ANAEROBIC DIGESTION OF POULTRY WASTES FOR BROODING APPLICATION

Thesis submitted in part fulfilment of the requirement for the award of the degree of MASTER OF ENGINEERING (AGRICULTURE) to the

Tamil Nadu Agricultural University, Coimbatore

By

R.MAHENDIRAN, B.E (Ag.)

(I.D.No.00-623-002)

DEPARTMENT OF BIO ENERGY AGRICULTURAL ENGINEERING COLLEGE & RESEARCH INSTITUTE TAMIL NADU AGRICULTURAL UNIVERSITY COIMBATORE-641 003

2002

CERTIFICATE

This is to certify that the thesis entitled "ANAEROBIC DIGESTION OF POULTRY WASTES FOR BROODING APPLICATION" submitted in part fulfillment of the requirements for the award of the degree of MASTER OF ENGINEERING (BIO ENERGY), faculty of Agricultural Engineering to the Tamil Nadu Agricultural University, Coimbatore is a record of bonafide research work carried out by R. MAHENDIRAN under my supervision and guidance and that no part of this thesis has been submitted for the award of any other degree, diploma, fellowship or other similar titles or prizes and that the work has not been published in part or full in any scientific or popular journal or magazine.

Place : Coimbatore

Date : 8-11-2002

(Dr.S.KAMARAJ

Chairman

Approved by

Chairman

:

:

(Dr. S. KAMARAD

Members

(Dr. A. SAMPATHRAJAN)

(Dr. P. DORAISAMY)

(T. GUEN SHOPMU)

Date: 14.12.200

External Examiner)

Acknowledgement

ACKNOWLEDGEMENT

My sincere sense of gratitude and indebtedness to **Dr. S. Kamaraj**, Professor and Coordinator, Biogas training Centre and as a Chairman of the Advisory Committee for his efficacious advice, perpetual encouragement and creative criticisms during the course of this work and in preparation of the thesis.

It is my greatest privilege to acknowledge the sincere advice and valuate help rendered to me by **Dr. A. Sampathrajan**, Professor and Head, Department of Bio energy and as a member of my advisory committee.

I express my profound gratitude to **Dr. P. Doraisamy,** Professor, Dept. of Bioenergy, member of the Advisory Committee for his valuable advice and help in all the way during the course of study and in preparation of the thesis.

I thank Dr. N.C. Vijayaraghavan, Dr. V. Murugesan, Dr. M. Singaravelu Professors and Dr. P. Venkatachalam, Dr. C. Sekar, Dr. S. Pugalendhi Associate Professors of this Department, for the help rendered by them.

My special thanks are due to Er. J.John Gunasekar and Er. P. Subramanian Assistant Professors for their help during course work and thesis work.

I am short of words to acknowledge the selfless services of the staffs of the Dept. of Bioenergy Er. S. Karthiswaran, JRF, R. Vinu Radha, SRF, Er. A. Kamaraj SRF, Mr. K. Gunasekaran, Draftsman and Mrs. T. Suganthi, Typist.

On a personnel note, I express my special thanks to all my friends Er. K.Thangavel, Er. Natarajan, Mr. T. Krishna Kumar, Mr.V.Davamani, Mr.R. Janarthanan and Mr. V. Kaleeswaran for timely help in carrying out my research work.

On a personnel note, I express my special thanks to all my friends Er. D. Ramesh, Er. S. Joshua Davidson, Er. G.Ramachandiran, Er. S. Siva Kumar and D.Maheshbabu for their co-operation during this research programme. My heart felt gratitude is due to **Mr. Jagadhesan, Er. Subramanian**, AEC&RI for ths help in instrumentation in my project work.

My sincere thanks to M/s. Subhashri Bio energies Pvt. Ltd., Monjanur, Namakkal for providing the testing facilities for my research work.

I extend my profound thanks to **Mr. Leelakrishnan**, Managing Partner, Pioneer Breeding Farms, Pongalur and his staff particularly **Mr. Venugobal**, Administrative Manager and **Mr. Balagurunathan**, Farm Manager for providing the facilities and help during the course of the investigation.

I acknowledge the help rendered by teachers of TNAU, staff of Bioenergy Department, Agricultural Engineering College & Research Institute, Coimbatore for their timely help.

I express my sincere thanks to Ministry of Non-conventional Energy Sources for providing National Renewable Energy fellowship to carryout the project work.

I am greatly indebted to Tamil Nadu Agricultural University, Coimbatore for providing an opportunity to undergo this postgraduate programme.

I wish to record my deepest sense of gratitude to my beloved friend Er. R. Angesswaran for his love, motivation and keen interest in my life.

Finally, I keep on record my sense of gratefulness and indebtedness to my parents and sisters, Angeeswaran's family members, friends, colleagues, near and dear for their sacrifices, inspiration, co-operation, kindness and continuous encouragement in my life.

Above all, I bow my head to God Almighty, whose blessings filled me with power to complete this work.

Abstract

ABSTRACT

ANAEROBIC DIGESTION OF POULTRY WASTES FOR BROODING APPLICATION

By

R.MAHENDIRAN

Degree	:	Master of Engineering (Agriculture)
		in Bio energy N
Chairman	:	Dr. S. KAMARAJ,
		Professor,
		Department of Bio energy,
		Agricultural Engineering College & Research Institute,
		Tamil Nadu Agricultural University,
		Coimbatore – 3.

2002

Unscientific methods of collection and disposal of waste has unfortunately led to increase in pollution and environmental degradation, posing a serious hazard to public health and environment. The problem is getting worst in the case of waste generated from the poultry industries. The poultry industries are also struggling to pay the rising cost of the electricity which is mainly used for brooding and incubation operations. Sometimes the poultry industry is facing heavy losses because of frequent power failure. The biomethanation of various substrates for energy production has to come to stay as a viable solution for energy crisis.

Even though poultry waste had also tried as alternate feedstock for biogas production, the main constraint was reported as due to inhibition of ammonia since the ratio of poultry waste and cowdung has to be optimized. An attempt was made to estimate the gas production potential by optimizing the poultry waste and cowdung mix combination at various level of water mixing. The different types poultry waste such as poultry manure, poultry deep litter and poultry droppings were mixed with cowdung in 39 different combinations at 5 per cent, 10 per cent 15 per cent and 20 per cent total solid content level. Among the different types of waste, the maximum total solids (TS) content of 89.32 per cent was obtained in the poultry deep litter, whereas the minimum total solids was noticed in cowdung of 13.79 per cent. The poultry droppings was found to have lowest volatile solids (VS) content of 10.6 per cent whereas the highest volatile solids content was noticed in poultry deep litter of 65.64 per cent.

Among all cowdung and poultry mix combinations, the maximum methane production of 0.1470 m³ per kg of TS added and 0.3182 m³ per kg of VS added was obtained with 10 per cent TS in the combination of poultry droppings mixed with cowdung in 1:1 ratio, whereas the lowest methane production of 0.0085 m³ per kg of TS added and 0.0474 m³ per kg of VS added was noticed in cowdung mixed with poultry deep litter in 1:1 ratio with 10 per cent TS. The maximum average methane content of 76 per cent was obtained in the combination of cowdung and poultry manure mixed with 1:1 ratio at 5 per cent TS.

In order to utilize the biogas for the same poultry industry, an effective biogas brooder was developed. The biogas brooder developed with direct burning arrangement (burner type) has an advantage of eliminating the frequent mantle replacement noticed in the earlier mantle type brooder. The developed brooder provided the required temperature of 36 $^{\circ}$ C at 75 cm height from the ground level, which is sufficient for the first week of brooding. At the burner height of 100 cm from the ground level and biogas flow optimization of 0.36 m³/hr provided the required temperature of 32 $^{\circ}$ C and 30 $^{\circ}$ C for the second and third week respectively. The illumination obtained in the biogas brooder was 58 lux against the requirement of 54 lux, whereas the illumination of 34 lux only obtained in the case of conventional LPG brooder. The energy demand of brooding and

incubation for 10,000 birds has been estimated 600 kg of LPG and 560 kWh of electricity and it can be fully replaced by the biogas brooder which requires 1,385 m³ for brooding and 2,129 m³ for incubation. In total, the energy production potential from poultry waste was 20,952 m³ of biogas against the requirement of 7,076 m³ of biogas for 10,000 birds. The cost of operation for brooding (21 days) was Rs.1.73 per bird in biogas brooder whereas it was Rs.3.20 per bird in the case of LPG brooder.

CONTENTS

.

CHAPTER No.	TITLE	PAGE No.
I	INTRODUCTION	1
II	REVIEW OF LITERATURE	5
III	MATERIALS AND METHODS	26
IV	RESULTS AND DISCUSSION	46
v	SUMMARY AND CONCLUSIONS	134
	REFERENCES	
	APPENDICES	

LIST OF TABLES

Table No.	Title	Page No.
2.1	Biogas consumption in operating various moulding machines	19
2.2	Consumption Norms for Burners under different combinations	20
2.3	Biogas consumption in operating various appliances	22
3.1	Experimental scheme	30
4.1	Physical and chemical properties of different feedstocks	47
4.2	Total biogas production for different combinations of feedstocks	- 48
4.3	Total gas production from poultry manure combinations in1:1, 1:2 and 2:1 ratios with 5 per cent TS	49
4.4	Total gas production from poultry manure based material combinations in 1:1, 1:2 and 2:1 ratios with 10 per cent TS	50
4.5	Total gas production from poultry manure based material combinations in 1:1, 1:2 and 2:1 ratios with 15 per cent TS	56
4.6	Total gas production from poultry manure based material combinations in 1:1, 1:2 and 2:1 ratios with 20 per cent TS	59
4.7	Total gas production from Poultry Deep Litter material combinations in 1:1, 1:2 and 2:1 ratios with 5 per cent TS	62
4.8	Total gas production from Poultry Deep Litter material combinations in 1:1, 1:2 and 2:1 ratios with 10 per cent TS	65
4.9	Total gas production from Poultry Deep Litter material combinations in 1:1, 1:2 and 2:1 ratios with 15 per cent TS	68
4.10	Total gas production from Poultry Deep Litter material combinations in 1:1, 1:2 and 2:1 ratios with 20 per cent TS	69
4.11	Total gas production from Poultry Droppings material combinations in 1:1, 1:2 and 2:1 ratios with 5 per cent TS	70
4.12	Total gas production from Poultry Droppings material combinations in 1:1, 1:2 and 2:1 ratios with 10 per cent TS	75
4.13	Total gas production from Poultry Droppings material combinations in 1:1, 1:2 and 2:1 ratios with 15 per cent TS	78

4.14	Total gas production from Poultry Droppings alone with 5 per cent, 10 per cent and 15 per cent TS	83
4.15	Weekly methane content in per cent for different combinations of feedstock	87
4.16	Total Gas Production and Methane content	89
4.17	Total Methane production per kg of TS and VS added for different combinations of feedstocks	1 07

•

LIST OF FIGURES

Fig. No.	Title	Page No.
4.1	Weekly biogas production from poultry manure based material combination with 5 per cent TS	51
4.2	Cumulative biogas production from poultry manure based material combination with 5 per cent TS	52
4.3	Weekly biogas production from poultry manure based material combination with 10 per cent TS	54
4.4	Cumulative biogas production from poultry manure based material combination with 10 per cent TS	55
4.5	Weekly biogas production from poultry manure based material combination with 15 per cent TS	57
4.6	Cumulative biogas production from poultry manure based material combination with 15 per cent TS	58
4.7	Weekly biogas production from poultry manure based material combination with 20 per cent TS	60
4.8	Cumulative biogas production from poultry manure based material combination with 20 per cent TS	61
4.9	Weekly biogas production from poultry deep litter based material combination with 5 per cent TS	63
4.10	Cumulative biogas production from poultry deep litter based material combination with 5 per cent TS	64
4.11	Weekly biogas production from poultry deep litter based material combination with 10 per cent TS	66
4.12	Cumulative biogas production from poultry deep litter based material combination with 10 per cent TS	67
4.13	Weekly biogas production from poultry deep litter based material combination with 15 per cent TS	70
4.14	Cumulative biogas production from poultry deep litter based material combination with 15 per cent TS	71

•

Weekly biogas production from poultry deep litter based material combination with 20 per cent TS	73
Cumulative biogas production from poultry deep litter based material combination with 20 per cent TS	74
Weekly biogas production from poultry droppings based material combination with 5 per cent TS	76
Cumulative biogas production from poultry droppings based material combination with 5 per cent TS	77
Weekly biogas production from poultry droppings based material combination with 10 per cent TS	79
Cumulative biogas production from poultry droppings based material combination with 10 per cent TS	80
Weekly biogas production from poultry droppings based material combination with 15 per cent TS	81
Cumulative biogas production from poultry droppings based material combination with 15 per cent TS	82
Weekly biogas production from poultry droppings as feedstock in 100 per cent with 5 per cent, 10 per cent and 15 per cent TS	84
Cumulative biogas production from poultry droppings as feedstock in 100 per cent with 5 per cent, 10 per cent and 15 per cent TS	85
Methane yield from poultry manure based material combinations in the ratios of 1:1, 1:2, and 2:1 with 5 per cent TS	90
Methane yield from poultry manure based material combinations in the ratios of 1:1, 1:2 and 2:1 with 10 per cent TS	92
Methane yield from poultry manure based material combinations in the ratios of 1:1, 1:2 and 2:1 with 15 per cent TS	93
Methane yield from poultry manure based material combinations in the ratios 1:1, 1:2 and 2:1 with 20 per cent TS	94
Methane yield from poultry deep litter based material combinations in the ratios of 1:1, 1:2 and 2:1 with 5 per cent TS	96
Methane yield from poultry deep litter based material combinations in the ratios of 1:1, 1:2 and 2:1 with 10 per cent TS	97
	combination with 20 per cent TS Cumulative biogas production from poultry deep litter based material combination with 20 per cent TS Weekly biogas production from poultry droppings based material combination with 5 per cent TS Cumulative biogas production from poultry droppings based material combination with 5 per cent TS Weekly biogas production from poultry droppings based material combination with 10 per cent TS Cumulative biogas production from poultry droppings based material combination with 10 per cent TS Cumulative biogas production from poultry droppings based material combination with 10 per cent TS Weekly biogas production from poultry droppings based material combination with 15 per cent TS Cumulative biogas production from poultry droppings based material combination with 15 per cent TS Cumulative biogas production from poultry droppings based material combination with 15 per cent TS Cumulative biogas production from poultry droppings as feedstock in 100 per cent with 5 per cent, 10 per cent and 15 per cent TS Cumulative biogas production from poultry droppings as feedstock in 100 per cent with 5 per cent, 10 per cent and 15 per cent TS Methane yield from poultry manure based material combinations in the ratios of 1:1, 1:2, and 2:1 with 5 per cent TS Methane yield from poultry manure based material combinations in the ratios of 1:1, 1:2 and 2:1 with 10 per cent TS Methane yield from poultry manure based material combinations in the ratios of 1:1, 1:2 and 2:1 with 20 per cent TS Methane yield from poultry manure based material combinations in the ratios of 1:1, 1:2 and 2:1 with 20 per cent TS Methane yield from poultry manure based material combinations in the ratios of 1:1, 1:2 and 2:1 with 20 per cent TS Methane yield from poultry deep litter based material combinations in the ratios of 1:1, 1:2 and 2:1 with 5 per cent TS Methane yield from poultry deep litter based material combinations in the ratios of 1:1, 1:2 and 2:1 with 5 per cent TS

4.31	Methane yield from poultry deep litter based material combinations in the ratios of 1:1, 1:2 and 2:1 with 15 per cent TS	98
4.32	Methane yield from poultry deep litter based material combinations in the ratios of 1:1, 1:2 and 2:1 with 20 per cent TS	100
4.33	Methane yield from poultry droppings based material combinations in the ratios of 1:1, 1:2 and 2:1 with 5 per cent TS	101
4.34	Methane yield from poultry droppings based material combinations in the ratios of 1:1, 1:2 and 2:1 with 10 per cent TS	102
4.35	Methane yield from poultry droppings based material combinations in the ratios of 1:1, 1:2 and 2:1 with 15 per cent TS	104
4.36	Methane yield from poultry droppings as feedstock in 100 per cent with 5 per cent, 10 per cent and 15 per cent TS	105
4.37	Methane yield (m ³) per kg of TS added	108
4.38	Methane yield (m ³) per kg of VS added	109
4.39	Spatial temperature distribution in Biogas Brooder	113
4.40	Spatial temperature distribution in LPG Brooder	115
4.41	Iso-thermal contour of ground level for biogas brooder with biogas burner position at the height of 100 cm from the ground level	117
4.42	Iso-thermal contour of 5 cm from the ground level for biogas brooder with biogas burner position at the height of 100 cm from the ground level	118
4.43	Iso-thermal contour of ground level for biogas brooder with biogas burner position at the height of 75 cm from the ground level	121
4.44	Iso-thermal contour of 5 cm from the ground level for biogas brooder with biogas burner position at the height of 75 cm from the ground level	100
4.45	Iso-thermal contour of ground level for LPG brooder with LPG burner position at the height of 100 cm from the ground level	122 123
4.46	Iso-thermal contour of 5 cm from the ground level for LPG brooder with LPG burner position at the height of 100 cm from the ground level	124
4.47	Illumination at different height of biogas burner	126
4.48	Illumination at different height of LPG burner	127

LIST OF PLATES

Plate No.	Title	Page No.
3.1	Loading of feedstock in bottle digesters	29
3.2	Experimental setup of batch digestion	29
3.3	Quantification of biogas by water displacement method	31
3.4	Saccharometer setup for methane measurement	31
3.5	85 m ³ KVIC model biogas plant	33
3.6	Biogas brooder (burner type)	39
4.1	Temperature measurement in biogas brooder	112
4.2	Temperature measurement in LPG brooder	114
4.3	Illumination measurement in biogas brooder	112
4.4	Gas flow measurement in biogas brooder	120

LIST OF DRAWINGS

Drawing No.	Title	Page No.
3.1	85 m ³ Floating Drum (KVIC) Model biogas plant	35
3.2	Floating Drum	36
3.3	Biogas brooder (Burner type)	40

ABBREVIATIONS USED

٠

•

•		
APB	-	Anaerobic Packed Bed
ASBR	-	Anaerobic Sequencing Batch reactor
BOD	-	Biochemical Oxygen Demand
⁰ C	-	Degree centigrade
CD	-	Cowdung
CH ₄	-	Methane
cm	-	Centimeter
COD	-	Chemical Oxygen Demand
d	-	Day
ft	-	Feet
g		Gram
GI	-	Galvanised Iron
HDPE	- .	High density poly ethylene
hr	-	Hour
HRT	-	Hydraulic retention time
Kcal	-	Kilo calories
Kg	-	Kilogram
KVIC	-	Khadi and Village Industries Commission
kWh	-	Kilowatt hour
1	-	Litre
LB	-	Leached blanket
m	-	Metre
M.S	-	Mild steel
m ³	-	Cubic meter
mg	-	Milligram

min.	-	Minutes .
ml	*	Milliliter
mm	-	Millimeter
N	-	Nitrogen
NH3	-	Ammonia
No.	-	Number
PVCP	-	Polyvinyl chloride plugs
Rep.	••	Replication
Rs.	-	Rupees
t	-	Tonne
TS	-	Total solid
UASB	-	Upflow Anaerobic Sludge Bed
VFA	-	Volatile Fatty Acid
VS	-	Volatile solid
w.g.	-	Water gauge

4

. ,

Introduction

.

.

CHAPTER I INTRODUCTION

The realization that conventional fossil fuels are dwindling has prompted renewed interest in recovering energy through renewable sources and particularly by the bioconversion of waste organic materials. Bio based energy sources have been identified as attractive alternatives to imported oil whenever supplies were seriously threatened. Biomass is any organic material such as wood, crop residues and animal wastes and can be burnt directly to heat, fermented to alcohol fuels, gasified to produce high energy gas or anaerobically digested for biogas production.

Generation of waste is inevitable in many human activities. In nature, a balance is maintained as the waste generated by animals and human beings serve as nourishment for the plant life. So long as this natural cycle is maintained, the question of pollution due to waste does not arise. However, with increasing industrialization, urbanization and changes in the pattern of life, which are inevitable in any process of economic growth, waste causes damage to environment unless it is very carefully managed.

Unscientific methods of collection and disposal of these wastes has unfortunately led to increase in pollution and environmental degradation, posing a serious hazard to public health and the environment. Good waste management planning together with appropriate system design will ensure safe, reliable and effective waste handling.

