Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 9 of 128
  • ThesisItemOpen Access
    Standardisation of spacing and nutrient levels for fodder rice bean [Vigna umbellata (Thunb.)].
    (Department of Agronomy, College of Agriculture, Vellayani, 2018) Ajmal Fayique, C; KAU; Usha C, Thomas
    The study entitled “Standardization of spacing and nutrient levels for fodder rice bean [Vigna umbellata (Thunb.)]” was conducted at College of Agriculture, Vellayani, Kerala during Kharif 2017 to standardize the spacing and nutrient requirement of fodder rice bean and to study its impact on growth, yield and quality of the crop. The experiment was laid out in Randomised Block Design (33 confounded factorial) with three replications.The treatments consisted of three spacings (s1 - 30 cm x 10 cm, s2 - 30 cm x 20 cm and s3 - 30 cm x 30 cm), three levels of nitrogen (n0 - 0 kg ha-1, n1 - 20 kg ha-1 and n2 - 30 kg ha-1) and three levels of phosphorous (p0 - 0 kg P2O5 ha-1, p1 - 20 kg P2O5 ha-1 and p2 - 40 kg P2O5 ha-1) . FYM @ 5 t ha-1 and K2O @ 30 kg ha-1 were applied uniformly to all treatments as basal. The treatment s1 resulted in the highest plant height at 30 DAS and leaf: stem ratio at harvest. Application of N @ 20 kg ha-1 registered the highest plant height and was on par with 30 kg N (n2) while leaf stem ratio was the highest at n2. Levels of P had no significant impact on growth characters. The treatment combination s2n2p1 produced the tallest plants (173.17 cm) at harvest and treatments s1n0p1 and s1n2p2 recorded the highest leaf: stem ratio (0.82) but were on par with s1n0p0, s2n0p0, s n0p2, s1n1p0, s2n0p2 and s3n0p1. At 30 DAS, s1 produced the highest LAI (2.27) while at harvest, s2 was found superior. The highest NAR was observed at s1 and was on par with s3. Closer spacing (s1) enhanced the CGR at 30 DAS and harvest. Application of 30 kg N ha-1 (n2) enhanced LAI at both stages. At 30 DAS and at harvest, higher NAR were observed at n1 and n2. At 30 DAS, n2 and p1 registered the highest chlorophyll contents. The treatment s1 n2 p1 (30 cm x 10 cm spacing + 30 kg N ha-1 + 20 kg P2O5 ha-1) resulted in the highest LAI, CGR and chlorophyll content at 30 DAS. Spacing and N levels had significant impact on green fodder yield (GFY) and dry fodder yield (DFY). The highest GFY (12.95 t ha-1) and DFY (2.59 t ha-1) were produced at s1 (30 cm x 10 cm) and was on par with s2. The highest GFY (13.66 t ha-1) and DFY (2.73 t ha-1) were produced at n2 (30 kg N ha-1) and was on par with n1. The S x N x P interaction s1 n2 p1 (30 cm x 10 cm + 30 kg N ha-1 + 20 kg P2O5 ha-1) recorded highest GFY (17.29 t ha-1) and DFY (3.46 t ha-1). The different spacing had no impact on crude protein (CP) but the lowest crude fibre (CF) was observed at s1. Application of 30 kg N ha-1 (n2) resulted in the highest CP content and the lowest CF content was estimated at 0 kg N ha-1. Among P levels, p2 recorded the highest CP (17.69%) and was on par with p1. The lowest CF (16.43 %) was observed at s2n0p1 (30 cm x 20 cm spacing + 20 kg P205 ha-1) and was on par with s1n0p0, s1n0p1, s1n2p0, s2n0p0, s2n0p2, s3n0p0 and s3n0p1. No variation in N uptake was observed due to treatments. Uptake of P varied with N levels only and n1 and n2 recorded the highest P uptake. Spacing and P levels influenced K uptake by the crop and the highest uptake was observed at s1 and p2 but p2 was on par with p1. The three factor interaction s1n2p1 registered the highest P and K uptake. However, it was on par with s1n1p2, s1n1p0, s2n1p1 and s3n0p2 in P uptake and with s1n2p2 in K uptake. Increasing N levels increased pH and EC of soil after the experiment. Soil available N after the experiment was the highest at s3 (on par with s2) and n2 (on par with n1). At wider spacing, application of N enhanced the availability of N in the soil after the experiment. Available P in the soil varied with S x P interaction but all treatment combinations were on par except s2p0 and s3p2. The highest soil available K was observed at n0 among N levels and at p1 among P levels. The interactions S x N, S x P and N x P significantly influenced available K in the soil. Economic analysis revealed the highest net income (₹ 35762) and BC ratio (3.22) at s1n2p1 (30 cm x 10 cm spacing + 30 kg N ha-1 + 20 kg P2O5 ha-1). From the study, it can be concluded that fodder rice bean can be profitably cultivated at a spacing of 30 cm x 10 cm with application of 30 kg N ha -1 in two splits at 15 and 30 DAS and basal application of 20 kg P2O5 ha-1, 5 t ha-1 of FYM and 30 kg K2O ha-1.
