Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 9 of 75
  • ThesisItemOpen Access
    Water conservation measures and cropping pattern for a watershed using geospatial techniques and swat modelling
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2020) Panchamy Balan; KAU; Asha, Joseph
    The Manali watershed located in Thrissur district of Kerala with a drainage area of 140.94 km2 receives an average annual rainfall of 2501.08 mm. But the watershed experiences increased water level rise during monsoon and scarcity of water during non-monsoon season. In order to address the problem of water scarcity in the watershed, an attempt was made to plan conservation measures and cropping pattern using geospatial techniques and SWAT modelling. SWAT model was used effectively for the hydrologic water balance assessment and water availability in the watershed. Water demand was estimated as the sum of agricultural and non-agricultural water demand. Agricultural water demand was estimated using CROPWAT 8 model. An analysis of monthly water availability and water demand was carried out to know the status of water in the watershed. Site suitability modelling was done using GIS to locate water conservation measures and IMSD guidelines were applied to select the type of water conservation measures. Cropping pattern was proposed based on existing crops, soil type, physiography and aridity index. The model was calibrated and validated satisfactorily for the watershed with NSE values 0.71 and 0.61 and R2 values 0.81 and 0.61 during calibration and validation respectively. The highest water availability (71.57 Mm³) was found in the month of June and lowest (1.28 Mm³) in the month of January. Water demand was highest in the month of January (8.91 Mm³) and lowest in the month of June (1.23 Mm³). Water surplus was observed in almost all the months of the year except January, February, March and December. The annual total water surplus in the watershed was obtained as 227.43 Mm3. Hence conservation measures were proposed for the watershed. Thus 32 farm ponds, 7 percolation ponds and 4 check dams were suggested to construct in the watershed area. Farm ponds were found to be the most suitable conservation measure in the area. Suitable cropping pattern like sequential cropping and intercropping were also suggested to improve the productivity and economic status of the watershed.
  • ThesisItemOpen Access
    Modelling the impact of land use land cover changes on the runoff processes of Chalakudy basin using HEC-HMS model
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2020) Nchumbeni M, Odyuo; KAU; Rema, K P
    Fast development of urbanization alongside other expanding anthropogenic factors have been distinguished as significant reasons for land use changes and land transformations. This eventually causes several devastations like floods, droughts, water contamination and soil debasement. There is a need for target evaluation and investigation on the land utilization patterns and the mode of operation of water conserving structures in order to take up any preventive and additional healing measures. The state of Kerala in particular is notable for significant level of development as far as socio–monetary components, education, human services and so forth are considered. The broad financial changes have prompted expanded pace of framework, building development and several land use changes in the most recent decade. Evaluating the spatial and temporal changes in land use and land cover (LULC) of a basin is one of the analytic strategies to comprehend the issues continuing in a basin and gives significant understanding of its effect on runoff processes. The Chalakudy river basin in Kerala was one of the worst affected basins during the floods of 2018 and has experienced unaccountable damages to human life, ranches, gardens, domesticated animals, buildings, roads etc. The present study compares the LULC changes over two different decades 1997- 2007 and 2007-2017 by analysing the LULC maps and the effect of these changes on the runoff processes in Chalakudy river basin. From the LULC maps, the area under each class, the percentage area coverage and decadal percentage change for each class were calculated. The Hydrologic Modelling System HEC-HMS, developed by the US Army Corps of Engineers Hydrologic Engineering Centre (HEC) was used to model the flood flows of the basin. Calibration and validation of the model was done by employing the SCS CN as the loss method. Calibration of the model was done for five years (2003- 2007) to discover the best parameters of HEC-HMS model while validation of the model was done for three years (2015- 2017). The final analysis of the model showed CN to be the most sensitive parameter for simulating the runoff in the basin. The Nash-Sutcliffe model efficiency (E) for the calibration period was found to increase from 0.726 to 0.766 and 0.816 for the validation period. The correlation coefficient (R2) value was observed to increase from 0.80 to 0.83 before and after the calibration and a value of 0.85 was obtained for the validation period respectively indicating good performance of the model. Simulation runs of the model were done separately for another three years i.e., 1997, 2007 and 2017 in order to analyze the changes in runoff with respect to land use changes. It was observed that the vegetation area decreased consequently from 886.21 km2 to 803.09 km2 while the urban area was found to increase from 31.74 km2 to 41.93 km2 (1997-2017). Aside from that the annual rate change for each class was calculated and results showed an increment in the class of paddy, palm, barren land and urban area while a decrease in annual rate change of vegetation class was also observed. LULC transition matrix was also prepared for 1997-2007 and 2007-2017. From the net loss and gain calculation it was observed that the highest loss from 1997-2007 was found to be for vegetation (-52.52 km2) and the highest gain was of Paddy (54.39 km2). In between 2007-2017 the highest loss was noticed to be for vegetation (-30.59 km2) while the highest gain was for barren land (54.39 km2). The study highlights a disturbing observation in the last two decades and how this change has prompted the occurrence of floods and runoff. After analyzing the decadal land use changes and the simulated runoff values, it was understood how, loss of vegetation cover and increase in urbanization being the most significant reasons for LULC changes have altered the overall basin ecology.