The biomethanation of various substrates for energy production has come to stay as viable solution for energy crisis. For a country like India where energy continues to be precious, with oil prices continuing to rise, with the risk involved in nuclear energy, anaerobic digestion has far greater relevance that it has to many other regions to the world. Conversion of organic matter to methane by anaerobic digestion has several advantages over gasification procedures since it is applicable to most types of high moisture content organic feeds and is operated at low temperature and pressure with relatively high overall thermal efficiencies. The biogas technology is a relatively simple one and research on the utilization of biogas for thermal, electrical and mechanical power generation is well advanced.

Though cowdung is used traditionally, non conventional substrates including poultry waste also tried as alternate feed stock. Cattle dung alone does not fulfill all the necessary requirement of the society and there is a scope for widening this technology by tapping other organic materials like plant biomass, municipal wastes, industrial effluent and also poultry industrial wastes (Mallik *et al.* 1990).

Poultry farming is one of the most intensive and mechanized livestock operations in current agriculture (Webb and Hawkes, 1985). India is the fifth largest egg producing country in the world (Butland, 1999). TamilNadu, Andhra Pradesh and Punjab account for a significant traction of the poultry farms in the country. In TamilNadu state, Namakkal district alone has over 500 hatcheries with the smallest amongst them having about 10,000 birds and the largest in excess of 50,000 birds. Although poultry wastes are organic materials, their character itself must suit the potentiality for usage of these waste for anaerobic digester. The poultry industry is growing rapidly along with the world human population. The growth is increasing in such a way that huge amount of waste is produced. The waste management of this industry is directed towards minimization of negative impact of the health and comfort of birds, workers, the atmosphere, water and soil environment.

Poultry litter which is rich in nitrogen must be mixed with wastes and dung to relieve the dependence of dung alone for gas production (Mallik *et al.* 1990). The other advantages are that the microbial growth rate in the poultry litter was greater than the other manures (Hill, 1983) with high gas production rate, high methane content and high COD reduction rate (Yao *et al.* 1989).

Biogas has often been hailed as an appropriate technology as it satisfies several criteria of appropriateness. It meets the basic need of a cooking fuel, makes optimal use of local resources such as cowdung and other organic wastes, helps to promote indigenous growth using local skills and technologies, provides relief from drudgery, and leads to environment improvement. Scientifically, biomass conversion is an excellent technology that provides both fuel and manure. Without biogas plant, only either one of these is possible. The realization of its undoubted potential led to the promotion of biogas plants in a major way in the late 1970's as an answer to growing fuel crisis. Today, India has the second largest biogas programme in the world after China.

Biogas is a mixture of methane and carbon-di-oxide which can be produced by anaerobic decomposition of cowdung, poultry droppings, pig manure, human waste etc. This can be used for cooking and lighting, replacing the current sources of energy apart from reducing environmental pollution due to the dumping of these wastes. In the poultry industry, two main energy consuming operations are incubation and brooding. In both operations electricity can be used to generate heat. There are about 10,000 poultry farms in India (Bhattu, 2000). It becomes necessary to use other forms of energy since the gap between the supply and demand is increasing for the conventional energy source. Biogas can be produced from poultry as an additional energy and it can be utilized in the same poultry industry, in meeting its total energy demand including incubation and brooding

The important stages in layering of chicks are brooding and incubation. Brooding refers to the rearing of day old chick to an age of 4 week, protecting them from inclement weather and other problems, so as to give them a good growing start by inducing them a power of adjustability to new environment. In case of conventional brooding, electricity, coal, LPG and kerosene are used as fuels for maintaining the temperature in the brooder unit.

4 ا

The estimated equivalent energy of waste materials from poultry having a live weight as 1000 kg is 6.2 kwh/day of electricity (Mittal, 1996). This energy would be a good replacement in the place of electricity for brooding and incubation. Hence an attempt was made for utilizing the energy from biogas obtained from poultry waste in brooders and incubators in layerstock raising with the following objectives:

- 1. To study the gas production potential of the poultry waste and to optimize the poultry and cowdung mix combination for getting maximum biogas production.
- 2. Design and development of biogas burner type brooder.
- 3. To explore the effective utilization of biogas for brooding
- 4. To study the energy inflow and outflow of poultry industry.

Review of Literature

.

CHAPTER II REVIEW OF LITERATURE

In the near future, the present energy conversion system will change drastically due to lack of conventional fuels. Production of biogas from poultry waste and utilization of gas for brooding in the same poultry industries are the needs of urgent research priorities especially in these days of energy crisis. This chapter deals with the past research works carried out in utilizing various wastes for biogas production, characteristics of feedstocks, gas production rate, methane content of gas, biogas plant designs and utilization for brooding operation.

2.1. Biogas production from different organic wastes

Aller (1979) studied the anaerobic digestion of organic matter of urban solid waste at 55 to 60°C and reported that methane production increased with increasing retention time, pH and concentration of volatile solids.

Hill and Dysktra (1980) conducted laboratory studies to assess the feasibility of converting solid waste into methane gas *via* conventional mesophilic digestion. They reported the methane yield as 0.15 litre/g of volatile solids (VS) added.

Shelef *et al.* (1980) reported that the digestion efficiency of cotton plants were found to be very low as 0.01 to 0.06 litre/g but the poultry manure combined with cow manure resulted in better digestion efficiency. They indicated that poultry manure might be used in practice as an additional substrate.

Kamaraj *et al.* (1981) carried out experiments in five litre capacities to study the effect of incorporation of various agricultural wastes of chopped maize cob, cotton stalk, paper pulp parthenium weed and calortropis weed along with cow dung. They reported

that the combination of parthenium weed along with cow dung gave the maximum gas production of 1756 cc/day.

Radhika *et al.* (1983) reported that a mixture of coir pith and cattle waste at 3:2 ratio gave a better gas output with methane content range of 80-85 per cent.

Singh *et al.* (1984) studied the biogas production from cattle waste using daily fed digester and they reported that digestion can be carried out efficiently at 13.5 per cent TS and a retention time of 30 days without affecting digester efficiency or gas productivity.

Potential of biogas production from different feedstocks (Khendelwal and Mahdi, 1986).

Feed stock	Availability (kg/animal/day)	Gas yield (m ³ /kg)
Cattle waste	10	0.36
Buffalo waste	15	0.54
Piggery waste	2.25	0.18
Chicken waste	0.18	0.011
Human excreta	0.40	0.028

Nallathambi (1988) studied the anaerobic digester of gliricidia leaves in 3 litre batch digesters at room temperature (32 ± 13^{0} C). He reported that the gas yield of gliricidia leaves was 165-180 ml CH₄ g⁻¹ VS added and a VS ..reduction of 37-39 per cent.

Sarada and Krishnanand (1989) studied the anaerobic digestion of tomato processing waste. They reported that the biogas yield was 0.597 m^3 per kg VS added, with a 72 per cent methane content.

Frison and Carrotte (1989) studied a continuous digester for cattle slurry and monitored for a period of 2 years. They predicted that 0.42 m³ of biogas per kg of organic matter introduced could be obtained with a hydraulic retention time of 9 days and a digester temperature of 41° C, which allows approximately 3 m³ of biogas to be obtained per m³ of the digester.

Madamwar *et al.* (1990) studied the effect of various residues and found that sugarcane bagasse, banana stem, poultry waste, cheese whey and algal powder showed more than 100 per cent increase in gas production with 5-10 per cent higher methane content.

Jamila and Sayigh (1990) reported that laboratory scale digesters were operated at $30 \,^{0}$ C and $34 \,^{0}$ C on poultry slurry at 6 per cent and 10 per cent of total solids and with a digester retention time of 15, 22 and 30 days. The best results were achieved with 6 per cent total solids influent concentration at a temperature of $34 \,^{0}$ C and a retention time of 15 days.

Ranade *et al.* (1990) conducted tests on anaerobic digestion in six 25 litre laboratory floating dome biogas plants, each filled initially with 25 litres of cattle slurry at 10 per cent TS. Best performance was observed at 8 per cent TS but there was little variation in absolute methane yield at 8, 10 and 12 per cent TS (6.14-6.54 litres/d). Findings indicated that reasonably good methane yields were possible even at 14% TS and that 2:1 dilution of cattle dung is sufficient when water is scarce.

Aklaku and Sayigh (1990) carried out continuous digestion tests with poultry manure and guinea grass and they reported that substrate blends of pure poultry manure and guinea grass gave higher methane, energy out than manure alone and methane production decreased with increasing HRT.

Yaldiz *et al.* (1990) carried out a investigation on methane production from beef and poultry manure in unheated biogas digesters and reported that more methane was produced with poultry manure than beef manure at 18-26°C temperature and short term variation of fermentation temperature in the range of 18-26°C did not affect the methane production.

Neelakantan *et al.* (1992) studied about using livestock excreta as a source of biogas. They reported the biogas yield from cow, buffalo, goat and poultry dung litter as 113.55, 116.75, 158.5 and 392 litres/kg of dry matter respectively and the dry matter degradability were found as 22.0, 23.5, 29.0 and 52 per cent respectively.

Chanakya *et al.* (1993) studied solid phase fermentation of untreated leaf biomass to biogas and they reported that dry and fresh feed stocks gave gas yields of 295 and 343 litres of biogas/kg of total solids respectively, at levels upto 0.5-0.6 litre/litre digester per day.

Chatterjee *et al.* (1994) evaluated the performance of night soil based biogas digesters made of high density polyethylene and reported that the generation of methane $(0.6 \text{ m}^3 \text{ per m}^3 \text{ of slurry per day})$ was higher than conventional digester (0.15 m³ per m³ of slurry per day) and methane content of biogas was 70 per cent.

Chowdhury *et al.* (1994) evaluated the potentiality of tree leaves for biogas production. They reported that the digester slurry with leaves and cowdung at 8 per cent total solids concentration was found to be best.

Sanchez *et al.* (1995) studied the anaerobic treatment of poultry waste by an Upflow Anaerobic Sludge Blanket (USAB) and Anaerobic Packed Bed (APB) reactors. They reported that the chemical oxygen demand (COD) removal range of 65-85 per cent was obtained in Anaerobic Packed Bed where as it was 80-85 per cent in the Upflow Anaerobic Sludge Blanket at organic loading rate in the range of 1.3-11.0 kg COD/m³

reactor day. They also observed that the methane yield was high in Anaerobic Packed Bcd (0.4-2.0-m³ reactor day) than in the Upflow Anaerobic Sludge Blanket (0.4-1.7 m³ reactor day).

Yeole *et al.* (1996) reported that a loading rate of 0.7 kg COD per m³ per day was optimum for biogas production of 13 m³ per m³ of waste per day from the liquid waste originated from liver and beef extract industry.

Behmel *et al.* (1997) gave an overview of biogas production and presented a two stage process for the production of biogas from dairy sludge. Dairy sludge had an average decomposition rate of 85 per cent with biogas production of 700 litres/kg of decrease in chemical oxygen demand.

Ibrahim *et al.* (1997) tested the performance of a Upflow Anaerobic Sludge Blanket reactor for waste-water with chicken manure under a constant temperature of 35^{0} C. During steady state operation, the biogas production rate was 9.83 m³/m³ per day at a loading rate of 28.85 kg COD/m³ per day.

Dugba and Zhang (1997) studied a two stage anaerobic sequencing batch reactor (ASBR) in a laboratory for dairy waste-water treatment. The performance of each treatment system depended on the hydraulic retention time and organic loading rate. The volatile solids (VS) removal of the 3 systems tested varied from 26.1 to 44.2 per cent.

Yeole and Ranade (1997) studied the biogas production from mycetial waste and they reported that the process was stable at 50 days hydraulic retention time yielding 0.652 m^3 biogas per m³ of digester, degradation of volatile solids was 60 per cent.

Chen TenHong *et al.* (1998) studied the performance of mesophilic anaerobic digestion systems treating poultry mortalities and reported that system performed very

well with few operational problems. Overall, the system that started with 10 litres of water in the leached bed performed better.

Fernandez (1999) carried out two set of experiments on mesophilic anaerobic treatment of waste water from citric acid industry. In the first set Up flow Anaerobic Sludge Blanket reactor (UASB) of 1 litre volume and in the second set fluidized bed anaerobic reactor of 3.25 litres volume were taken for the study. He reported that COD conversion in two phases were as high as 95 per cent with an average methane yield of 6 m³ CH₄/m³ of waste water.

2.2. Biogas production from poultry wastes

Bansel *et al.* (1977) studied the anaerobic digestion of pig dung, poultry litter, cattle dung and goat dung and reported that higher gas yield from pig dung and poultry litter might be due to higher volatile matter in the excreta. The biogas yield from 500 g of dry matter of the above excreta was 81.4 1 from cattle dung, 118.5 1 from goat dung, 157.5 1 from pig dung and 161.2 1 from poultry litter. The higher rate of gas production was observed in the first month of digestion.

Khan (1977) reported that addition of poultry excreta was useful to speed up the reaction and to increase the methane gas production.

Arokiasamy (1978) observed that most of the vegetable wastes, weeds, algae, poultry, sheep and fish wastes, carcasses etc., could be digested in biogas plants.

Bousfield *et al.* (1979) reported that the digestion of cattle and poultry wastes showed significant reduction in polluting power, reduction in odour, etc., at the end of digestion. Gas production and methane content of cattle wastes were lower than that of poultry wastes. Cattle waste was found to be better at higher than lower solid contents, while the reverse was true for poultry wastes. These effects were probably caused by ammonia content of the wastes (4900 mg per 1 at 12 per cent total solids in poultry waste and 500 mg per 1 in the cattle waste of 5 per cent total solids).

Shivappa Shetty *et al.* (1980) studied the anaerobic digestion of different animal wastes like cattle dung, sheep manure, poultry wastes, piggery waste and silk worm larval waste. Among the different wastes, piggery waste gave maximum combustible gas production of 40 l per 2 l of slurry over a period of 6 months. This was almost more than 2.5 times of gas produced from cattle dung (14.6 l per 2 l slurry in 6 months) and poultry waste (18.5 l per 2 l slurry in 6 months). Minimum gas production had been obtained in silkworm larval waste (3.3 l per 2 l slurry in 6 months).

Shih and Huang (1980) reported that broiler chicken litter was used for anaerobic digestion at 60°C. Wood chips, the bedding materials used as carbon source for methane biosynthesis and broiler chicken litter has a desirable content of 3 to 4 per cent level similar to that of cattle waste.

Mahadevasamy and Venkataraman (1986) studied the biogas production from poultry droppings and utilization of the effluent for the production of blue-green algae *Spirulina platensis*. They observed that poultry droppings produced 0.54 m³ of biogas per kg of TS and 2 per cent TS biogas plant effluent as sole nutrient medium for *Spirulina* yielded 7-8 g dry algae daily.

Ilamurugu and Rajasekaran (1986) studied potential of poultry manure for biogas production added with and without cattle or biodigested slurry. They found that without cattle of biodigested slurry yields maximum biogas production (5225 ml) over a period of 8 weeks compared with cattle slurry (3250 ml).

Safley *et al.* (1987) briefly described a full-scale (587 m^3) anaerobic digester, large enough to process the waste from 70 000 caged layers. They reported that digester

operated on a 22-24 days HRT, biogas production averaged 0.38 m^3 per kg of VS added (0.58 m³ per kg of VS destroyed) and methane content of gas was 58 per cent.

Pechan *et al.* (1987) studied the methanogenic fermentation of poultry manure on a laboratory scale at mesophilic temperature and they reported no adverse effect on biogas production was observed due to high ammonia nitrogen concentration in the effluent. (Mean ammonia nitrogen 4.07-5.85 g per litre and extreme values as high as 7.5 g per litre were used for this study).

Hidalgo *et al.* (1988) studied biogas production from poultry waste with two manure: water ratios and at various ambient temperature. They observed that poultry manure: water ratio of 1:3 produced more biogas than a ratio of 1:8 despite lower ambient temperature.

Kalia (1988) developed a 3 m^3 fixed dome plug flow anaerobic digester and its performance was compared with that of a Janata biogas digester in a cold, hilly region.. Gas production rate per unit of effective digester volume for the plug flow digester was 30 per cent higher due to the horizontal plug flow of the digesting slurry and due to modifications of the inlet and outlet slurry displacement tanks.

Yao *et al.* (1989) studied a pilot biogas system using chicken manure which had two reactors each with 3.5 m³ volume and a 4-layered screen used for liquid-solid separation of manure. After 4 months of starting-up, the steady state operated at an average daily loading rate of 10 kg COD/m³, biogas production rate of 3.57 m³/m³, methane content of 65.4 per cent and COD reduction of 80.07 per cent.

Shinnawi *et al* (1989) studied different combination of feed stock like rice straw, maize, cotton stalk and poultry dropping with or without either wheat straw litter or saw dust litter for biogas production in laboratory biogas digesters for 90 days at 35°C. They found that maximum cumulative volumes of biogas and methane were respectively 30 and 14 litre/litre with rice straw and wheat straw poultry dropping and minimum volume were 15 litre biogas with cotton stalks and sawdust poultry dropping and 8 litre methane/litre with rice straw and saw dust poultry droppings.

Jamila and Sayigh (1990) studied biogas production from poultry manure with multiple combination of laboratory scale digester operated in 30°C and 34°C temperature, poultry slurry at 6 and 10 per cent TS with a HRT of 15, 22 and 30 days. They observed that gas yield varied between 0.2 and 0.4 m³ of biogas per kg of VS and best results achieved with 6 per cent TS influent concentration at a temperature of 34°C and HRT of 15 days.

Edwards and Daniel (1992) reviewed the disposal of on-farm poultry wastes such as manure, litter, dead birds and the effects of poultry waste disposal methods on environmental quality, which included refeeding to animals, biogas production, composting and land application.

Desai *et al.* (1994) found improvement in gas production and enriched methane content when a mixture of cattle dung, poultry waste and cheese when in the ratio of 2:1:3 (dry weight basis) was used as substrate.

Chandran (1997) studied anaerobic digestion of various proportions of poultry litter and cow dung wastes through lab scale experiments. He reported that combination of feed stock having cow dung (75 per cent) and poultry litter (25 per cent) yielding maximum methane production of 7650.37 ml compared to 3836.43 ml in cow dung (25 per cent) + poultry litter (75 per cent) and 3075.61 ml in cow dung (50 per cent) + poultry litter (50 per cent) when no actimycin was added.

A plant having treating capacity of 600 kg of poultry waste was installed in western hatcheries, Naigoan in which 60 m^3 of biogas produced per day and in addition the

chemical oxygen demand (COD) and biological oxygen demand (BOD) in the treated water reduced by 89 and 90 per cent respectively (Anonymous 1997).

Venkatachalam (1998) studied biogas production potential of various animal wastes like pig manure, poultry droppings and goat droppings. He reported that 75 per cent of pig manure and poultry droppings, 100 per cent of poultry and goat droppings with maximum biogas production of 0.29, 0.30 m³ per kg of total solids (TS) destroyed and 0.30, 0.28 m³ per kg volatile solids (VS) destroyed respectively.

Kamaraj (2000) studied various wastes of poultry industry and characterized the physical properties of poultry litter and quail litter. He assessed in 21 combinations added with and without cowdung for their suitability to produce biogas. Total solids and volatile solids ranged between 20 to 66 and 3.25 to 34 per cent respectively. The poultry litter based combination, a mix of poultry litter, cowdung and quail litter in the ratio of 1:1:1 produced a maximum gas of 26,140 ml during the bottle experiment.

Benjamin *et al.* (2001) performed anaerobic batch tests using hog and poultry waste in various proportions. Treatments that received both waste produced higher yields of biogas upto 206 ± 30 ml/g volatile solids (VS) destroyed, and methane upto 130 ± 20 ml/g VS destroyed compared to either waste alone.

2.3. Biogas plant description

Balsari *et al.* (1987), studied 15 different types of synthetic sheets jointed by machine or manually and with or without fabric reinforcement, for use in anaerobic digesters. All sheets showed low permeability to biogas. In general, the fabric reinforced sheets showed better resistance to mechanical damage than the non-reinforced sheets with the exception of the chloro-sulphonated polyethylene.

Kamaraj and Swaminathan (1987) compared the different designs of biogas plants in terms of cost skill requirements and other benefits and reported that the fixed dome type biogas plants was suitable for feeding agricultural waste material and its cost of construction was the least.

Nakagawa and Honquilada (1987) described the potentiality of Chinese biogas digester for small scale rural application. The basic structural features, construction, operation and maintenance of the Chinese biogas digester were presented. The 8 main components of the design are the mixing pit or inlet, inlet pipe, digester/gas storage, outlet chamber removable manhole, gas outlet pipe, stirrer/mixer and backfill. The construction is entirely underground and materials flow is by gravity; it has no moving parts or metal components, except structural reinforcement.

