Loading...
Thumbnail Image

Anand Agricultural University, Anand

Anand Agricultural University (AAU) was established in 2004 at Anand with the support of the Government of Gujarat, Act No.(Guj 5 of 2004) dated April 29, 2004. Caved out of the erstwhile Gujarat Agricultural University (GAU), the dream institution of Sardar Vallabhbhai Patel and Dr. K. M. Munshi, the AAU was set up to provide support to the farming community in three facets namely education, research and extension activities in Agriculture, Horticulture Engineering, product Processing and Home Science. At present there seven Colleges, seventeen Research Centers and six Extension Education Institute working in nine districts of Gujarat namely Ahmedabad, Anand, Dahod, Kheda, Panchmahal, Vadodara, Mahisagar, Botad and Chhotaudepur AAU's activities have expanded to span newer commodity sectors such as soil health card, bio-diesel, medicinal plants apart from the mandatory ones like rice, maize, tobacco, vegetable crops, fruit crops, forage crops, animal breeding, nutrition and dairy products etc. the core of AAU's operating philosophy however, continues to create the partnership between the rural people and committed academic as the basic for sustainable rural development. In pursuing its various programmes AAU's overall mission is to promote sustainable growth and economic independence in rural society. AAU aims to do this through education, research and extension education. Thus, AAU works towards the empowerment of the farmers.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Effect of benzyladenine on biochemical changes in Maize (Zea mays L.) Seedlings during induced drought stress
    (AAU, Anand, 2013) AHIRE, SHAILESH VAMANRAO; TALATI, J. G.
    Investigations were carried out at Department of Biochemistry, B. A. College of Agriculture, Anand Agricultural University, Anand to study the biochemical and physiological characterizations of two maize genotypes (resistant and susceptible) procured from Main Maize Research Station, Godhra and benzyladanine treatment given to seed followed by artificial drought at 15 days after sowing. Various biochemical and physiological parameters, isozymes study, protein analysis through SDS-PAGE and SSR analysis were analyzed. Biochemical analysis was carried out for moisture, total carbohydrates, total soluble sugars, reducing sugars, true protein, total chlorophylls, proline and free amino acids and various isozymes viz., peroxidase and polyphenol oxidase, protein characterization through electrophoresis and SSR. Total chlorophylls, true protein and moisture content were decreased while total carbohydrates, total soluble sugars, reducing sugars, proline and free amino acids content were increased in both the genotypes due to drought stress. Application of BA (25 ppm) could be increased in all biochemical and physiological parameters for improved biochemical content in both genotypes. The moisture content was found minimum in resistant over susceptible genotype, however rest of the parameters were found higher in resistant as compared to susceptible genotype' in all the treatments. Due to drought stress length and weight of root, shoot were decreased in maize seedhngs of both the genotypes. However, resistant genotype showed better performance in higher root-shoot length and weight than susceptible genotype under drought stress conditions, through treatment benzyladenine was higher root-shoot length and weight in resistant and susceptible genotypes, which might be useful for biochemical study of resistant and susceptible genotypes under drought stress. SDS PAGE maize protein revealed the presence of maximum number of bands in susceptible genotype over resistant. Presence of bands with Rm value 0.26, 0.35, 0.46 and 0.48 only in 25 ppm BA soaked seed treatment, while 0.28 and 0.49 in 25 ppm BA + 10 % PEG treatment in resistant genotype. However, presence of bands with Rm value 0.53 in 10 % PEG treatment, while 0.58 and 0.63 observed in 25 ppm BA + 20 % PEG treatment in susceptible genotype. Based on banding pattern, the result suggested that protein banding profiling could be observed in resistant and susceptible genotypes. Different enzyme activities viz.,(peroxidase and polyphenol oxidase) and their isozyme differs in both the genotypes at different treatments and showed significant differences and provide useful information of resistant and susceptible changes in maize seedlings and for further isozymes studies at 15 DAS, benzyladenine showed better performance in POX and PPO activity in maize seedlings. Isozyme electrophoresis of peroxidase and polyphenol oxidase were found to be differentiation for resistant and susceptible maize seedlings. For SSR analysis, total 4 primers were screened. Genetic variation was observed by resistant (CM-500) and susceptible (GYC-9327) genotype. Therefore specific gene presence or absence observed in resistant and susceptible maize seedlings, while resistant and susceptible genotypes found polymorphic allele. On the basis of present studies it could be concluded that, biochemical and physiological parameters, isozyme activities and electrophoresis SDS-PAGE and SSR offer potentially simple, rapid and reliable techniques for biochemical study in resistant and susceptible maize seedlings and chemical treatment of benzyladenine was superior observed in maize seedlings.