Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 9 of 143
  • ThesisItemOpen Access
    Physiological and biochemical responses of wheat (Triticum aestivum L.) to bio-inoculants under varying soil moisture regimes
    (CCSHAU, 2018) Pooja Rani; Sharma, K.D
    The study entitled “Physiological and biochemical responses of wheat (Triticum aestivum L.) to bio-inoculants under varying soil moisture regimes” was conducted during rabi season of 2015-16 and 2016-17 at Crop Physiology Research Area of Agronomy Department CCS Haryana Agricultural University, Hisar. The experiment was designed as split plot consisting of three irrigation schedules viz., one irrigation at crown root initiation (CRI), two irrigation at CRI and heading stage and three irrigation at CRI, tillering, heading stage in main plot and five bio-inoculants treatments viz., recommended dose of fertilizers (RDF), Arbuscular Mycorrhizae (AM) with Azotobacter and PSB (75% of RDF), AM fungi with RDF, Azotobacter with PSB and RDF, AM fungi with 75% of RDF in the sub-plots with three replication. Data were recorded for various morphological traits including plant height, leaf area, leaf area index and leaf area duration at 30, 60, 90 and 120 days after showing, physiological traits observations were recorded at anthesis and 20 days after anthesis including canopy temperature depression, transpiration rate, photosynthetic rate, stomatal conductance, leaf water potential, leaf osmotic potential, relative stress injury, chlorophyll content i.e was significantly decreases under restricted irrigation. Biochemical parameters i.e total soluble protein, peroxidase and proline content which show maximum reduction in restricted irrigation while catalase activity, total soluble sugar were reduced maximum in irrigated control. Nutrients, nitrogen and phosphorous content in straw, grain and soil were more pronounced in restricted condition and sedimentation value, crude protein content, hectoliter weight was maximum in irrigated control as compare to restricted irrigation. Yield attributes also maximum with irrigated control and grain yield showed maximum decrease by 28.5 %. Among the bio-inoculants maximum improvement was seen with AM fungi with RDF treated crops while minimum with 75 % RDF with AM fungi. These can be useful for the improvement through bio-inoculants for developing the better traits under varying moisture stress.
  • ThesisItemOpen Access
    Mitigating the effect of salt stress by foliar application of salicylic acid in sorghum (Sorghum bicolor L.) genotypes
    (CCSHAU, 2018) Jangra, Manish; Sarita Devi
    The present study entitled “Mitigating the effect of salt stress by foliar application of salicylic acid in sorghum (Sorghum bicolor L.) genotypes” was investigated in the screen house during the kharif season of 2017. Before sowing, the desired levels of salt stress (control, 5, 7.5 and 10 dS m-1) were maintained by saturating each pot. Salicylic acid (25 and 50 mg l-1) was applied exogenously after 30 and 70 days after sowing (DAS) under stressed as well as non-stressed plants in both genotypes (HJ 513 and HJ 541). Sampling was done at 40 and 80 DAS. Seeds of Sorghum bicolor L. were grown in pots under screen house conditions on 19th July 2017. Growth parameters decreased with increasing levels of salt stress, whereas foliar application of salicylic acid enhanced the growth of plants at both stages. Similarly, plant water relation, gaseous exchange studies, total chlorophyll, chlorophyll content (SPAD units) and photochemical quantum yield also showed declining trend from control to 10 dS m-1 of salt level in both genotypes, but per cent decrease was observed at 10 dS m-1 of salt stress like in ψw (43.0%), ψs (75.0%), photosynthetic rate (58.7%), transpiration rate (49.2%) and stomatal conductance (75.0%) in HJ 513 at 40 DAS, over their respective control. The values ranged from 3.18 to 2.10, 44.59 to 25.93 and 0.752 to 0.681 in total chlorophyll, chlorophyll content (SPAD units) and photochemical quantum yield (Fv/Fm) respectively, decreased at 10 dS m-1 of salt stress in HJ 513 at 40 DAS. Application of SA help in the amelioration of plant water status, exchange of gases and chlorophyll pigment irrespective of salt stress in both genotypes at 40 and 80 DAS. Reversibily, electrolyte leakage, MDA content and H2O2 content enhanced with every increment of salt stress but application of SA ameliorate the adverse effect of salt stress to some extent at both stages. Specific activity of antioxidative enzymes and osmolytes enhanced abruptly under salt stress in both genotypes and application of salicylic acid further enhanced these values at both 40 and 80 DAS. Per cent increase was on higher side at 10 dS m-1 of salt level in HJ 513 at 40 DAS viz. SOD (12.8%), CAT (11.3%), POX (9.9%), proline (15.1%), TSC (27.7%) and glycine betaine (22.3%) over their respective control. Higher Na+/K+ ratio was observed under salt stress but Na+/K+ ratio was maintained lower upon application of SA. Seed yield reduced significantly by decreasing yield attributing characters i.e. panicle length, panicle weight, seed yield per plant, 100 seed weight and harvest index under salt stress. Reduction in seed yield was ranged from 13.2 to 9.7 in HJ 513 and 11.9 to 8.7 in HJ 541 at 10 dS m-1. Conclusively, based on the above studies it can be concluded that after foliar spray of SA, HJ 513 performed better under salt stress by maintaining higher plant water status, photosynthetic rate, antioxidant defence system, seed yield and lower values of MDA content, electrolyte leakage and H2O2 content. SA treatments not only mitigate the inhibitore effect of salt stress on plants, but also showed, a stimulating effect and 50 mg l-1 of SA was found more effective than 25 mg l-1 at both sampling stages i.e. 40 and 80 DAS.