Kalia (1988) reported the development and evaluation of fixed dome plug flow anaerobic digesters. In the report, a 3m³ fixed dome plug flow anaerobic digester was developed and its performance was better compared to that of Janata biogas digester in a cold, hilly region.

Safley and Westerman (1989) studied biogas recovery systems from anaerobic lagoon. They placed a floating cover on two anaerobic lagoons. One cover was approximately 370 m² in size placed over poultry lagoon and the second was 155 m² placed over pig anaerobic lagoon. The poultry and pig lagoons had mean daily volumetric biogas production rates of 0.07 and 0.05 m³/m³ respectively. The daily biogas production rates were 0.16 and 0.13 m³/m³ for poultry and pig lagoons respectively and the temperatures were of 13-15 $^{\circ}$ C.

Sandhya and Krishnanand (1990) conducted a preliminary study on biogas production from cowdung using fixed bed digesters and reported the biogas production from cowdung in digesters with and without polyvinyl chloride plugs (PVCP). A maximum yield of 0.419 m³ of biogas/kg of volatile solids (VS) added, with 62 per cent methane content was attained in the digesters packed with polyvinyl chloride plugs and fed with cowdung slurry or 8 per cent TS at a 30 day HRT. The use of polyvinyl chloride plugs suggested the possibility of improving the performance of commercial digesters, which are commonly employed in India, with a slight increase in the overall cost of fabrication and installation.

Nazir (1991) studied biogas plant construction technology for rural areas and reported the suitability of number of different anaerobic digesters designs for use in rural regions. He also reported that French type biogas plants worked efficiently in cold weather and was recommended for those areas where the atmospheric temperature drops below 0° C. Plastic and rubber bag biogas plants were found cheap but deteriorated rapidly and could not be recommended.

Kanwar and Guleri (1994) compared the performance of 92 m³ rubber balloon biogas plant with a fixed dome type Deenbandhu biogas plant. They reported that the daily average biogas production in rubber balloon plant was 0.92 m^3 / day compared to 1.23 m^3 / day in the Deenbandhu plant and the methane content of the biogas of both the plants were identical. They also observed that the changes in the ambient temperature affected the rubber balloon plant more than they affected the conventional plants.

Aburas *et al.* (1995) studied the design, construction and operation of a low cost, small, farm scale digester in which cattle waste were used. They reported that the biogas produced contained about 65 per cent methane by volume.

Liang and Paquin (1997) designed and constructed a waste treatment system of high density polyethylene (HDPE) bioreactors for a small pig farm.

Chen Tenhong et al. (1998) studied the performance of mesophilic digestion systems. They tested a closed loop anaerobic digestion system consisting of a three leached bed (LB) and three upflow anaerobic sludge blanket. Upflow Anaerobic Sludge Blanket (UASB) for an alternative disposal of poultry moralities. They reported that methane production rates from Upflow Anaerobic Sludge Blanket decreased quickly while that from each leached bed reached peak levels.

Dugba *et al.* (1999) studied computer simulation of a two stage anaerobic sequencing batch reactor system for animal wastewater treatment and reported that a thermophilic-mesophilic two stage anaerobic sequencing batch reactor (ASBR) system was a promising animal waste treatment system for energy recovery, odour control and faccal bacteria destruction.

Kalia and Singh (1999) conducted a case study on 85 m³ floating drum biogas plant under hilly conditions. They considered the biogas and manure obtained from the plant. The income and cost ratios during the period 1989-91 and 1992-97 were 1.44 and 1.15 respectively.

2.4. Methane content in biogas

Wong-chong (1975) reported the variations of methane concentration between 60 per cent and 65 per cent.

Barnett *et al.* (1978) stated that anaerobic digestion of cowdung, chicken manure, pig manure, farm wastes, sewage sludge and elephant grass produced gas that contained 65, 60,65 to 70, 60 to 70, 68 and 60 per cent of methane respectively.

Biogas from agro wastes usually contain 60-70 per cent methane (Cowley and Wise, 1981).

Kumar and Biswas (1982) reported that the methane concentration was between 56 and 58 per cent during fourth to sixth week of digestion.

Murugesan (1982) reported that the biogas produced from the poultry droppings and rumen fluid incorporated treatments contained about 55 to 63 per cent of methane during third to seventh week of digestion.

Hills and Nakana (1984) observed that the rate of methane gas production varied universally linear to the product of the substrate and average particle diameter. The methane content of biogas varied from 58.2 to 62.3 per cent.

Jamila and Sayigh (1990) conducted experiment on poultry slurry and reported that gas yield varied between 0.2 and 0.4 m^3 of biogas per kg of volatile solids and gas had a methane content of 44.83 per cent to 73.86 per cent.

Raju *et al.* (1991) reported that a methane content of 62 per cent with a yield of $0.49 \text{ m}^3/\text{kg}$ volatile solids (VS) added was obtained from mango peel.

Sarapatka (1994) studied anaerobic fermentation of farmyard manure and reported that during summer the average methane content was 56.96 per cent, it decreased to 49.39 and 50.85 per cent in the transitional period and in winter respectively.

Sudhir kumar (1996) studied the biogas production potential of presumed in Khadi and Village Industries Commission (KVIC) type digesters. He reported that methane content of biogas was 60 per cent.

Yeole and Ranade (1997) conducted study on anaerobic digestion of antibiotic mycelial waste in lab scale of digester of floating dome design. They found that digestion of waste from a medium size penicillin factory would produced 300 m³ of biogas with 62 per cent methane.

Chandran (1997) reported that the addition of actizyme at the rate of 500 mg/kg concentration in cowdung (75%) and poultry litter (25%) resulted in the maximum biogas production of 19,995 ml and the methane production of 9611.51 ml respectively.

Chen-Tenhong *et al.* (1998) conducted experiments on the performance of mesophilic anaerobic digestion systems treating poultry mortalities and reported that methane yields ranged from 0.484 to $0.554 \text{ m}^3/\text{kg TS}$.

Venkatachalam (1998) reported that anaerobic digestion of goat droppings had the highest methane content of 66.45 per cent in 2^{nd} week and lowest in the 14^{th} week as 53.58 per cent.

Lomas *et al.* (1999) conducted experiments on treating piggery slurry in the mesophilic range and reported that the gas composition displayed a uniformity in methane and carbon dioxide content, with little variation in nitrogen, and traces of hydrogen.

2.5. Utilization of biogas for different applications

Ram Bux Singh (1974) reported norms of biogas consumption in operating various plastic moulding machines were given below.

Table 2.1. Biogas consumption in operating various moulding machines

S. No.	Machine	Machine capacity (ounce)	Rounds per hour	Gas consumption ft ³ /hr	Power consumption (watts per hour)
1	Button making machine	2.25	120	4.8	500
2	Plastic moulding machine	0.50	100	5.0	600
3	Toy making machine	1.00	85	5.5	650
4	Toy making machine (large)	1.50	75	8.5	1000

Kothandaraman (1977) investigated on the use of Gobar gas in petrol engine and observed that the compression ratio of 6:1 for petrol and 8 to 11:1 for biogas was suitable.

Dhussa (1983).reported the rate of biogas consumption for different types of burners were given below

Table.2.2. Consumption Norms for Burners under different combinations

S.No.	Type of burner	Gas flow rate (ft ³ / hour)
1.	One large standard burner	16
2.	One large and one small burner or one large burner and two lamps	24
3.	Two large burners or one large and one small burners and two lamps	32
4.	Three large burners	48
5.	Four large burners	64

Darmora (1984) found that the engine could be operated totally on biogas and the engine started on petrol for initial warm up. He reported that brake thermal efficiency of engine was slightly higher on biogas than on petrol.

Camargo (1986) reported that the vehicles using the fuel as compressed methane was produced from sewage waste.

Palaniswamy and Dakshnamurthy (1986) studied the usuage biogas to control rice storage pests and they reported the insects that were exposed to gas at rate of 20 litres per min in the presence of 1 kg of rough rice, 100 per cent mortality was observed in 4-6 hrs.

Safley *et al.* (1987) reported that biogas from poultry manure was used as fuel for an engine/generator set and the operating temperature of digester was maintained at 35°C by utilizing waste heat from engine. Zhengou *et al.* (1987) studied three types of biogas operated brooders and a thermocouple was used for measuring floor temperature when brooders were operated at high (12.7 MJh⁻¹), medium (7.6 MJh⁻¹) and low (5.3 MJh⁻¹) heat out rate and hanging height for testing of brooders was 31 cm. They reported that heating efficiencies were 13-30 per cent.

In a co-operative dairy farm, $15000-16000 \text{ m}^3$ of biogas was produced from 50 m³ liquid manure with 10 per cent dry matter content, in which 16-200 m³ gas was used for continuation of the processes and the rest used in winter months for heating and in summer for crop drying by using 110 kW electric biogas generator (Anon, 1988).

Waddell (1988) developed a poultry biogas demonstration project in Georgia, United States of America. A biogas fired boiler supplied with hot water was circulated through an internal double-pipe stainless heat exchanger to maintain a 95 ⁰F digester operating temperature.

Komendant and Shapovlov (1991) discussed the maintenance of optimum temperatures in poultry houses exposed to varying ambient conditions which is in relation to the supply of heat from biogas installations. Monthly energy requirements, met by various fossil fuels, electricity and biogas, are compared in a graph, and formulae for the calculation of fuel oil and diesel fuel requirement were given as a basis for the assessment of biogas requirements

Ramajeyam *et al.* (1994) developed a biogas operated incubator with size of 1500 eggs capacity and studied different gas flow rates for obtaining required temperature in biogas operated incubator. They reported that the total energy requirement for 21 days of incubation was 1,27,694.3 kcal and daily energy requirement for incubation was 6,373 kcal for first day, 5685 kcal for second day onwards.

The biogas generated as a result of anaerobic degradation could be coupled to a gas engine to produce electricity and approximately 2.2 kWh of electricity could be generated from 1 m^3 of biogas (Anon, 1996).

Mittal (1996) reported the rate of biogas consumption for various appliances.

Application	Specifications	Rate of biogas consumption (ft ³ /hour)
Cooking	2" dia burner	11.5
	4" dia burner	16.5
	6" dia burner	22.5
Lighting	1 mantle lamp	2.5
	2 mantle lamp	5.0
	3 mantle lamp	6.0
Refrigerator	10" x 18" x 12"	2.5
Incubator	18" x 18" x 18"	2.0
Boiling water	per gallon	10.0
Running IC Engine	per BHP	16-18
Running table fan	Gas pressure 2" water column	3.5
Running heater	Gas pressure 2" water column	5.5

Table 2.3. Biogas consumption in operating various appliances

Mapuskar (1997) reported that biogas produced from vegetable market waste distributed by gas distribution system to consumers provided with 0.91 m³, 1.13 m³ and 2.83 m³ biogas per hour capacity burners depending upon their needs.

The 60 m³ of biogas obtained from cow dung in Khadi and Village Industries Commission (KVIC) plant was utilized in a dual fuel engine and it consumes 70 per cent gas and 30 per cent diesel to generate power. He reported that engine was operated for 16 hours a day to generate 130 kWh i.e 40,000 kWh per year and which was utilized for operating chaff cutter and submergible pumps and lighting (Anon, 1999).

2.6. Brooders

Drury et *al.* (1959) studied different types of brooders *viz.*, electrical hover, heat lamps with hover, cool room gas hovers, warm room gas brooder and coal chick brooder. He reported there was no difference in chick performance under these brooder, but the energy requirement varied marked with type of brooder.

Hardwood and Reece (1975) studied the liquefied petroleum gas brooders (hover types) and reported that it provided an environment for day old chick where air temperature under the brooder was 32 to 35° C and radiant heat flux was between 270 and 800 w/m².

Nesheim *et al.* (1979) reported that the basic requirement in animal brooding was to provide a comfortable temperature for young chicks i.e 27-37°C at a height of 6.4 cm above the floor.

Zhenghou *et al* (1987) stated that three kinds of commercial brooders namely, aluminium hood (Model 47 LR), hot-rock (Model 26689) and infrared (Model 2456) were commonly used and they all generated radiant heat by the combustion of gaseous fuel. They also studied use of biogas in three types of brooders and reported that heating efficiency were 13 to 30 per cent.

Ramesh (2000) developed the three types of biogas operated brooders (hexagonal, rectangular and circular shapes) for brooding of quail chicks and tested their performance. He reported that the heat requirement of chicks for the first three weeks of

brooding was met by fixing the biogas lamp at different heights namely, 25, 20, and 35 cm respectively from the ground level.

2.6.1. Parameter requirements for brooding of chicks

In any type brooding method the common factors which affect the achievements of brooding were temperature, ventilation, floor space, light intensity, humidity.

North (1972) reported that the intensity of light during the growing period was not an important factor as long as it has a minimum of 1 foot candle.

Hughese and Weaver (1979) suggested that the light program consisted of continuous light during the first three weeks, intensities were 54 Im/m^2 (5 foot candles) for a week followed by two weeks of gradually lower light.

Zhenghou *et al.* (1987) evaluated biogas production from a poultry waste digester system for in situ utilization. Overall efficiency of the system was 55 per cent. In use as regular animal brooders, stable combustion of biogas and comfortable floor temperature could be maintained with proper mechanical adjustments. The use of biogas for brooding young chicks on a poultry farm could significantly reduce the natural gas or propane fuel cost. The results of these studies offered alternative uses of biogas energy to electricity generation.

Reddy (1991) noted that quails were very sensitive to lowered temperature and he reported the optimum brooder temperature as given below and he suggested space requirement per quail in litter system up to 3 weeks was 150 cm.

Age	Brooding temperature
I Week	35-37.8
II Week	32.2-35
III Week	26.6-32.2

Jadhav and Siddiqui (1992) found that effects of ill ventilation were exhibited in the form of loose feathers, restlessness and anemic conditions resulting in the outbreak of respiratory diseases. They reported that relative humidity 50 to 60 per cent facilitates the desired growth of feathers, too low humidity causes dust litter leading to poor feather growth and too high humidity creates wet litter and wattage required per chick was 2 to 2.5 candle power.

The brooding temperature should be about 39°C which could be reduced gradually to 35°C for first week and second week onwards at the rate of 5°C per week the temperature was lowered to 25°C (Anon, 1992).

For every 30 square feet house atleast 1 square feet ventilation should be provided (Ajay Singh, 1994).

Kannan and Singh (1994) reported that fresh air flow rate of 3 litres/min/chick should be provided in oil burning, coal burning or wood burning brooders.

Khanna (1994) found that higher intensity of light may induce blindness, picking of feathers and restlessness in the chicks.

Singh (1997) reported that the brooding temperature required for various age groups of chicks as follows.

Age of chicks	Brooder temperature (°C)		
I Week	34-35		
II Week	31-32		
III Week	28-29		

Ramesh (2000) reported that the biogas consumption in each type of biogas operated brooder (hexagonal, rectangular and circular shapes) was 62 m³ for 21 days of brooding period for 200 numbers of quail chicks.

Materials and Methods

CHAPTER III

MATERIALS AND METHODS

The waste materials viz., cowdung, poultry deep litter, poultry manure, poultry droppings were selected as feedstock for gas production. In this chapter materials and methodology adopted in the study are discussed. The details of the experiment are explained under the following headings.

- 1. Characterization of feedstocks
- 2. Bottle scale experiment
- 3. Details of 85 cum of KVIC model biogas plant
- 4. Development of biogas burner type brooder
- 5. Performance evaluation of biogas burner type brooder
- 6. Cost economics of brooders
- 7. Energy inflow and outflow of poultry industry

3.1. Characterization of feedstocks

3.1.1. Collection of raw materials

The raw materials used for the study were cowdung, poultry deep litter, poultry cage manure, poultry droppings. These raw materials were collected from Pioneer Breeding Farms, Pongalur, Tirupur. Coimbatore.

The waste collected for this study were

- i) Poultry deep litter (Poultry droppings along with bed material)
- ii) Poultry manure (Poultry droppings collected from manure yard)
- iii) Poultry droppings
- iv) Cowdung

3.1.2. Physico-chemical analysis

The physical and chemical properties of the collected sample were analyzed as per the methods described here under.

The total solids (TS) and volatile solids (VS) were estimated using hot air oven and muffle furnace respectively for the different raw materials.

3.1.2.1. Total solids (TS)

Freshly collected sample was weighed in a crucible. The crucible was placed inside an electric hot air-oven maintained at 105°C. The crucible was allowed to remain in oven for 24 hours and then taken out, cooled in a desiccator and weighed. The weight of the sample which was left in the oven gives the total solids and it is represented in percentage basis (Anon., 1989).

Final weight Total solids = ----- x 100

Initial weight

3.1.2.2. Volatile solids (VS)

Volatile solid content of the raw material was determined by drying the samples at 645°C for three hours in a muffle furnace. Then volatile solids content in per cent was determined by using the formula (Anon., 1989).

Loss in weight due to removal of volatile matter

Volatile solids =

x 100

Weight of sample taken

3.1.2.3. Total organic carbon

The organic carbon was analysed by wet digestion of Walkey and Black method (Piper 1966).

3.1.2.4. Total Nitrogen

The samples were pretreated with 1ml of 25 per cent KMnO₄ at 80⁰ C for 30 minutes and then with 0.5 ml of conc.H₂SO₄ and 0.3 g of reduced iron, again at 80⁰ C for 30 minutes. This was followed by the usual digestion with the diacid mixture. A known quantity of nitrogen was estimated. (Mahimairaja *et al*, 1990)

3.1.2.5. Carbon/Nitrogen ratio

The carbon/nitrogen (C/N) ratio was calculated from the total organic carbon and total nitrogen content of the samples.

3.2. Bottle scale experiment

3.2.1. Batch digestion

Batch digestion was carried out in experimental set up of 2.5 litre amber coloured bottles with a sealed lid and glass bend tubes as outlet, and rubber tube extension as outlet. The rubber tube is closed by a pinch clip. Seventy-eight numbers of bottles were taken for the batch experiments with 39 treatments with two replications. The loading of the feedstock in bottle digester and experimental set up were shown in Plate 3.1 and 3.2. respectively. Water was added to the feed stock and filled in batch digester. The experiment was repeated again with the same treatments for confirmation of results. The different treatments were shown in table 3.1.

