Loading...
Thumbnail Image

Govind Ballabh Pant University of Agriculture and Technology, Pantnagar

After independence, development of the rural sector was considered the primary concern of the Government of India. In 1949, with the appointment of the Radhakrishnan University Education Commission, imparting of agricultural education through the setting up of rural universities became the focal point. Later, in 1954 an Indo-American team led by Dr. K.R. Damle, the Vice-President of ICAR, was constituted that arrived at the idea of establishing a Rural University on the land-grant pattern of USA. As a consequence a contract between the Government of India, the Technical Cooperation Mission and some land-grant universities of USA, was signed to promote agricultural education in the country. The US universities included the universities of Tennessee, the Ohio State University, the Kansas State University, The University of Illinois, the Pennsylvania State University and the University of Missouri. The task of assisting Uttar Pradesh in establishing an agricultural university was assigned to the University of Illinois which signed a contract in 1959 to establish an agricultural University in the State. Dean, H.W. Hannah, of the University of Illinois prepared a blueprint for a Rural University to be set up at the Tarai State Farm in the district Nainital, UP. In the initial stage the University of Illinois also offered the services of its scientists and teachers. Thus, in 1960, the first agricultural university of India, UP Agricultural University, came into being by an Act of legislation, UP Act XI-V of 1958. The Act was later amended under UP Universities Re-enactment and Amendment Act 1972 and the University was rechristened as Govind Ballabh Pant University of Agriculture and Technology keeping in view the contributions of Pt. Govind Ballabh Pant, the then Chief Minister of UP. The University was dedicated to the Nation by the first Prime Minister of India Pt Jawaharlal Nehru on 17 November 1960. The G.B. Pant University is a symbol of successful partnership between India and the United States. The establishment of this university brought about a revolution in agricultural education, research and extension. It paved the way for setting up of 31 other agricultural universities in the country.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Comparison of MLP-ANN and W-ANN for SPI forecasting to assess meteorological drought
    (G.B. Pant University of Agriculture and Technology, Pantnagar - 263145 (Uttarakhand), 2019-07) Amit Kumar; Singh, Pravin Vikram
    The accurate assessment of drought is an essential component for effective water resource management planning to mitigate adverse consequences of drought. The Standardized Precipitation Index (SPI) is a widely used index to characterize meteorological drought on a varying time scale. Information about Standardized Precipitation Index (SPI) at a place is vital for the assessment of drought. In this study, an approach to forecast Standardized Precipitation Index (SPI) has been attempted to assess meteorological drought in drought prone area of the country at different time scales. This approach involved application of Multi-Layer Perceptron Artificial Neural Networks (MLP-ANN) and Wavelet Artificial Neural Network (W-ANN) to generate Standardized Precipitation Index values for different scales and denoted as, SPI-1, SPI-3, SPI-6, SPI-9, SPI-12 and SPI-24. To generate SPI values using these two models, the data set of Prabhani district in the state of Maharashtra was considered. The total data set of calculated values of SPI during 1971 to 2014 at various time scales was divided into three sets; (i) a training set, consisting of first 36 years data from January, 1971 to December, 2006; and (ii) a testing set, consisting of 4 years data from January, 2007 to December, 2010; and (ⅲ) a validation set, consisting of remaining 4 years data from January, 2011 to December 2014 for both the approaches. The SPI values at previous six-month lag were used to forecast current month SPI values and gamma test was used to decide the best combination of inputs for SPI forecasting. Both MLP-ANN and W-ANN models trained with the Levenberg Marquardt (LM) back propagation algorithm were developed using single hidden layer. The Root Mean Square Error (RMSE), Correlation Coefficient (r) and Coefficient of Efficiency (CE) statistical indices were adopted to evaluate the performance of these models. The SPI values generated by using best developed MLP-ANN and W-ANN models were compared with calculated values of SPI. The forecasted results indicate that for SPI-1, the performance of both MLP-ANN and WANN models was not satisfactory, however, MLP-ANN based model performed better than W-ANN model. For SPI-3, 6 and 9, the performance of W-ANN model was found to be better than MLP-ANN based model. In case of SPI-12 hand SPI-24, both the models were found to be performing satisfactorily, however, WANN model has a little bit edge over MLP-ANN. Interestingly, it was observed that the performance of both these models was found to be improving with increasing SPI time scale.