Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 9 of 25
  • ThesisItemOpen Access
    Physiological and biochemical responses of wheat (Triticum aestivum L.) to bio-inoculants under varying soil moisture regimes
    (CCSHAU, 2018) Pooja Rani; Sharma, K.D
    The study entitled “Physiological and biochemical responses of wheat (Triticum aestivum L.) to bio-inoculants under varying soil moisture regimes” was conducted during rabi season of 2015-16 and 2016-17 at Crop Physiology Research Area of Agronomy Department CCS Haryana Agricultural University, Hisar. The experiment was designed as split plot consisting of three irrigation schedules viz., one irrigation at crown root initiation (CRI), two irrigation at CRI and heading stage and three irrigation at CRI, tillering, heading stage in main plot and five bio-inoculants treatments viz., recommended dose of fertilizers (RDF), Arbuscular Mycorrhizae (AM) with Azotobacter and PSB (75% of RDF), AM fungi with RDF, Azotobacter with PSB and RDF, AM fungi with 75% of RDF in the sub-plots with three replication. Data were recorded for various morphological traits including plant height, leaf area, leaf area index and leaf area duration at 30, 60, 90 and 120 days after showing, physiological traits observations were recorded at anthesis and 20 days after anthesis including canopy temperature depression, transpiration rate, photosynthetic rate, stomatal conductance, leaf water potential, leaf osmotic potential, relative stress injury, chlorophyll content i.e was significantly decreases under restricted irrigation. Biochemical parameters i.e total soluble protein, peroxidase and proline content which show maximum reduction in restricted irrigation while catalase activity, total soluble sugar were reduced maximum in irrigated control. Nutrients, nitrogen and phosphorous content in straw, grain and soil were more pronounced in restricted condition and sedimentation value, crude protein content, hectoliter weight was maximum in irrigated control as compare to restricted irrigation. Yield attributes also maximum with irrigated control and grain yield showed maximum decrease by 28.5 %. Among the bio-inoculants maximum improvement was seen with AM fungi with RDF treated crops while minimum with 75 % RDF with AM fungi. These can be useful for the improvement through bio-inoculants for developing the better traits under varying moisture stress.
  • ThesisItemOpen Access
    Mitigating the effect of salt stress by foliar application of salicylic acid in sorghum (Sorghum bicolor L.) genotypes
    (CCSHAU, 2018) Jangra, Manish; Sarita Devi
    The present study entitled “Mitigating the effect of salt stress by foliar application of salicylic acid in sorghum (Sorghum bicolor L.) genotypes” was investigated in the screen house during the kharif season of 2017. Before sowing, the desired levels of salt stress (control, 5, 7.5 and 10 dS m-1) were maintained by saturating each pot. Salicylic acid (25 and 50 mg l-1) was applied exogenously after 30 and 70 days after sowing (DAS) under stressed as well as non-stressed plants in both genotypes (HJ 513 and HJ 541). Sampling was done at 40 and 80 DAS. Seeds of Sorghum bicolor L. were grown in pots under screen house conditions on 19th July 2017. Growth parameters decreased with increasing levels of salt stress, whereas foliar application of salicylic acid enhanced the growth of plants at both stages. Similarly, plant water relation, gaseous exchange studies, total chlorophyll, chlorophyll content (SPAD units) and photochemical quantum yield also showed declining trend from control to 10 dS m-1 of salt level in both genotypes, but per cent decrease was observed at 10 dS m-1 of salt stress like in ψw (43.0%), ψs (75.0%), photosynthetic rate (58.7%), transpiration rate (49.2%) and stomatal conductance (75.0%) in HJ 513 at 40 DAS, over their respective control. The values ranged from 3.18 to 2.10, 44.59 to 25.93 and 0.752 to 0.681 in total chlorophyll, chlorophyll content (SPAD units) and photochemical quantum yield (Fv/Fm) respectively, decreased at 10 dS m-1 of salt stress in HJ 513 at 40 DAS. Application of SA help in the amelioration of plant water status, exchange of gases and chlorophyll pigment irrespective of salt