Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 2 of 2
  • ThesisItemOpen Access
    Development of a semi autonomous robotic platform for intercultural operations in row crops
    (Department of Farm Machinery and Power Engineering, Kelappaji College of Agricultural Engineering and Technology,Tavanur, 2020) Athira, P; KAU; Shaji James, P
    A semi-autonomous robotic platform was conceptualized for performing the intercultural operations in row crops. It was expected to be capable of navigating within the field and performing the intended intercultural operation according to the user command. The dimensions of the chassis (track width and ground clearance) were determined on the basis of agronomic characteristics of the crop. Wheel mounted geared motors were used for self-propulsion. The wheel variables were decided based on the rolling resistance and terramechanics relationships. A six-wheel independent drive skidsteering drive mechanism was provided to the robotic platform. Arduino Mega was the microcontroller used which was interfaced with the drive motors via L298N motor driver for speed and direction control. The microcontroller was programmed in Arduino IDE software using C++ language. The wireless communication system was based on Radio Frequency (RF) protocol using Flysky FS i6 2.4GHz Six-channel Transmitter Remote Controller with FS-iA6 Receiver unit. The monitoring guidance of the prototype was accomplished on the basis of real-time video streaming using Wi-Fi enabled wireless IP camera. The operational unit was controlled by relay driver circuits. Geared DC motor operated cable drive slider mechanisms actuated the position control of the sprayer unit. The developed prototype was evaluated in both lab and field conditions. The speed of travel obtained was less than the rated speed. The total power consumed by the prototype increased with increase in the load. The deviation of the prototype from a straight path could be corrected by the use of steering controls by the operator. The control unit functioned satisfactorily for every command by the user. During the basic field trial, a non-uniform distribution of load on each ground-contact point occurred due to the undulated terrain. Therefore, wheels were subjected to sinkage which resulted in lack of proper traction and wheel slip. The tractive forces were then insufficient to overcome the soil resistance. The test resulted in the requirement for a modified drive mechanism for the prototype. The modified design of the drive mechanism comprised of high torque motors (24 V, 8Nm, 300 RPM DC motor) with reducer unit, high power motor drivers (BTS7960) and larger diameter pneumatic wheels (30.48 cm diameter). A suspension could also be provided to maintain uniform load distribution on each groundcontact points. As the torque exerted by these motors would be greater than the required torque, the design was safe. The cost for modified prototype was estimated to be Rs.65000/-.
  • ThesisItemOpen Access
    Development and perfomance evaluation of a tractor powered manure pulverizer cum application
    (Department of Farm Machinery and Power Enginnering, Kelappaji College of Agriculture Engineering, Tavanur, 2020) Sai Mohan, S; KAU; Jayan, P R
    Organic manures such as farm yard manure, green manure etc., when incorporated into the soil not only add nutrients but enriches the soil by the fixation of atmospheric nitrogen. Manures (FYM, vermicompost, edible oil cakes etc.,) are an important resources which provide nutrients that could reduce bagged fertilizer costs and improves the crop growth and performance. A well-managed manure is a valuable resource in providing nutrients for crop production. Use of farm yard manure and other organic manure is the way out to overcome the problems of soil degradation, loss of fertility and soil health. Manual application of manure consumes more time and labour. Therefore, the present study was undertaken to develop and evaluate the performance of a tractor powered manure pulverizer cum applicator. The components of the machine were developed to suit the various dosages of manure without much variation in the distribution efficiency. The actual field capacity and efficiency of manure pulverizer cum applicator was found out to be 0.311 ha h-1 and 86.5 % at a forward speed of 2.0 km h-1, 0.356 ha h-1 and 79.2 % at a forward speed of 2.5 km h-1 and 0.395 ha h-1 and 73.1 % at a forward speed of 3.0 km h-1. Maximum field capacity was noted at a traveling speed of 3.0 km h-1. A larger application rate of 1387.1 kg ha-1 for cow dung, 1624.4 kg ha-1 for goat faecal pellets and 1618.6 kg ha-1 for neem cake was noted at an engine rpm of 2500, forward speed of 2 km h-1 with a field capacity of 0.31 ha h-1. With increasing the forward speed to 2.5 and 3.0 km h-1, field capacity increases but the application rate is decreased. The cost of manure pulverizer cum applicator alone is Rs. 64,000. Cost of operation of manure pulverizer cum applicator as an attachment to tractor as explained in Section 3.4 was found as 583.05 Rs h-1 and 1943.5 Rs ha-1. Cost of manual manure application followed by manure pulverization was 582.7 Rs h-1 and 4662.2 Rs ha-1.