  • ThesisItemOpen Access
    Customized fertilizer and nutrient scheduling for okra (abelmoschus esculentus (L.) moench)
    (Department of Agronomy, College of Horticulture, Vellanikkara, 2016) Yansin, Luikham; KAU; Anitha, S
    Multinutrient deficiencies in soil are common nowadays due to imbalanced use and extensive mining of nutrients, which have also led to the decline of soil and crop productivity over time. Customized fertilizers (CF), which are multinutrient carriers facilitating the supply of complete range of nutrients in right proportion for the crop grown in a particular soil, have come up as an alternative to tide over these problems. Scheduling of nutrients by split application promotes efficient utilization of nutrients in a need based manner and helps to reduce nutrient losses from the soil. An investigation entitled “customized fertilizer and nutrient scheduling for okra (Abelmoschus esculentus (L.) Moench)” was carried out at the Water Management Research Unit, Vellanikkara, Thrissur from May to September, 2015 with the objective of developing a customized fertilizer and studying its techno- economic feasibility and nutrient scheduling in okra. The investigation consisted of 12 treatments viz., FYM + 75% CF (2 splits at 30 days interval), FYM + 75% CF (4 splits at 15 days interval), FYM + 100% CF (2 splits at 30 days interval), FYM + 100% CF (4 splits at 15 days interval), FYM + 125% CF (2 splits at 30 days interval), FYM + 125% CF (4 splits at 15 days interval), FYM + soil test based NPK application (N & K as 2 splits at 30 days interval), FYM + soil test based NPK application (N & K as 4 splits at 15 days interval), FYM + NPK as per POP (N & K as 2 splits at 30 days interval), FYM + NPK as per POP (N & K as 4 splits at 15 days interval), FYM alone based on N recommendation of POP (2 splits at 30 days interval) and absolute control. Biometric observations were recorded and nutrient contents and uptake were estimated at 30 DAS, 60 DAS and 90 DAS. A customized fertilizer grade was developed based on the initial analysis of macro and micronutrient contents of soil and nutrient requirement of okra. Water soluble fertilizers and straight fertilizers were used for the preparation of CF. Based on the soil fertility rating and nutrient recommendation for okra, the actual nutrients needed for the experimental site was worked out in kg ha-1 as 59N: 9P: 34K: 16Mg: 1B. Based on this, CF grade 22.01N: 3.35 P: 12.68K: 5.97Mg: 0.37B was developed. The study revealed that application of 125 per cent CF either as two or four splits was equally effective and recorded the highest yield compared to lower doses of CF and other nutrient management practices. Application of 125 per cent CF resulted in a yield increase of 32.11 per cent, 35.16 per cent and 49.84 per cent compared to soil test based application, application of nutrients at recommended dose and application of FYM alone respectively. Application of 100 per cent CF recorded higher yield compared to nutrient application based on soil test based NPK and NPK as per POP. The yield increase in 125 per cent CF was due to the better development of growth and yield parameters and higher nutrient uptake including that of Mg and B in customized fertilizer doses. The lower doses of CF (75%) performed equally well as soil test based NPK and NPK as per POP with respect to yield. The combined application of fertilizers along with FYM gave better yield than application of FYM alone as a source of nutrients. Faster delivery of nutrients could be achieved through fertilizers since FYM alone could not meet the huge requirement of nutrients by okra. In this study, application of CF and other fertilizers in more splits did not show significant increase in yield of okra. Application of CF showed a positive effect on the soil fertility status except for nitrogen. The improvement in nutrient status could be attributed to application of optimum dose of CF along with FYM to maintain adequate supply of nutrients. The application of higher levels of CF was cost effective and economically beneficial due to higher yield despite increased cost of cultivation owing to higher cost of inputs. Nutrient application in lower splits was more economical due to reduced labour. The study indicated that application of multinutrient carriers such as customized fertilizers are a technologically and economically viable practice for increasing soil and crop productivity. The quantities of NPK required as CF are much lower than the POP recommendations, and therefore fertilizer doses can be reduced substantially.
