Loading...
Thumbnail Image

Chaudhary Charan Singh Haryana Agricultural University, Hisar

Chaudhary Charan Singh Haryana Agricultural University popularly known as HAU, is one of Asia's biggest agricultural universities, located at Hisar in the Indian state of Haryana. It is named after India's seventh Prime Minister, Chaudhary Charan Singh. It is a leader in agricultural research in India and contributed significantly to Green Revolution and White Revolution in India in the 1960s and 70s. It has a very large campus and has several research centres throughout the state. It won the Indian Council of Agricultural Research's Award for the Best Institute in 1997. HAU was initially a campus of Punjab Agricultural University, Ludhiana. After the formation of Haryana in 1966, it became an autonomous institution on February 2, 1970 through a Presidential Ordinance, later ratified as Haryana and Punjab Agricultural Universities Act, 1970, passed by the Lok Sabha on March 29, 1970. A. L. Fletcher, the first Vice-Chancellor of the university, was instrumental in its initial growth.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Biochemical evaluation of drought resistance in chickpea (Cicer arietinum L.)
    (CCSHAU, 2015) Ekta; Singal, H.R.
    The present study was carried out to evaluate drought induced changes in chickpea genotypes and their F3 progeny lines. The chickpea genotypes viz. drought sensitive (HC-1) and drought tolerant (ICC-4958 and RSG-931) were grown under both irrigated and drought conditions and the progeny lines of the crosses viz. HC-1×ICC-4958 and HC-1×RSG-931 were grown under drought condition created by withholding irrigation. The effect of drought stress was observed on oxidative stress, membrane integrity, antioxidative system, osmolytes accumulation and protein profile in relation to changes in plant water status in leaves and roots at 50% flowering and 50% podding stages. The water potential of leaves, osmotic potential and RWC of leaves and roots decreased in all the genotypes. However, the magnitude of reduction in RWC was more in drought sensitive genotype. Similarly, the reactive oxygen species (superoxide radicals and H2O2) and lipid peroxidation (MDA content and LOX activity) increased in response to water deficit and the increase was more in both the tissues (leaves and roots) of sensitive genotype at both the stages (50% flowering and 50% podding). Drought stress resulted in increase in the activities of SOD, POX, GR in all the genotypes, but the increase was more in both the tolerant genotypes. Contrarily, reduction in CAT activity was observed in both the tissues at both the stages in all chickpea genotypes. Likewise, APX activity declined in leaves of both the drought tolerant genotypes only at 50% flowering stage, but in roots its activity increased at both stages. Ascorbic acid and glutathione content were found to be more in both the tissues of all the chickpea genotypes under water limiting condition, however, the percent increase was more in tolerant genotypes. Decline in osmotic potential in both the tissues may be due to accumulation of proline and total soluble sugars. Further, increase in pyrroline-5-carboxylate reductase activity and decline in proline oxidase activity observed in leaves and roots of all the chickpea genotypes under stress condition is in agreement with higher proline levels. Decrease in protein content was observed in both the tissues. However, new protein bands appeared under drought stress in all genotypes as revealed by SDS-PAGE. Among the progeny lines of both the crosses, the lines I-6, I-7, I-14, I-16, R-2, R-9 and R- 10 showed better performance in terms of physiological and biochemical parameters as compared to their drought tolerant parent, under drought stress condition and hence, are the promising lines which may be used in plant breeding programmes aimed at developing drought resistant varieties.