Loading...
Thumbnail Image

Govind Ballabh Pant University of Agriculture and Technology, Pantnagar

After independence, development of the rural sector was considered the primary concern of the Government of India. In 1949, with the appointment of the Radhakrishnan University Education Commission, imparting of agricultural education through the setting up of rural universities became the focal point. Later, in 1954 an Indo-American team led by Dr. K.R. Damle, the Vice-President of ICAR, was constituted that arrived at the idea of establishing a Rural University on the land-grant pattern of USA. As a consequence a contract between the Government of India, the Technical Cooperation Mission and some land-grant universities of USA, was signed to promote agricultural education in the country. The US universities included the universities of Tennessee, the Ohio State University, the Kansas State University, The University of Illinois, the Pennsylvania State University and the University of Missouri. The task of assisting Uttar Pradesh in establishing an agricultural university was assigned to the University of Illinois which signed a contract in 1959 to establish an agricultural University in the State. Dean, H.W. Hannah, of the University of Illinois prepared a blueprint for a Rural University to be set up at the Tarai State Farm in the district Nainital, UP. In the initial stage the University of Illinois also offered the services of its scientists and teachers. Thus, in 1960, the first agricultural university of India, UP Agricultural University, came into being by an Act of legislation, UP Act XI-V of 1958. The Act was later amended under UP Universities Re-enactment and Amendment Act 1972 and the University was rechristened as Govind Ballabh Pant University of Agriculture and Technology keeping in view the contributions of Pt. Govind Ballabh Pant, the then Chief Minister of UP. The University was dedicated to the Nation by the first Prime Minister of India Pt Jawaharlal Nehru on 17 November 1960. The G.B. Pant University is a symbol of successful partnership between India and the United States. The establishment of this university brought about a revolution in agricultural education, research and extension. It paved the way for setting up of 31 other agricultural universities in the country.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    “Assessment of differential gene expression of various cytokines due to in vitro exposure of selected medicinal plant extracts in chicken splenocytes”
    (G.B. Pant University of Agriculture and Technology, Pantnagar, District Udham Singh Nagar, Uttarakhand. PIN - 263145, 2022-10) Shivani; Ambwani, Sonu
    Immune system is crucial for poultry health and productivity. The permutation in immunity may result in increase or decrease of immune response, known as Immunomodulation. Nowadays, use of ethnomedicinal plants and their products for modulation of immune response has become the preferred approach. The present study focused on the exploration of antioxidative, anti- inflammatory and immunomodulatory potential of the three plant extracts (PEs) viz., aqueous leaf extract of Moringa oleifera (MOE), hydromethanolic leaf extract of Eclipta alba (EAE) and aqueous root extract of Bergenia ligulata (BLE). The maximum non-cytotoxic dose (MNCD) of the MOE, EAE, BLE and DEXA was determined through MTT assay and immunomodulatory effect of all the PEs and DEXA individually as well as in combination of the PEs and DEXA was evaluated through Lymphocyte Proliferation Assay (LPA). Moreover, in vitro differential gene expression at mRNA level was evaluated in chicken splenocytes by treating them with the MNCD of MOE, EAE, BLE, DEXA individually as well as in combinations of the PEs and DEXA via quantitative real time PCR (qRTPCR). A significant in vitro antioxidant and anti-inflammatory activity was exhibited by all the three PEs with highest potential in case of MOE followed by EAE and BLE, respectively. The MNCD of all the three PEs and DEXA showed 100% cell viability as determined through MTT assay. Moreover, PEs displayed a significant increase in B and T cells proliferation in LPS, PHA, Con A treated splenocytes. Over all the three PEs displayed significant immunopotentiating properties while DEXA showed immunosuppressive effect due to in vitro exposure in chicken lymphocytes. The differential gene expression analysis showed significant alteration in the expression levels due to in vitro exposure of MOE, EAE, BLE, DEXA and combination of PEs and DEXA. There was a significant increase in transcription factor NFAT1, NFAT2, AP-1c-Fos, AP-1 c-Jun and cytokines like IL-2, IL-4 and IFN-􀁊 that triggered immunostimulatory effect due to PEs exposure, whereas DEXA displayed immunosuppressive potential in chicken splenocytes. There was significant increase in antioxidant and anti-inflammatory mediators (Nrf-2 and IL-10) while significant down regulation in pro-inflammatory mediators (IL-1β, IL-6, TGF-β, TNF-α, iNOS2, COX-2 and NF-κB1) due to in vitro exposure of PEs and DEXA in chicken splenocytes. Combination treatment exhibited ameliorative effect of PEs against DEXA induced immunosuppression in LPA as well as in differential gene expression. Over all the results showed antioxidative, anti-inflammatory and immunostimulatory potential of all the three PEs in vitro whereas DEXA displayed the immunosuppressive and anti- inflammatory property. The PEs may further be explored through suitable in vitro and in vivo analyses to use these PEs as feed additive for improved poultry health and performance.