  • ThesisItemOpen Access
    Effect of different heavy metals (Cd, Cr & Pb) and mycorrhizal treatments on growth, metal uptake and antioxidative capacity in desi and Bt cotton
    (CCSHAU, 2018) Manohar Lal; Sheokand, Sunita
    The present investigation was aimed to study the effect of different heavy metals (HM) (Cd, Cr, & Pb) and mycorrhizal inoculations on growth, metal uptake and antioxidative capacity in Desi and Bt cotton. Heavy metal (Cd- 10 ppm, Cr- 10 ppm, & Pb-100 ppm) and mycorrhizal (Glomus hoi) treatments were given in the soil before sowing the seeds in polythene lined cemented pots. The observations were taken at vegetative stage (35 DAS) and flowering stage (65 DAS). Cr treatment was lethal to both genotypes and no plants survived. Cd and Pb treatments adversely affected the membranes as was evident from increased MDA content and electrolyte leakage. Heavy metal stress resulted in a decrease in chlorophyll content, chlorophyll fluorescence and total soluble protein content. Cd and Pb treatments caused oxidative stress resulting in increased production of ROS and H2O2. The activity of antioxidative enzymes SOD, CAT, POX, APX, GR, DHAR, MDHAR and metabolites ascorbate, glutathione and FRSA also increased with HM stress. Bt cotton was more sensitive to HM stress as compared to Desi cotton and Cd was more toxic than Pb. The effect of Cd and Pb was more adverse at flowering stage as compared to vegetative stage. Mycorrhizal inoculations partially ameliorated the toxic effect and resulted in a decrease in MDA content, electrolyte leakage, ROS production, H2O2 content and increase in chlorophyll content, protein content and chlorophyll fluorescence. A further increase in the antioxidative activity was observed with mycorrhizal treatments. Increase in antioxidative activity was more in Desi cotton as compared to Bt cotton. Pb treated plants had more antioxidative activity than Cd. HM stress resulted in a decline in plant growth, plant height, yield and its attributes. The growth and yield of Bt cotton were more adversely affected by HM. Mycorrhizal inoculation partially alleviated the toxic effect and resulted in an increase in growth and yield. Mycorrhizal inoculations resulted in formation of large sized fungal vesicles in HM treated roots of cotton genotypes and increased the percent colonization. HM treatments also resulted in a significant accumulation of HM in cotton genotypes. HM accumulation was more in roots as compared to shoot. Accumulation was more in Desi cotton as compared to Bt cotton. Mycorrhizal inoculation further increased the phytoremediation potential of cotton genotypes in HM contaminated soil.