  • ThesisItemOpen Access
    Development and perfomance evaluation of a tractor powered manure pulverizer cum application
    (Department of Farm Machinery and Power Enginnering, Kelappaji College of Agriculture Engineering, Tavanur, 2020) Sai Mohan, S; KAU; Jayan, P R
    Organic manures such as farm yard manure, green manure etc., when incorporated into the soil not only add nutrients but enriches the soil by the fixation of atmospheric nitrogen. Manures (FYM, vermicompost, edible oil cakes etc.,) are an important resources which provide nutrients that could reduce bagged fertilizer costs and improves the crop growth and performance. A well-managed manure is a valuable resource in providing nutrients for crop production. Use of farm yard manure and other organic manure is the way out to overcome the problems of soil degradation, loss of fertility and soil health. Manual application of manure consumes more time and labour. Therefore, the present study was undertaken to develop and evaluate the performance of a tractor powered manure pulverizer cum applicator. The components of the machine were developed to suit the various dosages of manure without much variation in the distribution efficiency. The actual field capacity and efficiency of manure pulverizer cum applicator was found out to be 0.311 ha h-1 and 86.5 % at a forward speed of 2.0 km h-1, 0.356 ha h-1 and 79.2 % at a forward speed of 2.5 km h-1 and 0.395 ha h-1 and 73.1 % at a forward speed of 3.0 km h-1. Maximum field capacity was noted at a traveling speed of 3.0 km h-1. A larger application rate of 1387.1 kg ha-1 for cow dung, 1624.4 kg ha-1 for goat faecal pellets and 1618.6 kg ha-1 for neem cake was noted at an engine rpm of 2500, forward speed of 2 km h-1 with a field capacity of 0.31 ha h-1. With increasing the forward speed to 2.5 and 3.0 km h-1, field capacity increases but the application rate is decreased. The cost of manure pulverizer cum applicator alone is Rs. 64,000. Cost of operation of manure pulverizer cum applicator as an attachment to tractor as explained in Section 3.4 was found as 583.05 Rs h-1 and 1943.5 Rs ha-1. Cost of manual manure application followed by manure pulverization was 582.7 Rs h-1 and 4662.2 Rs ha-1.
