Loading...
Thumbnail Image

Dr. Rajendra Prasad Central Agricultural University, Pusa

In the imperial Gazetteer of India 1878, Pusa was recorded as a government estate of about 1350 acres in Darbhanba. It was acquired by East India Company for running a stud farm to supply better breed of horses mainly for the army. Frequent incidence of glanders disease (swelling of glands), mostly affecting the valuable imported bloodstock made the civil veterinary department to shift the entire stock out of Pusa. A British tobacco concern Beg Sutherland & co. got the estate on lease but it also left in 1897 abandoning the government estate of Pusa. Lord Mayo, The Viceroy and Governor General, had been repeatedly trying to get through his proposal for setting up a directorate general of Agriculture that would take care of the soil and its productivity, formulate newer techniques of cultivation, improve the quality of seeds and livestock and also arrange for imparting agricultural education. The government of India had invited a British expert. Dr. J. A. Voelcker who had submitted as report on the development of Indian agriculture. As a follow-up action, three experts in different fields were appointed for the first time during 1885 to 1895 namely, agricultural chemist (Dr. J. W. Leafer), cryptogamic botanist (Dr. R. A. Butler) and entomologist (Dr. H. Maxwell Lefroy) with headquarters at Dehradun (U.P.) in the forest Research Institute complex. Surprisingly, until now Pusa, which was destined to become the centre of agricultural revolution in the country, was lying as before an abandoned government estate. In 1898. Lord Curzon took over as the viceroy. A widely traveled person and an administrator, he salvaged out the earlier proposal and got London’s approval for the appointment of the inspector General of Agriculture to which the first incumbent Mr. J. Mollison (Dy. Director of Agriculture, Bombay) joined in 1901 with headquarters at Nagpur The then government of Bengal had mooted in 1902 a proposal to the centre for setting up a model cattle farm for improving the dilapidated condition of the livestock at Pusa estate where plenty of land, water and feed would be available, and with Mr. Mollison’s support this was accepted in principle. Around Pusa, there were many British planters and also an indigo research centre Dalsing Sarai (near Pusa). Mr. Mollison’s visits to this mini British kingdom and his strong recommendations. In favour of Pusa as the most ideal place for the Bengal government project obviously caught the attention for the viceroy.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Development of Targeted Yield Equations for Aerobic Rice (Var. Rajendra neelam) under Integrated Nutrient Management
    (Dr.RPCAU, Pusa, 2022) KUMAR, NARESH; SUMAN, S. N.
    Field experiment was conducted at Pusa farm, RPCAU during the year 2021 to generate Targeted Yield based Fertilizer prescription equations for aerobic rice Var. Rajendra neelam under integrated nutrient management system. In order to develop fertilizer prescription equations, complex experiment of rice was conducted at nursery jhilly field with aerobic rice (cv. Rajendra neelam) by superimposing 24 treatments consisting of four levels of N (0, 60,120 and180 kg/ha), four levels of P2O5 (0, 30, 60 and 90 kg/ha), four levels K2O (0, 20, 40 and 60 kg/ha) and three level of vermicompost (0, 1 and 2 t/ha). The integrated nutrient management approach had a positive impact on organic carbon, soil available nutrient status, crop yield, and nutrient uptake by aerobic rice. When compared to other treatments, a combined application of 120 kg nitrogen, 60 kg phosphorus, and 40 kg potassium per hectare, along with 2 t/ha vermicompost resulted in the highest available NPK in soils with the highest crop yield and nitrogen, phosphorus and potassium uptake by aerobic rice. Fertilizer prescription equations were formulated for aerobic rice by following Ramamurthy’s Inductive-cum-targeted yield approach. Based on the experiment in the nutrient requirement (NR) for producing one quintal of aerobic rice was found to be 4.09, 0.90, 2.16 kg/q with respect to N,P and K respectively. The NPK contributions to aerobic rice from fertilizers were 48.11, 38.74, and 58.46 % respectively. Conversely, the percentage contribution of NPK from organic component that is organic efficiency was 7.34%, 4.25 %, 5.3%. Based on NR, CS, CF and CO the fertilizer prescription equations were developed for aerobic rice variety (Rajendra neelam) and an estimate of fertilizer dose were formulated in the form of ready reckoner for a range of soil test values and desired yield targets.