Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 9 of 21
  • ThesisItemOpen Access
    Evaluation of physiological cost and subjective assessment of existing coconut climbing devices
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Hameeda Bindu, Vahab; KAU; Bini, Sam
    At present there are different models of coconut climbing devices available in the market. Most of the climbing devices safety and efficiency aspects are not being studied and needs to be comparatively evaluated and modified. In this study five coconut climbing devices were selected, those are Sit and climb type (TNAU model), Standing type (Chemberi model), KAU coconut palm climber (developed at KCAET), Kerasureksha (Model developed at ARS, Mannuthy) and CPCRI model coconut climbing device. Pertinent anthropometric dimensions of human subjects with reference to the dimensions and positions of the functional components of coconut climbing devices was identified and 35 different body dimensions useful for the design or redesign of coconut climbing devices were recorded by following standard anthropometric procedure. Ten subjects (five each for men and women) were selected, conforming to statistical requirements of anthropometric dimensions. The selected ten subjects were screened for normal health through medical and bio-clinical investigations which includes Electro Cardio Graph (ECG), blood pressure and bio-clinical analysis. Selected ten subjects were calibrated in the laboratory by indirect assessment of oxygen uptake. The relationship between the heart rate and oxygen consumption of the subjects was found to be linear for all the subjects. Then energy cost of operation of the selected coconut climbing devices were computed by multiplying the oxygen consumed by the subject during the trial period with the calorific value of oxygen as 20.88 kJ lit-1. Energy cost is comparatively less for KAU coconut palm climber with other models. Mean energy cost of male subjects during the operation of KAU coconut palm climber is 23.16 kJ min-1 and female shows 25.73 kJ min-1. Variation of heart rate and energy cost of both male and female for selected five models were statistically analyzed. Female subjects are significantly differed in both heart rate and energy cost on different coconut climbing devices and all the female subjects showed minimum heart rate while operating KAU coconut palm climbing device. But male subjects are shown any significant difference for both heart rate and energy cost. But they shows comparatively less heart rate for KAU coconut palm climbing device. The oxygen uptake in terms of VO2 max was minimum for KAU coconut palm climber (58.53 per cent) while it was 65.22 per cent for Sit and climb type (TNAU model) for male operators. Similarly for female subjects, minimum for KAU coconut palm climber (74.30 per cent). Sit and climb type (TNAU model) is difficult in operation compared with other devices. Major discomfort was happened in left thigh, right thigh, left foot and right foot. Based on these results it was found that KAU coconut palm climber and Kerasuraksha coconut climbing device were identified as more suitable for climbers than other climbing devices. Seating unit of Kerasuraksha coconut climbing device and pedal unit of KAU coconut palm climber were ergonomically comfortable for the climbing operator and developed a new model by incorporating the constructional behavior of both KAU coconut palm climber and Kerasuraksha coconut climbing device. Energy expenditure of new model for male is decreased by the rate of 10.8per cent when compared to Sit and climb type (TNAU model and with KAU coconut palm climber it is comparable. In the case of female subjects, Energy cost of new model was decreased by 7.8 per cent with Kerasuraksha coconut climbing device and 6.2 per cent with Sit and climb type (TNAU model) and it is comparable with KAU coconut palm climber. Mean VO2, VO2 max and work pulse of new model is 1.10, 58.16 per cent and 69.70 beats min-1 for male and for female it is 1.22, 73.45 per cent and 81.10 beats min-1 respectively. These values are comparatively less than value of other five models. The time required for climbing new model was 65.01 sec for male subjects which are less than other five selected coconut climbing devices and same trend for female also. The setting time of the new model was 65 sec while for KAU coconut palm climber it was 150 sec. Time was reduced by 56.67 per cent compare to KAU coconut palm climber
  • ThesisItemOpen Access