  • ThesisItemOpen Access
    Standardisation of nutrient and weed management techniques for organic rice
    (Department of Agronomy, College of Agriculture, Vellayani, 2013) Murugesh, M S; KAU; Girija Devi, L
    The present investigation on “Standardisation of nutrient and weed management techniques for organic rice” was conducted at the Department of Agronomy, College of Agriculture, Vellayani, during 2012-2013. The objectives were to standardise the nutrient schedule, spacing and weed management techniques for organic rice and to assess the economic feasibility of the organic package. The experiment was laid out in the field in split plot design with combination of spacing, S (S1-20 cm x 15 cm and S2-15 cm x 15 cm) and weed management techniques, W (W1-stale seedbed and W2-hand weeding) as main plot treatments and nutrient schedule, N (N1-option-1 of the ad hoc recommendation of KAU: FYM 5 t + 800 kg oil cakes ha-1 (1/2 basal + 1/2 top dressing at active tillering stage), N2-option-2 of the ad hoc recommendation of KAU: FYM 1 t + green leaf manure 1t + dual culture of azolla + 2 kg Azospirillum + 2 kg P solubilizing bacteria + 1kg PGPR (mix 1) ha-1, N3-option-3 of the ad hoc recommendation of KAU: 1/3rd RDN as FYM, 1/3rd as vermicompost and 1/3rd as neem cake + 2 kg Azospirillum + 2 kg P solubilizing bacteria ha-1, N4-soil test based application–half as vermicompost and half as neem cake). The KAU Package of Practices Recommendation (FYM 5 t + 90:45:45 kg NPK ha -1) was taken as control. Closer spacing (S2-15cm x 15 cm), hand weeding (W2) and option-3 of the ad hoc recommendation of KAU (N3) significantly influenced plant height and DMP, while closer spacing (S2-15cm x 15 cm) and option-3 of the ad hoc recommendation of KAU (N3) only had significant influence on tiller production and LAI. Stale seedbed (W1) and closer spacing (S2-15 cm x 15 cm) had significant influence on most of the yield attributing characters, while, among nutrient schedule, N3 (option-3 of the ad hoc recommendation of KAU) attributed the maximum for yield contributing characters, but was on par with N4 (soil test based application) and also with N1 (option-1 of the ad hoc recommendation of KAU) for grain yield. The results on weed control revealed the superiority of closer spacing (S2-15 cm x 15 cm) and stale seedbed technique (W1) over others in controlling the weeds throughout the growth stages. However the weed control efficiency was the lowest in conventional (Control-KAU Package of Practices Recommendation) compared to the organic throughout the growth stages. The nutrient uptake was the highest in N3 (option-3 of the ad hoc recommendation of KAU) and the lowest in N2 (option-2 of the ad hoc recommendation of KAU). However, uptake study had also revealed the superiority of conventional (Control-KAU Package of Practices Recommendation) over organic in the uptake of nutrients. The net returns and B:C ratio were the highest in closely spaced plants (S2-15 cm x 15 cm) and in N3 (option-3 of the ad hoc recommendation of KAU). From the study it can be concluded that for realising higher grain yield in organic rice, a closer spacing of 15 cm x 15 cm (S2) is ideal. Any of the two weed management techniques, i.e., either stale seedbed (W1) or hand weeding (W2) can be practiced for controlling weeds. Option-3 of the ad hoc recommendation of KAU (N3-1/3rd RDN as FYM, 1/3rd as vermicompost and 1/3rd as neem cake + 2 kg Azospirillum + 2 kg P solubilizing bacteria ha-1) is the best nutrient schedule for realizing maximum yield from organic rice. The most economic package for organic rice production is the combination of closer spacing of 15 cm x 15 cm (S2), with stale seedbed technique (W1) of weed control and option-3 of the ad hoc recommendation of KAU (N3-1/3rd RDN as FYM, 1/3rd as vermicompost and1/3rd as neem cake + 2 Kg Azospirillum + 2 Kg P solubilizing bacteria ha-1) as nutrient schedule. The organic package was economically significantly superior to conventional package due to the premium price fetched by organic rice.
