Loading...
Thumbnail Image

Govind Ballabh Pant University of Agriculture and Technology, Pantnagar

After independence, development of the rural sector was considered the primary concern of the Government of India. In 1949, with the appointment of the Radhakrishnan University Education Commission, imparting of agricultural education through the setting up of rural universities became the focal point. Later, in 1954 an Indo-American team led by Dr. K.R. Damle, the Vice-President of ICAR, was constituted that arrived at the idea of establishing a Rural University on the land-grant pattern of USA. As a consequence a contract between the Government of India, the Technical Cooperation Mission and some land-grant universities of USA, was signed to promote agricultural education in the country. The US universities included the universities of Tennessee, the Ohio State University, the Kansas State University, The University of Illinois, the Pennsylvania State University and the University of Missouri. The task of assisting Uttar Pradesh in establishing an agricultural university was assigned to the University of Illinois which signed a contract in 1959 to establish an agricultural University in the State. Dean, H.W. Hannah, of the University of Illinois prepared a blueprint for a Rural University to be set up at the Tarai State Farm in the district Nainital, UP. In the initial stage the University of Illinois also offered the services of its scientists and teachers. Thus, in 1960, the first agricultural university of India, UP Agricultural University, came into being by an Act of legislation, UP Act XI-V of 1958. The Act was later amended under UP Universities Re-enactment and Amendment Act 1972 and the University was rechristened as Govind Ballabh Pant University of Agriculture and Technology keeping in view the contributions of Pt. Govind Ballabh Pant, the then Chief Minister of UP. The University was dedicated to the Nation by the first Prime Minister of India Pt Jawaharlal Nehru on 17 November 1960. The G.B. Pant University is a symbol of successful partnership between India and the United States. The establishment of this university brought about a revolution in agricultural education, research and extension. It paved the way for setting up of 31 other agricultural universities in the country.

Browse

Search Results

Now showing 1 - 3 of 3
  • ThesisItemOpen Access
    GIUH models based on uniform and non uniform stream flow velocities
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2006-07) Behera, Ramakanta; Akhilesh Kumar
    The present study was carried out with the objective to develop mathematical models for Geomorphologic Instantaneous Unit Hydrograph by considering uniform stream flow velocity as well spatial distributed (non uniform) stream flow velocity along the stream network. In this approach, a unifying synthesis of the hydrological response of a catchment to surface runoff is attempted by deriving equations of general characteristics which express IUH as a function of Horton‟s numbers i.e. area ratio (RA), bifurcation ratio (RB) length ratio (RL), an internal scale parameter (LW) denoting the length of the highest order stream; and the peak velocity of the stream flow (v). In the present study, these geomorphologic properties of the watershed were determined by using Horton‟s stream order laws. GIUH model formulation was attempted considering the uniform and non uniform stream flow velocities in the watershed network. In case of uniform flow velocity, the stream flow is assumed to be constant throughout the watershed network and the flow velocity was determined from the geomorphological quantities of the network and the intensity of the effective rainfall, while in case of variable velocity model the flow velocity was considered to vary according to the slope pattern of the network of various order of streams. The conceived models were developed by using the geomorphological and hydrological data of a small hilly watershed known as “Arki watershed” comprising an area of 2460 ha in Solan district of Himachal Pradesh (India). The performance of both the models viz., GIUH with uniform and non uniform flow velocities has been evaluated for the study area considering sixteen storm events by employing various statistical error indices. Based on qualitative and quantitative comparison it was observed that both the GIUH models based on uniform and non uniform flow velocities are applicable for the study area. However, on the basis of the calculated values of statistical indices it was found that the GIUH-UV model performed better in comparison to the GIUH-VV model except in the computation of peak rate of runoff where the GIUH-VV was found to be better performing than GIUH-UV model.
  • ThesisItemOpen Access
    Optimization of spatial allocation of agricultural activities for a Himalayan watershed: an application of multi-objective programming approach
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2006-08) Joshi, Digvijay; Singh, J.K.
    In the present study, an attempt has been made to develop the optimal land use model by using multi-objective programming technique with the basic objectives viz. to minimize the soil loss and maximize net return from the Chorgaliya watershed based on resource constraints such as land availability, water availability, labour opportunities FYM availability and fodder availability. All the relevant data and information to develop the model were collected and were synthesized as per the requirement of the model. The Universal Soil Loss Equation (USLE) was used to determine the soil loss from different land use activities. Having determined the soil loss coefficients, the other coefficients such as water coefficient, labour coefficient, FYM coefficient and fodder coefficient were also estimated and were incorporated to develop the model. In order to make model socially acceptable, economically viable and ecologically conducive to the inhabitants of the watershed, three alternative plans, viz. Plan I: Existing cropping pattern and livestock status with the restriction on crops preferred by farmers, Plan II. Existing cropping pattern and livestock status with the restriction on orchards and Plan III. Existing cropping pattern with the restriction on the food grains were developed. All these alternative plans were compared with the existing land use pattern in the Chorgalia watershed. Among all the alternative plans, the Plan II was found to generate maximum net return to the farmers and the least amount of soil loss from the study area.
  • ThesisItemOpen Access
    Runoff estimation from a small watershed using GIUH approach in a GIS environment
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2005-07) Nema, Manish Kumar; Singh, J.K.
    The conventional techniques of derivation of unit hydrographs require historical rainfall- runoff data. In a developing country like India, the most of the small watersheds are still ungauged; hence adequate runoff data are not generally available. For such type of catchments tedious procedure of regionalization of model parameters are sought. The research in the field of fluvial geomorphology of the problems facing the hydrologist today, in this regard the concept of geomorphologic instantaneous unit hydrograph (GIUH) has been introduced. Wherein the characteristics of instantaneous unit hydrograph are related to the geomorphological and climatic characteristics of the watershed. The major advantage of this approach is that this linking of geomorphologic parameters with the hydrologic characteristics of the watershed can lead to a simple and useful procedure to simulate the hydrologic behavior of various catchments, particularly ungauged ones. In the present study the geomorphologic characteristics of Kothuwatari watershed, a sub-watershed of upper Damodar Valley, Hazaribagh, Jharkhand, India have been estimated from the toposheets 72H/7 and 72H/8 by using the GIS software ILWIS 3.0. The GIUH based Clark and Nash models have been used for the simulation of nine storm events. The direct surface runoff (DSRO) hydrographs derived by both the models have been compared with the observed DSRO hydrographs. The performance of the models for the study area has been evaluated by employing performance indices viz., (i) absolute relative error, (ii) Absolute percentage deviation in peak flow rates, (iii) coefficient of efficiency, (iv) absolute average error, (v) root mean square error and (vi) average error in volume. The results of the study showed that both the developed models provide a reasonably good estimate of direct surface runoff based on these performance indices. However it was difficult to conclude that which model performs better for the study area as based on percentage absolute deviation in peak and average error in volume, the GIUH based Clark model was found better while based on rest of the indices the GIUH based Nash model was found better.