Loading...
Thumbnail Image

Theses

Browse

Search Results

Now showing 1 - 3 of 3
  • ThesisItemOpen Access
    Customized nutrient management for rice (Oryza sativa L.) in the Southern Laterites (AEU8)
    (Department of Agronomy, College of Agriculture,Vellayani, 2019) Sheeba, S S; KAU; Shalini Pillai, P
    The study entitled “Customized nutrient management for rice (Oryza sativa L.) in the Southern Laterites (AEU 8)” was undertaken at College of Agriculture, Vellayani during 2016 to 2019. The main objectives were to assess and rate the available nutrient status of rice soil in the Southern Laterites (AEU 8), to develop a Zn – B mix for rice and to evaluate the effect of the mix on rice, at different N/K ratios. The study was carried out in three parts. The first part was on assessment and rating of available nutrient status of rice soil in Southern Laterites (AEU 8). Southern Laterites is spread over five blocks (Athiyannoor, Parassala, Nemom, Perumkadavila and Vellanad). Parassala, Nemom and Perumkadavila were selected for the study since paddy cultivation was observed in comparatively larger area in these blocks. One hundred and fifty, geo-referenced soil samples were collected from the rice fields during April to May 2017, at random from the 11 panchayats spread over these three blocks. The soil samples were analysed and rated for 14 soil fertility parameters and block wise digital maps were prepared with ArcGIS 10.1. Based on the nutrient index, it was observed that organic carbon, available Ca, Mg, S, Cu, Zn and B recorded low nutrient indices (< 1.5) in all the three blocks. While available N was low in Nemom and Perumkadavila, it was medium (1.5 – 2.5) in Parassala block. Available P showed high index (> 2.5) in Parassala and Perumkadavila and medium index in Nemom. While Parassala and Nemom blocks could be rated as medium with respect to available K, Perumkadavila exhibited high index for K. Available Fe and Mn were high in all the blocks. The rice soils of Southern Laterites were observed to be strongly acidic with a mean pH of 5.27 ± 0.58, normal in electrical conductivity (0.77 ± 0.31) dS m-1, low in organic carbon (0.52 ± 0.23) % and available N (263.70 ± 49.32) kg ha-1, high in available P (90.40 ± 59.78) kg ha-1 and medium in available K (228.94 ± 87.84) kg ha-1. The soils were low in available Ca (15.78 ± 4.96) mg kg-1, available Mg (5.87 ± 1.85) mg kg-1 and available S (1.34 ± 0.83) mg kg-1. Among the micronutrients tested, the rice soils exhibited deficiency of available Cu (0.44 ± 0.22) mg kg-1, Zn (0.77 ± 0.19) mg kg-1 and B (0.315 ± 0.002) mg kg-1. The second part of the study comprised development of a Zn – B mix for rice. The Zn and B requirement was calculated based on the difference between the crop requirement and Zn and B status of the soil. Crop requirement of Zn and B was computed as the product of the potential yield and whole plant nutrient composition. Accordingly, the Zn and B requirement could be calculated as 4.088 kg ha-1 and 0.738 kg ha-1 respectively. The Zn – B mix for rice was formulated by mixing zinc sulphate heptahydrate (ZnSO4.7H2O) and boric acid (H3BO3) in the ratio 4 : 1. The third part of the study was a field experiment to assess the effect of the Zn – B mix on rice, at different N/K ratios. The experiment was conducted during the second crop season (September to January) of 2017 and 2018. The experiment was located in the Chenkal panchayat of Parassala block, in a farmer’s field where Zn and B deficiency was identified from the first part of the study. The experiment was laid out in randomised block design with 13 treatments (12 + 1), replicated thrice. The treatments T1 to T4 were combinations of N/K (1.0 : 0.5) + foliar application of 0.5 % and 1.0 % Zn – B mix at maximum tillering (MT) and panicle initiation (PI) stages, T5 to T8 were N/K (1.0 : 1.0) + foliar application of 0.5 % and 1.0 % Zn – B mix at MT and PI stages, T9 to T12 were N/K (1.0 : 1.5) + foliar application of 0.5 % and 1.0 % Zn – B mix at MT and PI stages and T13 was control (KAU POP for rice). The variety used for the study was Uma (MO 16). The soil of the experimental site