Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 6 of 6
  • ThesisItemOpen Access
    Design fabrication and testing of an arecanut dehusker
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology,Tavanur, 1993) Febi Varghese; KAU; Jippu Jacob
    A power operated arecanut dehusker is designed, developed and its performance evaluated. The major parts are the hopper, feeder, lead plate, cutting blade, shearing roller, friction plate and scraper. The feeder receives the graded fruit from the hopper and delivers it on the lead plate. The fruit is compressed between the rotating shearing roller and the lead plate. The teeth on the roller peel off the husk and the kernel is ejected out through the slot on the lead plate and the husk removed. A single phase 0.5 hp motor operates the machine. From the studies, the optimum set - up of the machine for deriving maximum dehusking efficiency and Iower percentage of the number kernels damaged is at a speed of 35 rpm, blade angle of 600 and slot angle of 1400. At this set - up the machine gives an output of 9.0 kg dried fruit/h, with 84.5 per cent dehusking efficiency.
  • ThesisItemOpen Access
    Design, development and evaluation of a power tiller operated bed former
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1991) Shaji James, p; KAU; Sankaranarayanan, M R
    A power tiller operated Bed Former was developed and evaluated. The main components of the prototype unit of the power tiller operated Bed Former are, a main frame, two pairs of forming boards, a leveling board, a hitching unit and a depth control cum transport wheel. The equipment was found capable of forming seed beds of heights 22 cm, 18 cm and 15 cm at a width range of 60-64 cm. Heights of 18 cm and 15 cm were possible at width ranges of 73-75 cm and 80 – 81 cm. The draft of the implement ranges from 115.59 kgf to 169.69 kgf. The power utilization of the implement varies from 0.586 hp to 0.771 hp and the wheel slip between 46.76 per cent and 77.1 per cent. The mean effective field capacity of the implement is 0.0996 ha/hr and the mean field efficiency is 46.3 per cent. The total cost of production of the unit is Rs. 2000/- and the cost of operation per hectare is Rs. 777/-. The amount that can be saved by using the implement is Rs. 1473/- per hectare.
  • ThesisItemOpen Access
    Fabrication and testing of a low cost flat plate collector-cum-storage solar water heater
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1990) Lissy, Kirian; KAU; John Thomas, K
    The study was conducted with the objectives of developing and testing the Collector – cum storage type solar water heater to evaluate its performance. The collector – cum storage heater was consisted of a concrete tank with dimensions 150 x 70 x 10 cm and had a capacity of 100 litres of water. An absorber plate of size 152 x 72 cm was made of Aluminium sheet and was fixed into the tank. The front face of the absorber sheet was painted black to absorb maximum solar radiation. Glass cover was fixed at the top, leaving an optimum air gap of 40 mm. The heater was inclined to the latitude of Tavanur and was oriented to south for collecting maximum solar radiation. The solar water heater was filled daily at 8 am with fresh water. The performance of the water heater was observed from 20th October 1989 to 26th January 1990. Optimum inclination of the heater was found to be 100 52’ 30”. The water heater was found to attain a maximum outlet temperature of 520 C at 3 pm. Efficiency of the heater was calculated to be 51%. Solar intensity meter read a maximum solar flux of 1120 w/m2 at 12 O’clock in the month of October. The heater can supply 100 litres of hot water at 50 – 520 C at a very reasonable cost of Rs. 777.5. The cost per unit of thermal energy obtained with this water heater is 8 paise per kwh. There is a remarkable break – through in its cost and performance as compared to a conventional natural circulation type solar water heaters.
  • ThesisItemOpen Access
    Studies on selected manually operated pumps
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1990) Geeta Susan, Philip; KAU; John Thomas, K
    The study was conducted with the objective of evaluating hydraulic and ergonomic performance of some selected manually operated pumps viz. Kirloskar pump, Kumar Bharath pump, E.P. pump (Lift), E.P. pump (Force) and Bicycle operated diaphragm pump. A subject was selected for the study and his body surface area was calculated. Heart rate was taken as the measure of mechanical work load on the subject and he was calibrated for the basic task. From the calibration curve it was found that heart beat of the subject should not exceed 110 beats/min for the ergonomic safety. Pumps were tested against different suction heads by varying the position of the gate valve connected in the suction line. Discharge, speed of operation, time of operation and heart rate of the subject were noted. Hydraulic characteristics of the pumps were analysed by studying the discharge, time to deliver 100 1, number of strocks to deliver 100 1, and volumetric efficiency with variation in head. Ergonomic features were analysed by studying the variation of heart rate with head. Among the five pumps the volumetric efficiency of Kumar Bharath pump reduced below 75% beyond the head 6.9 m corresponding heads for the other pumps are 6.7 m for Kirloskar, 5.8 m for E.P. pump (Force) 5.7 m for E.P. pump (Lift) and 1.1 m for diaphragm pump. Time to deliver 100 1 and number of strokes to deliver 100 1 were highest in the case of diaphragm pump and least in Kumar Bharath and Kirloskar pumps. Taking hydraulic and ergonomic performance into consideration the following heads can be recommended for the pumps. Kumar Bharath 6.6 m, Kirloskar 5.25 m, E.P. pump (Lift) 5.7 m, E.P. pump (Force) 5.8 m and diaphragm pump 1.1 m corresponding discharge of the pumps are 0.23 1/s, 0.37 1/s, 0.3 1/s, 0.45 1/s, 0.45 1/s respectively.
