Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 4 of 4
  • ThesisItemOpen Access
    Sulphur and boron nutrition and their foliar diagnosis in sesame
    (Department of Soil Science and Agricultural Chemistry,College of Agriculture, Vellayani, 2010) Jeena, Mathew; KAU; Sumam, George
    A laboratory cum field experiment was conducted to study the effect of S and B on the growth, yield and quality of sesame var. Thilarani and to standardize the foliar diagnosis of these elements in Onattukara sandy loam soil. The study included an incubation study and two field experiments. The treatments comprising the different levels of S and B laid out in 42factorial RBD. The treatments were T1(S0B0), T2(S0B1), T3(S0B2), T4(S0B3), T5(S1B0), T6(S1B1), T7(S1B2), T8(S1B3), T9(S2B0), T10(S2B1), T11(S2B2), T12(S2B3), T13(S3B0), T14(S3B1), T15(S3B2), T16(S3B3). The different levels of S were S0 (0 kg ha-1), S1 (7.5 kg ha-1), S2, (15 kg ha-1) and S3 (30 kg ha-1) and B0 (0 kg ha-1), B1(2.5 kg ha- 1), B2 (5 kg ha-1) and B3 (7.5 kg ha-1). The incubation study was conducted at College of Agriculture, Vellayani to understand the dissolution and release pattern of S and B from their sources gypsum and borax respectively in Onattukara sandy soil. The results revealed that the release of S and B was maximum at the 30th DOI. Increasing levels of S and B has a positive influence on the S content of the soil. T16 (S3B3) recorded the highest value at all the sampling stages for S whereas in the case of B, the treatment combinations which received B at the highest levels in combination with S3 or S2 showed the highest value. The field experiments were laid out at ORARS, Kayamkulam in 42 factorial RBD having two replications using Thilarani as the test crop. It was observed that application of S and B favourably influenced the yield and yield attributes of sesame. T16 was found to be the treatment which gave the highest grain yield and oil yield in both the years and was found to be on par with T14 (S3B1). S3 was the superior S level. As for the different levels of B, B1 can be inferred as the best level. The content of saturated fatty acids such as palmatic and stearic acid showed a decreasing trend with increasing levels of S and B whereas the content of the unsaturated fatty acids showed an increasing trend. The quality attributes of oil such as acid value, iodine value and saponification value was also studied and it was found that there is a decreasing trend with regard to acid and saponification value and an increasing trend for iodine number. The grain protein content also showed an increasing trend with the increase in rate of application of S and B. Regarding the content and uptake of N, P, K, S, B, Fe, Mn, Cu and Zn, a favourable influence for the different levels of S and B was recorded. Results regarding the S and B use efficiency and their apparent recovery showed that with increase in levels of S, an increasing trend was observed for S. In the case of B, increase was noticed up to B1 (2.5 kg ha-1) and there after showed a decreasing trend. This positive influence was also reflected on the available nutrient status of the soil such as organic carbon content, available N, P, K, S, B and DTPA extractable micronutrients. Correlation studies conducted to standardize the part and stage of sampling for the foliar diagnosis of sesame showed petiole at 30 DAS and 20 DAS in the case of S and B respectively. The same stages were found for the soil sampling also for both the nutrients. The critical nutrient level in the part standardised for these two nutrients were standardized using the graphical method proposed by Cate and Nelson (1965). In the case of S, it had been standardized as 0.088 per cent and for B, it had been found to be 28 mg kg-1. The critical nutrient level in soil was also estimated using the scatter diagram technique and was found to be 23 kg ha-1 at 30 DAS for S and 1.4 ppm at 20 DAS for B. Hence the application of S @ 30 kg ha-1 and B @ 2.5 kg ha-1 could faourably enhance growth of sesame with regard to the growth characters, yield and yield attributes and the quality aspects. Moreover, analysis of the plant and soil samples at the critical stages fixed for the respective nutrients will provide the necessary data for the sustainable management of the crop in Onattukara sandy loam soil.