was sandy clay loam, strongly acidic in reaction, low in organic carbon, medium in available N and K, high in available P and deficient in available Ca, Mg, Zn and B. In all treatments except control, nutrients were applied on soil test basis. The results revealed that growth attributes were significantly influenced by N/K ratio and foliar application of Zn- B mix and the treatments were observed to be superior to control (KAU POP). Mean tiller count and leaf area index were significantly higher with N/K (1.0 : 1.5) + foliar application of 0.5 % Zn – B mix at PI stage (T10) at MT and PI stages. It was on a par with T9, T11 and T12. However, the mean total dry matter production (12356 kg ha-1) was significantly higher with T12 (N/K (1.0 : 1.5) + foliar application of 1.0 % Zn – B mix at PI stage) and was comparable with T10. Among the yield attributing characters, mean number of productive tillers m-2 (488.35) and grain weight per panicle (2.78 g) were significantly higher with T12 and were at par with T10. The treatments T10 and T12 were comparable with respect to the number of spikelets per panicle, filled grains per panicle and sterility percentage. The treatment T12 resulted in significantly higher mean grain yield (5.67 t ha-1) and was comparable with T10 (5.61 t ha-1). Straw yield was higher with T12 (6.89 t ha-1) and was on a par with T10 (6.83t ha-1). The treatments were superior to control (KAU POP), with T10 recording 43.9 per cent improvement in grain yield. Crude protein content of grain and uptake of major nutrients, Ca, Zn and B were significantly higher with T12 and was comparable with T10. Incidence of rice bug (at the milk stage) and false smut disease (at harvest) was observed during both the years. Mean benefit cost ratio was higher (1.72) with T10 and was comparable with T12 (1.69) as against a BCR of 1.16 for the KAU POP. The present study revealed that the fertility status of rice soils of the Southern Laterites (AEU 8) need to be addressed in terms of soil acidity, low organic carbon status, build-up of phosphorus and deficiency of secondary nutrients and micronutrients like Zn, B and Cu, on soil test basis. Based on the crop requirement and nutrient status of the soil, a Zn – B mix was formulated, as a mixture of zinc sulphate heptahydrate and boric acid in the ratio 4 : 1. Application of nitrogen and potassium in the ratio 1.0 : 1.5 along with foliar application of 0.5% Zn – B mix at panicle initiation stage was observed to be effective in enhancing the growth and yield attributes, yield and economics of rice in the Southern Laterites (AEU 8) of Kerala
  • ThesisItemOpen Access
    Vetiver based Organic Mediculture Technologies for the Sustainable development of Watersheds
    (Department of Agronomy, College of Agriculture,Vellayani, 2019) Ishrath, P K; KAU; Anilkumar, A S
    An investigation entitled “Vetiver based organic mediculture technologies for the sustainable development of watersheds” was carried out during 2016 to 2019 at the Instructional farm, College of Agriculture, Vellayani. The investigation comprised of three field experiments and one pot culture study. The objectives were to standardise nursery management practices for quality planting material production, develop vetiver based biological systems for soil and water conservation and to explore the phytoremediation potential of vetiver for waste water and degradable solid waste utilization. The vetiver variety “ODV-3”, turmeric variety “Varna”, cowpea variety “Bhagyalakshmi” and a local variety of greater galangal were used for the study. The techniques for quality planting material production were standardised by testing planting materials (a1- slips; a2- clumps), planting systems (b1- planting strips; b2- shallow basins), rooting medium (c1- coirpith compost: soil: cowdung (2:1:1) + inoculation with Azospirillum and AM Fungi); c2- c1 + cowdung slurry at monthly interval) and moisture regimes (d1- irrigation at 8 mm CPE; d2- irrigation at 16 mm CPE) in a 24 factorial Randomised Block Design with three replications. Conclusions were drawn after two and four months of planting. Inoculation of vetiver clumps