    Performance and ergonomic evaluation of direct pady seeder and mechanical rice transplanter in wet lands
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2013) Rathod Sachin, Ravsu; KAU; Sureshkumar, P K
    An experiment was conducted to evaluate the performance of the ‘Aiswarya’ 8 row direct seeder and ‘Mahindra PF455S’ 4 row walk behind mechanical transplanter with ‘Jyothi’ rice variety in wet lands from the ergonomic point of view. It conducted with selected male and female subjects in the age group of 25–35 years. The performance of these machines was compared with manual transplanting. The results show that the seed rate for direct seeder was very low with 37 kg ha-1 as compared to the mechanical transplanter (55 kg ha-1) and manual transplanting (72 kg ha-1). EFC found for direct seeder and mechanical transplanter was 0.11 ha h-1and 0.12 ha h-1 respectively. The field efficiency was found to be 69% for direct seeder and 74% for mechanical transplanter. Fuel consumption of the mechanical transplanter was found 3.7 l ha-1. The grain yield and straw yield in mechanical transplanting method was higher 2652 kg ha-1 and 3482 kg ha-1 as compared to 2265 kg ha-1 and 2885 kg ha-1 in the case of direct seeding. But in the case of manual transplanting, the yields were 2025 kg ha-1 and 2508 kg ha-1 respectively. The mean value of WHR and OCR with direct seeder was 145.5 beats min-1 and 0.95 l min-1 for male and 148.9 beats min-1 and 0.98 l min-1 for female. But in case of mechanical transplanter, the mean value of WHR and OCR was 131.6 beats min-1 and 0.80 l min-1 for male and 134.1 beats min-1 and 0.83 l min-1 for female. There was complete recovery of HR after 8 min with direct seeder and 6 min with mechanical transplanter. In case of direct seeder ODR, OSR, OER, BPDS values were given by male 6.5, 0, 6.0, 40.8 and by female 7.5, 0, 7.5, 45.6. The corresponding values for mechanical transplanter were 3.0, 1.5, 3.5, 36 by male and 3.5, 1.5, 5.0, 36. As per the grading of energy cost of work, direct seeder categorized as “very heavy type” and mechanical transplanter as “heavy type”. The 8 row direct seeder is not suitable for female subjects. A 4 row Mahindra walk behind mechanical transplanter could be used successfully not only to improve the yield but also to provide operator comfort as compared to the 8 row direct seeder.
  • ThesisItemOpen Access
    Development and evaluation of modified atmosphere packed passion fruit(Passiflora edulis)
    (Department of Post harvest technology and agricultural processingKelappaji College of Agricultural Engineering and Technology, Tavanur, 2012) Madhana Supriya, R; KAU; Sudheer, K P
    Passion fruit is a tropical fruit which is extensively used in juice processing. The fruit is highly perishable and losses its quality immediately after the second day of harvest. The postharvest loss in quality and commercial value is due to the intense respiratory activity and significant moisture loss. Hence a study was undertaken to develop a wax applicator to extend the shelf life of passion fruit by adopting the postharvest technologies. A simple and efficient wax applicator with a capacity of 250 kg.hr-1 was developed based on the physical properties of the fruits. Various samples of the passion fruits were treated with bee wax and commercial wax packed in LDPE bags of 200 and 400 gauge. The effect on the shelf life extension of fruits was investigated individually and in combination of wax and LDPE bags. In the case of LDPE bags, different levels of perforations such as 0%, 0.5%, 1% and 2% were used. The samples were kept in ambient condition viz., 32 - 35°C and 70 - 80% RH and at cold conditions as 7ºC and 90% RH. The physicochemical characteristics of samples were tested periodically at an interval of 5 and 7 days, under ambient and cold storage conditions, respectively. The results obtained were subjected to statistical analysis. From the results it was revealed that the samples kept in non-perforated polythene covers were found to be better than those kept in perforated bags and in normal atmosphere. A maximum shelf life of 40 days was obtained for passion fruits at 7oC coated with commercial wax emulsion. Thus, commercial wax coating in combination with LDPE bags acted as a barrier against moisture loss and respiration rate of fruits. However, the fruits kept as control had lost consumer acceptability after the tenth day of study at cold condition and within two days at ambient storage conditions.