  • ThesisItemOpen Access
    Nutrient interactions in soil test crop response studies on cucumber ( Cucumis sativus L) in the laterite soils of Kerala.
    (Department of Soil Science and Agricultural Chemistry,College of Horticulture, Vellanikkara, 2011) Sajnanath, K; KAU; Hassan, M A
    A comprehensive approach has to be adopted for efficient fertilizer use, incorporating soil test, field research and economic evaluation of the results for providing a scientific basis for the process of enhancing and sustaining food production as well as soil productivity with minimum environmental degradation, it needs more. Soil testing is one of the best scientific means for quick and reliable determination of soil fertility status. Soil test crop response study in the field provides soil test calibration between the level of soil nutrients as determined in the laboratory and the crop response to fertilizers as observed in the field for predicting the fertilizer requirements of the crop. In Kerala, many studies have been conducted to get a fertilizer prescription equation for targeted yield in various crops like rice, banana etc. A programme was formulated to investigate the nutrient interaction in soil test crop response studies on cucumber (Cucumis sativus L.) in the laterite soils of Kerala. In this, the field works were conducted as per the pattern of soil test crop response correlation studies. A gradient crop experiment was conducted in the experimental field of AICRP on STCR using maize. The purpose is to create a fertility gradient in the field by applying different doses of fertilizers. The area was divided into three strips and the doses of nutrients were applied as per STCR pattern of fertilization for maize. The crop was harvested and the plant samples were taken for analysis. The pre and post experimental soil samples were analysed. It was found that fertility gradients were developed in the field. Using the data on dry matter production in various strips, the nutrient uptake was also determined. A test crop experiment was designed in the same field where the gradient crop was raised. There were 24 treatments with three control plots. The treatments included four levels of nutrients and three levels of farm yard manure. The crop, cucumber (Var.: AAUC-2), popularly known as salad cucumber, was raised and managed as per package of practices of KAU. The soil samples were collected before, at flowering and harvest stages during the experiment. The plant samples were collected at flowering and harvesting stages. The total dry matter production and yield were taken treatment wise at the harvest. The soil samples were analysed for various chemical parameters. The data on yield, uptake of nutrients, nutrient status, nutrient requirement, quantity of farm yard manure applied were used for formulating the fertilizer prescription equations for cucumber. Using these equations, the quantity of fertilizers to be used to get a target of yield can be calculated if the available nutrient status is known. The equations thus developed were verified in farmers' field at four locations; Pallikandam, Maraikkal, Ayiloor and Vithanassery. The fields were laid out with five treatments and four replications. The treatments were (i) farmers' practice (ii) KAU package, (iii) soil testing laboratory method, (iv) STCR method with a target of 30 t ha-I and (v) STCR method with a target of 35 t ha-I. The soil samples were analysed before raising the crop and the quantities of fertilizers to be applied were computed for various treatments. The plant and soil samples at flowering and harvest stages were analysed for pH, EC, CEC, Organic Carbon, available N, P, K, Ca, Mg, and micronutrients such as Fe, Mn, Cu and Zn. The total dry matter production and yield were taken treatment wise at the harvest. The data were used for- statistical analysis for assessmg direct and indirect effect of nutrients on yield and nutrient interactions. A positive correlation was observed between organic carbon' and soil parameters at flowering stage. At the harvesting stage, there was a positive correlation was found between yield and major nutrients. The interaction between available P in the soil and Nand K in the plant was observed. The availability ofP in plant was negatively correlated with Fe in the soil. The targeted yield equations for cucumber could produce the yields of 30 and 35 t ha-I from the verification experiments conducted at the different locations. The B:C ratio also was higher in the STCR methods over the farmers' practices, blanket recommendations and STL recommendations. The information generated in the project will help in making the soil testing programme scientifically sound in terms of achieving predicted yields, maintaining soil fertility and helping the extension agencies in ensuring balanced fertilizer use according to the soil fertility status and crop requirement.