with biofertilizers and planting in shallow basins filled with enriched rooting medium and application of cowdung slurry at monthly interval with irrigation scheduling at 16 mm CPE resulted in the production of higher number of planting materials (10.67 tillers per plant) and the highest benefit cost ratio (2.83) after two months of planting. Considering the dual benefit of planting material production and root yield, inoculation of vetiver slips with biofertilizers and planting in polythene mulched trenches, filled with enriched rooting medium followed by application of cowdung slurry at monthly interval and irrigation scheduling at 8 mm CPE resulted in the highest net income (₹.5.84 lakhs ha-1) and benefit cost ratio (2.96) after four months of planting. The study on “Vetiver based alley cropping systems for soil and water conservation” was undertaken in 32 factorial Randomised Block Design with three replications. Combinations of vetiver vegetative barriers were developed in three different planting geometries, i.e., a1- normal row planting (50 cm x 50 cm), a2- paired row planting (25/75 cm x 50 cm); a3- high density planting (25/75 cm x 25 cm) with three different sequential intercropping systems, i.e., b1- turmeric- cowpea- turmeric, b2- greater galangal and b3- control (without intercropping). High density planting of vetiver followed by continuous alley cropping of greater galangal (a3b2) resulted in the highest vetiver equivalent yield (14.44 t ha-1), net income (₹.4.05 lakhs ha-1) and benefit cost ratio (2.27). Substantial reduction in runoff (95 %), soil loss (166 %) and nutrient erosion (76 %) could be achieved through a3b2 within a period of 18 months, extending from June 2017 to December 2018. Considerable improvement in soil health with respect to physical properties of soil, viz., bulk density (33 %), porosity (28 %), water holding capacity (47 %) and infiltration rate (72 %) and build-up of soil organic carbon (43 %) were also observed in a3b2 compared to initial soil status. To develop vetiver systems for waste water utilization in agriculture, an experiment was laid out in Completely Randomised Block Design with seven types of waste water in three replications. The treatments were, a1- waste water from coconut husk retting yards, a2- kitchen waste water, a3- waste water from fish market, a4- coirpith leachate, a5-sewage water, a6- Vellayani lake water and a7- nutrient solution. Vetiver was proved as a good phytoremediator with respect to decontamination and water purification properties (nutrient and heavy metal uptake). In general, the morphological characters (number of leaves and tillers) and root characters (root weight, spread, volume and drymatter) were significantly improved by growing vetiver in fish-waste water. To explore the phytoremediation potential of vetiver for degradable solid waste utilization, a study was conducted in 4 x 2 x 2 factorial Randomised Block Design with three replications. Four ratios of degradable land fill materials (sewage sludge) and virgin soil (a1- 1:0; a2- 1:1; a3- 1:3; a4- 1:5), two crop establishment techniques (nursery grown rooted slips with enriched rooting medium (b1) and without enriched rooting medium (b2)); foliar nutrition (c1-sequential application of cow‟s urine, vermiwash and fermented plant juice; c2- sequential application of NPK fertilizer grade of 19:19:19, KNO3 and Ca(NO3)2 at monthly interval) were tested in this study. It could be concluded that, production of vetiver slips inoculated with Azospirillum and AM Fungi in enriched rooting medium and transplanting in the main field with sewage sludge and virgin soil (1:5) followed by sequential application of foliar fertilizers @ 0.50 per cent (19:19:19, KNO3 and Ca(NO3)2 ) resulted in the highest root yield (4.11 t ha-1), net income (₹.1.01 lakhs ha-1) and benefit cost ratio (1.97). Vetiver based mediculture technologies in relation to cost effective quality planting material production, alley cropping systems for soil and water conservation and phytoremediation techniques for waste water and biosolid utilization were developed for the sustainable development of watersheds.