stress in both genotypes at 40 and 80 DAS. Reversibily, electrolyte leakage, MDA content and H2O2 content enhanced with every increment of salt stress but application of SA ameliorate the adverse effect of salt stress to some extent at both stages. Specific activity of antioxidative enzymes and osmolytes enhanced abruptly under salt stress in both genotypes and application of salicylic acid further enhanced these values at both 40 and 80 DAS. Per cent increase was on higher side at 10 dS m-1 of salt level in HJ 513 at 40 DAS viz. SOD (12.8%), CAT (11.3%), POX (9.9%), proline (15.1%), TSC (27.7%) and glycine betaine (22.3%) over their respective control. Higher Na+/K+ ratio was observed under salt stress but Na+/K+ ratio was maintained lower upon application of SA. Seed yield reduced significantly by decreasing yield attributing characters i.e. panicle length, panicle weight, seed yield per plant, 100 seed weight and harvest index under salt stress. Reduction in seed yield was ranged from 13.2 to 9.7 in HJ 513 and 11.9 to 8.7 in HJ 541 at 10 dS m-1. Conclusively, based on the above studies it can be concluded that after foliar spray of SA, HJ 513 performed better under salt stress by maintaining higher plant water status, photosynthetic rate, antioxidant defence system, seed yield and lower values of MDA content, electrolyte leakage and H2O2 content. SA treatments not only mitigate the inhibitore effect of salt stress on plants, but also showed, a stimulating effect and 50 mg l-1 of SA was found more effective than 25 mg l-1 at both sampling stages i.e. 40 and 80 DAS.
  • ThesisItemOpen Access
    Effect of different heavy metals (Cd, Cr & Pb) and mycorrhizal treatments on growth, metal uptake and antioxidative capacity in desi and Bt cotton
    (CCSHAU, 2018) Manohar Lal; Sheokand, Sunita
    The present investigation was aimed to study the effect of different heavy metals (HM) (Cd, Cr, & Pb) and mycorrhizal inoculations on growth, metal uptake and antioxidative capacity in Desi and Bt cotton. Heavy metal (Cd- 10 ppm, Cr- 10 ppm, & Pb-100 ppm) and mycorrhizal (Glomus hoi) treatments were given in the soil before sowing the seeds in polythene lined cemented pots. The observations were taken at vegetative stage (35 DAS) and flowering stage (65 DAS). Cr treatment was lethal to both genotypes and no plants survived. Cd and Pb treatments adversely affected the membranes as was evident from increased MDA content and electrolyte leakage. Heavy metal stress resulted in a decrease in chlorophyll content, chlorophyll fluorescence and total soluble protein content. Cd and Pb treatments caused oxidative stress resulting in increased production of ROS and H2O2. The activity of antioxidative enzymes SOD, CAT, POX, APX, GR, DHAR, MDHAR and metabolites ascorbate, glutathione and FRSA also increased with HM stress. Bt cotton was more sensitive to HM stress as compared to Desi cotton and Cd was more toxic than Pb. The effect of Cd and Pb was more adverse at flowering stage as compared to vegetative stage. Mycorrhizal inoculations partially ameliorated the toxic effect and resulted in a decrease in MDA content, electrolyte leakage, ROS production, H2O2 content and increase in chlorophyll content, protein content and chlorophyll fluorescence. A further increase in the antioxidative activity was observed with mycorrhizal treatments. Increase in antioxidative activity was more in Desi cotton as compared to Bt cotton. Pb treated plants had more antioxidative activity than Cd. HM stress resulted in a decline in plant growth, plant height, yield and its attributes. The growth and yield of Bt cotton were more adversely affected by HM. Mycorrhizal inoculation partially alleviated the toxic effect and resulted in an increase in growth and yield. Mycorrhizal inoculations resulted in formation of large sized fungal vesicles in HM treated roots of cotton genotypes and increased the percent colonization. HM treatments also resulted in a significant accumulation of HM in cotton genotypes. HM accumulation was more in roots as compared to shoot. Accumulation was more in Desi cotton as compared to Bt cotton. Mycorrhizal inoculation further increased the phytoremediation potential of cotton genotypes in HM contaminated soil.
