Loading...
Thumbnail Image

Anand Agricultural University, Anand

Anand Agricultural University (AAU) was established in 2004 at Anand with the support of the Government of Gujarat, Act No.(Guj 5 of 2004) dated April 29, 2004. Caved out of the erstwhile Gujarat Agricultural University (GAU), the dream institution of Sardar Vallabhbhai Patel and Dr. K. M. Munshi, the AAU was set up to provide support to the farming community in three facets namely education, research and extension activities in Agriculture, Horticulture Engineering, product Processing and Home Science. At present there seven Colleges, seventeen Research Centers and six Extension Education Institute working in nine districts of Gujarat namely Ahmedabad, Anand, Dahod, Kheda, Panchmahal, Vadodara, Mahisagar, Botad and Chhotaudepur AAU's activities have expanded to span newer commodity sectors such as soil health card, bio-diesel, medicinal plants apart from the mandatory ones like rice, maize, tobacco, vegetable crops, fruit crops, forage crops, animal breeding, nutrition and dairy products etc. the core of AAU's operating philosophy however, continues to create the partnership between the rural people and committed academic as the basic for sustainable rural development. In pursuing its various programmes AAU's overall mission is to promote sustainable growth and economic independence in rural society. AAU aims to do this through education, research and extension education. Thus, AAU works towards the empowerment of the farmers.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    BIOCHEMICAL AND METABOLIC STUDIES IN PADDY (Oryza sativa L.) IN RESPONSE TO SALINITY
    (AAU, Anand, 2005) SUTHAR, VARSHABEN PARSOTAMBHAI; Bhatnagar, R.
    Salinity like drought, remains as one of the world's oldest and most serious environmental problems. Mistakes made by the Sumerians in the Tigris and Euphrates basin of Mesopotamia over 4000 years ago are being repeated today in almost every major irrigation development in the world. Excessive irrigation and inadequate drainage are the principal causes of this build up of salinity. The saline agriculture technology is an alternative approach for effective utilization of salt affected soils, which involves the cultivation of salt tolerant species/crop cultivars. The closely related genotypes differing in salt tolerance can be studied for the elucidation of adaptive characteristics. Rice (Oryza sativa L.) is the staple food for about 2.4 billion people. Rice is a species whose recent evolutionary history has been in fresh water marshes, it can be adapted to water logged condition, possessing a welldeveloped root oxidation properties. Four genotypes of paddy (Dandi, CSR-1, IR-36 and GR-3), differing in salt tolerance were grown at 3 and 5 EC (dSm-1) salinity to study the effect of salinity at germination (15 DAG) and vegetative (45 DAG) stage, respectively. Genotype CSR-1 recorded the highest germination percentage, which was at par with Dandi whereas GR-3 recorded the minimum germination percentage. Dandi recorded the highest total soluble sugar, proline, total phenols and chlorophyll content. Among these total soluble sugar and proline content increased whereas the concentration of chlorophyll decreased up to 5 EC salinity. However, maximum increase in proline content with salinity was noticed in GR-3. Although salinity inhibit hydrolyzing enzyme, due to decreased water uptake, the maximum activity of hydrolyzing enzymes like α-amylase and protease as well as ascorbate peroxidase and guaiacol peroxidase (oxidative enzymes) were recorded in Dandi. The SOD activity was the highest in GR-3 where as IR-36 recorded the maximum catalase activity.