  • ThesisItemOpen Access
    Agro techniques in bhindi for precision farming
    (Department of Agronomy, College of Agriculture, Vellayani, 2019) Ammu Punnoose; KAU; Sajitha Rani, T
    The investigation entitled “Agro techniques in bhindi for precision farming” was conducted during 2016 to 2019 at the Instructional Farm, College of Agriculture, Vellayani. The objectives were to standardize the spacing and response of bio inoculants for bhindi under rain shelter and open field conditions and to evaluate the effect of fertigation and foliar nutrition on improving the growth, yield and quality of bhindi and to work out the economics of different cultivation systems. The first experiment was to standardise the spacing and bio inoculants suitable for the cultivation of bhindi under rain shelter and open field conditions. A field experiment was conducted using the variety Varsha Uphar, during May to August- 2017. The treatments consisted of three spacings (S1 - 60 cm x 30 cm, S2- 60 cm x 45 cm and S3 - 60 cm x 60 cm) as first factor and three bio inoculant treatments (B1- Bio inoculant- PGPR mix 1, B2 - Bio inoculant - Arbuscular mycorrhizal fungi, B3 - No Bio inoculant) as second factor. The experiment was carried out in RBD with three replications. Under both open and rain shelter conditions, taller plants were obtained with closer spacing of 60 cm x 30 cm whereas, numbers of leaves and branches per plant, tap root length and root volume were significantly higher at wider spacing (60 cm x 60 cm). Among the bio inoculants, application of PGPR mix 1 resulted in significantly taller plants, more number of leaves and branches at all growth stages and longer tap root and root volume at final harvest. LAI was found to be significant among spacings at 60 and 90 DAT under open field condition. Yield attributes like number of flowers and fruits per plant, length of fruit, weight of fruit and weight of fruits per plant were found to be significantly higher at 60 cm x 60 cm and inoculation with PGPR mix 1. Wider spacing of 60 cm x 60 cm along with PGPR mix 1 was found to be superior to the other combinations with respect to growth and yield attributes. Fruit yield was significantly influenced by spacing and bio inoculant application and was higher at 60 cm x 30 cm (17.03 t ha-1 under rain shelter and 14.07 t ha-1 under open field condition) and PGPR mix 1 (16.83 t ha-1 under rain shelter and 13.50 t ha-1 under open field condition). Their interaction was also found to be significant (18.78 t ha-1 under rain shelter and 16.36 t ha-1 under open field condition) under both conditions. Dry matter production was significantly higher for 60 cm x 30 cm spacing and PGPR mix 1. Crop growth rate (CGR) was significantly higher at 60 cm x 30 cm and PGPR mix 1 under rain shelter and open field condition. Among the spacings, 60 cm x 60 cm and among bio inoculants, PGPR mix 1 were found superior with respect to relative growth rate (RGR) under both conditions. Among the fruit quality aspects, significant difference was observed for protein content inside rain shelter. NPK uptake showed an increasing trend with decreased plant to plant spacing. Application of PGPR mix 1 resulted in higher nutrient uptake. Available P status of soil after the experiment was significantly higher for 60 cm x 60 cm spacing under rain shelter. AMF treated soil showed significantly higher available P under open field condition. Available K was significantly higher for 60 cm x 60 cm spacing and PGPR mix 1 under rain shelter and open field condition. Higher bacterial and actinomycetes population were found in 60 cm x 30 cm spacing and PGPR mix 1 under both conditions. Higher fungal population was observed in AMF treated soil. Significantly higher water use efficiency was observed with 60 cm x 30 cm spacing and PGPR mix 1 and their interaction under rain shelter and open field condition. Net return and B: C ratio were also higher at 60 cm x 30 cm spacing (B: C ratio of 1.76 under rain shelter and 1.63 under open field) and PGPR mix1 (B: C ratio of 1.75 under rain shelter and 1.58 under open field) and their interaction under both condition (B: C ratio of 1.94 under rain shelter and 1.90 under open field). The first experiment revealed that growing bhindi at a spacing of 60 cm x 30 cm along with seedling inoculation with PGPR mix 