  • ThesisItemOpen Access
    Physiological responses of chickpea (Cicer arietinum L.) cultivars under saline irrigation
    (CCSHAU, 2018) Neelam; Neeraj Kumar
    The present study was carried out with two chickpea (Cicer arietinum L.) genotypes viz. HC-3 and CSG-8962 having close phenology but differing in their sensitivity to salinity under screen house conditions. Forty days after sowing (DAS), the plants were given to single saline irrigation (Cldominated) having EC levels 2.0, 4.0 and 6.0 dS m-1. The control plants were irrigated with distilled water. Plant sampling was done at 85 and 105 days after sowing (DAS). The water potential (Ψw) of leaves, osmotic potential (Ψs) and RWC of leaves and roots decreased in both the genotypes under different saline irrigation levels i.e. 2.0, 4.0 and 6.0 dS m-1 as compared to control. Dry weight (g plant- 1) and plant height (cm) decreased with increase in saline irrigation levels, and it was observed more in CSG-8962 than HC-3. The proline, glycine betaine and total soluble carbohydrate (TSC) content of leaves and roots increased in both HC-3 and CSG-8962 genotype with increasing level of saline irrigation from control to 6.0 dS m-1 at both 85 and 105 DAS. More negative values of Ψw of leaves, Ψs of leaves and roots and better accumulation of osmotically active solutes, i.e. proline, glycine betaine and TSC in HC-3, helped in maintaining the higher RWC of these organs than noticed in CSG- 8962. Total chlorophyll content, chlorophyll stability index (CSI), anthocyanin contents and quantum yield (Fv / Fm) decreased in the two chickpea genotypes at both the sampling stages. A marked increase in hydrogen peroxide (H2O2), lipid peroxidation (MDA content) and relative stress injury (RSI %) was noticed in leaves and roots of HC-3 and CSG-8962 with increasing saline irrigation levels from control to 6.0 dS m-1. These parameter were much higher in CSG-8962 than HC-3 at both the sampling stages. The free radical scavenging activity also increased with increasing saline irrigation level from control to 6.0 dS m-1. Saline irrigation levels increased the Cl-, SO4 -2 and Na+/ K+ ratio from control to 6.0 dS m-1. The specific activities of ROS scavenging enzymes such as SOD, CAT, POX, GR, DHAR and MDHAR increased in leaves and roots of both the chickpea genotypes, upon increasing levels of saline irrigation from control to 6.0 dS m-1 at both the sampling stages The increase was more in HC-3 as compared to CSG-8962. Despite the increase in the activity of these enzymes, AsA content and glutathione (GSH) decreased at 6.0 dS m-1 salinity level as compared to their respective controls. Pollen viability (%), in vitro pollen germination and pollen tube length were also adversely affected by saline irrigation. The yield parameters like number of branches plant-1, number of pods plant-1, number of seeds plant-1, 100 seed weight and seed yield plant-1 decreased with increasing saline irrigation levels and decrease was more in CSG-8962 than HC-3. Based upon above physiological, biochemical, reproductive, yield and its attributing traits studied, it is found that chickpea genotype HC-3 performed relatively better under saline irrigation conditions and can further be used in crop improvement programmes of chickpea for salt tolerance.
  • ThesisItemOpen Access
    Effect of bioextract on shelf life of kinnow
    (CCSHAU, 2018) Yashika; Sandooja, J.K.
    Kinnow mandarin is an important fruit of India but is highly perishable and liable to be spoiled under ambient conditions. Present investigation was conducted to study the effect of post-harvest treatments of Aloe vera extract alone and in combination with ginger extract on shelf life of Kinnow. Physiological loss in weight and decay loss increased with increase in the period of storage in all the treatments whereas quality parameters such as total soluble solids, total sugars and reducing sugars also increased during storage. However this decrease was less in all the treated fruits. Firmness, acidity, ascorbic acid, juice content decreased with storage in all treatments. Activities of cell wall degrading enzymes i.e. polygalacturonase (PG), pectin methyl esterase (PME) and cellulase enzymes increased linearly with the advancement of storage period in all treatments. However all the treatments were effective to decrease the activities of all these enzymes. Free radical scavenging activity (FRSA) decreased with increase in storage period in all treatments. However all the treatments were effective to maintain higher content of FRSA than control fruits. All the coatings were helpful to maintain the quality and enhance the shelf life of the Kinnow fruits.