  • ThesisItemOpen Access
    Nutrient Management for yield and quality improvement in Kacholam
    (Department of Agronomy, College of Horticulture, Vellanikkara, 2012) Kavitha, P R; KAU; Meera, Menon V
    Kacholam (Kaempferia galanga L.) is an important medicinal and aromatic plant of the Zingiberaceae family. In India, kacholam is cultivated throughout the plains for the rhizomes. The economic produce of kacholam is the chopped and dried rhizomes of 6-7 months maturity. Dried rhizomes are used in bulk quantities in ayurvedic medicine and in the cosmetic industry. It is used for curing inflammatory wounds, skin disorders, piles, oedema, fever, epilepsy, splenic disorders and asthma. The constituents of the rhizome oil include para methoxy ethyl cinnamate (60.24 % of the oil), ethyl cinnamate (20.66%), cineol, borneol, 3-carene, camphene, kaempferol, kaempferide and cinnamaldehyde. There is immense scope for cultivation of kacholam in Kerala, as the climatic and soil conditions are optimally suited to its growth and development. Kacholam can be grown as an intercrop in coconut gardens and it has attained the status of a cash crop of homesteads. Though there is an approved ad hoc recommendation of organic manures as well as N, P and K for kacholam, there are reports that the K dose is inadequate. Also, considering the low availability and high cost, the present organic manure recommendation of 20 tonnes ha-1 is rather unaffordable. There are also reports about the inadequacy in the availability of secondary nutrients viz., S, Ca and Mg, which may affect yield and quality of kacholam. A field experiment was conducted during 2011-2012 in the coconut garden of Water Management Research Unit, Vellanikkara to evaluate the effect of varying doses of K and secondary nutrients on yield and quality of kacholam. There were 12 treatments with 3 replications each. Treatments consisted of package of practices (POP) recommendation of 20 tonnes farmyard manure along with 50:50:50 kg N, P and K ha-1 and combinations with S, Ca, Mg and extra dose of K applied as first and second top dressing. Rhizomes were planted at a spacing of 20 x 15 cm and planting was done on 3/ 06/ 2011. Harvesting was done seven months after planting. Observations included biometric observations taken at monthly intervals, nutrient contents at 2 ½ and 5 months after planting, and at harvest. Nutrient uptakes was also worked out. Essential oil and oleoresin in rhizomes were also analysed. The soil pH and chemical parameters were analysed before and after the experiment. There were significant differences among treatments with respect to yield, essential oil, oleoresin, nutrient contents and nutrient uptake. With respect to yield, the treatment receiving S applied either at first top dressing or at second top dressing and that with S, Ca and Mg recorded highest yields as compared to other treatments. Essential oil content also showed the same trend as that of yield. But in case of oleoresin, the content was more only in the treatments receiving S as first and second top dressing. This treatment resulted in highest uptake of all nutrients except Ca at harvest. Application of the secondary nutrients thus had a direct positive effect on yield and quality. Changing the N:K ratio of present NPK recommendation resulted in reduction of yield and other quality parameters. The yield and quality parameters with the reduced organic manure dose were found similar to the present POP. Increased phosphorus content of soil observed after experimentation indicated the possibility of reducing the recommended phosphorus dose. Supplementing S, Ca and Mg with a reduced organic manure dose is also to be tested.
  • ThesisItemOpen Access
    Standardization of organic nutrient schedule for chilli (Capsicum annuam)
    (Department of Agronomy, College of Agriculture, Vellayani, 2013) Akshay; KAU; Sajitha Rani, T
    The research project entitled ‘Standardization of organic nutrient schedule for chilli (Capsicum annuum)’ was conducted at Instructional Farm attached to the College of Agriculture, Vellayani during the kharif season of 2012 to standardize the organic nutrient schedule for chilli and to work out the economics. The investigation was laid out as factorial experiment in Randomized Block Design (RBD) with three replications. The treatments consisted of three levels of FYM - F1 (20 t ha-1), F2 (15 t ha-1) and F3 (10 t ha-1) and three levels of substitution of the recommended dose of nitrogen. The levels of substitution are N1 (100 % recommended dose of N- 75 kg ha-1), N2 (75 % recommended dose of N -56.25 kg ha-1) and N3 (50 % recommended dose of N - 37.5 kg ha-1). FYM along with neem cake in 1: 1 ratio is used as organic manure for N substitution. Three controls were also tested in this study. Thèse controls are C1 (KAU POP recommendation -.FYM@ 25 t ha-1 along with75:40:25 kg N:P2O5:K20 ha-1 as inorganic fertilizer), C2 ( KAU Adhoc organic POP recommendation -FYM @25 t ha-1 + Poultry manure at 5 t ha-1 + Pseudomonas + Trichoderma and PGPR mix 1, each @2.5 kg ha-1) and C3 (Farmers practice - Cow dung slurry @ 20 t ha-1) Result of the study revealed that FYM @ 20 t ha-1 recorded significantly higher plant height, no of branches & LAI. The maximum value for all growth parameters were observed at 100% level of N substitution .Combined application of FYM @ 20 t ha-1 along with 100% substitution of recommended dose of N (75 kg ha-1) in organic form registered maximum plant height, branches, LAI, and root spread .This treatment was on par with KAU POP and Adhoc organic POP Maximum yield was recorede at the highest level of FYM (20 t ha-1). Yield contributing characters were also significantly higher at this level. Among the levels of substitution 100% substitution recorded maximum productivity. Application of FYM @ 20 t ha-1 along with 100 % recommended dose of N (75 kg ha-1) as organic form gave maximum productivity which was on par with the yield realized from KAU Adhoc organic POP and KAU POP. Highest level of FYM @ 20 t ha-1 and 100 % substitution of recommended dose of N recorded maximum ascorbic acid, capsaicin content and shelf life. FYM @ 20 t ha-1 along with 100% of substitution of N as organic recorded maximum capsaicin content which was on par with KAU POP recommendation. Ad hoc organic POP recommendation of KAU recorded maximum ascorbic acid content. KAU POP recommendation registered significantly higher N and K uptake than other treatments. Adhoc organic POP recommendations of KAU recorded highest soil pH and organic carbon content. Available nitrogen status of soil was significantly higher in Adhoc organic POP recommendations of KAU but P and K status were on par to KAU POP. Highest B:C ratio and net income were realized in KAU POP. Best nutrient schedules for realising maximum yield from organic chilli is 1) FYM @20 t ha-1 along with 75kg N ha -1 applied through a combination of FYM and neem cake in 1 : 1 ratio + Pseudomonas + Trichoderma and PGPR mix 1, each @2.5 kg ha-1 and 2) Adhoc POP recommendation of KAU -FYM @ 25 t ha-1 along with poultry manure @ 5 t ha-1 + Pseudomonas+Trichoderma and PGPR mix 1, each @2.5 kg ha-1. Economic nutrient schedule for organic chilli is application of FYM @ 25 t ha-1 along with poultry manure @ 5 t ha-1 + Pseudomonas + Trichoderma and PGPR mix 1, each @2.5 k
  • ThesisItemOpen Access
    Weed management in upland rice (Oryza sativa L.) intercropped in coconut
    (Department of Agronomy, College of Agriculture, Vellayani, 2018) Ravikiran; KAU; Elizebeth Syriac, K
    The investigation entitled “Weed management in upland rice (Oryza sativa L.) intercropped in coconut” was undertaken during the period, 2017 - 2018 at College of Agriculture, Vellayani, Thiruvananthapuram to standardise an eco-friendly and economic weed management strategy for upland rice intercropped in coconut. The field experiment was carried out at Coconut Research Station, Balaramapuram, Thiruvananthapuram district during the period from June to October 2017. The variety used was Prathyasa (MO-21) released from Rice Research Station, Moncompu. The experiment was laid out in randomized block design (factorial) with sixteen treatment combinations and three replications. The treatments consisted of two stale seedbed methods viz., stale seedbed with mechanical removal of weeds (s1) and no stale seedbed (s2) and eight weed management methods i.e., penoxsulam @ 20 g ha-1 at 10-15 days after sowing (DAS) fb hand weeding (HW) at 35-40 DAS (m1), penoxsulam @ 25 g ha-1 at 10-15 DAS fb HW at 35-40 DAS (m2), penoxsulam @ 30 g ha-1 at 10-15 DAS fb HW at 35-40 DAS (m3), penoxsulam @ 20 g ha-1 at 10-15 DAS fb metsulfuron methyl + chlorimuron ethyl (MM+CE) @ 4 g ha-1 at 35-40 DAS (m4), penoxsulam @ 25 g ha-1 at 10-15 DAS fb MM+CE @ 4 g ha-1 at 35-40 DAS (m5), penoxsulam @ 30 g ha-1 at 10-15 DAS fb MM+CE @ 4 g ha-1 at 35-40 DAS (m6), HW twice at 15 and 35 DAS (m7) and weedy check (m8). Study of the weed flora of experimental area indicated the dominance of broad leaved weeds (eight spp.) followed by grasses (six spp.) and sedges (two spp.). Stale seedbed method (s1) recorded significantly lower weed density at all stages of observations (15, 30 and 60 DAS), weed dry weight at 15 and 30 DAS and higher weed control efficiency (WCE) at 30 and 60 DAS compared to no stale seedbed. Among the weed management methods, at 60 DAS, all the penoxsulam doses i.e., 20, 25 and 30 g ha-1 at 10-15 DAS fb either HW at 35-40 DAS or MM+CE at 35-40 DAS (m 6, m4, m3, m5, m1 and m2) were on par in their effect on total weed dry weight and WCE. Stale seedbed method (s1) registered significantly higher plant height at 60 DAS, number of tillers m-2 at 30 DAS and at harvest, dry matter production at harvest and LAI at 60 DAS compared to no stale seedbed (s2). Penoxsulam at different doses fb HW treatments (m 1, m2 and m3) recorded higher plant height at 30 and 60 DAS and at harvest, number of tillers m-2 at 30 DAS, DMP at harvest and LAI at 30 DAS. None of the herbicide treated plots showed any phytotoxicity symptom on rice crop. The yield attributes viz., number of spikelets panicle-1, per cent filled grains and thousand grain weight were significantly higher for stale seedbed, compared to no stale seedbed (s2). Weed management methods also significantly improved yield attributes viz., panilces m-2, spikelets panicles-1, per cent filled grains and thousand grain weight compared to weedy check treatment. Penoxsulam @ 25 g ha-1 at 10-15 DAS fb HW at 35-40 DAS (m2) registered the highest values for per cent filled grains and thousand grain weight. Stale seedbed method (s1) recorded significantly higher grain yield, straw yield and lower weed index compared to no stale seedbed method (s 2). Though penoxsulam @ 25 g ha-1 at 10-15 DAS fb HW at 35-40 DAS (m2) registered the highest grain yield (3.23 t ha-1), it was on par with the other penoxsulam fb HW treatments viz., m1 and m3. None of the s x m interactions were found statistically significant. Regarding weed index also m2 registered the lowest value and it was significantly superior to all other weed management methods. Higher net income (₹ 27, 848/-) and B:C ratio (1.48) were obtained with stale seedbed method (s1), compared to no stale seedbed (s2). Application of penoxsulam @ 25 g ha-1 at 10-15 DAS fb HW at 35-40 DAS (m2) registered the highest net income (₹ 36,090/-) and B: C ratio (1.63). The s1m2 registered the highest net income (₹ 44,433/-) and B: C ratio (1.77), among the interactions. The results on soil microbial population revealed that population of fungi, bacteria and actinomycetes increased in all the herbicidal treatments compared to pre-treatment population. Activity of dehydrogenase enzyme also increased significantly in the herbicide applied plots implying the safety of the tested chemicals on soil health. Based on grain yield, weed index and economic analysis, integration of stale seedbed method with the broad spectrum herbicide penoxsulam @ 25 g ha-1 at 10-15 DAS fb HW at 35-40 DAS can be recommended as an eco-friendly and economic weed management practice in upland rice.
