Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 3 of 3
  • ThesisItemOpen Access
    Design, development and evaluation of a power tiller operated bed former
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1991) Shaji James, p; KAU; Sankaranarayanan, M R
    A power tiller operated Bed Former was developed and evaluated. The main components of the prototype unit of the power tiller operated Bed Former are, a main frame, two pairs of forming boards, a leveling board, a hitching unit and a depth control cum transport wheel. The equipment was found capable of forming seed beds of heights 22 cm, 18 cm and 15 cm at a width range of 60-64 cm. Heights of 18 cm and 15 cm were possible at width ranges of 73-75 cm and 80 – 81 cm. The draft of the implement ranges from 115.59 kgf to 169.69 kgf. The power utilization of the implement varies from 0.586 hp to 0.771 hp and the wheel slip between 46.76 per cent and 77.1 per cent. The mean effective field capacity of the implement is 0.0996 ha/hr and the mean field efficiency is 46.3 per cent. The total cost of production of the unit is Rs. 2000/- and the cost of operation per hectare is Rs. 777/-. The amount that can be saved by using the implement is Rs. 1473/- per hectare.
  • ThesisItemOpen Access
    Fabrication and testing of a low cost flat plate collector-cum-storage solar water heater
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1990) Lissy, Kirian; KAU; John Thomas, K
    The study was conducted with the objectives of developing and testing the Collector – cum storage type solar water heater to evaluate its performance. The collector – cum storage heater was consisted of a concrete tank with dimensions 150 x 70 x 10 cm and had a capacity of 100 litres of water. An absorber plate of size 152 x 72 cm was made of Aluminium sheet and was fixed into the tank. The front face of the absorber sheet was painted black to absorb maximum solar radiation. Glass cover was fixed at the top, leaving an optimum air gap of 40 mm. The heater was inclined to the latitude of Tavanur and was oriented to south for collecting maximum solar radiation. The solar water heater was filled daily at 8 am with fresh water. The performance of the water heater was observed from 20th October 1989 to 26th January 1990. Optimum inclination of the heater was found to be 100 52’ 30”. The water heater was found to attain a maximum outlet temperature of 520 C at 3 pm. Efficiency of the heater was calculated to be 51%. Solar intensity meter read a maximum solar flux of 1120 w/m2 at 12 O’clock in the month of October. The heater can supply 100 litres of hot water at 50 – 520 C at a very reasonable cost of Rs. 777.5. The cost per unit of thermal energy obtained with this water heater is 8 paise per kwh. There is a remarkable break – through in its cost and performance as compared to a conventional natural circulation type solar water heaters.
  • ThesisItemOpen Access
    Studies on selected manually operated pumps
    (Department of Farm Power Machinery and Energy, Kelappaji College of Agricultural Engineering and Technology, Tavanur, 1990) Geeta Susan, Philip; KAU; John Thomas, K
    The study was conducted with the objective of evaluating hydraulic and ergonomic performance of some selected manually operated pumps viz. Kirloskar pump, Kumar Bharath pump, E.P. pump (Lift), E.P. pump (Force) and Bicycle operated diaphragm pump. A subject was selected for the study and his body surface area was calculated. Heart rate was taken as the measure of mechanical work load on the subject and he was calibrated for the basic task. From the calibration curve it was found that heart beat of the subject should not exceed 110 beats/min for the ergonomic safety. Pumps were tested against different suction heads by varying the position of the gate valve connected in the suction line. Discharge, speed of operation, time of operation and heart rate of the subject were noted. Hydraulic characteristics of the pumps were analysed by studying the discharge, time to deliver 100 1, number of strocks to deliver 100 1, and volumetric efficiency with variation in head. Ergonomic features were analysed by studying the variation of heart rate with head. Among the five pumps the volumetric efficiency of Kumar Bharath pump reduced below 75% beyond the head 6.9 m corresponding heads for the other pumps are 6.7 m for Kirloskar, 5.8 m for E.P. pump (Force) 5.7 m for E.P. pump (Lift) and 1.1 m for diaphragm pump. Time to deliver 100 1 and number of strokes to deliver 100 1 were highest in the case of diaphragm pump and least in Kumar Bharath and Kirloskar pumps. Taking hydraulic and ergonomic performance into consideration the following heads can be recommended for the pumps. Kumar Bharath 6.6 m, Kirloskar 5.25 m, E.P. pump (Lift) 5.7 m, E.P. pump (Force) 5.8 m and diaphragm pump 1.1 m corresponding discharge of the pumps are 0.23 1/s, 0.37 1/s, 0.3 1/s, 0.45 1/s, 0.45 1/s respectively.