3.2.2. Measurement of gas production

The amount of gas produced was measured daily by using water displacement method as shown in plate 3.3. The daily gas production was recorded for different treatments until the gas production ceased

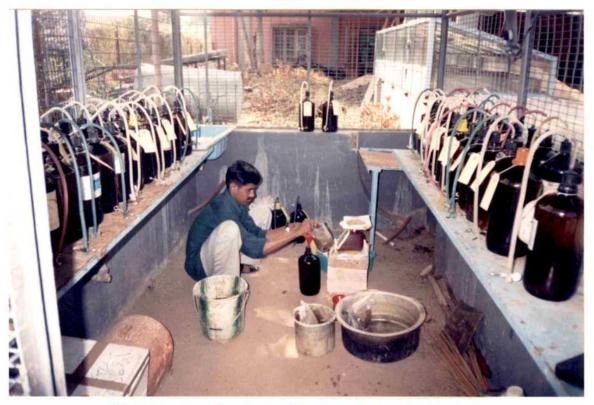


Plate No. 3.1 Loading of feedstock in bottle digesters

Plate No. 3.2 Experimental setup of batch digestion

 Table 3.1. Experimental scheme

Treatments	Combinations	Feed material ratio	Water mix ratio
T ₁	Cowdung	100%	1:2
T ₂	Cowdung	100 %	1:1
T ₃	Cowdung	100 %	1: 0.5
T ₄	Cowdung : Poultry manure	1:1	1:8
T ₅	Cowdung : Poultry manure	1:1	1:4
T ₆	Cowdung : Poultry manure	1:1	1:2
T ₇	Cowdung : Poultry manure	1:1	1:1
T ₈	Cowdung : Poultry manure	1:2	1:11
T ₉	Cowdung : Poultry manure	1:2	1:5
T ₁₀	Cowdung : Poultry manure	1:2	1:3
T ₁₁	Cowdung : Poultry manure	1:2	1:2
T ₁₂	Cowdung : Poultry manure	2:1	1:6
T ₁₃	Cowdung : Poultry manure	2:1	1:2.5
T ₁₄	Cowdung : Poultry manure	2:1	1:1.5
T ₁₅	Cowdung : Poultry manure	2:1	1:1
T ₁₆	Cowdung : Poultry Deep Litter	1:1	1:9
T ₁₇	Cowdung : Poultry Deep Litter	1:1	1:4
T ₁₈	Cowdung : Poultry Deep Litter	1:1	1:2.5
T ₁₉	Cowdung : Poultry Deep Litter	1:1	1:1.5
T ₂₀	Cowdung : Poultry Deep Litter	1:2	1:12
T ₂₁	Cowdung : Poultry Deep Litter	1:2	1:5.5
T ₂₂	Cowdung : Poultry Deep Litter	1:2	1:3.3
T ₂₃	Cowdung : Poultry Deep Litter	1:2	1:2
T ₂₄	Cowdung : Poultry Deep Litter	2:1	1:7
T ₂₅	Cowdung : Poultry Deep Litter	2:1	1:3
T_26	Cowdung : Poultry Deep Litter	2:1	1:1.7
T ₂₇	Cowdung : Poultry Deep Litter	2:1	1:1
T ₂₈	Cowdung : Poultry Droppings	1:1	1:3.6
T ₂₉	Cowdung : Poultry Droppings	1:1	1:1.3
T ₃₀	Cowdung : Poultry Droppings	1:1	1:0.5
T ₃₁	Cowdung : Poultry Droppings	1:2	1:4
T ₃₂ ,	Cowdung : Poultry Droppings	1:2	1:1.5
T ₃₃	Cowdung : Poultry Droppings	1:2	1:0.7
T ₃₄	Cowdung : Poultry Droppings	2:1	1:3
T ₃₅	Cowdung : Poultry Droppings	2:1	1:1
T ₃₆	Cowdung : Poultry Droppings	2:1	1:0.3
T ₃₇	Poultry Droppings	100 %	1:5
	Poultry Droppings	100 %	1:2
T ₃₉	Poultry Droppings		1:1

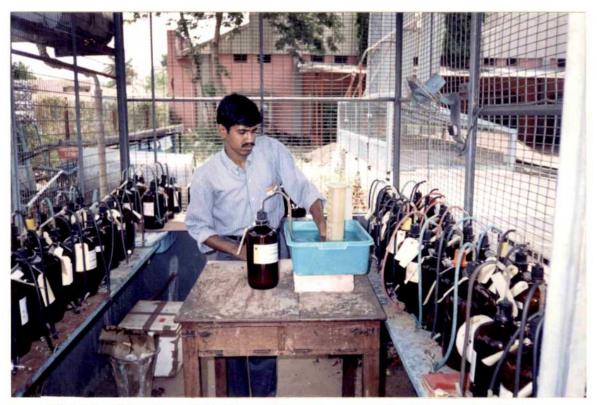


Plate No. 3.3 Quantification of biogas by water displacement method

Plate No. 3.4 Saccharometer setup for methane measurement

3.2.3. Measurement of methane content

The methane content was measured by using a saccharometer as suggested by Ellegard and Egneus (1984). A 5 ml saccharometer was used for this purpose as shown in plate 3.4.

Volume of undissolved gas

Methane content % = _____ x 100 Volume of gas injected

3.3. Details of 85 m³ KVIC model biogas plant

The basic design of biogas plant includes anaerobic tank (digester) and a gas holder. The different designs, differs depending upon many factors like its geometry, materials used, durability and cost of construction. The performance of the brooder was evaluated in the poultry litter based 85 m³ Khadi and Village Industries Commission (KVIC) model biogas plant (Plate 3.5) erected at Namakkal district of Tamilnadu state. The design details of the plant are as follows.

Gas production of the plant		85 m ³ /day
Daily loading of the plant (@ 25 kg of		4.250 m ³
dung + 25 litres of water) per m^3		
Retention period		40 days
Digester volume		170 m ³
Diameter of the digester	=	7.00 m
Height of the digester (h ₁):		

$$\pi d^{2} h_{1}$$

$$= 170$$

$$4$$

$$h_{1} = 4 \times 170 = 4.4 \text{ m}$$

$$\pi d^{2}$$

$$h_{1} = 4.4 \text{ m}$$

1

Plate No. 3.5 85 m³ KVIC model biogas plant

Storage volume of drum (@ 50% storage) = 42.5 m^3 Diameter of the drum = 6.85 mHeight of the drum (h₂)

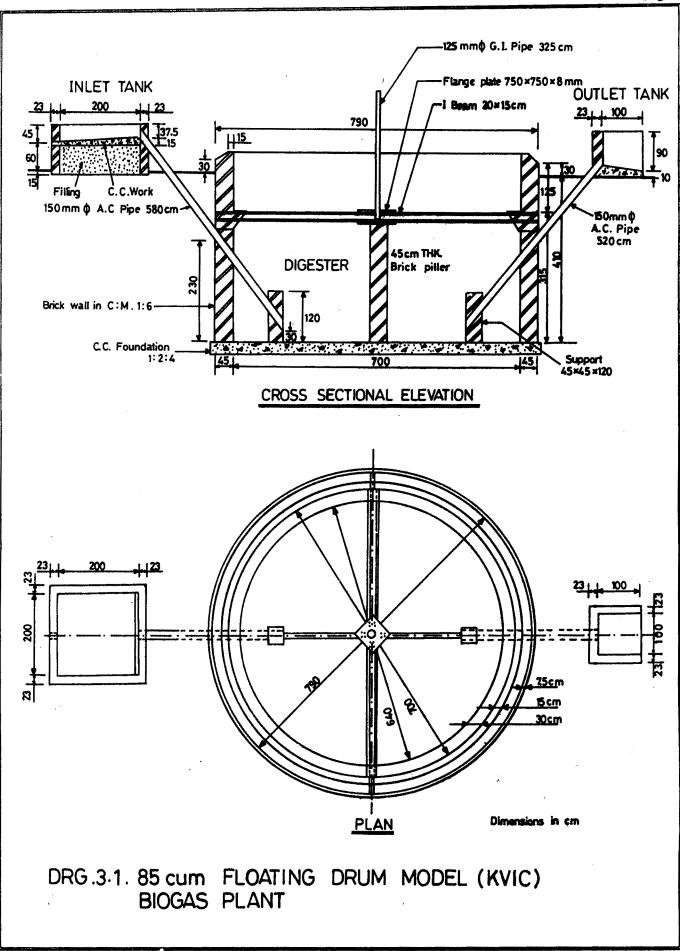
$$\frac{\tau \ d^2 h_2}{4} = 42.5$$

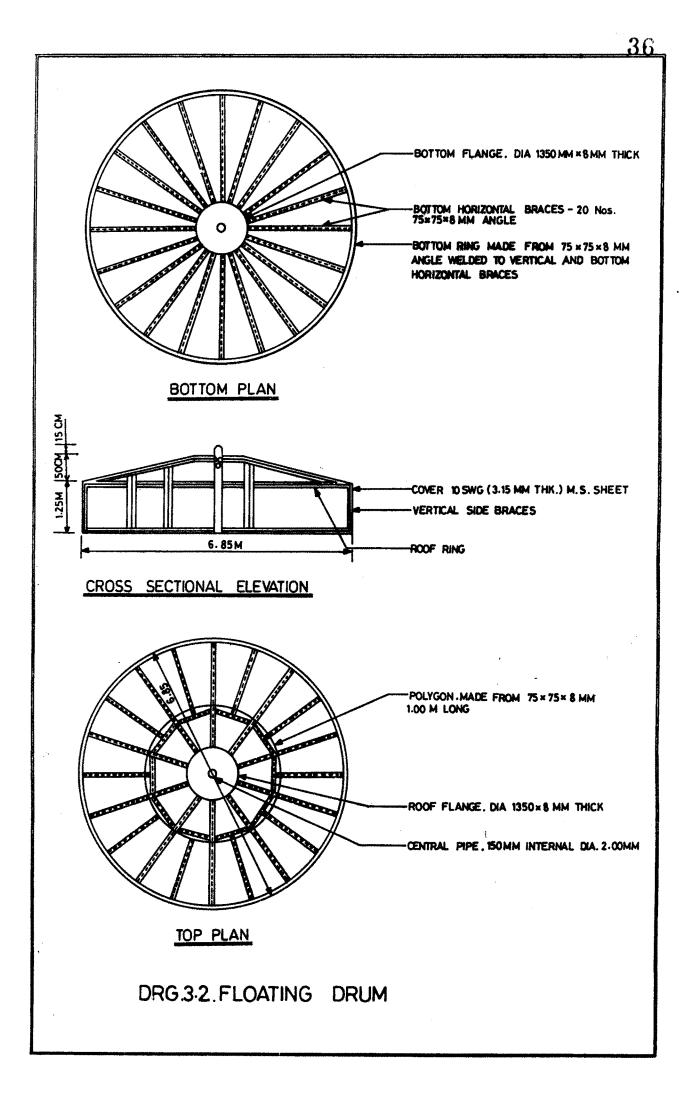
$$h_2 = \frac{4 \times 42.5}{\pi \times 6.85 \times 6.85}$$

1.15 m

===

By adding 10 cm for the height of drum in the slurry,


The total height of the drum = 1.15 + 0.10 = 1.25 m


The sectional and plan view of the 85 m^3 KVIC biogas plant is given in the drawing number 3.1 and the floating drum is given in the drawing number 3.2.

3.4. Development of Biogas Burner Type Brooder

Brooders for supplying heat to young animals are common equipment on the poultry farm. They usually use propane gas or natural gas as fuel. They all generate radiant heat by the combustion of gaseous fuel. Since combustion characteristics of biogas are quite different from those of propane and natural gas, all these brooder heaters needed refitting in order to maintain a stable biogas flame in the burner of the brooders. Since the brooder of mantle type necessitates frequent change of mantles and the replacement of mantles during the night time was very difficult, it has been proposed to develop burner type brooder.

Biogas burner type brooder was developed with a brooding capacity of 750 chicks, considering the following points:

- 1) The mode of biogas application for brooding
- 2) Position of the heat source in the brooder
- 3) Size, shape, brooding capacity and safety to the birds
- (4) Provision for burning of heat source
- 5) Heat distribution by canopy of the brooder unit
- 6) Easy of operation
- 7) Material cost
- 8) Minimising the cost of brooding operation
- 9) Temperature requirement of chicks.

3.4.1. Design of Biogas Burner type Brooder

Several factors need to be kept in view while designing biogas burner. These include desired efficiency, available fabrication facilities, ease of maintenance and ease of fitting etc. While designing biogas burner type brooder, aspects like temperature distribution, mechanical strength, flame stability and thermal efficiency need to be considered. A well designed burner should have ease of replacement of its parts, easiness to lighting by a match-stick, quick and complete flame-travel the moment flame is applied to any burner port, supports to prevent any undue movement, and corrosion resistant properties.

The presence of CO_2 as an inert gas results in a reduced burning velocity and flame propagation speed. Therefore, biogas could not be burned in propane or natural gas burners without the adjustment of the primary air inlet and addition of a metal sieve to the burner heads. By reducing the primary air mixed with the biogas, the flame stability was improved and the tendency of the flame to lift or blow off the burner was reduced. The use of the metal sieve on the burner head to increase the flame impingement effect also helped to produce a more stable flame. Since the calorific value and specific density of biogas are different from those of other gaseous fuels, the gas orifice should be enlarged or the gas pressure at the burner increased to achieve the rated heat input, when other gas burner were used. Heat transfer efficiency is an important performance indicator of a burner, it presents the ratio of heat derived from gas for heating and heat actually available. For a reasonably efficient burner, its value is around 70 per cent.

The developed biogas burner type brooder (Plate 3.6) was shown in drawing number 3.3. It consists of an orifice for injecting biogas, an adjustable port for air entry, a chamber for thorough mixing of gas and air, and ports for exit and burning of gas-air mixture.

The burner design involves selection of requisite size of burner tube, injector orifice, venture tube, ports, aeration facilities etc. Dimension of burner tube determines time needed to allow air and gas mixing and to bring it near flame port. If the diameter of the burner tube is too small, combustion mixture tends to travel faster destabilizing the flame. A long tube on the other hand tends to limit aeration.

A injector is used to deliver gas for burning. The following mathematical relationship can be used for determining the diameter of injector orifice.

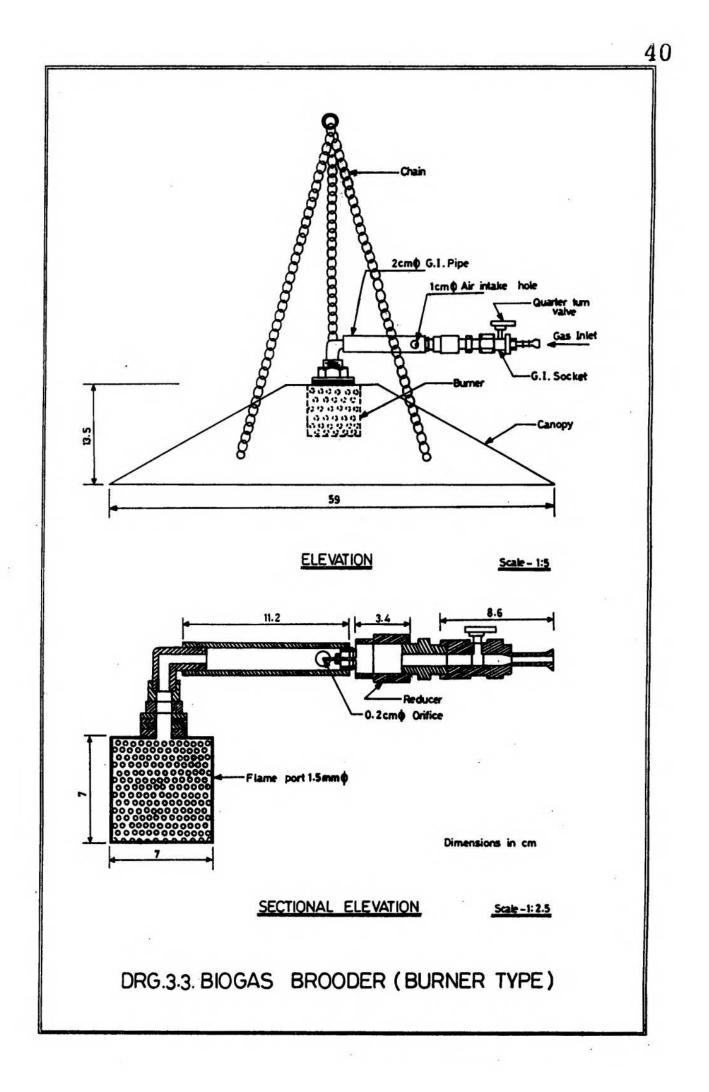
$$Q = 1300 \text{ Cd}^2 \sqrt{P}$$

Where,

 $Q = gas flow rate ft^3/hour$

C = discharge coefficient

D = diameter of injector orifice in inches (to be determined)


P = pressure in water gauge (w.g)

S = specific gravity of gas

Plate No. 3.6 Biogas brooder (burner type)

Rearrangement of above equation,

$$d^2 = \frac{Q}{1300 c} \frac{\sqrt{S}}{P}$$

where,

Q	=	0.36 m ³ /hour
С		0.86
Р	=	8 w.g
S	algiber Talabir	0.92

Following substitution, we get

d ²		0.36x35.315 (ft ³ /hr)	√ 0.92
		1300 x 0.86	8
d ²		3.856 x 10 ⁻³	
d	=	0.06 inch	
		0.15 cm	
d	64476- 	1.5 mm.	
Area of injector or	rifice	$= \pi d^2 =$	3.14×1.5^2
		4	4
		= 1.7671 = 1.77	mm ²

3.4.2. Gas flow rate in Biogas burner

,

Total LPG consumption for Brooding period of 21 days	= 91 Kg
Biogas equivalent, 1 m ³ of Biogas	= 0.433 kg of LPG
Total Biogas requirement for Brooding period of 21 days	= <u>1 m³</u> x 91
	0.433
	$= 210.16 \text{ m}^3$
Biogas requirement per day for brooding operation	= 210.16
	21

.

		10.0076 m ³ .
Average biogas requirement per day	=	10 m ³
Average flow rate per hour	===	0.416 m ³ /hr.

During the first week of Brooding operation the temperature requirement is high. Hence attaining required temperature the gas flow rate will be high.

Biogas consumption for 1 st week		110.85
	=	111 m ³
Biogas requirement per day in 1 st week of Broodi	ng =	111/7
	=	$15.84 = 16 \text{ m}^3$
Gas flow rate		0.659
		0.66 m ³ /hr.

Therefore the burner of 0.66 m^3/hr gas consumption was designed and tested during the brooding.

3.5. Performance evaluation of brooders

3.5.1. Temperature distribution under brooder unit

Temperature was measured at a radial distance of 0, 15, 30, 45, 60, 75, 90, 105, 120 and 150 cm from biogas burner for temperature distribution at different heights of 75, and 100 cm from the ground level. The temperature was measured by means of 302 K thermometer with thermocouple type K (NiCr-NiAl).

3.5.2. Temperature distribution under heat source

Temperature was measured at the ground level for different heights of heat source (biogas burner) *viz*, 75 and 100 cm from the floor level for obtaining optimum temperature requirement for chicks. But for the heat source height of 75 cm, the temperature was recorded only at the ground level. In the grid, the temperature was noted by 302 K thermometer with K type thermocouple. The observation of temperature was restricted to 300 x 300 cm. Since the higher temperature may cause danger to the chicks, the region is to be identified to prevent such damage. Surfer package (Golden microsoft Inc. 1989, version 4.07) was used for drawing the isothermal contour lines for heat distribution under the heat source in the selected brooders.

3.5.3. Illumination measurement

The light intensity (illumination) was measured at a distance of 0, 15, 30, 45, 60, 75, 90, 105, 120 and 150 cm from the biogas burner at different heights of 75 and 100 cm from the ground level and for control, the illumination was measured from centre of brooder unit. The illumination was measured by using Luxtron $L_x - 101$ Lux meter (Sl. No 437603).

3.5.4. Fuel consumption in brooders

The biogas consumption in biogas brooder (burner type) and butane consumption in LPG brooder for 21 days was studied in order to evaluate the performance of biogas brooder in comparing with LPG brooder. The study was carried out in the poultry industry for 1500 number of chicks and the gas consumption was measured by using the following instruments/meters.

1. Biogas consumption :	By using wet type gas flow meter
-------------------------	----------------------------------

2. LPG consumption : Based on the total LPG consumption by weight basis

3.6. Cost economics for brooding of chicks

The cost economics was worked out for brooding a bird in conventional LPG brooder and newly developed biogas brooder. The cost analysis was carried out by incorporating fixed and variable cost of the operation. Standard straight line method was followed for cost analysis.

3.7. Energy inflow and outflow of poultry industry

A detailed energy audit study was carried out in the Pioneer Breeding Farms, Pongalur to estimate the energy use from hatching to layering. Each unit operations *viz.*, hatching, brooding and growing and layering in the poultry production process were studied for energy inflow and outflow. The study was carried out for one year period and the average value is presented.

3.7.1 Energy input

The energy input by different sources was separately quantified. To calculate the energy input, the equivalent energy co-efficients (Panesar and Bhatnagar, 1987) were used as follows.

Input form	equivalent Energy MJ	
Human labour		
Man-hour	1.97	
Woman-hour	1.57	
Diesel, l	50.31	
LPG, Kg.	45.56	
Electricity, kWh	11.93	
Firewood, Kg.	18.9	

Installed capacity, kWh X 11.93

The equivalent energy for electric motors =

0.85

3.7.2. Actual electricity and fuel use

The actual fuel and electricity used for each unit operation of the poultry production process were assessed and quantified for the capacity of 80,000 chicks. The

Power (P), kW = $\frac{\text{VIF}}{1000}$ for single phase 1000 = $\frac{1.73 \text{ VIF}}{1000}$ for 3 phase 1000

Energy consumption, kWh = P, kWXh

Where,

V= Voltage, I = currentF = Power factor, h = Hours of use

The current was measured using a clamp on ammeter (make Yu Fung, model:Fy-300) and voltage with voltmeters. In cases, where the actual current could not be estimated, it was assumed that, the motor is working at 80 percent of its installed capacity. The LPG consumption was measured by weight basis per day and noted for total period of brooding operation (21 days).

Results and Discussion

.

•

CHAPTER IV

RESULTS AND DISCUSSION

In this chapter, the results of the tests carried out with poultry wastes and cowdung in different proportions for biogas production through anaerobic digestion and its application for brooding are described and discussed under the following headings.

- 1. Characterization of feedstock.
- 2. Estimation of biogas production from poultry wastes and cowdung.
- 3. Performance evaluation of biogas brooder.
- 4. Cost economics for brooding of chicks.
- 5. Energy inflow and outflow of the poultry industry.

4.1. Characterization of feedstock

4.1.1. Total solids and volatile solids content

The physical and chemical properties of different feedstocks were found and summarized in Table 4.1.

