Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 9 of 12
  • ThesisItemOpen Access
    Design, fabrication and testing of a power operated jab type paddy dibbler
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1997) Maji Krishnan, G; KAU; Jippu, Jacob
    A power operated jab type paddy dibbler developed and tested at K.C.A.E.T, Tavanur is described. A cup feed type metering mechanism, discharged the seeds into the distribution wheel. Rotation of this wheel caused the transfer of seeds from the distribution wheel to the seed tubes. The to and fro motion of the plungers inside the five seed tubes closed and opened the port between the seed tran9fer tube and seed tube at predetermined intervals. A cam and follower arrangement fitted on the main shaft regulated the to and fro motion of the plungers. In operation, the rotation of the dibbler wheel caused the tip of seed tubes to make holes in the soil. At the time of penetration the plunger occupied a position farthest to the main shaft thus keeping the tip of seed tube closed. This prevented the entry of soil into the seed tube. After the seed tube has reached the maximum depth the plunger is moved up quickly transferring the seeds into the holes. The dibbler gave seed rates of 87.1, 74.6, 68.0, and 61.1 kg/ha at the speeds 0.788, 1.152, 1.530 and 1.778 km/h respectively in the field. It placed at an average 3-6 seeds in a hill at a depth of 4-4.2 cm. The number of seeds mechanically damaged was only 0.89 per cent and loss of viability due to mechanical damage was only 3.77 per cent. The average power required was 0.093 hp. Labour requirement was 60.68 man-h/ha. Cost of operation of this dibbler was Rs 86.0/h including the cost of power source. The jab type dibbler is convenient for use by both men and women.
  • ThesisItemOpen Access
    Development of powertiller operated paddy reaper windrower
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1997) Shiny, Lukose; KAU; Sivaswami, S
    A vertical conveyor reaper-windrower suitable for mounting on KAMCO 9hp powertiller was developed Kerala for the first time. After considering the maneuvrability, weight distribution, field capacity and power transmission, the 1.6m width vertical reaper was selected for the KAMCO powertiller and was locally fabricated. The complete rotavator unit was dismantled and a newly designed power transmission unit was fitted on the KAMCO powertiller. The handle was kept at an ergonomically suitable height of 1m. A combination frame was developed inorder to accommodate both the engine and the reaper at the most appropriate location to achieve the static and dynamic balancing during field operation after the removal of rotavator. The centre of gravity of the engine at the new location was 50mm in front of the wheel axle and at a height of 180mm from its original position. Field evaluation of the reaper was carried out during November and December, 1996 at Tavanur. The front mounted reaper- windrower was evaluated to find out the optimum engine speed and forward speed to achieve better harvesting and windrowing pattern, maximum field capacity and field efficiency with less harvesting losses were found out. For the recommended engine speed of 1200 to 1400rpm at low first and low second gears a forward speed of 0.53 to O. 94m per sec. was obtained in the field. The actual cutting width was 1.5m. The maximum field efficiency of 85 per cent was obtained for first gear when the engine rpm was 1200. Actual field capacity for this speed was 0.224ha per hr. It was seen that for the recommended engine speed between 1200 to 1400rpm a normal forward speed of (.53 to 0. 94m/sec was obtained with an average actual field capacity of 0.25 ha/hr and an average total grain loss of 1.9 per cent in the field. Downward handle reaction for this recommended speeds varied between 9 to 14 kgf at the time releasing the clutch or using the accelarator. By the use of powertiller reaper a labour saving of 82.5 per cent was obtained. The owner would get a monitory benefit of Rs.1210/ha while the farmer hiring the reaper would get a saving of Rs.830/ha compared to manual harvesting. The initial invest of the owner would be paid back within 2 years if he could hire it out for 1000hrs per year. The total weight of the unit is 451kg which is 34kg less than the original weight the powertiller with rotavator unit. Its overall dimensions are L:279S x W: 1650 x h: 1510mm and the total cost is Rs.1,16,500.