  • ThesisItemOpen Access
    Physiological responses of chickpea (Cicer arietinum L.) cultivars under saline irrigation
    (CCSHAU, 2018) Neelam; Neeraj Kumar
    The present study was carried out with two chickpea (Cicer arietinum L.) genotypes viz. HC-3 and CSG-8962 having close phenology but differing in their sensitivity to salinity under screen house conditions. Forty days after sowing (DAS), the plants were given to single saline irrigation (Cldominated) having EC levels 2.0, 4.0 and 6.0 dS m-1. The control plants were irrigated with distilled water. Plant sampling was done at 85 and 105 days after sowing (DAS). The water potential (Ψw) of leaves, osmotic potential (Ψs) and RWC of leaves and roots decreased in both the genotypes under different saline irrigation levels i.e. 2.0, 4.0 and 6.0 dS m-1 as compared to control. Dry weight (g plant- 1) and plant height (cm) decreased with increase in saline irrigation levels, and it was observed more in CSG-8962 than HC-3. The proline, glycine betaine and total soluble carbohydrate (TSC) content of leaves and roots increased in both HC-3 and CSG-8962 genotype with increasing level of saline irrigation from control to 6.0 dS m-1 at both 85 and 105 DAS. More negative values of Ψw of leaves, Ψs of leaves and roots and better accumulation of osmotically active solutes, i.e. proline, glycine betaine and TSC in HC-3, helped in maintaining the higher RWC of these organs than noticed in CSG- 8962. Total chlorophyll content, chlorophyll stability index (CSI), anthocyanin contents and quantum yield (Fv / Fm) decreased in the two chickpea genotypes at both the sampling stages. A marked increase in hydrogen peroxide (H2O2), lipid peroxidation (MDA content) and relative stress injury (RSI %) was noticed in leaves and roots of HC-3 and CSG-8962 with increasing saline irrigation levels from control to 6.0 dS m-1. These parameter were much higher in CSG-8962 than HC-3 at both the sampling stages. The free radical scavenging activity also increased with increasing saline irrigation level from control to 6.0 dS m-1. Saline irrigation levels increased the Cl-, SO4 -2 and Na+/ K+ ratio from control to 6.0 dS m-1. The specific activities of ROS scavenging enzymes such as SOD, CAT, POX, GR, DHAR and MDHAR increased in leaves and roots of both the chickpea genotypes, upon increasing levels of saline irrigation from control to 6.0 dS m-1 at both the sampling stages The increase was more in HC-3 as compared to CSG-8962. Despite the increase in the activity of these enzymes, AsA content and glutathione (GSH) decreased at 6.0 dS m-1 salinity level as compared to their respective controls. Pollen viability (%), in vitro pollen germination and pollen tube length were also adversely affected by saline irrigation. The yield parameters like number of branches plant-1, number of pods plant-1, number of seeds plant-1, 100 seed weight and seed yield plant-1 decreased with increasing saline irrigation levels and decrease was more in CSG-8962 than HC-3. Based upon above physiological, biochemical, reproductive, yield and its attributing traits studied, it is found that chickpea genotype HC-3 performed relatively better under saline irrigation conditions and can further be used in crop improvement programmes of chickpea for salt tolerance.
  • ThesisItemOpen Access
    Effect of Environment on the Biological Chenages of Growing Female Buffaloes
    (College of Agriculture Chaudhary Charan Singh Haryana Agricultural University Hisar, 1984) Agarwal, Maya Prakash; Pandey, M. D
  • ThesisItemOpen Access
    Studies on the Effect of Salinizaiton and Desalinization of the Media on Growth, Nodulation and Nitrogen Fixation in Pea (Pisum Sativum L.) and Chickpea (Cicer Arietinum L.)
    (College of Basic Sciences and Humanities Chaudhary Charan Singh Haryana Agricultural University Hisar, 1984) Ram, Narst; Kumar, S
  • ThesisItemOpen Access
    Effect of Presoaking seed Treatment with Different Growth Retardants to induce drought hardiness in Raya
    (College of Basic Sciences and Humanities Chaudhary Charan Singh Haryana Agricultural University Hisar, 1984) Rani, Sushma; Kuhad, M. S
  • ThesisItemOpen Access
    Effect of gibberellic acid on growth, development, yield and metabolism of wheat (Triticum aestivum Linn) grown under saline conditions
    (Department of Botany College of Basic Sciences and Humanities Hisar, 1984) Parashar, Anju; Verma, S. K
  • ThesisItemOpen Access
    Studies on the development of freeze tolerance and concomitant changes in chloroplast activities and membrane permeability in Brassica juncea var. Prakash
    (College of Basic Sciences and Humanities Chaudhary Charan Singh Haryana Agricultural University Hisar, 1984) Hooda, Anita; Sawhney, S. K