Loading...
Thumbnail Image

Kerala Agricultural University, Thrissur

The history of agricultural education in Kerala can be traced back to the year 1896 when a scheme was evolved in the erstwhile Travancore State to train a few young men in scientific agriculture at the Demonstration Farm, Karamana, Thiruvananthapuram, presently, the Cropping Systems Research Centre under Kerala Agricultural University. Agriculture was introduced as an optional subject in the middle school classes in the State in 1922 when an Agricultural Middle School was started at Aluva, Ernakulam District. The popularity and usefulness of this school led to the starting of similar institutions at Kottarakkara and Konni in 1928 and 1931 respectively. Agriculture was later introduced as an optional subject for Intermediate Course in 1953. In 1955, the erstwhile Government of Travancore-Cochin started the Agricultural College and Research Institute at Vellayani, Thiruvananthapuram and the College of Veterinary and Animal Sciences at Mannuthy, Thrissur for imparting higher education in agricultural and veterinary sciences, respectively. These institutions were brought under the direct administrative control of the Department of Agriculture and the Department of Animal Husbandry, respectively. With the formation of Kerala State in 1956, these two colleges were affiliated to the University of Kerala. The post-graduate programmes leading to M.Sc. (Ag), M.V.Sc. and Ph.D. degrees were started in 1961, 1962 and 1965 respectively. On the recommendation of the Second National Education Commission (1964-66) headed by Dr. D.S. Kothari, the then Chairman of the University Grants Commission, one Agricultural University in each State was established. The State Agricultural Universities (SAUs) were established in India as an integral part of the National Agricultural Research System to give the much needed impetus to Agriculture Education and Research in the Country. As a result the Kerala Agricultural University (KAU) was established on 24th February 1971 by virtue of the Act 33 of 1971 and started functioning on 1st February 1972. The Kerala Agricultural University is the 15th in the series of the SAUs. In accordance with the provisions of KAU Act of 1971, the Agricultural College and Research Institute at Vellayani, and the College of Veterinary and Animal Sciences, Mannuthy, were brought under the Kerala Agricultural University. In addition, twenty one agricultural and animal husbandry research stations were also transferred to the KAU for taking up research and extension programmes on various crops, animals, birds, etc. During 2011, Kerala Agricultural University was trifurcated into Kerala Veterinary and Animal Sciences University (KVASU), Kerala University of Fisheries and Ocean Studies (KUFOS) and Kerala Agricultural University (KAU). Now the University has seven colleges (four Agriculture, one Agricultural Engineering, one Forestry, one Co-operation Banking & Management), six RARSs, seven KVKs, 15 Research Stations and 16 Research and Extension Units under the faculties of Agriculture, Agricultural Engineering and Forestry. In addition, one Academy on Climate Change Adaptation and one Institute of Agricultural Technology offering M.Sc. (Integrated) Climate Change Adaptation and Diploma in Agricultural Sciences respectively are also functioning in Kerala Agricultural University.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Evaluation of bioinoculant consortia for organic cultivation of ginger
    (Department of Agricultural Microbiology, College of Horticulture, Vellanikkara, 2015) Haritha, T R; KAU; Surendra Gopal, K