  • ThesisItemOpen Access
    Determination of subsurface stormflow using tracer method
    (Department of soil and water conservation engineering, Kelappaji college of Agricultural engineering and technology, Tavanur, 2020) Adarsh, S S; KAU; Sathian, K K
    The state of Kerala in India is a typical example of a region facing droughts of varying degrees despite receiving high annual rainfall. This is because a lion share of the precipitation received is going out as runoff without recharging the groundwater. The subsurface stormflow is considered as the fast moving component of subsurface runoff on which very little information is available due to its complex mechanism of movement through subsurface. Hence, this study has been taken up for gathering more knowledge on the phenomenon of subsurface stormflow with the help of monitoring of soil moisture movement and tracer method. For data collection, three experimental setups in two experimental plots have been setup in KCAET campus, Kerala, India. It is a lateritic terrain having sandy loam type of soil and a general slope. Through-flow trenches were constructed for all the three setups and studied the soil moisture variation on the trench face at three depths (0-40 cm, 40-80 cm and 80-120 cm) in order to study the subsurface stormflow through different depths. For the experimental setup 1, simulation of rainfall was done using a butterfly sprinkler as the input. Line application of water was done for the experimental setup 2. Natural rain was taken as the input for the experimental setup 3. The subsurface stormflow through the soil matrix is also studied by the salt tracer experiment for obtaining its velocities. From the study it was found that the subsurface stormflow discharge is greatly affected by the soil dry density and soil suction. The subsurface stormflow discharge was found to have negative correlations with both soil suction and soil dry density. The subsurface stormflow velocities through 0-40 cm, 40-80 cm and 80-120 cm depths obtained from the soil moisture variation studies were 23.74 cm day-1, 36.23 cm day-1 and 17.41 cm day -1 respectively and the same obtained through the tracer studies were 27.27 cm day-1, 30 cm day-1 and 26.67 cm day-1 respectively. It was also concluded that the prevailing subsurface stormflow in the experimental sites is due to matrix flow rather than the preferential flow. The results gave the conclusion that high value of rainfall along with low values of soil dry density and soil suction can induce the subsurface stormflow even in the area having gentle slope (<10 %).
  • ThesisItemOpen Access
    Studies on combined technologies of pulsed electric field and microwave assisted process for extraction of pectin from Jackfruit rind and core
    (Department of processing and food engineering, Kelappaji college of Agricultural engineering and Technology, Tavanur, 2020) Nandhu Lal, A M; KAU; Prince, M V
    Value addition of inedible parts of Jackfruit such as rind and core using efficient and environment friendly methods would reduce wastage, and its disposal problem and also fetch additional profit to farmers. Pectin, a secondary food ingredient used as gelling, stabilizing and emulsifying agent in food products is such a valuable by-product having nutritional as well as health benefits. Conventional extraction method includes direct boiling using acidified water, which is time consuming and degrades quality pectin. Application of combined novel technologies might help in conquering the inadequacies of conventional methods. In this study, a pulsed electric field and microwave assisted extraction system for extracting pectin from Jackfruit rind and core was developed. To evaluate the developed system towards pectin extraction, the effect of process parameters influencing pectin yield and energy consumption such as PEF strength (5, 10 and 15 kV/cm); PEF treatment time (2, 4 and 6 min); microwave power density (450, 550 and 650 W/g) and time of exposure (5, 10 and 15 min) were studied. The physicochemical and quality parameters of extracted pectin such as moisture content, ash content, protein content, viscosity, solubility, colour, equivalent weight, methoxyl percentage, galacturonic acid and degree of esterification of the pectin were analyzed and compared with that obtained through conventional extraction. A PEF strength of 11.98 kV/cm, PEF treatment time of 5.46 min, microwave power density of 647.55 W/g and time of exposure of 5 min were found to be the optimized process variables of the combined treatment. High methoxyl pectin of good quality was obtained through the combined process. The moisture content, viscosity, ash content, protein content, equivalent weight, methoxyl percentage, galacturonic acid and degree of esterification of the combined PEF and microwave treated samples were 8.95 %, 39.78 cP, 6.78 %, 3.283 %, 557.473 g/mol, 8.37 %, 69.44 % and 68.43 % respectively with light brown colour whereas that of conventional extracted pectin were respectively 10.04 %, 38.14 cP, 7.27 %, 9.98 % 466.905 g/mol, 9.376 %, 67.85 % and 78.45 % with dark drown colour pectin. Scanning Electron Micrographs of jackfruit powder samples before and after combined treatment and conventional extraction revealed an increase in rupture and severing of parenchymal cells of the combined treated samples indicating better extraction efficiency. It was concluded that combined pulsed electric field and microwave treatment resulted in increased extraction of high quality pectin from Jackfruit rind and core.