  • ThesisItemOpen Access
    Calcium dynamics in substrate - wormcast - mushroom - plant continuum
    (Department of Soil Science and Agricultural Chemistry,College of Horticulture, Vellanikkara, 2010) Bindhu, C J; KAU; Sushama, P K
    The study on Calcium dynamics in substrate-wormcast-mushroom-plant continuum was conducted at College of Horticulture, Vellanikkara during October 2006 to May, 2010 with the objectives, to select a suitable organic enrichner for calcium rich wormcast production, to standardize the protocol for calcium rich wormcast production, to test the suitability of wormcast as a casing material and substrate for milky mushroom production, to evaluate the spent mushroom as source of nutrition in tomato (Lycopersicon esculentum Mill.) and to explore the contributions of different calcium rich nourishing media to soil health in a sustainable way. In order to attain the objectives, the different experiments were done in a phased manner. In experiment 1, the different animal and bird manures such as those of cow, pig, rabbit, goat, poultry and quail were characterized for their physico-chemical properties especially the calcium. The screening process was carried out as a rapid exploratory trial. Based on calcium content, cowdung and goat manure were selected as the promising organic enrichners for calcium rich wormcast production. In order to standardize the protocol for calcium rich wormcast production, an incubation experiment was carried out with banana pseudostem as the substrate. Along with different levels of organic enrichners, the inorganic materials such as phosphate rock and lime were tried. The biotic agent, Eudrilus euginiae was introduced after 10 days of incubation. The temperature of the compost pile was monitored daily. The samples were drawn at fortnightly intervals and examined for various properties like pH, microbial count and earthworm biomass. Along with the determination of physico-chemical properties of compost material, the wormcast was also fractionated into humic and fulvic acids of organic matter. Based on the calcium content, the wormcast produced in the treatment that received 50 per cent level of cow dung was selected for the succeeded experiment. In order to evaluate the best casing material, a study was undertaken in a suitably designed mushroom shed, using the mushroom strain, Calocybe indica. The trial was carried out with different casing materials, wormcast, coirpith compost, termite mud dune and soil, viz., 10, 20, 30, 40 and 50 per cent of the substrate, paddy straw. Samples were drawn at harvest for recording the morphological characters, growth attributes, yield, keeping quality, biochemical constituents and physico-chemical properties. Based on calcium content, the spent mushroom produced by the treatments with 20, 40 and 50 per cent wormcast was selected as the nutritional source for tomato. A pot experiment was done with tomato variety, Anagha. The spent mushrooms were mixed with potting mixture at levels, 25, 50, 75 and 100 per cent of the recommended dose of vermicompost for tomato (4.5 kg pot-1). From the pot culture, it was inferred that spent mushroom at levels, 50 and 75 per cent were superior to others in terms of nutrient uptake and yield in tomato. The calcium use efficiency in terms of physiological efficiency, agronomic efficiency, recovery efficiency and factor productivity was also computed for the treatments that yielded comparatively better. The important salient findings are as follows: 1. Cow dung is the best substrate for the production of calcium rich wormcast 2. The wormcast, coirpith compost and termite mud dune are not suitable as substrate For milky mushroom but are suitable as casing materials. 3. Wormcast at a level of 20 per cent of substrate is the best casing material for milky Mushroom as compared to coirpith compost, termite mud dune and soil. 4. Spent mushroom at a level of 50 per cent of recommended dose of vermicompost is sufficient for a mean yield of 0.770 kg pot -1 in tomato. 5. There is very promising complimentality among the different calcium rich nourishing media such as substrate, wormcast, spent mushroom and soil. 6. There is much addition of calcium from the different sources both to the exchangeable and non-exchangeable pool of soil calcium. Effective management of animal manures for enriched compost production, use of spent mushroom as organic manure and the utilization of wormcast for milky mushroom culture are some of the practical utilities of the study. Moreover, the vermiculture may be extended to further agripreneurship programmes.
