Loading...
Thumbnail Image

Thesis

Browse

Search Results

Now showing 1 - 1 of 1
  • ThesisItemOpen Access
    Structural Stability Analysis of Naturally Ventilated Polyhouses
    (Punjab Agricultural University, Ludhiana, 2021) Lovepreet Singh; Kaushal, Arun
    The research work on structural stability analysis of naturally ventilated polyhouses was carried out at Department of Soil and Water Engineering, Punjab Agricultural University, Ludhiana. There were total 12 treatments which were combination of four different sizes of polyhouses i.e. 560 m2 (T1-T3); 1008 m2 (T4-T6); 2080 m2 (T7-T9); 4000 m2 (T10-T12), with three design wind speeds 100 km/hr, 150 km/hr and 200 km/hr respectively. Truss members, columns and foundation stability analysis was carried out by considering dead loads, live loads and wind loads. Support reactions were computed on truss and column joints. Member forces were computed by using force method. The economic analysis was carried out by computing benefit cost (B/C) ratio and payback period for raising capsicum under stable structures. For every 17 set of truss members four members (two in compression (small arc) and two in tension (truss bracings)) failed in treatments with 150 and 200 km/hr wind speed while two members (in compression, (small arc)) failed in treatments with 100 km/hr wind speed. Minimum structural GI pipe material requirement for structurally stable polyhouses was under treatment T1 (2407 kg) and maximum under treatment T12 (19550 kg). The maximum benefit cost ratio was obtained in treatment T10 (1.77, 2.33) and minimum was in treatment T3 (1.36, 1.84) with no and 50% Government subsidy, respectively. The minimum payback period was obtained in treatment T10 (3.29 years, 1.26 years) and maximum in T3 (7.54 years, 2.19 years) with no and 50% subsidy, respectively. For the structurally stable naturally ventilated polyhouses as the size increases the benefit cost ratio increases, while the payback period decreases and for wind speed it is vice-versa.