  • ThesisItemOpen Access
    Evaluation and modification of spike-tooth and rasp-bar type paddy threshers
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1993) Sailaja, L; KAU; Sivaswami, M
    The field survey conducted on the threshing practices of paddy in Kerala revealed that the hand beating method which is more common in southern part of Kerala needed 154.7 man h/ha with an average output of 18.5 kg/man h requiring an amount of Rs. 823.5/ha whereas, in central Kerala the feet rubbing method required Rs. 1599.0/ha and needed only319.8 man h/ha with an average output of 11.27 kg/man h. The 8 hp axial flow spike-tooth type and 10 hp flow through rasp-bar type threshers were evaluated and found an average output of 50 kg/hp h and 107 kg/hp h respectively. The maximum threshing efficiency of 98.77 per cent and 97.44 per cent were recorded for the flow through rasp-bar thresher during ‘virippu’ and ‘mundakan’ seasons compared to only 95.50 per cent and 94.49 per cent respectively for spike-tooth thresher. The high moist and long paddy crops used to stick and choke in between cylinder and concave clearance and hence the concave was successfully improved to eliminate these problems. The improved concave also improved the output to 1081 kg/h and 1122.6 kg/h with an increase of 9.25 per cent and 4.27 per cent respectively during ‘virippu’ and ‘mundakan’ seasons. A maximum output of 305.7 kg/hp h was obtained for the 1 hp prototype thresher with the rasp-bar cylinder compared to the output of 256.5 kg/hp h for spike tooth cylinder. The cost of operation for the commercially available axial flow through rasp-bar threshers was found to be Rs. 400/ ha and Rs. 207/ ha respectively. The rasp-bar thresher with improved concave could save an amount of Rs. 616.5/ha which accounted to a net saving of 74.9 per cent in the cost of threshing compared to the hand beating method.
  • ThesisItemOpen Access
    Development and testing of a manually operated paddy dibbler
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1992) Bini Sam; KAU; Sankaranarayanan, M R
    A manually operated three row paddy dibbler for dry sowing was developed and tested at Kelappaji College of Agricultural Engineering and Technology, Tavanur. The metering mechanism employed in this dibbler was unique in design. The machine consists of seed box, roller with metering mechanism, seed tube with furrow opener, frame, handles and marker. When the dibbler was operated for dibbling, the roller passing vertically through the centre of box would move upward by the soil pressure against the spring pressure. As the roller moved upward, the portion of the roller having the vertical slot would come in contact with seeds and the seeds were moved and carried to this slot. When the equipment was taken out from the soil, the soil pressure on the roller was released and due to the spring pressure the roller moved downward and the seeds carried in the slot were released and would fall through the seed tube by gravity in to the soil. During the operation of the equipment due to the downward travel of the roller and seed tube the seed hole was created for dropping the seeds. The covering of seeds with soil was carried out automatically when the equipment was taken out from the soil. The number of seeds dropped was in the range of 4 to 6 per hill. The area covered by the dibbler was 0.022 hectare per hour. The field efficiency obtained was 68.68 per cent. The mechanical damage was 4.84 per cent. The percentage losses of seeds after germination was 9.52. The fabrication cost of the dibbler including cost of material was Rs. 800/-. The operating cost of the dibbler was Rs. 16/- per hour. The cost of sowing one hectare of land was Rs. 717/- while for manual dibbling the cost of sowing was Rs. 979/- per hectare. Moreover manual dibbling is done in a bending position which is arduous to the farmer. But in the present design of dibbler, a suitable handle is provided which ensure easy and comfortable operation in a straight posture. The equipment can be fabricated locally with readily available materials and can be easily maintained by small farmers.