 $\mathfrak{I}_{c}^{\diamond}$

It can be clearly seen from the Table 4.1 that the maximum total solid content of 89.32 per cent was present in poultry deep litter because of presence of bed material which have non combustible material along with the poultry deep litter. The minimum total solid content was present in cowdung as 13.79 per cent. It could also be seen that maximum and minimum volatile solid content was present in poultry deeplitter (65.64 per cent) and cowdung (10.66 per cent) as feedstock respectively.

4.1.2. Volatile solid content in total solids

The per cent of volatile solid content in total solids of different feedstock is summarized in Table 4.1. The volatile solid content in total solids falls in the range of 22 to 69 per cent. The maximum value was 68.90 per cent in poultry manure as feedstock and the minimum value was 22.70 per cent in cowdung alone as feedstock.

Feedstocks (samples)	Total Solid Content in per cent	VS (as per cent of TS)	Volatile Solid Content in per cent	Total organic carbon in per cent	Total nitrogen in per cent	Carbon Nitrogen ratio
Cowdung	13.79	22.70	10.66	45.80	1.86	24.62
Poultry manure-yard	79.99	68.90	24.88	14.20	1.90	7.47
Poultry deep litter	89.32	26.51	65.64	21.70	1.40	15.50
Poultry droppings	30.96	65.79	10.60	24.00	2.45	9.80

Table 4.1. Physical and chemical properties of different feedstocks

4.1.3. Total Organic Carbon and Total Nitrogen

The cowdung sample significantly contains higher amount of total organic carbon as 45.80 percent compared to the other waste samples and poultry manure contains lower amount of organic carbon, because of combustible material present with manure. The table 4.1 clearly shown the nitrogen content of poultry droppings maximum value as 2.45 per cent and minimum total nitrogen was found in the case of poultry deep litter because of bed material contains dry matter of non combustible organic materials.

4.1.4. Carbon Nitrogen ratio

Table 4.1.clearly indicated the maximum carbon nitrogen ratio was obtained in the cowdung sample as 24.62 and followed by the poultry deep litter as 15.50 and poultry droppings as 9.80. The lowest C:N ratio was recorded in the poultry manure as feedstock.

4.2. Estimation of biogas production potential from different wastes

The daily biogas production recorded from above wastes is given in the appendix A. The total biogas production of these wastes is tabulated in Table 4.2 as given below.

	Total Solids,	Total biogas production,	Max gas yield/day	Average gas
Treatment	per cent	ml		yield/day
1	5	5378	230	60
2	10	6783	450	81
3	15	16073	550	172
4	5	1925	140	26
5	10	4540	200	53
6	15	10593	415	118
7	20	15905	860	181
8	5	1698	530	. 24
9	10	2555	110	31
10	15	11898	570	121
11	20	7670	325	91
12 ·	5	5173	200	62
13	10	11545	520	151
14	15	18058	790	208
15	20	18073	575	207
16	5	11708	570	120
17	10	5428	1150	73
18	15	8048	1455	124
19	20	12088	1825	、 161
20	5	11833	600	130
21	10	6200	2085	91
22	15	9153	1775	135
23	20	13225	2168	165
24	5	11750	2365	119
25	10	14838	1275	160
26	15	8683	1770	31
27	20	20655	1545	179
28	5	14710	425	156
29	10	33640	1155	357
30	15	41333	1450	410
31	5	15360	520	157
32	10	24908	750	253
33	15	29128	1210	267
34	5	16855	755	166
35	10	34873	1215	312
36	15	47273	1685	457
37	5	7770	275	83
38	10	16448	1235	123
39	15	30655	1225	303

.

.

.

.

Table 4.2. Total biogas production for different combinations of feedstocks

•

Table 4.2 reveals the total gas production from all combinations. The highest gas production was recorded from the combination of cowdung and poultry droppings (T_{36}) in the ratio of 2:1 with 15 per cent total solids as 47273 ml and lowest was recorded from the combination of cowdung and poultry manure (T_8) in 1:2 ratio with 5 per cent total solids as 1925 ml.

The gas production was analyzed with different types of poultry industry wastes and cowdung was chosen as a control for estimation for biogas production.

4.2.1. Biogas production from different combination of feedstocks 4.2.1.1. Poultry Manure based material combinations

The total biogas production obtained from the poultry manure based material combinations with ratios 1:1, 1:2 and 2:1 ratios with the addition of desired quantity of water to have the 5 per cent total solids are summarized in Table 4.3.

Table 4.3. Total Gas Production from Poultry Manure combinations in 1:1, 1:2 and2:1 ratios with 5 per cent TS

Treatment	Combination	Gas production, ml
T ₄	Cowdung : Poultry manure (1:1)	1925
T ₈	Cowdung : Poultry manure (1:2)	1698
T ₁₂	Cowdung : Poultry manure (2:1)	5173
T ₁	Cowdung (100 per cent)	5378

The highest gas production was achieved in the combination of cowdung and poultry manure (T_{12}) in the ratio of 2:1 as 5173 ml followed by cowdung and poultry manure (T_4) in the ratio of 1:1 as 1925 ml and subsequently by cowdung and poultry manure (T_8) in 1:2 ratio as 1698 ml. All these combination produced lower biogas as compared to cowdung alone as feed material as 5378 ml.

The weekly and cumulative gas production from different poultry manure based material combination mixed in the ratios of 1:1 and 1:2 and 2:1 with 5 per cent total solids are given in figure 4.1 and 4.2 respectively.

Among all the combinations, the cowdung and poultry manure in the ratio of 2:1 at 5 per cent total solids produced maximum biogas per week during 6^{th} week as 1305 ml, but suddenly fell down in the consecutive weeks. This is because the production of gas from cowdung which favoured optimum C:N ratio caused this increased as stated by Gadre *et al.* (1990). The gas production ceased between 12th and 15th week in all the combinations.

Figure 4.2 shows that the stability was achieved in the combination of cowdung and poultry manure in 1:1 ratio (T₄) and cowdung and poultry manure in 1:2 ratios (T₈) after eighth week which shows that effective gas production have been achieved during first eight weeks. Where as in the case of cowdung and poultry manure (T₁₂) in the ratio of 2:1 and cowdung (T₁) the gas production gradually reduced from 1st week to 12th week and then attained stability after 12th week.

The total biogas production obtained from the poultry manure based material combinations with 1:1, 1:2 and 2:1 ratios with the addition of desired quantity of water to have the 10 per cent total solids are summarized in Table 4.4.

 Table 4.4. Total Gas Production from Poultry Manure based material combinations

 in 1:1, 1:2 and 2:1 ratios with 10 per cent TS

Treatment	Combination	Gas production, ml
T ₅	Cowdung : Poultry manure (1:1)	4540
T,	Cowdung : Poultry manure (1:2)	2555
T ₁₃	Cowdung : Poultry manure (2:1)	11545
T ₂	Cowdung (100 per cent)	6783
	(× (-1587	59-)"="

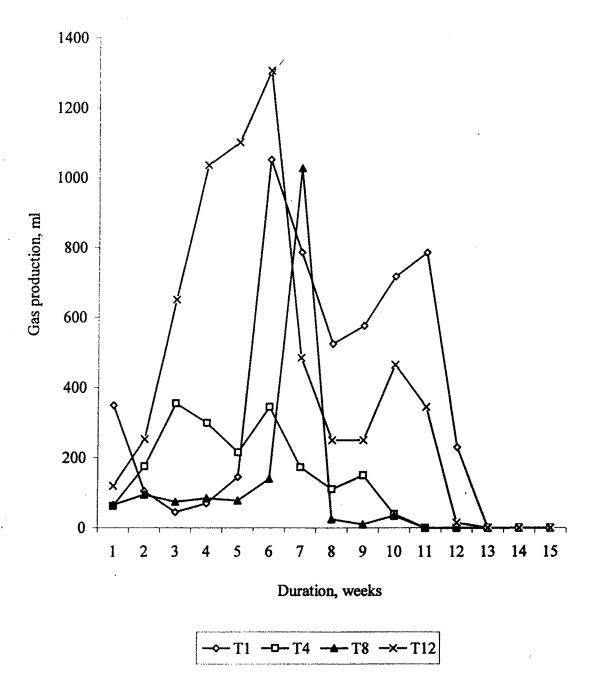


Fig 4.1 WEEKLY BIOGAS PRODUCTION FROM POULTRY MANURE BASED MATERIAL COMBINATION WITH 5% TS

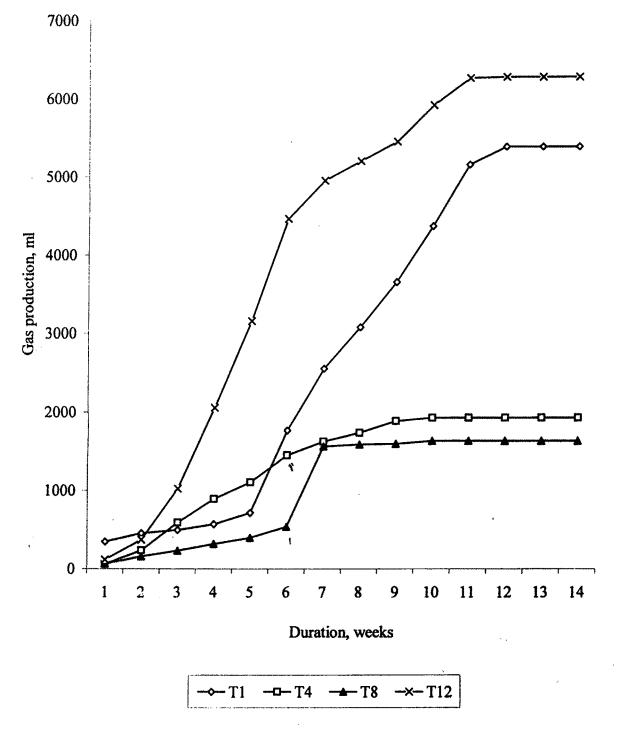


Fig 4.2 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY MANURE BASED MATERIAL COMBINATION WITH 5% TS

The biogas production trend was similar to that of poultry manure material based combinations with 5 per cent. Table 4.4 reveals that the maximum total gas production was achieved in cowdung and poultry manure in 2:1 ratio as 11545 ml. All the combinations produced biogas more or less double the quantity of 5 per cent TS, whereas the cowdung in 100 per cent is not doubled.

Figures 4.3 and 4.4 reveal that the weekly and cumulative biogas production of different poultry manure based materials as feed stock respectively. Among all the combinations, cowdung and poultry manure in the ratio of 2:1 (T_{13}) produced maximum gas production throughout the period. The maximum gas production per week was achieved also in combination cowdung and poultry manure in the ratio of 2:1 (T_{13}) as 1720 ml. All other combination showed the same trend in 5 per cent TS.

From figure 4.4 which shows the stability of gas production was achieved in the combination of cowdung and poultry manure in the ratio of 1:1 (T_5) and cowdung and poultry manure (T_9) in 1:2 ratio after 7th week as in the case of 5 per cent TS, whereas in the case of cowdung and poultry manure in 2:1 ratio (T_{13}), the gas production increased from 1st week to 12th week and then stabilized during next three weeks.

The average gas production was recorded maximum as 151 ml/day when cowdung mixed with poultry manure (T_{13}) in 2:1 ratio followed by cowdung mixed with poultry manure (T_5) in 1:1 ratio and cowdung mixed with poultry manure (T_9) in the ratio of 1:2. The average gas production was recorded as 81 ml/day when cowdung alone as feedstock (T_2) . The gas production lasted for 12 to 15 weeks in all the combination of poultry manure.

The total biogas production obtained from the poultry manure based material combinations with ratios 1:1, 1:2 and 2:1 ratios with the addition of desired quantity of water to have the 15 per cent total solids are summarized as given Table 4.5.

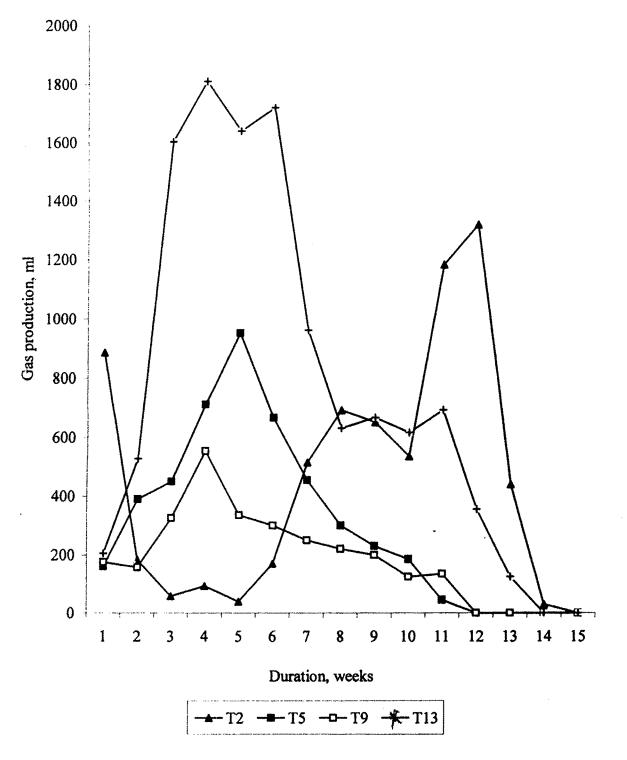


Fig 4.3 WEEKLY BIOGAS PRODUCTION FROM POULTRY MANURE BASED MATERIAL COMBINATION WITH 10% TS

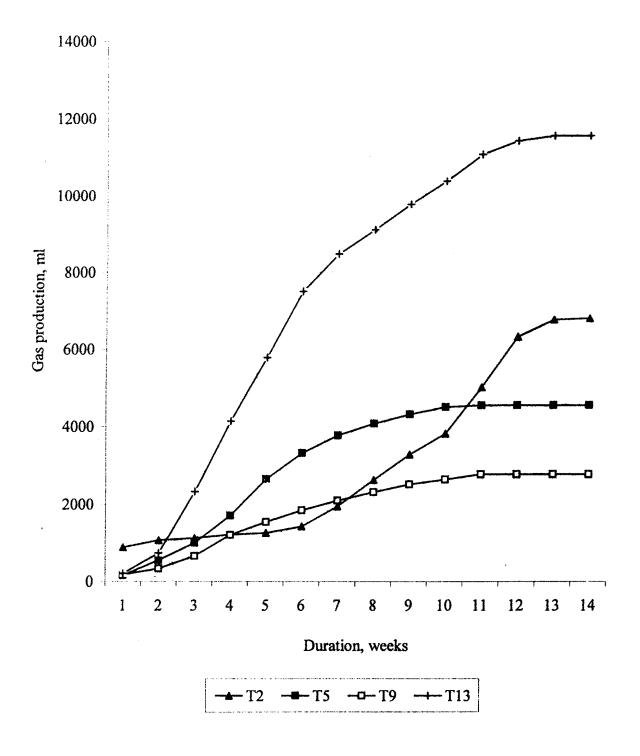


Fig 4.4 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY MANURE BASED MATERIAL COMBINATION WITH 10% TS

Table 4.5. Total Gas Production from Poultry Manure based material combinationsin 1:1, 1:2 and 2:1 ratios with 15 per cent TS

Treatment	Combination	Gas production, ml
T ₆	Cowdung : Poultry cage manure (1:1)	10593
T ₁₀	Cowdung : Poultry manure (1:2)	11 898
T ₁₄	Cowdung : Poultry manure (2:1)	18058
T ₃	Cowdung (100 per cent)	16073

The highest gas production was achieved in the combination of cowdung and poultry manure (T_{14}) in the ratio of 2:1 as 18058 ml. When the TS value increased from 5 per cent to 15 per cent the total biogas production also tripled i.e. from 5173 ml to 18058 ml. The lowest gas production was achieved in cowdung and poultry manure (T_6) in the ratio 1:1 with the TS content of 15 per cent as 10593 ml.

The weekly and cumulative gas production from different poultry manure based material combination mixed in the ratios of 1:1 and 1:2: and 2:1 with 15 per cent total solids are given in figure 4.5 and 4.6 respectively. The weekly biogas production reveals that the similar trend follows as in the case 5 per cent TS.

The maximum average gas production was recorded as 208 ml/day when cowdung mixed with poultry manure (T_{13}) in 2:1 ratio as compared to the average gas production as 172 ml/day when cowdung alone (T_3) as feedstock. This condition was very similar to 10 per cent total solids.

The total biogas production obtained from the poultry manure based material combinations with ratios 1:1, 1:2 and 2:1 ratios with the addition of desired quantity of water to have the 20 per cent total solids are summarized as given Table 4.6.

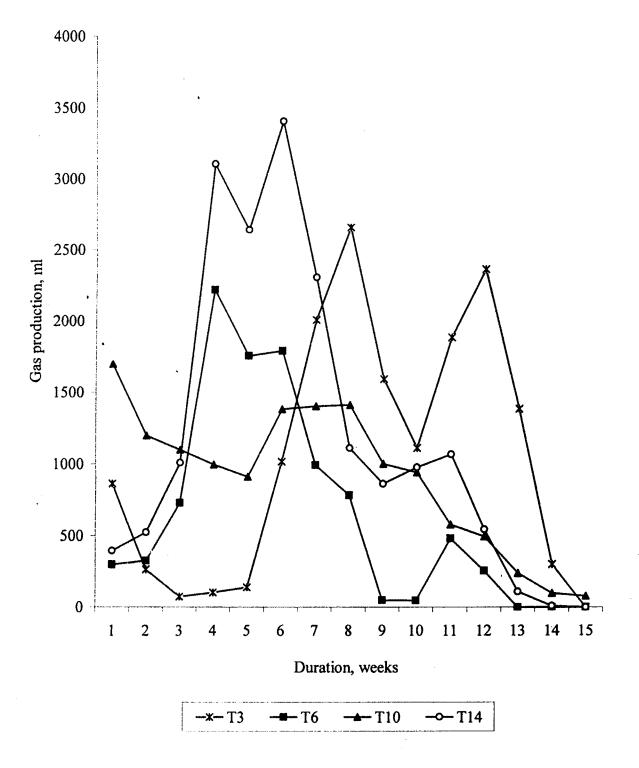


Fig 4.5 WEEKLY BIOGAS PRODUCTION FROM POULTRY MANURE BASED MATERIAL COMBINATION WITH 15% TS

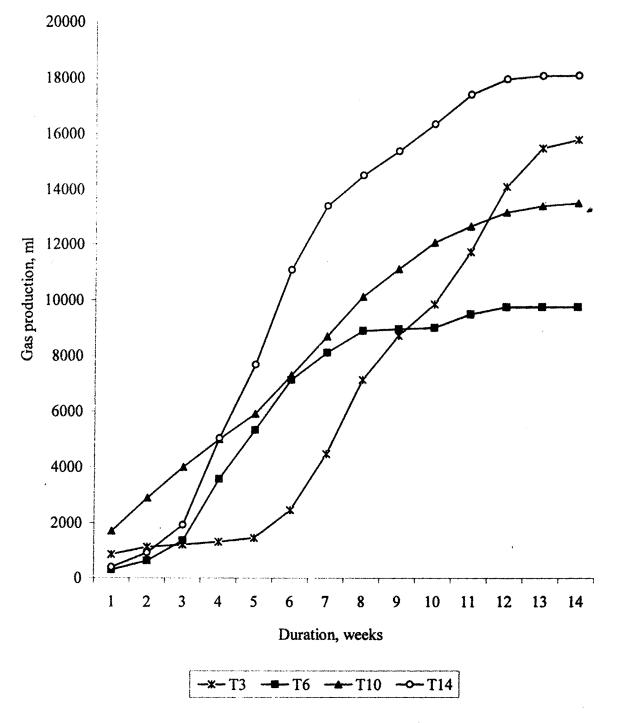


Fig 4.6 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY MANURE BASED MATERIAL COMBINATION WITH 15% TS

:58

Treatment	Combination	Gas production, ml
T ₇	Cowdung : Poultry cage manure (1:1)	15905
T ₁₁	Cowdung : Poultry manure (1:2)	7670
T ₁₅	Cowdung : Poultry manure (2:1)	18073

Table 4.6. Total gas production from Poultry manure based material combinationsin 1:1, 1:2 and 2:1 ratios with 20 per cent TS

The maximum total biogas production was observed in the combination of cowdung and poultry manure (T_{15}) in the ratio of 2:1 as 18073 ml followed by cowdung and poultry manure (T_7) in the ratio of 1:1 as 15905 ml. The lowest total gas production was recorded with cowdung and poultry manure (T_{15}) in the ratio of 1:2 as 7670 ml.

