Loading...
Thumbnail Image

Govind Ballabh Pant University of Agriculture and Technology, Pantnagar

After independence, development of the rural sector was considered the primary concern of the Government of India. In 1949, with the appointment of the Radhakrishnan University Education Commission, imparting of agricultural education through the setting up of rural universities became the focal point. Later, in 1954 an Indo-American team led by Dr. K.R. Damle, the Vice-President of ICAR, was constituted that arrived at the idea of establishing a Rural University on the land-grant pattern of USA. As a consequence a contract between the Government of India, the Technical Cooperation Mission and some land-grant universities of USA, was signed to promote agricultural education in the country. The US universities included the universities of Tennessee, the Ohio State University, the Kansas State University, The University of Illinois, the Pennsylvania State University and the University of Missouri. The task of assisting Uttar Pradesh in establishing an agricultural university was assigned to the University of Illinois which signed a contract in 1959 to establish an agricultural University in the State. Dean, H.W. Hannah, of the University of Illinois prepared a blueprint for a Rural University to be set up at the Tarai State Farm in the district Nainital, UP. In the initial stage the University of Illinois also offered the services of its scientists and teachers. Thus, in 1960, the first agricultural university of India, UP Agricultural University, came into being by an Act of legislation, UP Act XI-V of 1958. The Act was later amended under UP Universities Re-enactment and Amendment Act 1972 and the University was rechristened as Govind Ballabh Pant University of Agriculture and Technology keeping in view the contributions of Pt. Govind Ballabh Pant, the then Chief Minister of UP. The University was dedicated to the Nation by the first Prime Minister of India Pt Jawaharlal Nehru on 17 November 1960. The G.B. Pant University is a symbol of successful partnership between India and the United States. The establishment of this university brought about a revolution in agricultural education, research and extension. It paved the way for setting up of 31 other agricultural universities in the country.

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Estimation of gene effects for seed yield, its component traits and inheritance study in Brassica rapa var. yellow sarson
    (G.B. Pant University of Agriculture and Technology, Pantnagar, District Udham Singh Nagar, Uttarakhand. PIN - 263145, 2022-08) Bisht, Charu; Birendra Prasad
    Rapeseed-mustard is the second most important edible oilseed crop in India. Yellow Sarson (Brassica rapavar. Yellow Sarson) have best oil quality among the three sub- species of B. rapai.e. Yellow Sarson, Brown Sarson and Toria. The present investigation was thus conducted to find out the inheritance pattern and estimates of gene action for some important characters in Brassica rapa var. Yellow Sarson. The four different crosses namely YSH-0401x Pant Sweta, Pant Sweta x Apetalous, PYS-2017-6 x PPS-1 and NDYS107 x B9 were attempted to study inheritance of flower colour, flower petalous condition, siliqua position and ovary locules respectively. The six generation (P1, P2, F1, F2, and BC1, BC2,) of 4 different crosses viz., was grown during the rabi season of year 2021-2022 at NEBCRC, Pantnagar to generate data for inheritance study. The data of different generation were subjected to chi-square analysis to test the goodness of fit for the appropriate genetic ratios in crosses. The results of study revealed that all four characters were under monogenic control. In case of petal colour the yellow petal colour is dominant over the white petal colour, petalous flower condition is dominant over apetalous condition, upright siliqua orientation was domianat over inverted siliqua orientation, multilocular ovary was dominant overbilocular ovary. For estimation of nature and magnitude of gene action for seed related traits an experiment was carried out at laboratory of Breeder Seed production Centre, G.B. Pant University of Agriculture and Technology Pantnagar, Uttarakhand. The six generation (P1, P2, F1, F2, and BC1, BC2,) of 4 crosses used in experiment first was grown in CRD design in laboratory to generate data for generation mean analysis. Observations were recorded for characters namely germination percent, seedling length (cm), root length (cm), fresh weight (g), dry weight (g), seed vigour index I and II. The results of scaling tests indicated the presence of epistasis in all four crosses. In general duplicate epistasis was found to be more prominent as compared to complementary epistasis for all the studied traits. The presence of duplicate gene interaction indicated that selection should be delayed for later generations till fixation and accumulation of favourable genes. The six generation (P1, P2, F1, F2, and BC1, BC2,) of 4 different crosses used in experiment I and II was grown during the rabi season of year 2020-2021 to generate data for generation mean analysis for seed yield its components and quality traits.Observations were recorded for different traits viz., days to maturity, number of primary branches per plant, height of raceme (cm), number of siliqua per plant, length of siliqua (cm), number of seeds per siliqua, thousand seed weight (g), seed yield per plant (g), protein content (%), oil content (%), erucic acid (%) and glucosinolet content (μmole/g). The results of scaling tests revealed that epstatis was present in all crosses for all characters. Although both additive and non-additive gene action were present in all studied characters but in general the magnitude of dominance was found to be more as compared to additive gene action which indicated the possibility of exploitation of heterosis in these crosses.