Loading...
Thumbnail Image

Chaudhary Charan Singh Haryana Agricultural University, Hisar

Chaudhary Charan Singh Haryana Agricultural University popularly known as HAU, is one of Asia's biggest agricultural universities, located at Hisar in the Indian state of Haryana. It is named after India's seventh Prime Minister, Chaudhary Charan Singh. It is a leader in agricultural research in India and contributed significantly to Green Revolution and White Revolution in India in the 1960s and 70s. It has a very large campus and has several research centres throughout the state. It won the Indian Council of Agricultural Research's Award for the Best Institute in 1997. HAU was initially a campus of Punjab Agricultural University, Ludhiana. After the formation of Haryana in 1966, it became an autonomous institution on February 2, 1970 through a Presidential Ordinance, later ratified as Haryana and Punjab Agricultural Universities Act, 1970, passed by the Lok Sabha on March 29, 1970. A. L. Fletcher, the first Vice-Chancellor of the university, was instrumental in its initial growth.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Design, development and evaluation of straw combine suitable for both paddy and wheat crops
    (CCSHAU, Hisar, 2020-06) Anil Kumar; Vijaya Rani
    Residue burning is major problem in rice-wheat cropping system resulting in soil health deterioration, air pollution-induced human health issues, loss of biodiversity, diminishing farm profits etc. The problem can be solved by in-situ or ex-situ management methods but none of these methods can provide ease in residue management, and they need additional cost and management skills. Keeping in mind the above, the straw combine was designed and developed. The design of straw combine was based on physical, morphological and mechanical properties of paddy and wheat straw. The morphological analysis was done using FESEM machine and mechanical proerties were studied by using Texture analyzer. The straw combine consisted of cutter bar unit (reel and cutter bar), conveying unit (feeding auger and beater), chopping unit (chaffer cylinder, basket and concave), guiding unit (rotor and sieve), blowing unit (worm, blower/fan and deflector), frame and power transmission unit. The straw combine was evaluated at 3 levels of moisture content (5, 10, 15 % in wheat and 20, 35, 50 % in paddy), 3 levels of forward speed (1.7, 1.9, 2.1 km h-1) and 3 levels of cylinder speed (29.6, 31.4, 33.2 m s-1) for field capacity, field efficiency, fuel consumption, chopping efficiency, straw split and straw size. The optimization of machine-crop parameters was done by using Multi Response Optimization (MRO) technique using desirability factor (DF). The optimal setting of machine-crop parameters in wheat straw was moisture content at 5 %, forward speed at 1.9 km h-1 and cylinder speed at 33.2 m s-1 which gaves maximum field capacity (0.32 ha h-1), field efficiency (75.04 %), chopping efficiency (99.50 %), straw split (99.28 %) and minimum straw size (13 mm) as well as fuel consumption (5.95 l h-1). The optimal setting of machine-crop parameters in paddy straw was moisture content at 20 %, forward speed at 1.9 km h-1 and cylinder speed at 33.2 m s-1 which gaves maximum field capacity (0.32 ha h-1), field efficiency (73.76 %), chopping efficiency (96.48 %), straw split (82.66 %) and minimum straw size (41.29 mm) as well as fuel consumption (6.13 l h-1). The economic analysis showed that payback period of the designed straw combine was 1.96 years if operated for 500 hours in a year (Wheat and Paddy). The result of Benefit: Cost ratio is more than unity (1.28) which indicated that investment in machine is economically viable. The straw combine designed and developed is farmer-friendly, economical and having options of removing or leaving full/partial residue from the field and works satisfactiry in both wheat and paddy straw.