Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 3 of 3
  • ThesisItemOpen Access
    Development of rational formulae to predict the advance and recession flow in border irrigation method
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1992) Mary Regina, F; KAU; Ramadevi, A N
    An investigation was undertaken to develop the predictive relationship for water advance and recession in field borders with cow pea as the test crop. The experiment was conducted at the KCAET, Tavanur during February-April 1992. Border strips of 2 m width and 40m length were used for the study. The strips were laid out on three different slopes, 0.4 %, 0.3%, and 0.2%. Stream sizes of 4 Ips, 3 Ips, and 2 Ips per meter widths were used to irrigate the strips. There was nine treatments each replicated twice. Advance and recession times were noted at every 5 m distance from the upstream end of border. Advance and recession curves were plotted to draw conclusions on the effect of the three parameters viz stream size, slop and distance on advance and recession times. Uniformity of irrigation was also analysed for the different treatments and the treatment with 0.2% slope and 4 Ips/m width stream size showed the best uniformity. Multiple linear regression was done considering stream size, slope and distance from upstream end as independent variables. Advance and recession times were taken as dependent variables. Rational formulae to predict the advance and recession times were developed from the results of the multiple regression analysis.
  • ThesisItemOpen Access
    Studies on the Effects of Various Parameters on the Performance of Petti and Para
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1994) Saji Kuriakose, M; KAU; John Thomas
  • ThesisItemOpen Access
    Field testing and evaluation of a two layer soil water balance model
    (Department of Irrigation and Drainage Engineering, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1997) Mohanan, C K; KAU; Hajilal, M S
    A two layer soil water balance model was tested in the field with bhindi as the test crop. The model considers the dynamics of soil water balance by incorporating an empirical model of root growth and an empirically established result of plant response to available soil water. The input data of the model were daily values of rainfall, irrigation and reference crop evapotranspiration. The model calculated the values of root depth, potential evapotranspiration, actual evapotranspiration, percolation and soil moisture content at the end of each day. The root depth computed by the model was compared with that measured in the field. Maximum root depth of 39.0 cm was attained at 53rd DAS. Total amount of water percolated down the active root zone during the entire crop season was 8.15 mm. The actual evapotranspiration was less than the potential evapotranspiration, whenever the soil moisture content in the active root zone dropped below the critical soil moisture. Totally, AET was less than PET for 6 days durinq the period of study. The computed and observed values of soil moisture content were in close agreement with correlation coefficients 0.976, 0.971 and 0.965 for gravimetric, tensiometer and electrical resistivity methods respectively.