  • ThesisItemOpen Access
    Development and quality evaluation of microencapsulated banana pseudostem juice powder
    (Department of Food and Agricultural Process Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2016) Saranya, S; KAU; Sudheer, K P
    Banana pseudostem, often discarded after the harvest of bunch is very good for health. Its disposal in the field lead to unhygienic surroundings and environmental pollution. Juice from banana stem is a well-known remedy for urinary disorders. But the major problem associated with the pseudostem juice is its perishability and immediate browning reactions which lead to reduction of its acceptability by consumers. Considering these facts, a study was undertaken to obtain powdered products from pseudostem juice. The intention of the study was to develop a process protocol for microencapsulated banana pseudostem juice powder, standardisation of the spray drying parameters, and quality analysis of developed product. Three powder based products were developed from banana pseudostem juice by spray drying technology. Product-I comprised of pseudostem juice-sugar combination with ginger as flavourant. Product-II consists of a blend of banana pseudostem and horse gram with ginger extract. However, the third product from banana pseudostem juice was fortified with milk, horse gram extract and cardamom flavour. The process parameters were optimised as inlet temperature of 180ºC and outlet temperature of 65-68ºC for product-I & II, whereas inlet air temperature of 185°C and outlet temperature of 74-92°C were chosen for Product-III. The feed pump rpm of 15 and main blower rpm of 1800 were kept constant for developing all three products. The physicochemical characteristics, reconstitution and flow properties were determined. Standardised products were stored in aluminium pouches and quality parameters of product-I and II were analysed up to six months at an interval of two months and Product- III was stored up to three months for verifying its stability during storage. Based on quality analysis and sensory evaluation, best samples were selected from product-I, II and III i.e., T6-180°C (15% sugar + 25% maltodextrin + 56% pseudostem juice), T6-180°C (25% maltodextrin + 30% horse gram extract + 43% pseudostem juice), and T12-185°C (50% milk + 30% horse gram extract + 20% pseudostem juice), respectively. Cost analysis of the products was done and cost of production of one kilo gram was estimated as Rs.195/-, Rs.208/- and Rs.243/- for product I, II and III, respectively.
  • ThesisItemOpen Access
    Development and evaluation of a jackfruit peeler cum corer
    (Department of Food and Agricultural Process Engineering , Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2016) Hareesha Shidenur, T; KAU; Santhi Mary, Mathew
    India is the largest producer of jackfruit followed by Bangladesh and Thailand. Kerala, which lies in the southernmost part of Western Ghats, is well known for its diversity in jackfruit with cultivated area of 90,225 ha and production of 294 million fruits per year. Peeling, coring and bulb separation of jackfruit are time consuming, causes drudgery and very tedium in manual operation. However, a major chunk of the production is wasted due to lack of post-harvest technological interventions, andhence jackfruit isconsidered as underutilized fruit. The present study aims at development and evaluation of a jackfruit peeler cum corer machine. The principle operation of the machine is, as the jackfruit rotates peeling was done helically due to the linear motion of the blade from bottom to top. Similarly cutting-coring operation was performed by screw mechanism which pressed the core removing tool against the fruit and cut into four portion. Finally bulbs were separated manually. Performance evaluation of the machine was conducted in the laboratory to optimize the speed of fruit holder (90, 120 and 150 rpm) and corer pulley (110, 130 and 150 rpm) with three size of jackfruit, by considering the minimum processing time and bulb wastage with higher efficiency. The peeling operation at optimized speed (90 rpm) showed minimum bulb wastage for small (7.85%), medium (7.24%) and large (6.20%) sized fruits with high peeling efficiency of 85.27, 83.51 and 80.64% with a trend of increasing operational time of 38.24, 44.58 and 50.34 secrespectively. Similarly coring operation at optimal speed (130 rpm) showed processing time of 16.98, 22.39 and 24.83 sec and high coring efficiency of 92.85, 90.32 and 82.03% with bulb wastage of 10.337, 7.81 and 6.09% respectively. The average power consumption of optimal operational speeds for medium size jackfruit with load was found as 0.0149±0.0029 kWh/fruit whereas in without load condition was found to be 0.0104±0.0007 kWh/fruit. As per the comparative study, the average time taken for peeling, cutting-coring and bulb separation was more (28.8 min/fruit) during manual operation and in case of mechanical operation it was only 13.3 min/fruit. The maximum throughput of machine was 37.5 kg/h, whereas in manual operation 17.36 kg/h. The cost of the machine has been estimated as Rs. 46950/-. The operational cost of the machine was Rs. 52.97/h whereas, in manual operation, it wasRs. 47.5/h. The benefit-cost ratio of the developed machine was 2.32:1 and in case of manual operation, it was2.66:1.