  • ThesisItemOpen Access
    Suitability of drip automation systems for optimal irrigation scheduling
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Manasa, K; KAU; Rema, K P
    Automation in irrigation management refers to those innovations which partially or fully replace manual intervention from watering operations. Automized irrigation includes automation at regional level or farm level. Recently, technological advances have been made in soil water sensors for efficient and automatic operation of irrigation system by which exact quantity of required water can be supplied to the crop. Automatic soil water sensor-based irrigation seeks to maintain a desired soil water range in the root zone that is optimal for plant growth.The present study was conducted to evaluate the suitability of drip automation systems for optimal irrigation scheduling. The field experiment was done in the rain shelter in the research plot of Nodal Water Technology Centre, College of Horticulture, Vellanikkara, during the months of October 2014–March 2015. The experiment was done for tomato variety Akshaya in rain shelter with 4 treatments of irrigation levels. The experiment was laid out in CRD with 3 replications. The main objectives of the study were to evaluate the performance of sensor based automated drip irrigation systems, scheduling irrigation for tomato based on the best performing drip automation system and to evaluate the cost economics of drip automation system with optimal irrigation scheduling. Irrigation was provided using sensors through drip automation system at 40 per cent, 50 per cent and 60 per cent moisture depletion levels (MDL) from the available moisture content. Control was irrigated at the rate of 2 l/plant/day. Crop growth parameters such as height of the plant, number of days to first flowering, number of days to initial budding, number of days to first harvest, root length and root dry weight were observed. During all the stages, plant height significantly varied in all treatments. All the parameters were found to be better in 50 per cent MDL treatment compared to other treatments. Yield parameters such as number of fruits and total yield were recorded. There was no significant difference in number of fruits per plant in all the treatments. Yield was significantly higher in 50 per cent MDL than that of other treatments. Water use efficiency was significantly different in all the treatments. WUE in T2 and T3 was on par which showed better performance than other treatments. The analysis of the data of soil moisture content at 2 and 6 hours after irrigation was monitored at distances of 0, 15 and 30 cm from the emitter laterally and at a depth of 0, 10, 20 and 30 cm from the surface. Soil moisture contour maps for the longitudinal section of the soil were plotted using computer software “Teraplot 1.3.02” version. The pattern was more uniform for T2 (50 per cent MDL) two hours after irrigation. Benefit cost (B/C) ratio for each treatment was calculated. The maximum benefit cost ratio of 2.57 was noted in T2. Hence it can be concluded that for tomato (Akshaya) grown in rain shelter, 50 per cent MDL can be fixed as the optimum level for scheduling irrigation. As 60 per cent moisture depletion also gave good yield and WUE on par with 50 per cent level, 60 per cent MDL can also be suggested for scheduling irrigation in water scarce areas.
  • ThesisItemOpen Access
    Optimization of process parameters for vacuum drying of ripe jackfruit bulb (Artocarpus heterophyllus L.)
    (Department of Food and Agricultural Process Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Padmavathi, D; KAU; Santhi, Mary Mathew
    Jackfruit is an underexploited fruit and commonly referred as poor man’s fruit. Jackfruit is rich in Vitamin A, B, C and minerals such as calcium and iron and is also having immense medicinal value. It is a rich source of carbohydrates, minerals, carboxylic acids and dietary fiber. Based on peroxidase test, catalase test, colour and texture attributes the steam blanching for 30 s was standardised as pre-treatment. This fruit is seasonal and the post harvest losses are as high as 30%. Therefore, there is a need to develop a suitable processing protocol to reduce losses and also to enhance the shelf life and to extend the availability of this precious bulb in a ready to eat form though out the year. The deseeded jackfruit bulb after the pretreatment was dried in a vacuum dryer at a fixed vacuum chamber pressure of 680 mm of Hg. The drying was done at temperatures of 25, 30, 35, 40 and 45°C. The vacuum chamber temperature of 40°C was standardized on the basis of quality parameters like pH, TSS (°Brix), vitamin C, colour, texture and rehydration ratio. The drying time required to reach a safe moisture content of 7.46 ± 0.27% (d.b) at 40°C was 10 h. Storage studies were conducted in 5 types of packaging materials such as polythene cover, LDPE 100, LDPE 300, LDPE 400 gauge and laminated aluminum foil with MAP of 30% O2 + 50% CO2 (with balance of N2) gas mixtures. The quality of the stored product was assessed in terms of moisture content, pH, TSS (°Brix), vitamin C, colour, texture, rehydration ratio and also by microbial analysis in every 15 days interval. Sensory analysis was also conducted as traits and was done based on Kendall’s coefficient of concordance tests. At the end of 30 days LDPE 400 gauge resulted in less loss of quality parameters. So deseeded jackfruit bulbs, steam blanched at 100°C for 30 s followed by vacuum drying at 40°C at a fixed vacuum chamber pressure of 680 mm of Hg for 10 h. The dried product packed in 400 gauge LDPE films can be stored at room temperature for 30 days without any quality deterioration.