  • ThesisItemOpen Access
    Effect of landslope on uniformity of water distribution of sprinklers
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology,Thavanur, 1996) Jigimon T; Joby V Paul
    A study was conducted at Keleppaji College of Agricultural Engineering and Technology, Tavanur to find out the effect of land scope on sprinkler uniformity. A single nozzle sprinkler was used for the study. The study was carried out over an artificial platform. The water distribution pattern for three slopes viz; 12.5 %, 10.0 % and 7.5 % was studied for three riser positions viz; vertical, mid way and perpendicular to the land. Isohytes were drawn for the various positions in wind and no wind conditions for the three slopes. The uniformity coefficient, Cu values were evaluated and the spacing between the sprinklers for good overlap was found out. It is found that the water distribution is decreasing as the land slope is increasing. The perpendicular position was the ideal position for all the slopes. The optimum riser angles for various slopes are found to be 70 7 ‘30’ ‘for 12.5 % slope, 50 42 ‘38’ ‘for10.0 % slope and 40 17 ‘21’ ‘for 7.5 % slope with respect to the vertical position. The rpm of the sprinkler head for three riser positions was studied. In vertical position the rpm was almost same in all the slopes. It was decreasing as the riser position was changing from vertical to perpendicular in every slope. The rpm was less in wind conditions than in no wind conditions. The erosivity was also measured. The amount of soil collected for the various positions was evaluated. It was found that the amount of soil loss is increasing with the increase in land slope. It was maximum in vertical position, less in mid way position and least in perpendicular position for all the land slopes.
  • ThesisItemOpen Access
    Studies on the Effects of Various Parameters on the Performance of Petti and Para
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1994) Saji Kuriakose, M; KAU; John Thomas
  • ThesisItemOpen Access
    Evaluation and modification of powertiller operated paddy reaper
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1995) Selvan, P; KAU; Sivaswami, N
    The study on power tiller operated paddy reaper-windrower was taken up solve the problems of labour scarcity and uneconomic cost of cultivation of paddy. The 1.6 m vertical conveyer reaper-windrower was fabricated and was mounted with commercially available 8-10 hp air cooled Mistubishi power tiller. Improvements and modifications were carried out to make the unit suitable for harvesting of paddy in Kerala. The original engine chasis of the power tiller was replaced with a newly fabricated chasis on which both the engine and paddy harvester were mounted. Difficulties were experienced in starting and in operating the harvester when the drive was taken directly from the engine pulley to the cutterbar. Initialy the unit was operated with rotovator at the rear side. It was found difficulty in crossing the bunds, hence rotovator was removed. After detailed studies, an auxiliary gear box was designed and fabricated for transmitting power to reaper from the rotovator gear assembly. The rear rotovator was dismantled and the auxiliary gear box was assembled. For balancing, a counter weight of 35 kg was added in between the handles. The crop is cut by the reciprocating knife while passing through crop dividers, star wheels, pressure springs and is conveyed by a pair of lugged conveyer belts and is discharged as a neat windrow. Improvements and modifications were carriedout on most of the reaper components. Field evaluation of paddy harvester was carried out at KCAET Tavanur for two seasons. It was found that harvester has an effective cutting width of 1.55 m and an average field capacity of 0.02036 ha/hr. The pre harvest loss, sickle loss, shattering loss and total cutter bar loss were found to be 0.005 per cent, 2.43 per cent and 0.026 per cent respectively. The power tiller operated reaper-windower was found suitable for harvesting paddy both in wet as well as dry fields except the fully lodged crops. It is an appropriate machinery for harvesting paddy and is found economically and technically suitable for Kerala conditions. It was calculated that manual harvesting needs Rs. 1625/ha whereas power tiller operated reaper needs only Rs. 348/ha and thus achieved a saving of amount of Rs. 1277/ha. The savings of 186 man-hrs/ha achieved by the introduction of power tiller operated paddy reaper is a promising solution for the crisis of labour scarcity and the high cost of labour input in the paddy cultivation.
  • ThesisItemOpen Access
    Field testing and evaluation of a two layer soil water balance model
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1997) Mohanan, C K; KAU; Hajilal, M S
    A two layer soil water balance model was tested in the field with bhindi as the test crop. The model considers the dynamics of soil water balance by incorporating an empirical model of root growth and an empirically established result of plant response to available soil water. The input data of the model were daily values of rainfall, irrigation and reference crop evapotranspiration. The model calculated the values of root depth, potential evapotranspiration, actual evapotranspiration, percolation and soil moisture content at the end of each day. The root depth computed by the model was compared with that measured in the field. Maximum root depth of 39.0 cm was attained at 53rd DAS. Total amount of water percolated down the active root zone during the entire crop season was 8.15 mm. The actual evapotranspiration was less than the potential evapotranspiration, whenever the soil moisture content in the active root zone dropped below the critical soil moisture. Totally, AET was less than PET for 6 days durinq the period of study. The computed and observed values of soil moisture content were in close agreement with correlation coefficients 0.976, 0.971 and 0.965 for gravimetric, tensiometer and electrical resistivity methods respectively.