The weekly and cumulative gas production from different poultry manure based material combination mixed in the ratios of 1:1 and 1:2: and 2:1 with 20 per cent total solids are given in figures 4.7 and 4.8 respectively. The weekly biogas production reveals that the similar trend follows as in the case 5 per cent TS. Among all the combinations, the cowdung and poultry manure in the ratio of 2:1 produced maximum biogas per week during 5th to 6th week as 3875 ml, but suddenly fell down in the consecutive weeks. This is because the production of gas from cowdung caused this increased as stated by Gadre *et al.* (1990). The gas production ceased during the 14th 15th week in all the combinations.

From all the combination of poultry manure based material with the ratios of 1:1,1:2 and 2:1 with the 5 per cent, 10 per cent, 15 per cent and 20 per cent TS, it can be seen that the total gas production was achieved in the 2:1 ratio.

Among these combinations of 2:1 ratio the total gas production increased as the TS content increases from 5 per cent to 20 per cent i.e. from 5173 ml to 18073 ml respectively.

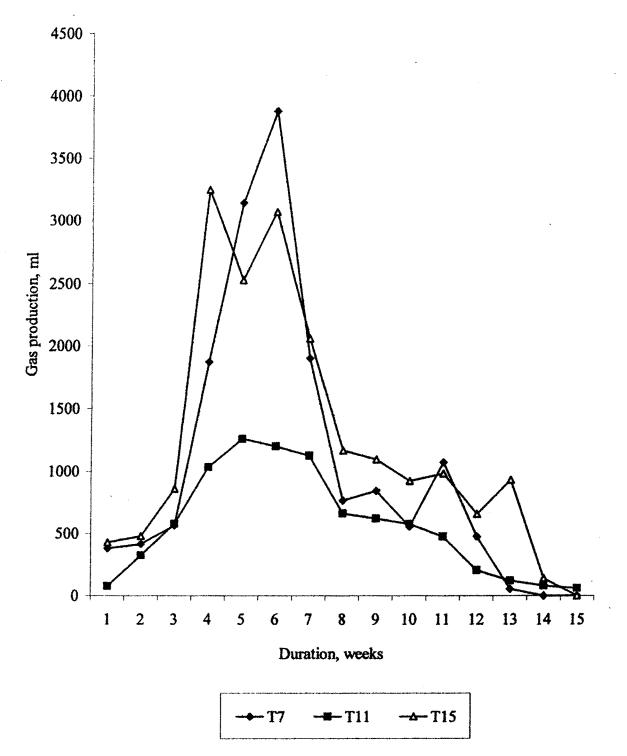


Fig 4.7 WEEKLY BIOGAS PRODUCTION FROM POULTRY MANURE WITH 20% TS

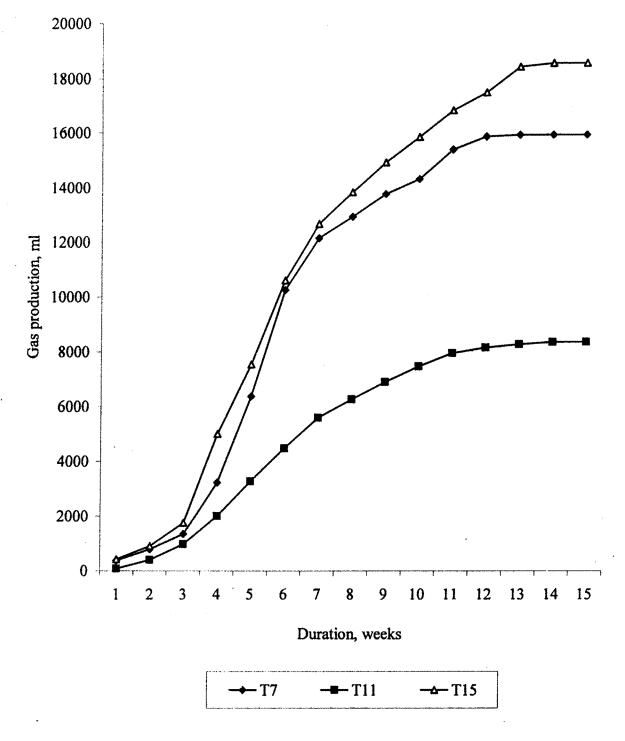
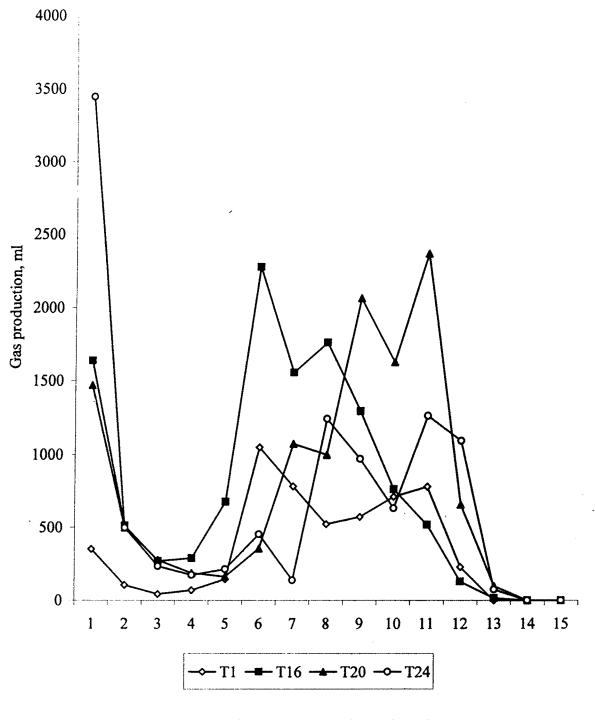
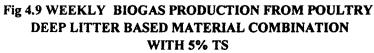


Fig 4.8 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY MANURE BASED MATERIAL COMBINATION WITH 20% TS

4.2.1.2. Poultry Deep Litter based material combinations


Total biogas production of the poultry deep litter based material combinations with the ratios of 1:1, 1:2 and 2:1 with the addition of desired quantity of water to have the 5 per cent total solids are summarized in Table 4.7


Table 4.7. Total Gas Production from Poultry Deep Litter material combinations in1:1, 1:2 and 2:1 ratios with 5 per cent TS

Treatment	Combination	Gas production, ml
T ₁₆	Cowdung : Poultry Deep Litter (1:1)	11708
T ₂₀	Cowdung : Poultry Deep Litter (1:2)	11833
. T ₂₄	Cowdung : Poultry Deep Litter (2:1)	11750
T ₁	Cowdung (100 per cent)	5378

Cowdung and poultry deep litter produced almost equal volume of total biogas in the ratios of 1:1, 1:2 and 2:1 as 11,708 ml, 11,833 ml and 11750 ml respectively. The minimum total biogas production was recorded (5378 ml) with the cowdung (T_1) as feedstock.

The weekly and cumulative gas production from different poultry litter based material combination mixed in the ratios 1:1, 1:2 and 2:1 with 5 per cent TS are given in figures 4.9 and 4.10 respectively. In all the combinations, the daily gas production was high in the initial period which decreased during 3^{rd} to 4^{th} week and gradually increased during the 6^{th} week and then gradually decreased to the end except cowdung as feedstock in 100 per cent (T₁). The total gas production recorded during the first week was maximum in the case of cowdung with poultry deep litter (T₂₄) in the ratio of 2:1 as 3445 ml followed by the combination of 1:2 ratios. Webb and Hawkes (1985), reported that the rate of gas production was very high immediately after start up but decreased sharply after approximately seven days which were confirmed in this experiment, because poultry litter easily digested anaerobically over a wide range of influent total solids.

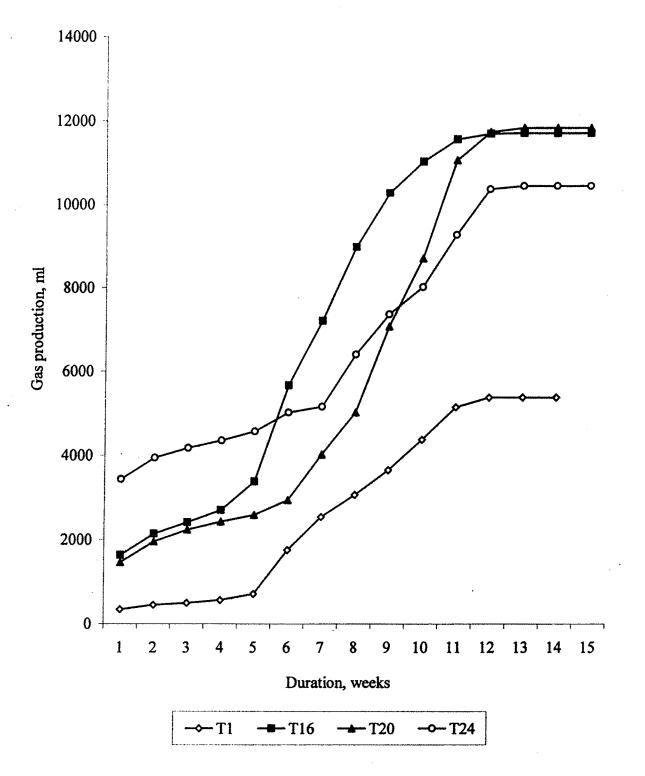


Fig 4.10 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATION WITH 5% TS

This downward trend continued for first two weeks but had increased in the consecutive weeks of fifth and sixth and then decreased. The gas production lasted for about 13 to 15 weeks in all combinations. The average gas production per week was maximum in first week for all treatment except for cowdung and the higher value was 2365 ml/day in the second day of feeding in the combination of cowdung with poultry deep litter (T_{24}) in the ratio of 2:1. The minimum average gas production was observed in the cowdung alone as feedstock (T_1) as 60 ml/day.

Total biogas production of the poultry litter based material combinations with the ratios of 1:1, 1:2 and 2:1 with the addition of desired quantity of water to have the 10 per cent TS are summarized and given in Table 4.8.

 Table 4.8. Total Gas Production from Poultry Deep Litter material combinations in

 1:1, 1:2 and 2:1 ratios with 10 per cent TS

Treatment	Combination	Gas production, ml
T ₁₇	Cowdung : Poultry Deep Litter (1:1)	5428
T ₂₁	Cowdung : Poultry Deep Litter (1:2)	6200
T ₂₅	Cowdung : Poultry Deep Litter (2:1)	14838
T ₂	Cowdung (100 per cent)	6783

The maximum total biogas production was observed in the combination of cowdung and poultry deep litter (T_{25}) in the ratio of 2:1 as 14838 ml. The lowest total gas production was recorded with cowdung and poultry deep litter (T_{17}) in the ratio of 1:2 as 5428 ml.

The weekly and cumulative gas production from different poultry deep litter based material combination mixed in the ratios of 1:1 and 1:2: and 2:1 with 10 per cent total solids are given in figure 4.11 and 4.12 respectively.

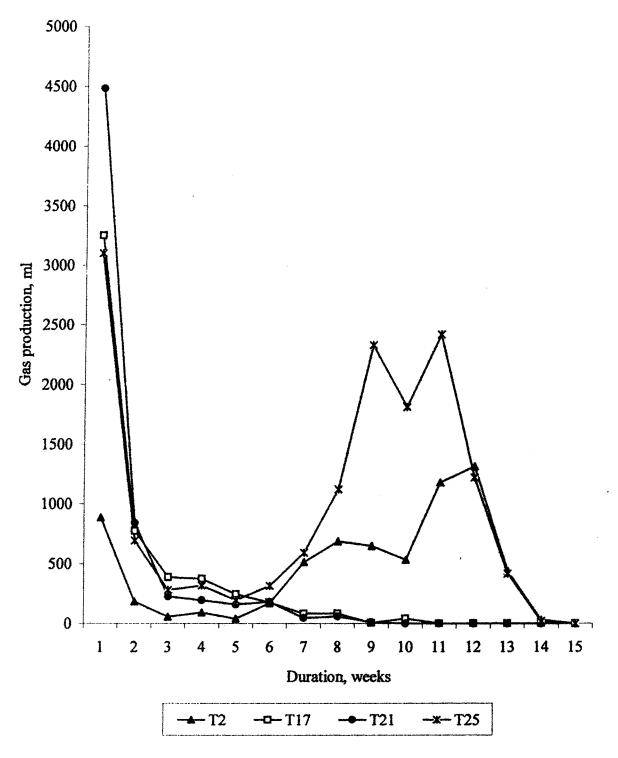


Fig 4.11 WEEKLY BIOGAS PRODUCTION FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATION WITH 10% TS

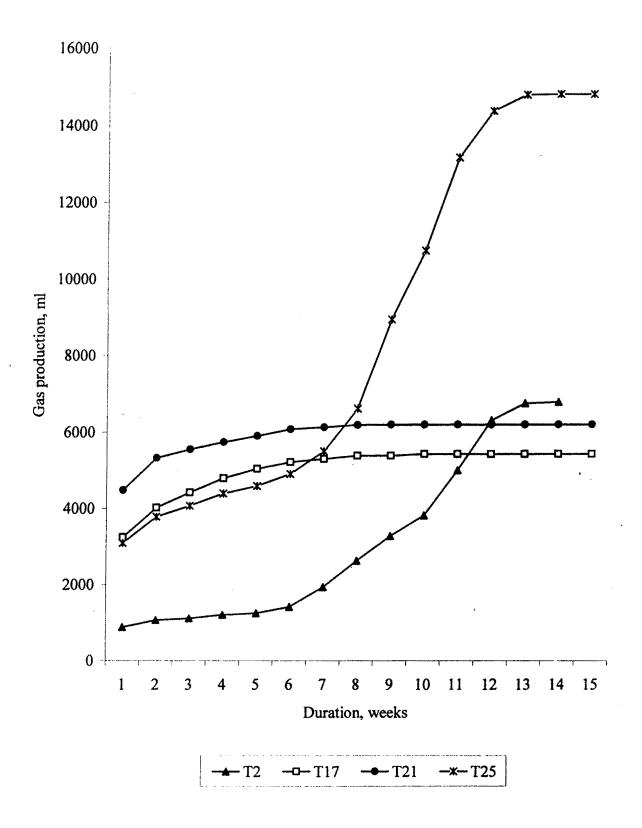


Fig 4.12 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATION WITH 10% TS

From the figure 4.11 it is observed that the maximum gas produced in the first week of all combinations and it suddenly fell down in the consecutive weeks. The combination of cowdung and poultry deep litter (T_{21}) in the ratio of 1:2 produced maximum gas in the first week and falls in the next week. This is because of presence of cowdung and poultry deeplitter in the ratio of 2:1.

Figure 4.12 reveals that the gas production rate was increased in the combination of cowdung and poultry deep litter (T_{25}) in the ratio of 2:1. The maximum gas production per day (1275 ml/day) was recorded in the first day of feeding. The average gas production per week was lowest in the case of cowdung alone (T_2) as feedstock. The other two treatments cow dung and poultry deep litter mixed in 1:1 ratio (T_{17}), cow dung and poultry deep litter mixed in 1:1 ratio (T_{21}) were shown the similar trend in the gas production rate.

Total biogas production of the poultry litter based material combinations with the ratios of 1:1, 1:2 and 2:1 with the addition of desired quantity of water to have the 15 per cent TS are summarized in Table 4.9.

 Table 4.9. Total Gas Production from Poultry Deep Litter material combinations in

 1:1, 1:2 and 2:1 ratios with 15 per cent TS

Treatment	Combination	Gas production, ml
T ₁₈	Cowdung : Poultry Deep Litter (1:1)	8048
T ₂₂	Cowdung : Poultry Deep Litter (1:2)	9153
T ₂₆	Cowdung : Poultry Deep Litter (2:1)	8683
T ₃	Cowdung (100per cent)	16073

The maximum total biogas production was achieved in the combination of cowdung and poultry deep litter (T_{22}) in the ratio of 1:2 as 9153 ml except cowdung alone as feed material and minimum total gas production was recorded with cowdung and poultry deep litter (T_{18}) in the ratio of 1:1 as 8048 ml.

The weekly and cumulative gas production from different poultry deep litter based material combination mixed in the ratios of 1:1 and 1:2: and 2:1 with 15 per cent total solids are given in figures 4.13 and 4.14 respectively.

All the combinations of poultry deep litter based materials were having a higher gas production till the first week and it suddenly fell down in the following days. Webb and Hawkes (1985), reported that the rate of gas production was very high immediately after start up but decreased sharply after approximately seven days which were confirmed in this experiment, From the figure 4.13 it is observed that the gas production was maximum (7035 ml) in the first week itself in the combination of 1:2 ratio (T_{22}). The gas production lasted for about 12 to 13 weeks in all combinations. The biogas production was in the range of 4000 ± 500 ml in all combinations for the first two weeks except in cowdung. In the cumulative gas production the poultry deep litter based combinations shows similar trend in decrease in biogas production after first week. But this was reverse trend in cowdung (T_3) in the water mix ratio of 1:0.5.

Total biogas production of the poultry litter based material combinations with the ratios of 1:1, 1:2 and 2:1 with the addition of desired quantity of water to have the 20 per cent TS are summarized and given in Table 4.10.

Table 4.10. Total gas production from Poultry Deep Litter material combinations in1:1, 1:2 and 2:1 ratios with 20 per cent TS

Treatment	Combination	Gas production, ml
T ₁₉	Cowdung : Poultry Deep Litter (1:1)	12088
T ₂₃	Cowdung : Poultry Deep Litter (1:2)	13225
T ₂₇	Cowdung : Poultry Deep Litter (2:1)	20655

The maximum total biogas production was observed in combination of cowdung and poultry deep litter (T_{27}) in the ratio of 2:1 as 20655 ml and minimum total gas

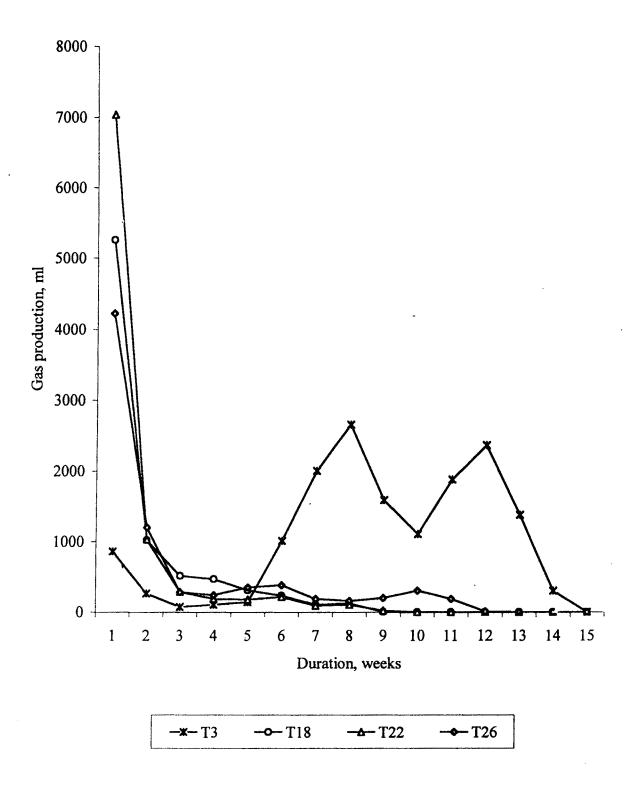


Fig 4.13 WEEKLY BIOGAS PRODUCTION FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATION WITH 15% TS

70

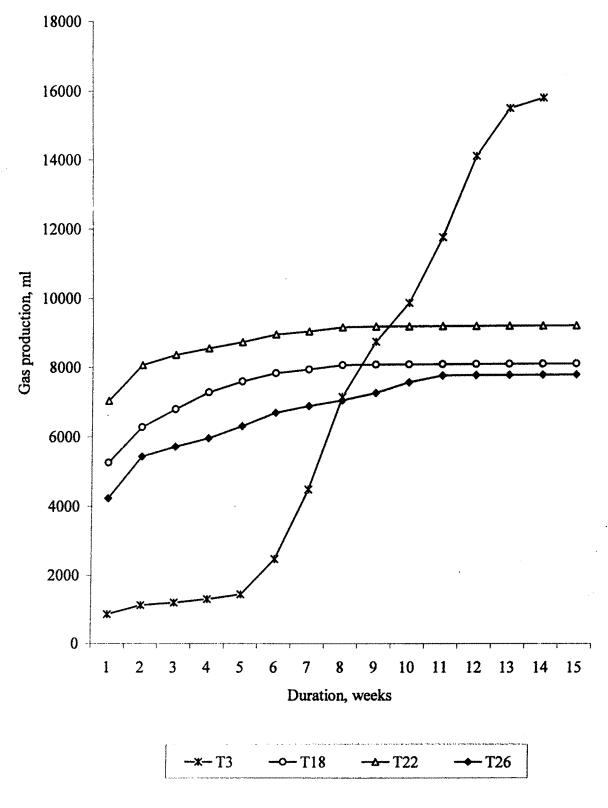


Fig 4.14 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATION WITH 15% TS

production was recorded with cowdung and poultry deep litter (T_{19}) in the ratio of 1:1 as 12088 ml. The weekly and cumulative gas production from different poultry deep litter based material combination mixed in the ratios of 1:1 and 1:2: and 2:1 with 15 per cent total solids are given in figure 4.15 and 4.16 respectively. The weekly gas poultry gas production of poultry deep litter combinations with 20 per cent TS shows the similar trend followed with as 10 per cent TS during the first week the biogas production was very high in the combination of cowdung and poultry deep litter in 1:1 ratio has 8250 ml. Among all the combinations the maximum gas yield per day in the case of cow dung and poultry deep litter mixed with 1:2 ratio has 2168 ml.