  • ThesisItemOpen Access
    Production potential of cereal fodder crops under various tillage practices in rice fallows.
    (Department of Agronomy, College of Horticulture, Vellanikkara, 2011) Gintu, George; KAU; Prameela, P
    In order to test the feasibility of raising cereal fodders in rice fallows under various tillage systems an experiment entitled “Production potential of cereal fodder crops under various tillage practices in rice fallows” was conducted at the Department of Agronomy, College of Horticulture, Vellanikkara, Thrissur, Kerala. The experiment was laid out in split plot design with four replications during the period from November 2009 to February 2010. The main plots had tillage practices as treatments which included zero tillage with and without herbicide application (M1 and M2), minimum tillage (M3) and normal tillage (M4). The subplots had three treatments, viz., fodder cereals; maize (S1), sorghum (S2) and bajra (S3). Analysis of data on herbage yield of the three fodders under different tillage practices showed that the herbicide based zero tillage, minimum tillage and normal tillage practices resulted in comparable yields (20.72, 18.72 and 18.08 t/ha). Zero tillage without herbicide application resulted in significantly lower yield (11.69 t/ha). Growth parameters like plant height, leaf area index, leaf stem ratio, shoot root ratio etc. recorded at various growth stages also showed the favourable influence of minimum and herbicide based zero tillage on plant growth. Among the cereal fodders, maize recorded significantly higher yield of 20.19 t/ha followed by sorghum with 15.91 t/ha and bajra with 15.81 t/ha. Considering tillage practices and crops together, the highest B: C ratio of 3.31 was realized when maize was grown under herbicide based zero tillage closely followed by maize under minimum tillage with a B: C ratio of 3.24. Of the other two crops, bajra was found to be more profitable than sorghum. Like maize, herbicide based zero tillage resulted in a higher B: C ratio (3.0) for bajra than other tillage treatments. The yield reduction in zero tillage without herbicide application was mainly due to weeds. A study of weed spectrum showed that dicots were the major weed flora followed by grasses and sedges. The weed population and weed dry matter production were the highest in zero tillage without herbicide application followed by minimum and herbicide based tillage and the least was in normal tillage. Weed dry matter production in zero tilled without herbicide plot was 1545 kg/ha compared to a much lower dry matter accumulation of 193 kg/ha in normal tillage plot. The silage made from all the three cereal fodders was found to be of good quality with golden yellow colour, pleasant smell and a pH ranging from 3.8 to 4.2. In silage prepared without the addition of molasses, pH was found to be slightly higher (4.2) compared to silage prepared with molasses as additive (3.9). The study revealed that fodder maize under herbicide based zero tillage was the best with regard to yield and B: C ratio. However, for a herbicide free production system, maize grown under minimum tillage is preferred due to its equally good performance.
  • ThesisItemOpen Access
    Bioefficacy and soil health impact of flucetosulfuron in wet seeded rice (Oryza sativa L.)
