Loading...
Thumbnail Image

Chaudhary Charan Singh Haryana Agricultural University, Hisar

Chaudhary Charan Singh Haryana Agricultural University popularly known as HAU, is one of Asia's biggest agricultural universities, located at Hisar in the Indian state of Haryana. It is named after India's seventh Prime Minister, Chaudhary Charan Singh. It is a leader in agricultural research in India and contributed significantly to Green Revolution and White Revolution in India in the 1960s and 70s. It has a very large campus and has several research centres throughout the state. It won the Indian Council of Agricultural Research's Award for the Best Institute in 1997. HAU was initially a campus of Punjab Agricultural University, Ludhiana. After the formation of Haryana in 1966, it became an autonomous institution on February 2, 1970 through a Presidential Ordinance, later ratified as Haryana and Punjab Agricultural Universities Act, 1970, passed by the Lok Sabha on March 29, 1970. A. L. Fletcher, the first Vice-Chancellor of the university, was instrumental in its initial growth.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Biochemical studies on fatty acid esterase isolated from pearl millet and wheat flours
    (CCSHAU, Hisar, 2020) Nisha; Chugh, L. K
    The present investigation was conducted on pearl millet cv. HC 20 and wheat cv. WH 1105. Pearl millet fatty acid esterase (PM-FAE) and wheat fatty acid esterase (WH-FAE) were partially purified from by ammonium sulphate fractionation (30-60 % saturation) followed by dialysis by 3.03 and 7.75 folds with specific activity of 15.35 and 22.5 units/mg protein and recovery of 57and 56 % of the activity, respectively. PM-FAE and WH-FAE, both exhibited optimum pH of 8.0. Optimum temperature for PM-FAE (40oC) was lower than WH-FAE (45oC). WH-FAE was comparatively more stable at high temperature (70OC). Km value of PM-FAE (0.129 μM p-NPB) was lower than that of WH-FAE (0.28 μM p-NPB). Km values of PM-FAE for p-NPB and NPO were about 50 % lower compared to that of WH-FAE. Affinity of PM-FAE and WH-FAE for NPD was approximately equal. Ascorbic acid and palmitoyl ascorbate inhibited both FAEs in a concentration dependent manner. After 5 days of storage, reduction of 73 % in total buildup of fat acidity (FA), 84% reduction in rate of increase in FA, 55 % inhibition of in vitro activity of FAE, 52 % inhibition in situ activity of FAE and 50 % inhibition of activity of lipoxygenase (LOX) in 0.58 % ascorbic acid-fortified flour compared to unfortified flour were observed. Inhibitory effect of ascorbic acid fortification on in vitro activity of FAE, in situ activity of FAE and LOX increased with fortified concentration of ascorbic acid whereas rate of increase in FA was almost unaffected. Inhibition of LOX (62-69 %) in 0.84 % ascorbic acid-fortified flour was comparable to that (68-74 %) of blanched grain flour (BGF) throughout storage period. It was concluded that comparatively higher activity of PM-FAE in flour, lower Km value for its substrates and lower optimum temperature might be responsible for faster in situ hydrolysis of lipids and hence poor shelf life of pearl millet flour than wheat flour. Indirect fortification of flour by ascorbic acid treatment of pearl millet grains was effective in negatively modulating activities of FAE and LOX in flour for arresting not only in situ hydrolysis but also enzymatic oxidation of lipids.