Among all the combinations of poultry deep litter based materials the maximum total biogas production was recorded in cow dung and poultry litter mixed with 1:2 ratio with 20 per cent TS as 20,655 ml. The maximum gas yield was recorded in cow dung and poultry deep litter mixed with 2:1 ratio as 2365 ml per day with 5 per cent TS..

4.2.1.3. Poultry Droppings based material combinations

Total biogas production of the poultry Droppings based material combinations with the ratios of 1:1, 1:2 and 2:1 with the addition of desired quantity of water to have the 5 per cent TS are summarized in Table 4.11

 Table 4.11. Total gas production from Poultry Droppings material combinations in

 1:1, 1:2 and 2:1 ratios with 5 per cent TS

Treatment	Combination	Gas production, ml
T ₂₈	Cowdung : Poultry Droppings (1:1)	14710
T ₃₁	Cowdung : Poultry Droppings (1:2)	15360
T ₃₄	Cowdung : Poultry Droppings (2:1)	16855
T ₁	Cowdung (100 per cent)	5378

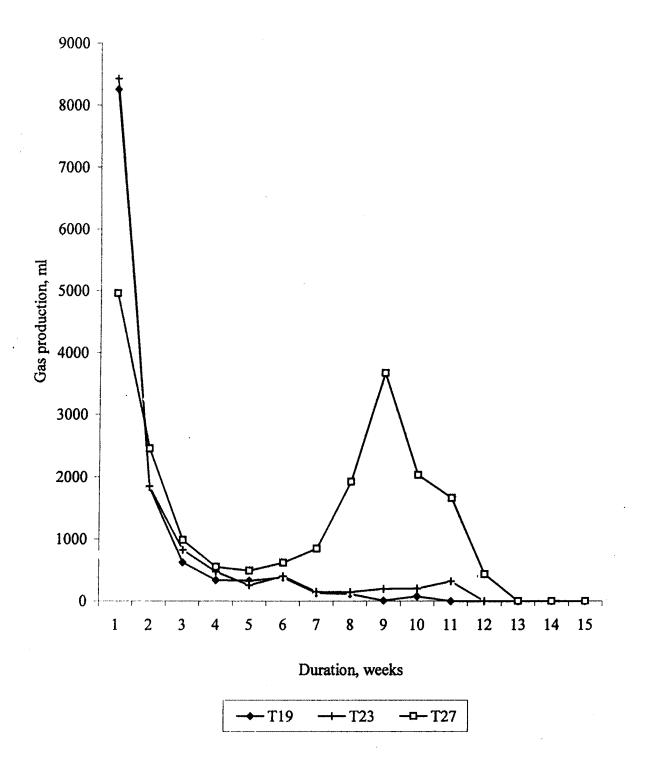


Fig 4.15 WEEKLY BIOGAS PRODUCTION FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATION WITH 20% TS

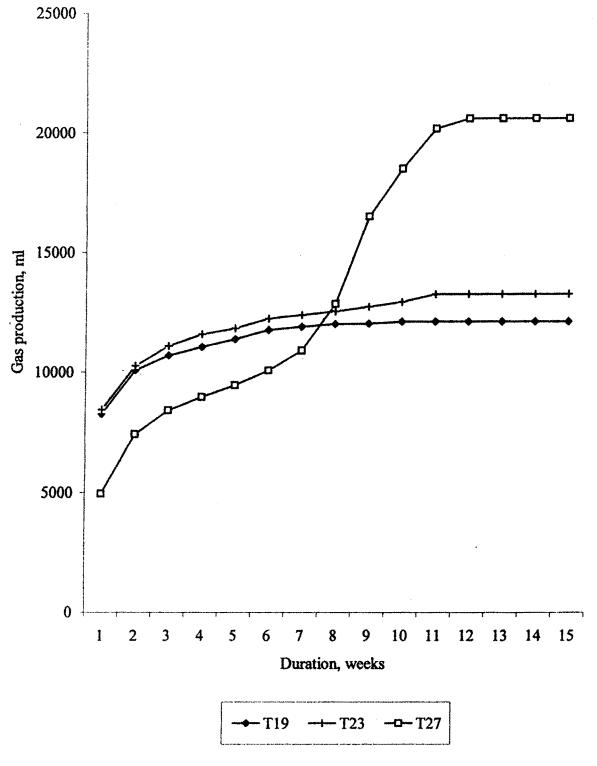


Fig 4.16 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATION WITH 20% TS

It was clear from the Table 4.11 that the total biogas production has achieved maximum (16855 ml) from combination of cowdung and poultry droppings in 2:1 ratio followed by cowdung and poultry droppings in 1:2 ratio (15360 ml) and by cowdung and poultry droppings in 1:1 ratio (14710 ml).

The weekly and cumulative gas production from different poultry droppings based material combination mixed in the ratios of 1:1 and 1:2: and 2:1 with 5 per cent total solids are given in figures 4.17 and 4.18 respectively. The maximum weekly biogas production was obtained in the combination cowdung and poultry droppings as 2535 ml. All the combinations decreased during third week and increased during the following weeks. This trend is similar to that of batch digestion studied by Webb and Hawkes (1985).

Total biogas production of the poultry Droppings based material combinations with the ratios of 1:1, 1:2 and 2:1 with the addition of desired quantity of water to have the 10 per cent TS are summarized in Table 4.12.

 Table 4.12. Total gas production from Poultry Droppings material combinations in

 1:1, 1:2 and 2:1 ratios with 10 per cent TS

Treatment	Combination	Gas production, ml
T ₂₉	Cowdung : Poultry Droppings (1:1)	33640
T ₃₂	Cowdung : Poultry Droppings (1:2)	24908
T ₃₅	Cowdung : Poultry Droppings (2:1)	34873
T ₂	Cowdung (100 per cent)	6783

The trend of biogas production from poultry droppings based material combination in 1:1, 1:2 and 2:1 ratios with 10 per cent TS is similar to that of 5 per cent TS. Here the difference was seen in the total biogas production. As the total solid content doubled from 5 per cent to 10 per cent, the maximum total biogas production was also doubled from 16852 ml to 34873 ml.

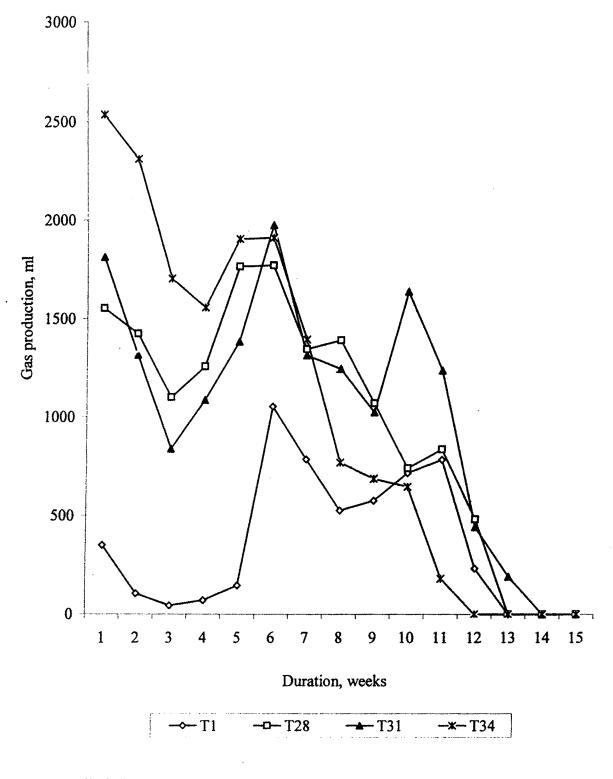


Fig 4.17 WEEKLY BIOGAS PRODUCTION FROM POULTRY DROPPINGS BASED MATERIAL COMBINATION WITH 5% TS

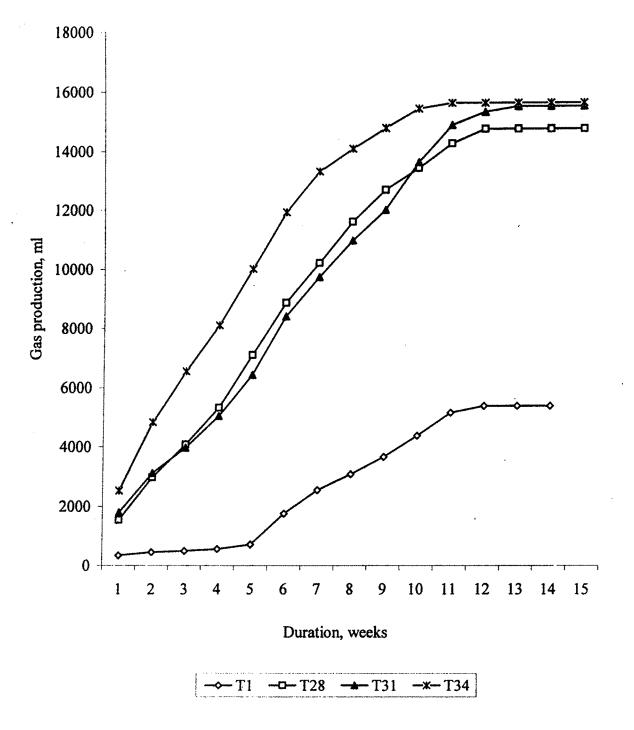


Fig 4.18 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY DROPPINGS BASED MATERIAL COMBINATION WITH 5% TS

77

The weekly and cumulative gas production from different poultry droppings based material combination mixed in the ratios of 1:1 and 1:2: and 2:1 with 5 per cent total solids are given in figure 4.19 and 4.20 respectively. Here also the same trend as seen in figure 4.17 and 4.18 was followed.

Total biogas production of the poultry Droppings based material combinations with the ratios of 1:1, 1:2 and 2:1 with the addition of desired quantity of water to have the 15 per cent TS are summarized in Table 4.13

Table 4.13. Total gas production from Poultry Droppings material combinations in1:1, 1:2 and 2:1 ratios with 15 per cent TS

Treatment	Combination	Gas production, ml
T ₃₀	Cowdung : Poultry Droppings (1:1)	41333
T ₃₃	Cowdung : Poultry Droppings (1:2)	29128
T ₃₆	Cowdung : Poultry Droppings (2:1)	47273
T ₃	Cowdung (100 per cent)	16073

The trend of total biogas production from the combination of cowdung and poultry droppings in 1:1, 1:2 and 2:1 ratios with 15 per cent TS is similar to that of 5 per cent TS. As the total solid content tripled from 5 per cent to 15 per cent the maximum total biogas production also tripled from 16852 ml to 47273 ml. All these combination of cowdung and poultry droppings with 5 per cent, 10 per cent and 15 per cent total solids produced more biogas than cowdung alone as feed material.

The weekly and cumulative gas production from cowdung and poultry droppings based material combination mixed in the ratios of 1:1 and 1:2: and 2:1 with 15 per cent total solids are given in figure 4.21 and 4.22 respectively. Here also the same trend as seen in figure 4.17 and 4.18 was followed.

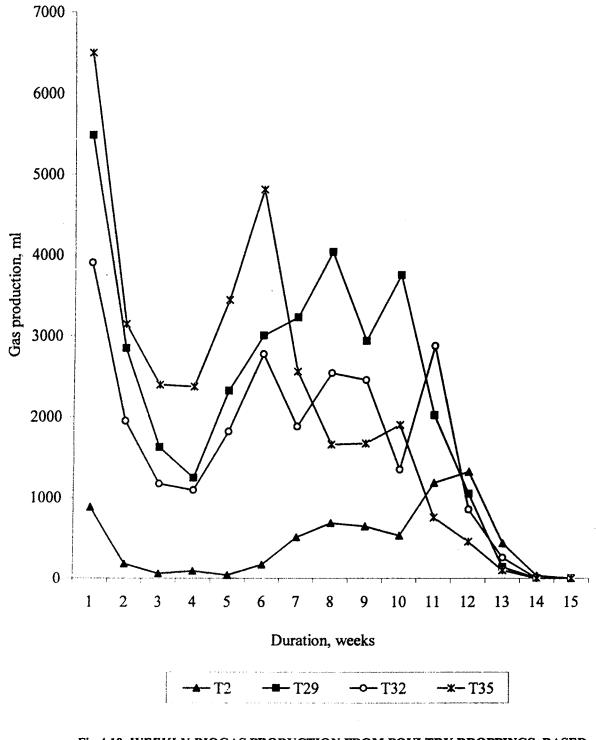


Fig 4.19 WEEKLY BIOGAS PRODUCTION FROM POULTRY DROPPINGS BASED MATERIAL COMBINATION WITH 10 % TS

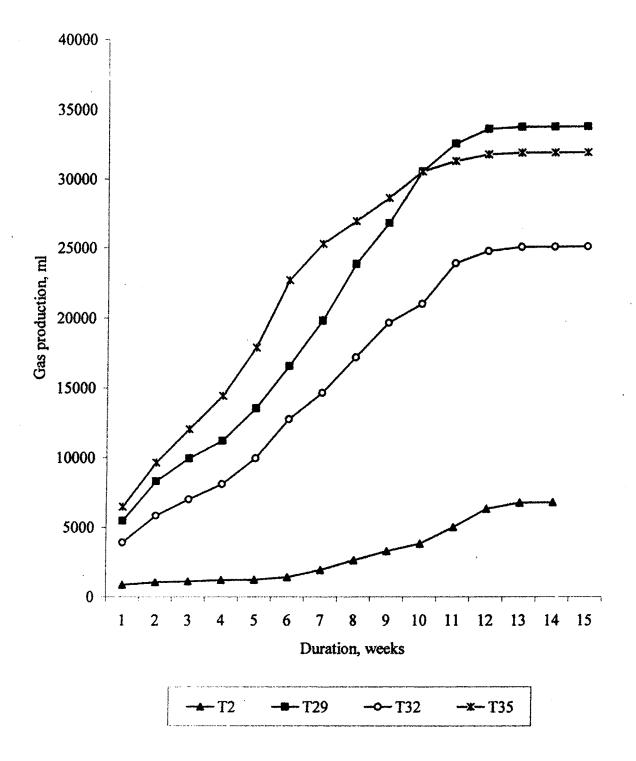


Fig 4.20 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY DROPPINGS BASED MATERIAL COMBINATION WITH 10% TS

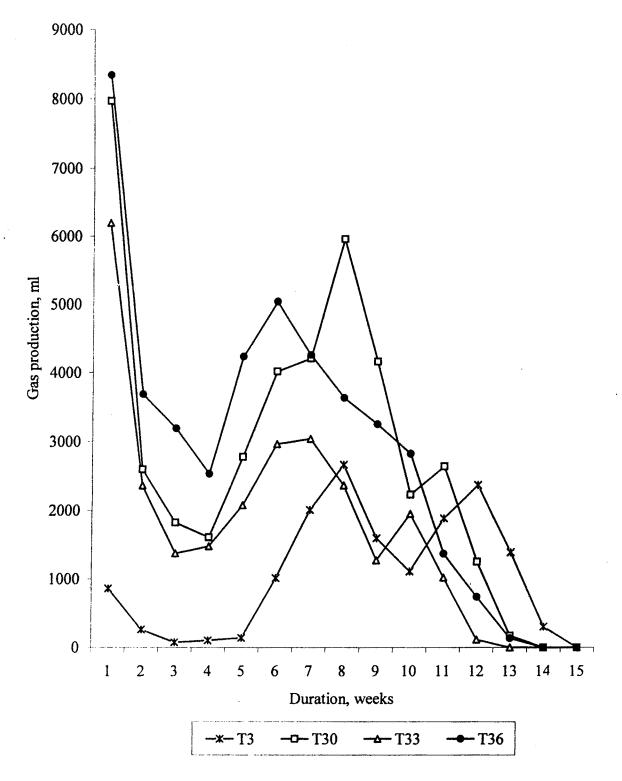


Fig 4. 21 WEEKLY BIOGAS PRODUCTION FROM POULTRY DROPPINGS BASED MATERIAL COMBINATION WITH 15% TS

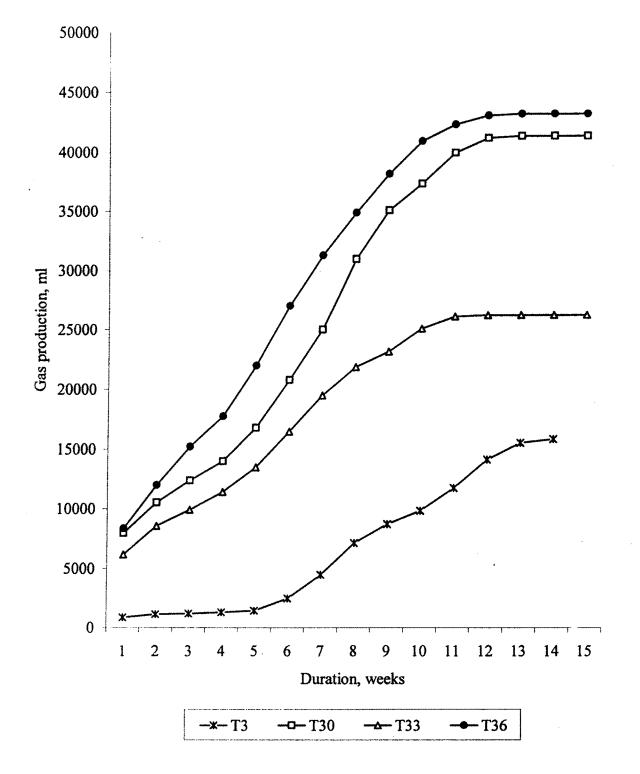


Fig 4.22 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY DROPPINGS BASED MATERIAL COMBINATION WITH 15% TS

Among all the poultry droppings based material combinations, the maximum biogas produced in cowdung and poultry droppings in 2:1 ratio with 15 per cent TS as 47273 ml. Also the average gas yield recorded as 457 ml per day and the maximum gas production recorded as 1685 ml per day in the same treatment.

Out of different combinations, the gas production from the following treatments was analyzed without mixing any other feed stock material. Total biogas production of the poultry droppings alone as feed material with the addition of desired quantity of water to have the 5 per cent, 10 per cent and 15 per cent TS are summarized in Table 4.14

 Table 4.14. Total biogas production from Poultry Droppings as feedstock in 100 per cent with 5 per cent, 10 per cent and 15 per cent TS

Treatment	Combination	Gas production, ml
T ₃₇	Poultry Droppings (100 per cent)	7770
T ₃₈	Poultry Droppings (100 per cent)	16448
T ₃₉	Poultry Droppings (100 per cent)	30655
T ₁	Cowdung (100 per cent)	5378
T ₂	Cowdung (100 per cent)	6783
T ₃	Cowdung (100 per cent)	16073

It is clear from the table 4.14 that the total biogas production achieved was maximum (30655 ml) from poultry droppings alone (T_{39}) as feed material with 15 per cent TS followed by poultry droppings alone (T_{38}) as feed material with 10 per cent TS and the gas production lasted during 14th to 15th week. As the total solid increased from 5 per cent to 10 per cent the gas production also was doubled as 7770 ml to 16448 ml. and also the total solid content tripled from 5 per cent to 15 per cent the maximum total biogas production also tripled from 7770 ml to 30655 ml.