    (Department of Agronomy, College of Agriculture, Vellayani, 2018) Arya, S R; KAU; Elizabeth, K Syriac
    The investigation entitled "Bioefficacy and soil health impact of flucetosulfuron in wet seeded rice (Oryza sativa L.) was carried out at College of Agriculture, Vellayani, Thiruvananthapuram during the period of 2015-2018. The objectives were to evaluate the bioefficacy of flucetosulfuron in wet seeded rice; to assess its impact on soil health by determining the microbial count, earthworm population, enzyme status and herbicide residue in soil through bioassay using indicator plant as well as to assess the weed seed bank. It was also envisaged to study the in vitro sensitivity of biofertilizer organisms and biocontrol agents to flucetosulfuron. Field experiment was conducted during the I and II crop seasons of 2016- ’17, in a farmer’s field in Kalliyoor Panchayat, Nemom block, Thiruvananthapuram district, Kerala, with 12 treatments replicated thrice in Randomized Block Design. The treatments were: T1 : Flucetosulfuron @ 20 g ha-1 at 2-3 DAS, T2 : Flucetosulfuron @ 25 g ha-1 at 2-3 DAS, T3 : Flucetosulfuron @ 30 g ha-1 at 2-3 DAS, T4 : Flucetosulfuron @ 20 g ha-1 at 10-12 DAS, T5 : Flucetosulfuron @ 25 g ha-1 at 10-12 DAS, T6 : Flucetosulfuron @ 30 g ha-1 at 10-12 DAS, T7 : Flucetosulfuron @ 20 g ha-1 at 18-20 DAS , T8 : Flucetosulfuron @ 25 g ha-1 at 18- 20 DAS , T9 : Flucetosulfuron @ 30 g ha-1 at18-20 DAS, T10: Bispyribac sodium @ 25 g ha-1 at 15 DAS, T11: Hand weeding at 20 and 40 DAS and T12 : Weedy check. The short duration variety Kanchana was used for the trial. The weed flora in the experimental field comprised of four species of grasses, six species of broad leaved weeds and three species of sedges. Based on density and dry weight, sedges were the predominant group in the experimental field followed by broad leaved weeds and grasses. Application of flucetosulfuron @ 20, 25 and 30g ha-1 at 10-12 and 18-20 DAS (T4, T5, T6, T7, T8 and T9) recorded lower total weed density, total weed dry weight and nutrient removal by weeds and higher total weed control efficiency and were on par with the hand weeding treatment (T11). Yield reduction due to weeds was found to be 52.33 and 55.61 per cent during the I and II crop seasons respectively. The highest grain yield was recorded by the application of flucetosulfuron @ 25 g ha-1 at 10-12 DAS (T5) and flucetosulfuron @ 20 g ha-1 at 10-12 DAS (T4) during the first and second crop seasons respectively. The same trend was observed in the case of dry matter production also. Pooled analysis of the grain yield for the two seasons indicated the superiority of T5 which recorded the highest grain yield of 8.33 t ha-1. This treatment was on par with the other levels of flucetosulfuron viz., 20 and 30 g ha-1 at 10-12 DAS (T4 and T6) and hand weeding treatment (T11). Higher yield attributes, harvest index and nutrient uptake were also recorded for these treatments. However, net income and B:C ratio were significantly lower for hand weeding treatment. Herbicide application did not cause any significant inhibitory effect on the earthworm population and spider count. Application of herbicides increased the microbial population in herbicide treated plots. Flucetosulfuron, at the tested doses (20, 25 and 30 g ha-1) and time of application (2-3, 10-12 and 18-20 DAS), did not show any adverse impact on the activity of soil enzymes (dehydrogenase, acid phosphatase and urease) and soil organic carbon status. To identify the most suitable indicator plant for assessing flucetosulfuron residue in soil, four separate pot culture experiments were conducted using barnyard millet, cucumber, sunflower and maize. Sunflower was identified as the most sensitive indicator plant and shoot length of sunflower was adjudged as the best parameter to assess the flucetosulfuron residue in soil. Bioassay after each field experiment using sunflower revealed that there was no residual toxicity of flucetosulfuron in the post experiment soil. Pot culture experiments were carried out before and after each field experiment, to study the weed seed bank dynamics. Results revealed that non- herbicidal plots recorded higher weed count compared to herbicide applied plots. In all the herbicide treated plots, effective reduction in weed seed bank could be obtained irrespective of the dose of the herbicide. Regarding the time of application, application of flucetosulfuron at 10-12 and 18-20 DAS caused significant depletion of weed seed bank during both the seasons compared to its application at 2-3 DAS. In vitro sensitivity of biofertilizer organisms viz., Azospirillum lipoferum, Azotobacter chroococcum, Bacillus megaterium and Frateuria aurantia to flucetosulfuron indicated that growth of none of the organisms were significantly inhibited by the tested doses of flucetosulfuron. Similarly, in vitro sensitivity to biocontrol agent Trichoderma viride revealed that, at all the tested concentrations of flucetosulfuron, it showed a colony diameter of 9 mm uniformly with zero per cent inhibition indicating the compatibility of the herbicide. The compatibility studies with Pseudomonas fluorescens also revealed the safety of the herbicide. The present study revealed that application of flucetosulfuron @ 20, 25 and 30 g ha-1 at 10-12 DAS was very effective in controlling the weeds and recorded significantly higher grain yield and monetary benefits in wet seeded rice. Application of flucetosulfuron @ 20, 25 and 30 g ha-1 at 2-3/10-12/18-20 DAS had no adverse impact on soil health and was found compatible with the tested biofertilizer organisms (Azospirillum lipoferum, Azotobacter chroococcum, Bacillus megaterium and Frateuria aurantia) and biocontrol agents (Trichoderma viride and Pseudomonas fluorescens).