  • ThesisItemOpen Access
    Development and quality evaluation of retort pouch packed tender jackfruit (Artocarpus heterophyllus L.)
    (Department of Food and Agricultural Process Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Praveena, N; KAU; Sudheer, K P
    Jackfruit is a seasonal organic fruit and it is popularly used as vegetable in its tender stage. Though it is a highly nutritious commodity, post harvest wastage is huge due to its perishable nature. ‘Koozha’ jackfruit can be better used in tender stage since the wastage of ripened ‘Koozha’ variety jackfruit is more compared to ‘Varikka’. The significant wastage of ‘Koozha’ variety is because of less consumer acceptance due to its poor texture after ripening, necessitated the design of a viable processing and packaging technology to extend its shelf life. Hence the present study on “Development and quality evaluation of retort pouch packed tender jackfruit (Artocarpus heterophyllus L.)” was undertaken with specific objectives of standardization of blanching process, standardization of thermal process in retort pouch package, shelf life study and quality evaluation of retort pouch packed tender jackfruit. Blanching treatment was optimized as three minutes with 0.3% citric acid preservative based on the enzyme test and the results of the quality parameters like texture, colour and crude fibre content. The standardized thermal process time for pasteurization at 90°C to reach F10 was 24 minutes and for sterilization at 121°C for attaining F0 value one was 15 minutes. After optimal blanching, the samples were packed in retort pouches with prior addition of preservatives like brine (2%), citric acid (0.3%), KMS (0.1%) and their combination using the optimized thermal process time - temperature. Shelf life study and quality evaluation in terms of TSS, titrable acidity, pH, vitamin C, crude fibre, texture and colour were done. The experiments were statistically analyzed with one way ANOVA. The samples preserved in citric acid exhibited good quality attributes and better acceptability in sensory evaluation. Microbial analysis also showed that the product was safe upto 90 days of storage. It was concluded that 0.3% citric acid blanching and 0.3% citric acid preservative as filling solution was best in terms of quality parameters and microbial analysis for the development of thermally processed and retort packed tender jackfruit. The cost of operation per pouch (140 g) for tender jackfruit was calculated as Rs. 11.51/-. This study is useful for the production of good quality, safe, affordable priced tender jackfruit in ready to cook form throughout the year.
  • ThesisItemOpen Access
    Development and evaluation of an ultra violet radiation assisted with ohmic heating system for preservation of pineapple juice
    (Department of Food and Agricultural Process Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Dileep, Sean Y; KAU; Prince, M V
    Ultraviolet (UV) radiation is one such non-thermal processing alternative that has been shown to be effective against many types of foodborne pathogens. But there is a limitation of practical application of UV to disinfect liquid food products due to low penetration depth. Ohmic heating (OH), another promising technology, has been widely applied in food processes. This generates heat immediately in the food product, creating a rapid and uniform heating that reduces thermal abuse, as opposed to conventional thermal processing methods. Often times, ohmic heating cause heat-sensitive nutrients within food to be deteriorated by excessive current flow. These advanced technologies could contribute to shorten processing times, energy savings, and highly balanced safe food; however, they alone still cannot guarantee food safety without damaging the food’s quality. Therefore, a new concept to combine ultraviolet and ohmic heating has been extensively evaluated. This combination technology would optimize each of the individual technology’s strengths and reduce each of their individual weaknesses. The present study envisages development of a UV radiation assisted with ohmic heating system for pineapple juice and evaluation of the developed system in retaining the quality characteristics and microbial safety. In this study, a dual cylindrical ohmic and ultraviolet treatment combination continuous flow chambers was designed and fabricated to pasteurize the pineapple juice. UV treatment 800, 1200 and 1600 mJ/cm2. Ohmic treatment until the sample temperature reached 50°C, 55°C and 60°C; and ohmic heating combined with UV treatment as the temperature rose to 50 °C, 55 °C, and 60 °C along with 800, 1200 and 1600 mJ/cm2 dosages. Combined ohmic heating at 50 °C and UV treatment of 1200 mJ/cm2 were found to be superior based on biochemical, microbiological and organoleptical characteristics. Storage study of best sample revealed that could give a shelf life of 25 days under a refrigeration temperature at 4 °C retaining its biochemical characteristics while keeping the microbial level safe.
