Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 4 of 4
  • ThesisItemOpen Access
    Design, fabrication and testing of a power operated jab type paddy dibbler
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1997) Maji Krishnan, G; KAU; Jippu, Jacob
    A power operated jab type paddy dibbler developed and tested at K.C.A.E.T, Tavanur is described. A cup feed type metering mechanism, discharged the seeds into the distribution wheel. Rotation of this wheel caused the transfer of seeds from the distribution wheel to the seed tubes. The to and fro motion of the plungers inside the five seed tubes closed and opened the port between the seed tran9fer tube and seed tube at predetermined intervals. A cam and follower arrangement fitted on the main shaft regulated the to and fro motion of the plungers. In operation, the rotation of the dibbler wheel caused the tip of seed tubes to make holes in the soil. At the time of penetration the plunger occupied a position farthest to the main shaft thus keeping the tip of seed tube closed. This prevented the entry of soil into the seed tube. After the seed tube has reached the maximum depth the plunger is moved up quickly transferring the seeds into the holes. The dibbler gave seed rates of 87.1, 74.6, 68.0, and 61.1 kg/ha at the speeds 0.788, 1.152, 1.530 and 1.778 km/h respectively in the field. It placed at an average 3-6 seeds in a hill at a depth of 4-4.2 cm. The number of seeds mechanically damaged was only 0.89 per cent and loss of viability due to mechanical damage was only 3.77 per cent. The average power required was 0.093 hp. Labour requirement was 60.68 man-h/ha. Cost of operation of this dibbler was Rs 86.0/h including the cost of power source. The jab type dibbler is convenient for use by both men and women.
  • ThesisItemOpen Access
    Development of powertiller operated paddy reaper windrower
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1997) Shiny, Lukose; KAU; Sivaswami, S
    A vertical conveyor reaper-windrower suitable for mounting on KAMCO 9hp powertiller was developed Kerala for the first time. After considering the maneuvrability, weight distribution, field capacity and power transmission, the 1.6m width vertical reaper was selected for the KAMCO powertiller and was locally fabricated. The complete rotavator unit was dismantled and a newly designed power transmission unit was fitted on the KAMCO powertiller. The handle was kept at an ergonomically suitable height of 1m. A combination frame was developed inorder to accommodate both the engine and the reaper at the most appropriate location to achieve the static and dynamic balancing during field operation after the removal of rotavator. The centre of gravity of the engine at the new location was 50mm in front of the wheel axle and at a height of 180mm from its original position. Field evaluation of the reaper was carried out during November and December, 1996 at Tavanur. The front mounted reaper- windrower was evaluated to find out the optimum engine speed and forward speed to achieve better harvesting and windrowing pattern, maximum field capacity and field efficiency with less harvesting losses were found out. For the recommended engine speed of 1200 to 1400rpm at low first and low second gears a forward speed of 0.53 to O. 94m per sec. was obtained in the field. The actual cutting width was 1.5m. The maximum field efficiency of 85 per cent was obtained for first gear when the engine rpm was 1200. Actual field capacity for this speed was 0.224ha per hr. It was seen that for the recommended engine speed between 1200 to 1400rpm a normal forward speed of (.53 to 0. 94m/sec was obtained with an average actual field capacity of 0.25 ha/hr and an average total grain loss of 1.9 per cent in the field. Downward handle reaction for this recommended speeds varied between 9 to 14 kgf at the time releasing the clutch or using the accelarator. By the use of powertiller reaper a labour saving of 82.5 per cent was obtained. The owner would get a monitory benefit of Rs.1210/ha while the farmer hiring the reaper would get a saving of Rs.830/ha compared to manual harvesting. The initial invest of the owner would be paid back within 2 years if he could hire it out for 1000hrs per year. The total weight of the unit is 451kg which is 34kg less than the original weight the powertiller with rotavator unit. Its overall dimensions are L:279S x W: 1650 x h: 1510mm and the total cost is Rs.1,16,500.
  • ThesisItemOpen Access
    Design fabrication and testing of an arecanut dehusker
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology,Tavanur, 1993) Febi Varghese; KAU; Jippu Jacob
    A power operated arecanut dehusker is designed, developed and its performance evaluated. The major parts are the hopper, feeder, lead plate, cutting blade, shearing roller, friction plate and scraper. The feeder receives the graded fruit from the hopper and delivers it on the lead plate. The fruit is compressed between the rotating shearing roller and the lead plate. The teeth on the roller peel off the husk and the kernel is ejected out through the slot on the lead plate and the husk removed. A single phase 0.5 hp motor operates the machine. From the studies, the optimum set - up of the machine for deriving maximum dehusking efficiency and Iower percentage of the number kernels damaged is at a speed of 35 rpm, blade angle of 600 and slot angle of 1400. At this set - up the machine gives an output of 9.0 kg dried fruit/h, with 84.5 per cent dehusking efficiency.
  • ThesisItemOpen Access
    Evaluation and modification of powertiller operated paddy reaper
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1995) Selvan, P; KAU; Sivaswami, N
    The study on power tiller operated paddy reaper-windrower was taken up solve the problems of labour scarcity and uneconomic cost of cultivation of paddy. The 1.6 m vertical conveyer reaper-windrower was fabricated and was mounted with commercially available 8-10 hp air cooled Mistubishi power tiller. Improvements and modifications were carried out to make the unit suitable for harvesting of paddy in Kerala. The original engine chasis of the power tiller was replaced with a newly fabricated chasis on which both the engine and paddy harvester were mounted. Difficulties were experienced in starting and in operating the harvester when the drive was taken directly from the engine pulley to the cutterbar. Initialy the unit was operated with rotovator at the rear side. It was found difficulty in crossing the bunds, hence rotovator was removed. After detailed studies, an auxiliary gear box was designed and fabricated for transmitting power to reaper from the rotovator gear assembly. The rear rotovator was dismantled and the auxiliary gear box was assembled. For balancing, a counter weight of 35 kg was added in between the handles. The crop is cut by the reciprocating knife while passing through crop dividers, star wheels, pressure springs and is conveyed by a pair of lugged conveyer belts and is discharged as a neat windrow. Improvements and modifications were carriedout on most of the reaper components. Field evaluation of paddy harvester was carried out at KCAET Tavanur for two seasons. It was found that harvester has an effective cutting width of 1.55 m and an average field capacity of 0.02036 ha/hr. The pre harvest loss, sickle loss, shattering loss and total cutter bar loss were found to be 0.005 per cent, 2.43 per cent and 0.026 per cent respectively. The power tiller operated reaper-windower was found suitable for harvesting paddy both in wet as well as dry fields except the fully lodged crops. It is an appropriate machinery for harvesting paddy and is found economically and technically suitable for Kerala conditions. It was calculated that manual harvesting needs Rs. 1625/ha whereas power tiller operated reaper needs only Rs. 348/ha and thus achieved a saving of amount of Rs. 1277/ha. The savings of 186 man-hrs/ha achieved by the introduction of power tiller operated paddy reaper is a promising solution for the crisis of labour scarcity and the high cost of labour input in the paddy cultivation.