Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Soil productivity changes under selected indigenous forest tree species with special reference to beneficial microflora
    (Department of Silviculture and Agroforestry, College of Forestry, Vellanikkara, 2014) Lakshmy, A; KAU; Jamaludheen, V (Guide)
    A field investigation was conducted with four important indigenous tree species viz. Hopea parviflora Bedd., Artocarpus hirsutus Lamk., Pterocarpus marsupium Roxb, and Pterocarpus santalinus L.f. of about 30 years of age and planted at 2 m×2 m spacing at Kerala Forest Research Institute sub-centre Nilambur, India for a period of one year (May 2013 to May 2014). The specific objective of the study was to monitor the soil productivity changes due to long term occupancy of four indigenous trees with special reference to the beneficial soil microflora. The rhizosphere soil samples were collected for the isolation and enumeration of microbial population at quarterly interval for a period of one year. The population of bacteria, fungi, actinomycetes, nitrogen fixing bacteria, phosphate solubilising bacteria and potash solubilising bacteria were estimated by serial dilution method. The soil physico-chemical properties and the growth of trees were also observed. The highest microbial population, during the entire study period, was recorded in Artocarpus hirsutus and the lowest in treeless control plot. Artocarpus hirsutus recorded the maximum bacteria, fungi, actinomycetes, nitrogen fixing bacteria and phosphate solubilising microorganism. Potash solubilizing bacteria were recorded maximum in Hopea parviflora plots. The highest bacterial population observed in late summer and rainy season and the lowest recorded during early summer season. The highest fungal population recorded in late summer season and the lowest during winter season. Early summer season recorded the highest actinomycetes population and lowest in late summer season. The highest population of nitrogen fixing bacteria and phosphate solubilising microorganism observed in the winter season and the lowest population during early summer season. Potash solubilizing bacteria recorded highest during the summer seasons (late summer-Ι and late summer-II seasons) and lowest in the rainy season. In the final sampling (late summer) also, A. hirsutus was found to harbour maximum bacteria, nitrogen fixing bacteria, phosphate solubilising bacteria and potash solubilising bacteria. However, the highest fungi and actinomycetes associated with Pterocarpus santalinus. The long term occupancy of the indigenous tree species was found to have influenced the soil physico-chemical properties. The soil moisture and bulk density was distinctively superior in the wooded lands as compared to the treeless open area. The soil organic carbon (2.25%), available nitrogen (17.80 kg ha-1), total nitrogen (0.16%) and exchangeable potassium (70.70 kg ha-1), were also significantly higher in H. parviflora. The most acidic soil was also found in H. parviflora while the least acidic was A. hirsutus plots. The maximum height (12.41m) and the dbh (16.25 cm) were recorded in Pterocarpus santalinus The present study throws light into the intimate relation between the types and nature of soil microflora populations and their positive influence on the microsite enrichment aspects of promising indigenous tree species. The information will aid in preferential selection of these tree species along with crops into different tree farming systems where the ecosystem sustainability is of greater relevance. In general, all the four indigenous tree species recorded significantly higher microflora population and greatly improved physico-chemical properties than treeless plot due to long term occupancy of trees.