  • ThesisItemOpen Access
    Development of an automatic cleaning mechanism for roof water harvesting
    (Department of Land and Water Resources and Conservation Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2016) Lakshminarayana, S V; KAU; Sathian, K K
    One of the easiest and efficient way of water conservation to solve drinking water scarcity is rooftop water harvesting. However, the technology has some limitations with regard to its purification system. The commonly used sand and gravel filter is very prone to clogging and its cleaning is not an easy job. At the same time, the alternative upward flow mesh filter needs further improvement in cleaning efficiency and some hassle free drain cum back washing mechanism. Hence, a study has been taken up on the upward flow filter system to improve its filtration efficiency and incorporate an automated drain cum back washing mechanism. The study also included the performance evaluation of a first flush system when attached to the inlet side of the micro mesh filter. To evaluate the performance of the filter and first flush, inflow and outflow of the rooftop water samples were analysed for pH, EC, TDS, SAL and TSS parameters. In general, the PH, electrical conductivity, and TDS of the roof water samples were within the drinking water standards and the filter system was found to reduce TDS values. In the case of TSS, mostly the impurities were organic in nature and concentration varied between 220 to 280 mg/l, a level much higher than WHO and BIS standards. The 3 micron mesh filter is removing 100% of the organic TSS impurities. The filtration rate of this filter is about 0.37 lps at a hydraulic head of 1.5 m and hence suites to rooftop rain water harvesting. First flush system showed better cleaning efficiency when attached to the inlet side of the coarser micro mesh filters. Automatic flush developed for the removal of stagnant water with impurities were performing well by removing all the stagnant water and about 92 % of the impurities. It can be concluded that 3 micron mesh filter with automatic flush can function as a near fool proof mechanism for filtering rooftop rain wate
  • ThesisItemOpen Access
    Development and optimization of microwave assisted process for extraction of nutmeg mace essential oil
    (Department of Food and Agricultural Process Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2016) Nukasani, Sagarika; KAU; Prince, M V
    Essential oils which are the volatile components distilled from the aromatic plant materials, have gained importance in cosmetic, therapeutic, aromatic, fragrant and spiritual uses. But the conventional methods of distillation carry the disadvantages mainly concerned with the quality of final product such as loss of some volatile notes, low extraction efficiency and degradation of unsaturated ester compounds through thermal or hydrolytic effects. These processes also requires high extraction times and energy consumption. However, in order to reduce these difficulties microwave energy could be effectively used to mediate extraction of essential oil in place of steam or water heating in order to introduce its inherent advantages. As in the case of microwave heating of food materials, the internal heating of the in-situ water within the plant material by the microwaves leads to the rupture of the glands and oleferous receptacles freeing the essential oil which is then evaporated by the in-situ water of the plant material. The water then evaporated could then be passed through a condenser outside the microwave cavity where it is condensed. This study envisages development of a microwave assisted extraction system for extracting nutmeg mace essential oil. The developed extraction system consists of a microwave cavity, extraction unit, supporting stand and energy meter. In order to evaluate the developed system towards extraction of nutmeg mace essential oil, the process parameters like solid: water ratios of 1:14. 1:10 and 1:6, power densities of 9.6, 14.4 and 19.2 W/g and soaking times of 2, 3 and 4 h which would influence the essential oil yield, extraction time and energy consumption were chosen as independent variables. The physical quality characteristics like refractive index, specific gravity, solubility and colour of essential oil were selected as dependent variables. The optimized conditions of solid: water ratio, power density and soaking time for extracting nutmeg mace essential oil in microwave assisted process was found to be 1: 14, 14.4 W/g and 4 h respectively. Therefore, microwave assisted extraction could be considered as an extraction technique that results in the production of high quality oil in higher quantity in less time with minimum energy consumption.