ENERGY UTILIZATION PATTERN IN DRYLAND PRODUCTION SYSTEMS OF COTTON AND MAIZE MECHANIZATION

Loading...
Thumbnail Image
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Acharya N.G. Ranga Agricultural University, Guntur
Abstract
Agricultural technologies aid in improvising agricultural production in developing countries, and should be considered as an essential input to growth of agriculture. In development of agricultural process over a period of time, energy and mechanization played a key role in Indian agriculture, during which farm power availability increased from about 0.293 kW ha-1 in 1960-61 to 1.841 kW ha-1 in 2012-13. Agriculture plays a two-sided role as energy user as well as producer, because it uses different types of commercial and non-commercial energies in direct and indirect forms. However, the energy use pattern for unit operations of crop production varies under different agro climatic zones and across various farm categories. The use of various machines in a given crop production zone depends on the cropping pattern, availability of power sources, matching implements and machinery and also on socioeconomic status of the farmers. The structure of various power source use pattern in Indian agriculture has experienced a marked shift from animate to mechanical sources since, four decades due to introduction of various types of machines. Hence, this study attempts to assess energy utilization pattern for cotton and maize crops under dryland situations. For this study, two clusters were selected for each cotton and maize crops and in a given cluster three categories of farmers ten each were selected randomly for survey based on their farm holding size. Field survey data was collected face to face interview format for each crop. The survey was conducted using pre-prepared questionnaire which consists of relevant questions to get appropriate data from individual farmers. Data on energy used from different direct sources of energy (human, animal and mechanical) and their use pattern in different operations for cotton and maize cultivation from land preparation to harvesting were collected from the selected respondents. Similarly, the data on input sources like seed, fertilizer and plant protection chemicals used were also Name of the Author : DHYAVA ANIL KUMAR Title of the thesis : “ENERGY UTILIZATION PATTERN IN DRYLAND PRODUCTION SYSTEMS OF COTTON AND MAIZE MECHANIZATION” Degree to which it is submitted : Master of Technology Faculty : Agricultural Engineering & Technology Major field of study : FARM MACHINERY AND POWER Major Advisor : Dr. B. SANJEEVA REDDY University : Acharya N.G. Ranga Agricultural University Year of Submission : 2015 collected for determining total energy consumption in production process of both the crops. For converting collected data of different power sources and inputs into energy units, different energy conversion coefficients were used. Energy use efficiencies, mechanization index and cost of energy were also analysed for cotton and maize crops. The mechanization pattern in cotton and maize crop production clusters were compared with the custom hiring centers (CHC’s) groups of farmers of Ranga Reddy district, who got the packaged machinery under subsidy scheme from Department of Agriculture. The results of the study revealed that, the highest energy utilization for crop production was observed in medium size farm holdings and lowest in case of small size farm holdings for both the crops, due to more use of power sources and inputs. Among field operations, land preparation consumed maximum energy across all categories of farmers and fertilizer was observed as the dominant source of input energy for cotton (46.0 to 71.1%) and maize (49.1 to 61.3%). Intercultural and weeding and harvesting / picking operations were carried out by animate sources of energy mostly in the clusters. The cost of production was observed to be highest in medium size farm holding (`38133 ha-1) for CC1 and large size farm holding `39273 ha-1 for cotton production. Large size farm holding `36582 ha-1 exhibited highest cost of production in MC1 cluster and in cluster MC2 there is not much significant difference among these farm categories. The cost of energy for land preparation was observed as lowest in the range of `3.00 to 3.8 per MJ and cost of energy forhuman and animal dependent operations were little more than the machinery involved operations. The correlation ‘r’ values of area under crop shows significant relationship with total energy input for both crop and productivity was also significant with total energy input. A positive correlation was observed between farming experience and cost of production in cotton crop; energy and cost of production in case of maize crop. The highest energy ratio values for CC1 and CC2 were 4.57 and 4.27 by large and small farmers, respectively in cotton and for maize clusters MC1 and MC2 were 5.12 and 4.53 by large farmers. Machinery energy ratio and mechanization index values were lowest in case of small farmers in all the clusters, which indicates that small farmers face difficulty in use of machinery for crop production due to financial constraints. Mechanization index values indicated that, these clusters were poorly mechanized, which causes stagnation in crop productivity. The cotton – CHC groups utilized more tractor hours (800 h/annum) than maize CHC groups as well as normal cluster farmers. Except in maize planting and harvesting, CHCs were not able to extend mechanization activities to operations such as interculture and weeding, spraying etc., which mostly are carried by animate power sources. Any machinery supplied under subsidy scheme need through performance checks, model wise at random by experienced third party agencies under field conditions to avoid financial burden on the farmers and as well as weed out poor quality manufacturers. The proven tillage implements / machinery slowly need to be restricted in government subsidy schemes. Periodic thorough scrutiny is essential to include upcoming machinery into the subsidy category to spread the mechanization activities across various operations uniformly. More emphasis needs to be given for small farm mechanization in dryland regions with appropriate policy frame work to promote suitable power sources and matching machinery.
Description
D5208
Keywords
null
Citation
Collections