  • ThesisItemOpen Access
    Simulation studies on different design parameters of spurs (Groynes)
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1995) Roy, Mathew; KAU; Xavior Jacob, K
    The Use of spurs as river training measure has proved to be an effective means of protecting river bank and their design requires indepth knowledge about its parameters related to the solution of a specific river training problem. To analyse various design parameters of spurs, a simulation study was conducted at KERI,Peechi. Characteristics such as flow pattern, velocity distribution and scour pattern was analysed for different spur lengths 25 cm, 35 cm, 45 cm and 55 cm, spur angles 900, 1000, 1100 and 1200, spur spacings 2L, 3L, 4L and 5L and for discharge rates 14.14 1ps, 28.28 1 ps and 42.42 1 ps. Single spur and multiple spur scheme were tested on rigid as well as mobile bed condition. The analysis of the obtained flow pattern, velocity distribution and scour pattern reveals that the specified design parameters have a significant effect on flow diversion, length of bank protected, maximum scour depth at the spur nose, percentage increase in velocity at opposite bank etc. The analysis of the present study also led to conclusion that L/B ratio of 0.19, spure angle of 900 was the best combination for single spur study and the same with a spacing of 5L was most effective for multiple spur scheme.
  • ThesisItemOpen Access
    Design, fabrication and testing of a power operated paddy dibbler
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1996) Jayarajan, R; KAU; Jippu, Jacob
    A 2-row power operated paddy dibbler was designed, fabricated and tested at Kelapaji College of Agricultural Engineering and Technology, Thavanur. The main components of the dibbler were two seed boxes, plungers reciprocating within the seed tubes, fluted roller seed metering mechanism, dibbler wheels, stationary cam, frame and transport wheels. The seed tubes were fixed radially around the dibbler wheel with 45 mm of it projecting outwards for penetrating the soil. The plunger was actuated by a stationary cam and during its upward stroke it uncovered the farther end of the seed transfer tube and transferred the seeds into the seed tube and then into the holes made in the soil. In the downward stroke the plunger closed the seed transfer tube. Simultaneously the fluted roller transferred the seeds in to the seed transfer tube. The average speed of operation of the dibbler was 1.32 kmph and its field capacity and field efficiency were 0.031 ha/h and 78.18 per cent respectively. The average number of seeds dropped per hill was 5 and the seed rate obtained was 78 kg/ha. The seeds were placed within the confines of the holes made by the seed tube and plunger. There was absolutely no scattering. The depth of placement varied from 3.8 to 4.6 cm. The operating cost of the dibbler was Rs. 502.58/ha. This mechanism offers scope for developing dibblers with more number of rows for being operated more economically.
  • ThesisItemOpen Access
    Effect of different types of mulches on growth and yield of drip irrigated vegetables
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1997) Gilsha Bai, E B; KAU; Jobi V Paul
    The present project was to study the effect of drip irrigation along with two colours of plastic mulching on the growth and yield of summer season vegetable. Two types of irrigation methods, drip and surface, and two colours of plastic mulches, black and transparent, were used in the experiment. Three levels of irrigation water, v, 0.8V and 0.6V volume, were applied in drip treatments. Mulches increased the soil temperature. High soil temperature was developed under transparent mulch compared to black mulch. Black mulch increased the soil temperature in the root zone by 3 to 4°C compared to non-mulched plots. This increase in soil temperature under the black mulch was advantageous to the crop. Presence of mulch sheet over the soil reduced the evaporation from the soil. Hence, moisture depleted from the non-mulched plots were more than mulched plots. Water saving obtained by the use of plastic mulch was about 30 to 35% in the different treatments. Black mulched and non-mulched treatments did not show significant difference in the plant height. Maximum plant height was observed in the non-mulched drip irrigated treatment with O. BV volume of water. Maximum plant spread was observed in the surface irrigated black mulch treatment. Surface irrigated treatments gave more plant spread than drip irrigated treatments. Use of mulch sheets reduced the weed growth in the field. Practically, there was no need of weeding from the plastic mulched plots. Earlier flowering and maturity of fruits were observed in the mulched plots. All treatments with black mulch increased the yield compared to the control. Treatment with black mulch and drip irrigation with O.BV volume of water gave 76.5% more yield than the control. Most of the treatments with transparent mulch reduced the yield. This reduction in yield was due to the high soil temperature developed under the transparent mulch. Yield was increased with the soil temperature upto an optimal level of about 46°C and then decreased with the increase in soil temperature. In drip method O.BV volume of irrigation water level was the best. It gave highest yield and growth in mulched as well as non-mulched treatments. Drip irrigation along with mulching in summer vegetable can reduce the cost of cultivation through efficient water management. Also the area of cultivation can be increased with the available water in the water scarce areas.