  • ThesisItemOpen Access
    Studies on carbohydrate metabolism in wheat under drought and high temperature conditions
    (CCSHAU, 2017) Kirpa Ram; Munjal, Renu
    The present investigation was conducted to assess the effects of drought and heat stress conditions on carbohydrate accumulation and partitioning and identify physiological and biochemical traits related to accumulation and partitioning of carbohydrate under drought and heat stress conditions. The eight wheat genotypes (AKAW-3717, DHTW-60, C-306, HD-2967, HTW-11, WH-730 and WH- 1105) in RBD with 4 rows of 2m length with a 20×5 cm spacing within rows and plants respectively, were grown during rabi season of 2015-16 and 2016-17 at Field Research Area, Wheat & Barley Section, Department of Genetics & Plant Breeding. Effect of individual drought and high temperature and their combination on physiological, biochemical and yield parameters under timely, late and very late sown condition was studied. Reduction in response of drought and high temperature was observed in physiological parameters (relative water content, osmotic potential, water potential, chlorophyll content, chlorophyll florescence taken in flag leaf) and biochemical parameters (peduncle and penultimate internode) at anthesis and 15 days after anthesis. Reduction in physiological and biochemical parameters was more pronounced under D40+D65 and complete drought at 15 days after anthesis as compare to anthesis. Metabolite (glucose, fructose, sucrose, water soluble carbohydrate and cellulose) and enzyme (SuSy, INV, SBE, SDBE and AGPase) activity get reduced under drought and with combination of delayed sowing. Fast rate of decline both in peduncle and penultimate inter node was observed. Yield was found highly associated with physiological and biochemical behavior of stressed plant. Yield penalty was more in combination of delayed sowing and drought situation at different growth stage. Genotype DHTW-60, HD-2967 and WH-1105 found promising in overall performance under timely, late and very late with different drought & high temperature situation. Carbohydrate metabolic & enzymatic traits with water relation & chlorophyll related traits are best traits for selection of drought and high temperature tolerant genotype.
  • ThesisItemOpen Access
    Characterization of recombinant inbred wheat (Triticum aestivum L.) lines for heat tolerance using physiological traits and molecular markers
    (CCSHAU, 2017) Sunita; Munjal, Renu
    A mapping population of eighty lines derived from the cross between WH1021 (heat tolerant) × WH711 (heat susceptible) were genotyped and phenotyped under timely and late sown during 2015-16 and 2016-17 crop seasons. The present investigation was conducted to evaluate the various morpho-physiological traits, their association with each other and to explore of the SSR markers related with heat tolerance during terminal heat stress. Data were recorded for various morphological traits including plant height and stem solidness at 70 and 100 days after sowing, number of days to heading, number of days to maturity, number of tillers per plant, spike length (cm), number of spikelets per spike, grain yield per plant (g), biological yield per plant (g), number of grains per spike, 100-grain weight (g) and physiological traits observations were recorded at anthesis and 10 days after anthesis including canopy temperature, transpiration rate, photosynthetic rate, stomatal conductance, intrinsic water use efficiency, chlorophyll content and NDVI. HSI for grain yield was determined for heat stress effect assessment. Analysis of variance showed significant variation among genotypes and reveal the genetic diversity among RILs. CTAB method was used for DNA isolation. Total ninety four markers were used to detect polymorphism in parents out of which parental polymorphism was found 23.5%. Genetic diversity analysis of RILs and parents was done using NT SYS-pc software based on twenty two SSRs and Linkage map constructed using these 22 polymorphic markers consist of seven linkage groups. Composite interval mapping (CIM) identified 14 quantitative trait loci (QTL) with significant phenotypic variation. Out of fourteen QTLs two QTLs were detected for plant height at 70 days after sowing , two for days to heading, two for days to maturity, two for photosynthetic rate, one for transpiration rate, four for intrinsic water use efficiency (iWUE) and one for NDVI. Out of these QTL and photosynthetic rate were consistent and stable over the condition and year respectively. Photosynthetic rate reported maximum phenotypic variation (78.13%) flanked by the two markers barc24 & Xgwm102 with an interval of 27.9 cM. Two QTLs for iWUE were also consistent and stable flanked by the markers Xgwm512 & Xgwm448 with 35.5 cM interval another Xgwm512 also flanked the another QTL for iWUE with 5.2 cM interval. These markers can be useful for the improvement through marker assisted selection for developing the better genotypes for heat tolerance.