    Ginger is one of the major spice crops of Kerala. Several constraints hinder its production and the major one is its succeptibility to various diseases. This has led to the use of high doses of chemical pesticides. Ginger is also a highly nutrient exhausting crop, which demands use of high doses of fertilizers. Although, chemical fertilizers and pesticides are highly effective, their continuous use has led to many environmental problems. Alternative approaches are therefore needed to minimize the use of chemical fertilizers and agrochemicals, since ginger is directly consumed. Emphasis should be given for the organic cultivation of ginger. The role of bioinoculants assumes special significance in this context. The magnitude of plant growth promoting activities is reported to be better in the case of consortia or mixed cultures than single strain. Therefore, bioinoculants formulation consisting of biofertilizer and biocontrol agent would be a novel technology which will provide nutrients as well as manage diseases. The literature on the use of consortia of biofertilizers and biocontrol agents are scanty. Hence, a study was undertaken on “Evaluation of bioinoculant consortia for organic cultivation of ginger’’ with an objective to evaluate and find a suitable consortia of bioinoculants for ginger cultivation. Azospirillum lipoferum, phosphate solubilizing bacteria (PSB), potash solubilizing bacteria (KSB), Pseudomonas fluorescens and Trichoderma viride cultures of KAU were used for the study. When tested for their compatibility with each other, it was found that Azospirillum lipoferum, PSB, KSB, Pseudomonas fluorescens were mutually compatible with each other. However, Pseudomonas fluorescens and Trichoderma viride were incompatible. Based on the compatibility test, consortia consisting of biofertilizers alone and biofertilizer + biocontrol agents were selected for the field evaluation. The consortia KAU-AZO +KAU- PSB + KAU-KSB, KAU-AZO + KAU-PSB + KAU-KSB + KAU-PF and KAU-AZO + KAU-PSB + KAU-KSB + KAU-TV were selected. These consortia were compared with individual bioinoculants, vii PGPR Mix I, PGPR Mix II, Organic adhoc package (KAU, 2009) and POP recommendation (KAU, 2011). Based on the overall biometric and yield parameters, T11 (Organic adhoc package, KAU, 2009) was found to be best among all the treatments evaluated. Among the consortia, days taken for germination was minimum (17.33) in the case of T6 (KAU-AZO+KAU-PSB+ KAU-KSB) while both T7 (KAUAZO+ KAU-PSB+ KAU-KSB +KAU-PF) and T8 (KAU-AZO+KAU-PSB+ KAUKSB +KAU-TV) recorded the highest per cent (91.67) germination. Plant height, number of tillers, and yield were maximum in T8 (KAU-AZO+KAU-PSB+ KAUKSB +KAU-TV). With regard to disease and pest incidence, T8 (KAU-AZO + KAU-PSB + KAU-KSB + KAU-TV) recorded minimum per cent rhizome rot (5.23%) incidence. However, T7 (KAU-AZO+KAU-PSB+ KAU-KSB +KAU-PF) recorded the minimum per cent incidence (5.21) of Rhizoctonia leaf blight and shoot-borer (4.17 %). The T6 treatment (KAU-AZO+KAU-PSB+ KAU-KSB) was the least succeptible (6.25 %) to rhizome maggots. At the time of harvest, T7 (KAU-AZO+KAU-PSB+KAU-KSB +KAU-PF) and T8 (KAU-AZO+KAU-PSB+ KAU-KSB +KAU-TV) recorded the lowest pH (5.30) and T8 (KAU-AZO + KAU-PSB+ KAU-KSB+ KAU-TV) registered highest available nitrogen (188.68 kg/ha) among the consortia. However, highest organic carbon (1.55 %) and available phosphorus (37.44 kg/ha) was recorded in T7 (KAU-AZO+KAU-PSB+KAU-KSB+ KAU-PF). All the consortial treatments were on par with each other with respect to available potassium content in soil. Population of inoculated individual and consortial isolates in soil indicated a decreasing trend till the time of harvest. The population decreased from 108 cfu/ml to 104 cfu/ml in the case of bacteria and 106 to 10 3 cfu/ml in the case of fungus. The Benefit:Cost ratio was maximum (1.65) in the case of T8 (KAU-AZO + KAU-PSB + KAU-KSB + KAU-TV). viii The present studies clearly indicated that consortia inoculated plants performed better than the individual isolates. The consortia of bioinoculants treated plants were on par, but T8 (KAU-AZO + KAU-PSB + KAU-KSB + KAUTV) was the most promising treatment among the consortia. Therefore, it can be concluded that bioinoculant consortia consisting of bioagents for nutrient fixation /solubilization (N, P, K) and fungicidal effect would be a novel technology in present-day agriculture.