1 resulted higher yield, and profit under rain shelter and open field condition The second experiment for standardization of nutrient schedule of bhindi under rain shelter and open field condition was conducted during September to December, 2017 and May to August, 2018. The best treatments from the first experiment were used for this trial. The trial was laid out in split plot design with five replications. The main plot treatments consisted of four levels of fertigation; 50 % adhoc POP recommendation for precision farming (F1), 75 % adhoc POP recommendation for precision farming (F2), 100 % adhoc POP recommendation for precision farming (F3), 125 % adhoc POP recommendation for precision farming (F4) and the sub plot treatments consisted of two foliar levels; poly feed fertilizer (19:19:19 at 0.5 %) (L1) and nano NPK (4: 4: 4 at 0.3 %) (L2). The variety used for the experiment was Varsha Uphar. Growth characters such as plant height, number of leaves per plant, number of branches per plant, LAI at monthly intervals, tap root length and root volume at harvest were significantly higher for the fertigation level F3 and foliar application of L1 under rain shelter, and F4 and L1 under open field condition. Yield attributes viz., number of flowers and fruits per plant, fruit set percentage, length of fruit, fruit weight, total fruit weight per plant, and yield per hectare were higher for the fertigation level of F3 and was on par with F4 and foliar level of L1 under rain shelter. Under open field condition, regarding yield attributes, fertigation level of F4 was on par with F3 and foliar level of L1 was significantly higher than L2. Considering the interaction, under rain shelter, f3 l1 recorded higher fruit yield per hectare and under open field condition, interaction of f4 l1 was on par with f3l1. CGR, RGR and NAR recorded by F4 and F3 were comparable and among the foliar levels, L1 was found to be significantly higher under both conditions. Under both growing conditions, higher chlorophyll content was observed under the fertigation level F4. Chlorophyll content was significantly higher with L2. Under rain shelter, F3 and L1 recorded higher dry matter production. Under open field condition, the highest dry matter production was recorded by F4 was on par with F3 among the fertigation levels and L1 among the foliar levels. Fruit quality parameters were significantly higher at F4 and L2 under both conditions. Higher NPK uptake was found for F3 and F4 under rain shelter and open field condition respectively. Available nutrients in the soil after the experiment showed an increasing trend with increasing fertigation levels under both conditions. Higher fertigation level (F4) resulted in higher microbial count under both conditions. Foliar level with L2 resulted in higher microbial count inside rain shelter. Higher water use efficiency was recorded for F3 and L1 under rain shelter and F4 and L1 under open field condition. Highest net return and B: C ratio was obtained for F3 (B: C ratio of 2.05 during Sept-Dec, 2017 and 2.12 during May- Aug, 2018) and was on par with F4 (B: C ratio of 1.93 during Sept –Dec, 2017 and 2.11 during May – Aug, 2018) among the fertigation levels under rain shelter. Under open field condition, F4 (B: C ratio of 1.64 during Sept -Dec, 2017 and 2.03 during May- Aug, 2018) was on par with F3 (B: C ratio of 1. 60 during Sept –Dec, 2017). Among the foliar levels, L1 recorded the highest B: C ratio under both growing conditions. The study revealed that growing bhindi at a spacing of 60 cm x 30 cm and seedling inoculation with PGPR mix 1 resulted in higher yield and profit under rain shelter and open field conditions. Nutrient scheduling of 98: 25: 136 kg NPK ha-1 (100 % Adhoc POP recommendation) along with foliar application of poly feed (19:19:19) at 0.5 % at fortnightly intervals enhanced the growth, yield and profit under rain shelter condition. Fertilizer dose of 122: 31: 170 kg NPK ha-1 (125 % Adhoc POP recommendation) or 98: 25: 136 kg NPK ha-1 (100 % Adhoc POP recommendation) with foliar application of poly feed (19:19:19) at 0.5 % at fortnightly intervals was beneficial for open field condition. Application of 125 % Adhoc POP recommendation along with foliar spray of nano NPK at 0.3 % at fortnightly intervals improved the fruit quality under both conditions.