Indian Council of Agricultural Research's Award for the Best Institute in 1997. HAU was initially a campus of Punjab Agricultural University, Ludhiana. After the formation of Haryana in 1966, it became an autonomous institution on February 2, 1970 through a Presidential Ordinance, later ratified as Haryana and Punjab Agricultural Universities Act, 1970, passed by the Lok Sabha on March 29, 1970. A. L. Fletcher, the first Vice-Chancellor of the university, was instrumental in its initial growth.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Starch metabolism and end use quality of durum wheat in response to high temperature stress
    (CCSHAU, 2007) Bansal, Kavita; Munjal, Renu
    The present experimentation was carried out on durum wheat to study the physiological and biochemical basis of high temperature induced changes in sucrose to starch conversion. Effect of high temperature stress was determined on grain quality and starch metabolism in two durum wheat varieties WH 896 and WH 912. The investigation involved pot studies under screen house conditions during the year 2005-06. In this study, high temperature was induced by shifting the pots to polyhouse after heading. Heat degree days (HDD) were used to quantity the magnitude of heat stress to which these two durum wheat varieties were exposed during the second half of crop growth i.e. from days of heading (DOH) to days of physiological maturity (DOPM) and it is expressed as sum of daily mean temperature during particular period of crop growth. High temperature decreased functioning of various physiological parameters of the plants such as chlorophyll, chlorophyll fluorescence, chlorophyll stability index, membrane thermostability, osmotic potential and dry matter accumulation in grains. The detrimental effect of high temperature on various grain yield and quality characteristics such as grain shriveling score, grain hardness, grain weight/spike, grain number, test weight (1000-grains weight), β-carotene and total protein were also reflected. However, sedimentation value increased under high temperature treatment. Besides these, biochemical parameters such as total soluble sugars, reducing sugars, non-reducing sugars, protein, sucrose, starch and amylopectin were also reduced under high temperature stress except amylose. The enzymes and metabolites involved in starch biosynthesis also declined under high temperature treatment. Among enzymes, soluble starch synthase activity was reduced maximum as compared to other enzymes activities and among metabolites, ADP-glucose and UDP-glucose reduced maximum than other metabolites under high temperature stress. Results of present experiment show that variety WH 896 is more tolerant to heat stress than WH 912 in manners of various physiological, biochemical and quality characteristics parameters when they were exposed to same degree of high temperature stress