  • ThesisItemOpen Access
    Design and development of a solar refrigeration system
    (Department of Food and Agricultural Process Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Rakhi, J F; KAU; George, Mathew
    When solar power, either thermal or photovoltaic, is used to provide energy to any refrigeration system, it is called as solar refrigeration system. The main objective of the study was to design and develop a solar absorption refrigeration system and performance evaluation of the developed system. In this study 40 L capacity three fluid vapour absorption refrigeration system (VARS) was designed and a commercially available three fluid absorption refrigerator working on electricity was procured and modified for using heat energy. The solar radiation at KCAET Tavanur was measured and it was observed that a maximum solar radiation intensity of 783.81 W/m2obtained at 1.00 PM at Tavanur. The performance of the modified VARS was tested using hot water obtained from solar water heater. It was found that the hot water from the solar water heater was not sufficient to produce any cooling effect. Hence a hybrid system using hot water from solar water heater and subsequent heating of the hot water using other heating sources such as electricity and LPG were utilized and the hot water was converted to steam at high temperature. Under this new set up the system worked perfectly and produced refrigeration. The performance of the modified VARS was then tested in the laboratory under simulated conditions using water at 100°C, steam at 103°C, 106°C, 116°C and 121°C and using electric heater. The experiments with low temperatures could not produce any cooling whereas steam at116°C and 121°C and electric heater at 150°C produced refrigeration effect. The corresponding generator temperature obtained were 105°C and 110°C and the ice tray temperatures were 6.8°C and 1.9°C. The temperature obtained in the cabin of the refrigerator was 10.9°C and 8.1°C which was ideal for keeping fruits vegetables and other perishable items. For effective working of this system using only on solar energy, instead of flat plate collector, a solar steam generator that could produce steam can be used.
  • ThesisItemOpen Access
    Studies on microencapsulation of vanilla extract
    (Department of Food and Agricultural Process Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 2015) Sariga, S; KAU; Prince, M V
    Vanilla is one of the minor spices, most popular flavoring agent and second most expensive spice in the world. Vanillin flavour is highly volatile, heat sensitive and application in food incorporation is limited; this can be minimized by encapsulation technique with suitable wall material. The microencapsulation technique protects the vanilla extract from undesirable changes and coverts into a free flowing powder. Spray drying is the most common and commercial method for carry out the microencapsulation process. Therefore, to increase the storage stability of the microencapsulated vanilla extract powder, an investigation has been taken up to develop optimum process parameters to produce best quality microencapsulated vanilla extract powder. The microencapsulation of vanilla extract was carried out in tall type spray drier with twin fluid atomizer. Maltodextrin and maize starch were used as wall material. Different proportion of wall materials were used for the emulsification such as 100% maltodextrin, 100% maize starch, combination of 75% maltodextrin and 25% maize starch and 75% maize starch and 25% maltodextrin. The wall materials were emulsified with 10, 20 and 30% of vanilla extract for spray drying. The physico-chemical characteristics of vanilla extract and wall materials, and emulsion characteristics were carried out and the emulsions were spray dried at different inlet temperatures of 170, 180 and 1900C. The encapsulated vanilla extract powder were collected and packed in aluminum foil and stored in room temperature for five months. The powder characteristics of encapsulated vanilla extract powders were carried out and analyzed. Based on the emulsion and powder characteristics, optimum conditions for the production of best quality encapsulated vanilla extract powder were found out. The study concluded that the encapsulated vanilla extract powder produced from 100% maize starch, vanilla extract concentration of 10% and inlet air temperature of 1800C was found to be superior. The cost of one kilogram of optimised microencapsulated vanilla extract powder using spray drying technique was estimated to be Rs.850.