  • ThesisItemOpen Access
    Herbicide mixtures for weed management
    (Department of Agronomy,College of Agriculture, Vellayani, 2016) Sheeja, K Raj; KAU; Elizabeth, K Syriac
    The experiment entitled "Herbicide mixtures for weed management in direct seeded puddled rice Oryza saliva L." was carried out at College of Agriculture, Vellayani, during the period from 2013 - 2016, to assess the bioefficacy of two post emergence herbicide mixtures viz., bispyribac sodium + metamifop and penoxsulam + cyhalofop butyl in direct seeded rice; to study the residual effect in soil; to investigate the impact on microbial and earth worm population, soil enzyme activity and weed seed bank and also to assess the in vitro sensitivity to soil borne pathogen, Rhizoctonia solani, bio control agents and bio fertilizer organisms. Field experiment was undertaken during first and second crop seasons of 2014-15 at Nemom block at farmer's field. The experiment was laid out in RED with 12 treatments and three replications. Bispyribac sodium + metamifop @ 60, 70, 80 and 90 g ha"*,penoxsulam + cyhalofop butyl @ 120, 125, 130 and 135 g ha"*, bispyribac sodium @ 25 g ha"', penoxsulam @ 22.5 g ha"', hand weeding twice and weedy check constituted the treatments. The higher three tested doses of penoxsulam + cyhalofop butyl v/z.,125, 130 and 135 g ha ' and the highest tested dose of bispyribac sodium + metamifop viz., 90 g ha"' were better than other weed management treatments in improving the growth and yield attributes of rice. Pooled analysis indicated the superiority of penoxsulam + cyhalofop butyl @ 135 g ha"' which recorded the highest grain yield (8463 kg ha ' ) and it was statistically on par with its lower doses (130 and 125 g ha*'). Straw yield was not significantly influenced by the weed control treatments. Penoxsulam + c^lofop butyl @ 135 g ha"' recorded the highest net returns (93744 ha *) and B: C ratio (2.43), which was on par with its lower dose (130 g ha"'). Penoxsulam + cyhalofop butyl @ 135 g ha"' was more effective in reducing the total density of weeds. With regard to the control of sedges and BLW, penoxsulam + cyhalofop butyl was more effective, but with respect to grasses, both the herbicide mixtures were more or less similar in effectiveness. Penoxsulam + cyhalofop butyl @ 135 and 136 registered higher weed control efficiency and lower weed index than other treatments. Uncontrolled weed growth caused a yield reduction of 50.38 per cent. Herbicide treatments significantly reduced the nutrient uptake by weeds and enhanced the nutrient uptake by crop over weedy check. The higher doses of penoxsulam + cyhalofop butyl (125,130 and 135 g ha"') and bispyribac sodium + metamifop (70, 80 and 90 g ha*') were more effective in maintaining higher nutrient content in soil. Dynamics of soil microbial population, earthworm population, soil enzyme status and organic carbon content of soil consequent to the application of herbicide mixtures revealed that, both penoxsulam + cyhalofop butyl and bispyribac sodium + metamifop at their tested doses did not have any inhibitory effect. Results of screening trial revealed that maize was the most sensitive indicator plant for both the herbicide mixtures. Dry weight and fresh weight of maize shoot were adjudged as the best parameters for assessing the residual effect of bispyribac sodium + metamifop and penoxsulam + c>^Iofop butyl in soil respectively. Pot culture bioassay studies revealed that the tested herbicide mixtures and their doses did not have any residual effect. In vitro sensitivity studies of bispyribac sodium + metamifop and penoxsulam + cyhalofop butyl to Rhizoctonia solani pointed out that both the herbicide mixtures inhibit the growth of Rhizoctonia solani. Studies on the in vitro effect of herbicide mixtures to Trichoderma viride indicated that bispyribac sodium + metamifop was safe to the fungus, whereas penoxsulam + cyhalofop butyl was moderately toxic. Compatibility studies revealed that both the herbicide mixtures were highly compatible with Psetidomonas fluorescenSy Azospirillum lipoferum and Azotobacter chroococciim. Weed seed bank assay results indicated the effectiveness of the higher doses of penoxsulam + cylialofop butyl (135, 130 and 125 g ha'') in depleting the seed bank compared to other treatments. The present study revealed the superiority of heibicide mixtures over individual herbicides in the management of weeds in wet seeded rice. Application of penoxsulam + cyhalofop butyl @ 135 or 130 g ha*', at 15 DAS could be adjudged as the most economic and ecofriendly weed management practice for wet seeded rice as evidenced by high weed control efficiency, net returns and B: C ratio; environmental safety, high inhibitory effect to Rhizoctonia solani and good compatibility with bio control agents and bio fertilizer organisms.