  • ThesisItemOpen Access
    Physiological changes during storage of Kinnow as affected by chemical treatments
    (CCSHAU, 2017) Ahlawat, Pooja; Sandooja, J.K.
    Kinnow mandarin is an important fruit of India but is highly perishable and liable to be spoiled under ambient conditions. Present investigation was conducted to study the effect of post harvest treatments of Gum Arabic, Calcium Lactate and Glycerin on quality parameters and shelf life of Kinnow at room temperature. Physiological loss in weight and decay loss increased with increase in the period of storage, whereas opposite trend was observed in firmness, specific gravity and juice content in all the treatments. Quality parameters such as total soluble solids, total sugars, reducing sugars also increased up to 49 days of storage period. Acidity and ascorbic acid content decreased during storage in all treatments. Activities of cell wall degrading enzymes i.e. polygalacturonase (PG), pectin methyl esterase (PME) and cellulase enzymes increased linearly with the advancement of storage period in all treatments. Free radical scavenging activity (FRSA) decreased with increase in storage period in all treatments. All coatings were effective to maintain the quality of the kinnow fruits. However Gum Arabic 10% coating was the most effective to minimize the PLW, decay loss and maintained the quality parameters at all period of storage.
  • ThesisItemOpen Access
    Adaptive responses to water stress by nitric oxide (NO) in cotton (Gossypium spp.)
    (CCSHAU, 2017) Biswabiplab Singh; Sandooja, J.K.
    The present study was conducted in earthen pots containing 5kg dune sand, to evaluate physiological, biochemical and yield related attributes under PEG induced water stress and the adaptive responses of SNP in three cotton hybrids namely BG 6488 II, HHH-223 and AAH-1 under controlled screen house conditions. Plants were supplied with nutrient solution at regular intervals. PEG 20%, 40% and 60% water stress was induced after 60 days of sowing at reproductive stage. NO was applied in the form of SNP (250μM) in all the stressed and control plants. Observations were recorded on 3rd, 6th and 9th days after all the treatments were given. A significant decreasing trend in physiological parameters like total chlorophyll content, chlorophyll fluorescence, relative water content, photosynthetic and transpiration rate was clearly observed with 20%, 40% and 60% PEG induced water stress. Exogenous application of SNP through foliar spray was very much effective and increased the values of these parameters significantly in 20% PEG+SNP and 40% PEG+SNP but ineffective in 60% PEG treated plants. The cotton hybrid BG 6488 II performed relatively better with respect these parameters as compared to others. Due to the water stress, the H2O2 content, lipid peroxidation level and membrane injury % increased significantly from the control plants and maximum values were recorded in 60% PEG treated plants. SNP application was effective and decreased the values of these parameters significantly in 20% and 40% PEG treated plants but SNP was ineffective with 60% PEG. There were significant accumulation of osmolytes such as total soluble sugars, proline and total soluble proteins under PEG induced water stress and further increased in combination with 20% PEG+SNP and 40% PEG+SNP but ineffective with 60% PEG+SNP treatment. Yield and yield related attributes also significantly decreased by PEG water stress and SNP was found to mitigate the yield losses. The cotton hybrid BG 6488 II was found to perform relatively better as compared to others with respect to these physiological, biochemical and yield attributes studied.