Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Evaluation of advanced wheat lines for stripe rust resistance and grain quality
    (CCSHAU, Hisar, 2019-08) Bhawna; Bhawna; Yadav, Neelam R.; Yadav, Neelam R.
    Biofortification of staple foods like wheat without any yield penalty is of utmost importance. Advanced lines introgressed with Gpc-B1 allele were used in the study. The Gpc-B1 allele co-segregated with Yr36 yellow rust resistance gene in all the advanced lines. All WH711-derived advanced wheat lines confirmed for the Yr36/Gpc-B1 allele. Seven advanced lines (WL-8-1, WL-8-2, WL-8-3, WL-8-5, WL-8-6, WL-8-7, WL-8-8) were confirmed for Yr18 while six advanced lines (WL-8-1, WL-8-2, WL-8- 6, WL-8-7, WL-8-8, WL-8-9) were positive for Yr17 gene. All five PBW343-derived advanced lines confirmed for the Yr36/Gpc-B1 allele presence. Three advanced lines (PL-8-2, PL-8-3, PL-8-4) displayed the presence of the Yr18 gene. Two advanced lines (Pl-8-3, PL-8-5) confirmed presence of the Yr17 gene. All the advanced wheat lines derived from WH711 as well as from PBW343 displayed very high levels of resistance against yellow rust and better agronomic characteristics than the parents. Positive correlation was observed in yield and yield related traits. The hectoliter weights of PBW343-derived lines indicated their superiority in terms of good flour recovery than PBW343 and comparable to the checks. WH711- and PBW343- derived advanced wheat lines show better gluten quality and high quantity in sedimentation test. Gpc-B1 allele introgression provided high GPC in WH711 derived advanced wheat lines. Iron and zinc contents of both WH711-derived and PBW343-derived advanced wheat lines were at par when compared to either parent and checks, indicating successful bio fortification of both micronutrients. Two of the WH711-derived lines are being further tested in IPPSN/station trials.