Study on the effect of different types of nozzle for foliar application of urea solute

Loading...
Thumbnail Image
Date
2019-07
Journal Title
Journal ISSN
Volume Title
Publisher
CCSHAU, Hisar
Abstract
Foliar application of urea solute is the most efficient practice of fertilizer application for maximum nitrogen uptake by plants. A study was conducted to see the effect of air induction nozzles for deposition of urea solute as a foliar application on cotton crop. The air induction nozzles where an internal venture creates a negative pressure inside the nozzle body. Air is drawn into the nozzle through two holes in the nozzle side, mixing with the spray liquid. The emitted spray contains large droplets filled with air bubbles (similar to a candy malt ball) and virtually no fine, drift-prone droplets. Three types of nozzle i.e. conventional solid cone nozzle, air induction hollow cone nozzle, air induction flat fan nozzle were used in the study. Nozzles were evaluated on patternator in laboratory at three different liquid pressure (3 kg/cm2, 4 kg/cm2 and 5 kg/cm2), three nozzle spacing (650 mm, 700 mm, 750 mm) and three nozzle height (530 mm, 545 mm and 560 mm). The maximum swath for two air induction flat fan nozzle 750 mm apart was observed as 1296 mm with 16.69% CV at a liquid pressure of 3 kg/cm2 and nozzle height of 560 mm. In case of air induction hollow cones nozzle the maximum swath was achieved as 1200 mm with 15.78% CV at nozzles spacing of 700 mm, liquid pressure 3 kg/cm2 and nozzle height 530 mm and for conventional solid cone nozzle with 12.70% CV maximum swath observed as 1104 mm for two nozzles at nozzle spacing of 700 mm, liquid pressure 3 kg/cm2 and nozzle height 530 mm. These nozzles were evaluated in field conditions for the combination of operating parameters at maximum swath with a minimum coefficient of variation (CV) to their effect in terms of spray deposition. Nozzles are evaluated in field on parameters finalised in laboratory. Number median diameter of air induction hollow cone nozzle and air Induction flat fan nozzle were significantly (p=0.00864) more as compared to knapsack nozzle and solid cone nozzle on the upper and bottom side of leaves at top, middle and bottom level of cotton plant and also NMD due to leaf position on cotton plant (p=0.00137) was significant at 5% level of significance. For VMD due to nozzle type is not significance at 5% level but for leaf position VMD is significant at 5%level. Air induction flat fan nozzle has lowest uniformity coefficient 2.63 among all the nozzles. Area covered by droplets in case of air induction flat fan nozzle was significantly (p=0.024) higher than air induction hollow cone nozzle, solid cone nozzle and knapsack sprayer nozzle at top, middle and bottom level on upper and under side leaves of plant canopy respectively at 5% level of significance. The statistical analysis showed that air induction flat fan nozzle was significantly (p=0.01406) higher volume of spray deposition than air induction hollow cone and conventional knapsack nozzle at 5% level of significance.
Description
Keywords
Citation
Collections