  • ThesisItemOpen Access
    Nutrient interactions in soil test crop response studies on cucumber (Cucumis sativus L.) in the laterite soils of Kerala.
    (College of Horticulture, Vellanikkara, 2011) Sajnanath, K; KAU; Hassan, M A
    A comprehensive approach has to be adopted for efficient fertilizer use, incorporating soil test, field research and economic evaluation of the results for providing a scientific basis for the process of enhancing and sustaining food production as well as soil productivity with minimum environmental degradation, it needs more. Soil testing is one of the best scientific means for quick and reliable determination of soil fertility status. Soil test crop response study in the field provides soil test calibration between the level of soil nutrients as determined in the laboratory and the crop response to fertilizers as observed in the field for predicting the fertilizer requirements of the crop. In Kerala, many studies have been conducted to get a fertilizer prescription equation for targeted yield in various crops like rice, banana etc. A programme was formulated to investigate the nutrient interaction in soil test crop response studies on cucumber (Cucumis sativus L.) in the laterite soils of Kerala. In this, the field works were conducted as per the pattern of soil test crop response correlation studies. A gradient crop experiment was conducted in the experimental field of AICRP on STCR using maize. The purpose is to create a fertility gradient in the field by applying different doses of fertilizers. The area was divided into three strips and the doses of nutrients were applied as per STCR pattern of fertilization for maize. The crop was harvested and the plant samples were taken for analysis. The pre and post experimental soil samples were analysed. It was found that fertility gradients were developed in the field. Using the data on dry matter production in various strips, the nutrient uptake was also determined. A test crop experiment was designed in the same field where the gradient crop was raised. There were 24 treatments with three control plots. The treatments included four levels of nutrients and three levels of farm yard manure. The crop, cucumber (Var.: AAUC-2), popularly known as salad cucumber, was raised and managed as per package of practices of KAU. The soil samples were collected before, at flowering and harvest stages during the experiment. The plant samples were collected at flowering and harvesting stages. The total dry matter production and yield were taken treatment wise at the harvest. The soil samples were analysed for various chemical parameters. The data on yield, uptake of nutrients, nutrient status, nutrient requirement, quantity of farm yard manure applied were used for formulating the fertilizer prescription equations for cucumber. Using these equations, the quantity of fertilizers to be used to get a target of yield can be calculated if the available nutrient status is known. The equations thus developed were verified in farmers' field at four locations; Pallikandam, Maraikkal, Ayiloor and Vithanassery. The fields were laid out with five treatments and four replications. The treatments were (i) farmers' practice, (ii) KAU package, (iii) soil testing laboratory method, (iv) STCR method with a target of 30 t ha-I and (v) STCR method with a target of 35 t ha-I. The soil samples were analysed before raising the crop and the quantities of fertilizers to be applied were computed for various treatments. The plant and soil samples at flowering and harvest stages were analysed for pH, EC, CEC, Organic Carbon, available N, P, K, Ca, Mg, and micronutrients such as Fe, Mn, Cu and Zn. The total dry matter production and yield were taken treatment wise at the harvest. The data were used for- statistical analysis for assessmg direct and indirect effect of nutrients on yield and nutrient interactions. A positive correlation was observed between organic carbon' and soil parameters at flowering stage. At the harvesting stage, there was a positive correlation was found between yield and major nutrients. The interaction between available P in the soil and Nand K in the plant was observed. The availability ofP in plant was negatively correlated with Fe in the soil. The targeted yield equations for cucumber could produce the yields of 30 and 35 t ha-I from the verification experiments conducted at the different locations. The B:C ratio also was higher in the STCR methods over the farmers' practices, blanket recommendations and STL recommendations. The information generated in the project will help in making the soil testing programme scientifically sound in terms of achieving predicted yields, maintaining soil fertility and helping the extension agencies in ensuring balanced fertilizer use according to the soil fertility status and crop requirement.