The weekly and cumulative gas production from poultry droppings alone as feed material with 5 per cent, 10 per cent and 15 per cent TS are given in figure 4.23 and 4.24

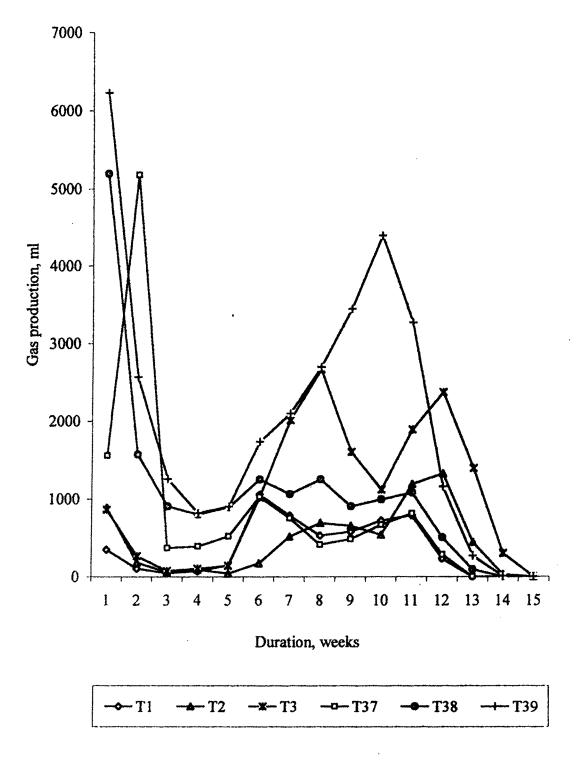


Fig 4.23 WEEKLY BIOGAS PRODUCTION FROM POULTRY DROPPINGS ALONE WITH 5 %, 10% & 15% TS

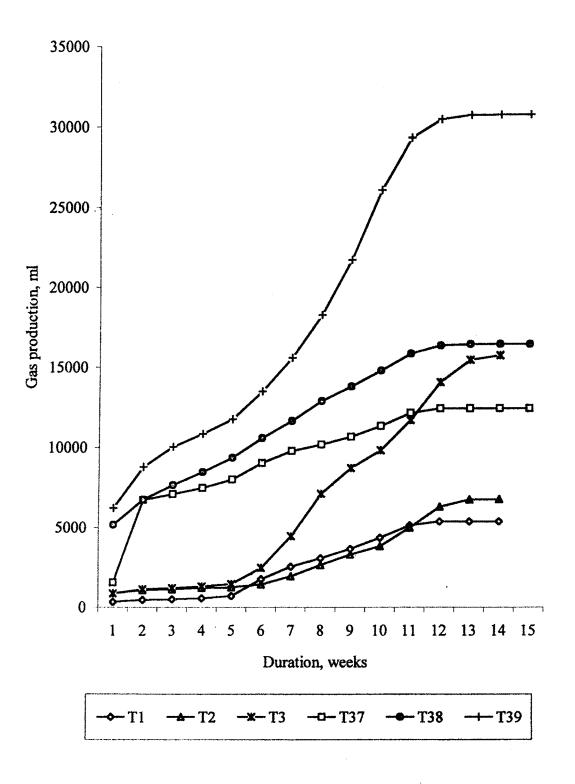


Fig 4.24 CUMULATIVE BIOGAS PRODUCTION FROM POULTRY DROPPINGS ALONE WITH 5 %, 10% & 15% TS

respectively. The maximum gas production per week was obtained in the case of poultry droppings alone (T_{39}) as feed stock with 15 per cent TS in the first week as 6230 ml followed by poultry droppings alone as feedstock (T_{38}) with 10 per cent TS as 5193 ml in the same week. But in the case of 5 per cent TS, the maximum biogas produced in the second week as 5175 ml.

The average gas produced per day was 303 ml in poultry droppings alone (T_{39}) with 15 per cent total solids followed by 172 ml in cowdung with the addition of desired quantity of waste to have the 15 per cent TS. The maximum gas production was achieved during the sixth day as 1225 ml in poultry droppings alone (T_{39}) with 15 per cent TS. Among all the poultry droppings as feedstock in 100 per cent with 5, 10 and 15 per cent TS, the maximum gas yield was recorded in poultry droppings as feed stock with 15 per TS (T_{39}) as 30655 ml.

4.2.2. Quality of biogas from different feedstock

The quality of biogas obtained from the feed stocks was determined using a saccharometer by measuring the methane percentage of the samples. The weekly methane content in percent of the biogas produced from 39 combinations of feed stocks is summarized in Table 4.15.

It was observed from the table 4.15 that all the combination of feedstocks, the methane content variation was in the wide range of 15 to 95 per cent. The methane content was observed very high in all the poultry manure based material combination. The range of methane content in poultry manure based material combination was 75 per cent to 95 per cent. This could be observed in the combination of cowdung mixed with poultry manure in 1:1 ratio with 5 per cent TS and cowdung mixed with poultry manure in 2:1 ratio with 20 per cent TS.

				N	Nethar	ne con	tent of	bioga	s, perc	ent at t	he wee	ks of			
Treatments	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1
T ₁	70	95	65	64	59	56	54	54	57	55	53	55	53	51	Ι
T ₂	47	45	49	37	54	,57	70	59	61	65	63	56	48	48	4
T ₃	62	57	52	46	61	60	61	58	58	64	60	54	55	50	4
T4	95	80	81	83	73	69	80	68	69	67	68				
T ₅	89	91	70	69	68	68	70	69	66	62					
T ₆	86	69	65	69	65	64	65	63	66	65	60	52	50	1	
T ₇	78	51	50	58	66	64	70	67	68	74	74	67	58	50	4
T ₈	90	88	92	72	77	76	65	68	66	61	59				
Τ ₉	91	73	81	80	71	85	73	69	68	62	61				
T ₁₀	74	54	70	73	62	72	73	59	60	65	63	61	50	44	4
T ₁₁	88	71	64	72	68	68	62	66	65	67	67	65			
T ₁₂	91	76	70	76	69	72	79	66	68	67	67	66	56		
T ₁₃	85	63	63	64	63	64	59	67	69	70	63	62			
T ₁₄	76	58	46	61	63	60	57	61	63	64	63	61	52	50	
T ₁₅	81	64	71	62	65	63	46	69	71	64	66	62	56	52	5
T ₁₆	35	52	40	23	29	56	63	56	56	54	50	46	40	40	
T ₁₇	16	41	22	27	27	54	46	45	47	42					
T ₁₈	19	25	31	28	47	55	50	46	40	47					
T ₁₉	20	17	37	25	35	56	43	38	41	38	27	20	20		
T ₂₀	35	56	30	22	29	43	50	49	50	53	51	43	36	28	
T ₂₁	24	27	27	27	34	45	65	51	45	45					
T ₂₂	21	16	23	26	38	56	46	45	45	40					
T ₂₃	23	23	37	28	75	41	52	57	56	53	50				
T ₂₄	45	22	24	29	36	40	35	41	44	43	40	36	30	26	2
T ₂₅	15	16	54	40	43 01	56	49	54	55	55	52	46	30	18	
T ₂₈	14	14	26	29	61	55	57	57	59	55	54				
T ₂₇	20	33 67	28 65	27	31	33 50	40 70	44 69	45 69	44 65	38 66	34	32		
T ₂₈	75	67 69	65 66	64 71	78	56 72	72 75	68 66	68 66	65 62	66 62	64 60	=0		
T ₂₉	56 63	68 61	66 59	71 53	70 72	73 79	75 70	66 66	66	62 72	62 74	60 69	50 61	47 57	41 53
T ₃₀ T ₃₁	81	65	59 62	55 56	72 65	79 63	69	66 61	68 62	73 63	74 54	68 50	61 48	57	5.
T ₃₂	71	71	61	50 66	66	58	69 46	57	62 59	61	54 61	50 58	40 55	48	44
T ₃₂	59	59	71	55	68	50 67	40 73	61	61	64	63	50 59	55 54	40 50	49
T ₃₄	69	58	63	63	66	62	73 68	61	63	66	63	59 58	~	~	-42
T ₃₅	62	55	66	65	62	60	64	63	65	66	66	60	55	51	
T ₃₆	61	55	65	68	68	64	64	65	67	68	65	61	55	50	46
T ₃₇	70	64	67	71	72	66	62	70	71	71	72	70	64	58	
T ₃₈	69	62	56	55	66	67	71	71	73	75	74	67	60	60	52
T ₃₉	74	57	60	65	69	68	64	69	67	68	64	60	57	57	49

 Table 4.15. Weekly methane content in per cent for different combinations of feedstock

.

.

The methane content observed was very less in the poultry deep litter based material combinations because of presence of non combustible material along with the bed material. In the case of poultry droppings, the methane percent was high from first week onwards and the variation of methane content was between 60 to 80 per cent.

The methane concentration was reported as 60 to 75 per cent by Wong-Chong (1975), 60 to 75 per cent by Kugelman and McCarty (1965), 55 to 60 per cent by Ganesan *et al.* (1981) and 55 to 63 per cent by Murugesan (1982) agreed well to different treatments of this experiment.

The highest average methane content in per cent was recorded in poultry manure based material combination (T₄) mixed with cowdung 1:1 ratio with 5 per cent TS as 76 per cent. Oba and Honda (1981) stated methane of 60 to 84 per cent from agriculture and cattle waste which confirmed in this experiment. Where as the minimum average methane content was recorded as 32 per cent in the cowdung mixed with poultry deep litter (T₁₉) in the ratio of 1:1 with the addition of desired quantity of waste to have the 20 per cent total solids. The table 4.16 shows the total methane content and methane per cent of all the combinations

4.2.2.1. Methane yield from poultry based material combinations

Weekly methane yield from poultry manure based combinations in the ratios of 1:1, 1:2 and 2:1 and 2:1 with 5 per cent, 10 per cent, 15 per cent and 20 per cent TS are shown in figure 4.25 to 4.28.

From figure 4.25, the highest methane yield has been noticed from poultry manure material combination in 2:1 ratio (T_{12}) with 5 per cent TS was during 6th week as 940 ml with methane content of 72 per cent, and gas yield of 1305 ml. In all the combinations the gas production and methane content was almost nil after 13th week.

Treatments	Total biogas production, ml	Methane Per cent	Methane content (ml)
1	5378	60	3062
2	6783	54	3897
3	16073	56	3062
4	1925	76	1475
5	4540	72	3219
6	10593	65	6393
7	15905	63	10394
8	1698	74	1150
9	2555	74	2103
10	11898	61	8888
11	7670	69	5532
12	5173	71	4512
13	11545	66	7417
14	18058	60	10891
15	18073	63	11610
16	11708	46	5916
17	5428	37	1282
18	8048	39	1933
19	12088	32	2738
20	11833	41	5562
21	6200	39	1617
22	9153	36	2045
23	13225	45	3687
24	11750	34	4208
25	14838	42	6238
26	8683	44	1910
27	20655	35	7078
28	14710	67	9968
29	33640	62	22051
30	41333	65	27889
31	15360	61	9882
32	24908	59	15368
33	29128	61	16605
34	16855	63	9960
35	34873	61	19746
36	47273	61	27567
37	7770	68	8319
38	16448	65	11135
39	30655	63	20545

 Table 4.16. Total Gas Production and Methane content

.

.

.

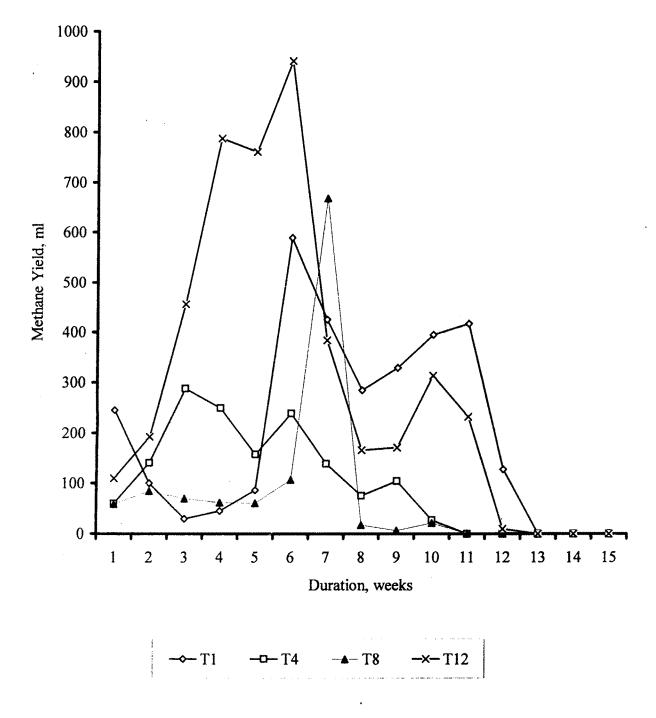


Fig 4.25 METHANE YIELD FROM POULTRY MANURE BASED COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 5% TS

From figure 4.26, it has been noticed that the methane production reached above 1000 ml in cowdung and poultry manure in 2:1 ratio (T_{13}) during 3rd week to 6th week. This was different from all other treatment in poultry manure based material combinations, where as all other treatments more or less followed the same trend.

Figure 4.27 it indicates that the methane production from poultry manure based combinations in the ratios of 1:1, 1:2 and 2:1 with 15 per cent TS. The methane yield was very good throughout the period and it was between the range of 1000 ml to 2100 ml. Among these combinations, the cowdung and poultry manure mixed with 2:1 ratio (T_{14}) produced maximum methane yield of 2043 ml during 6th week. Sushilkumar and Biswas (1982) reported that the methane concentration was between 56 and 58 per cent during fourth to sixth week of digestion which was confirmed in this experiment.

Figure 4.28 it reveals that the methane production from poultry manure based combinations with 20 per cent TS. The highest methane production was recorded during the 3^{rd} to 6^{th} week from cowdung and poultry manure in 1:1 ratio (T₇) as 2480 ml followed by cowdung and poultry manure in 2:1 ratio (T₁₅) and cowdung and poultry manure in 1:2 ratio (T₁₁). Initial methane production was very low and it reached peak production during 3^{rd} to 8^{th} week in all the combinations. This is similar to the results reported by Murugesan (1982) that the biogas produced from the poultry droppings and rumen fluid incorporated treatments contained about 55 to 63 per cent of methane during third to seventh week of digestion. The methane production was stopped during 13^{th} to 15^{th} week.

Among all the poultry manure based material combinations, the highest methane production has been obtained from cowdung and poultry manure in 2:1 ratio (T_{15}) as 11,610 ml. This combination of cowdung and poultry manure in 2:1 ratio (T_{15}) proved to

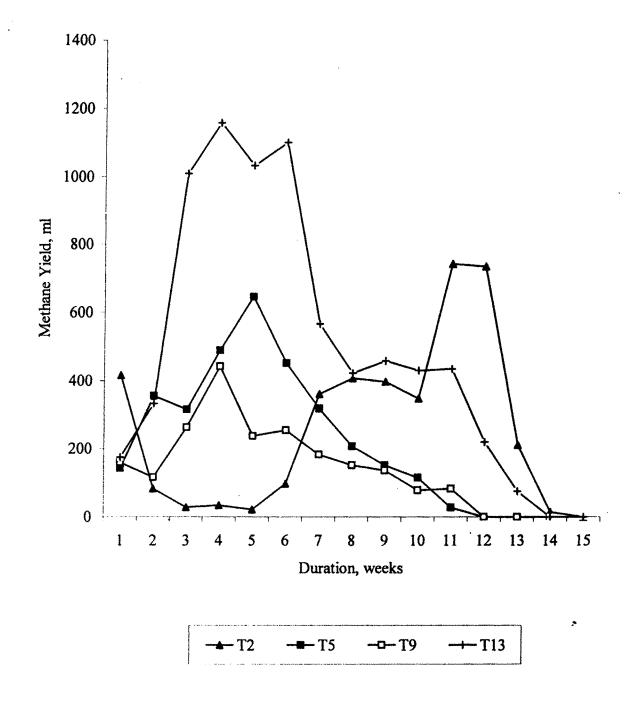


Fig 4.26 METHANE YIELD FROM POULTRY MANURE BASED COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 10% TS

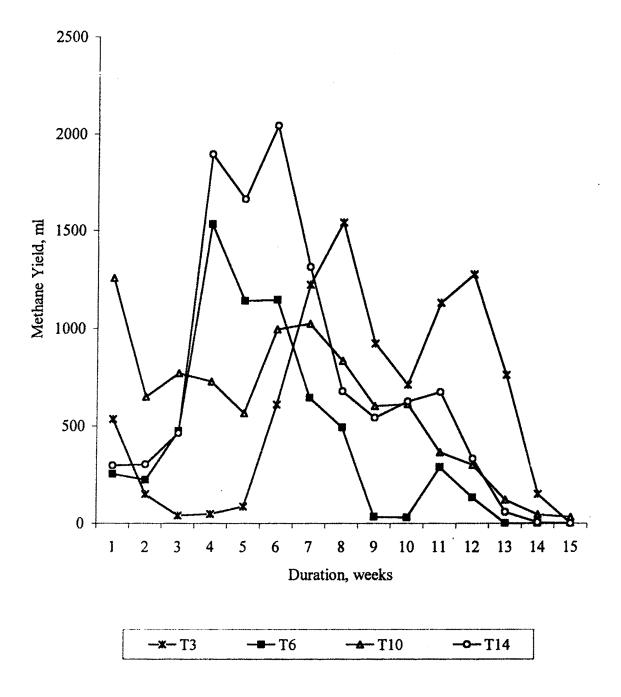


Fig 4.27 METHANE YIELD FROM POULTRY MANURE BASED COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 15% TS

1. A. 1.

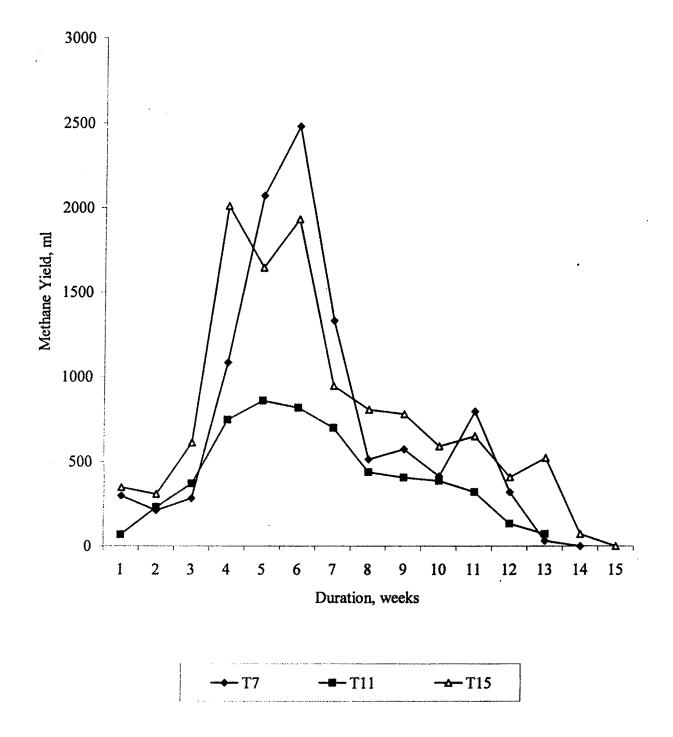


Fig 4.28 METHANE YIELD FROM POULTRY MANURE BASED COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 20% TS

be the best treatment in poultry manure based combination since the methane percentage also ranged between 50 to 80 percent in all the weeks.

4.2.2.2. Methane yield from poultry deep litter based material combinations.

Figure 4.29 it indicates that the highest methane yield from poultry deep litter material combinations with 5 per cent TS as 3070 ml during 1st week. The methane production dropped to very low level during 2nd week to 5th week after that they raised to optimum level in the entire poultry deep litter based material combination with 5 per cent TS. During 13th week all the combination produced very low methane content of less than 100 ml.

The methane yield from poultry deep litter based material combination with 10 per cent TS is shown in figure 4.30. The trend was similar to that of 5 per cent TS. Methane production was high during 1st week followed by drop in methane production upto 6th week and then increasing till 13th week and then attaining stability 15th week. The cowdung and poultry deep litter in 1:1 ratio (T_{17}) and cowdung and poultry deep litter in 1:1 ratio (T_{17}) and cowdung and poultry deep litter in 1:2 ratio (T_{21}) produced less than 200 ml after 2nd week, whereas methane yield from cowdung as feedstock in 100 per cent (T_2) and cowdung and poultry deep litter in 2:1 ratio (T_{25}) were good.

The methane production from poultry deep litter based material combinations in the ratios of 1:1, 1:2 and 2:1 with 15 per cent TS are shown in figure 4.31. The methane yield from poultry deep litter based combinations with 15 per cent TS was high during 1^{st} week and then decreased to nil condition from 9^{th} week onwards. Whereas the methane yields from 15 per cent of TS the cowdung alone as feedstock (T₃) shows tremendous methane of from 5^{th} to 15^{th} week.

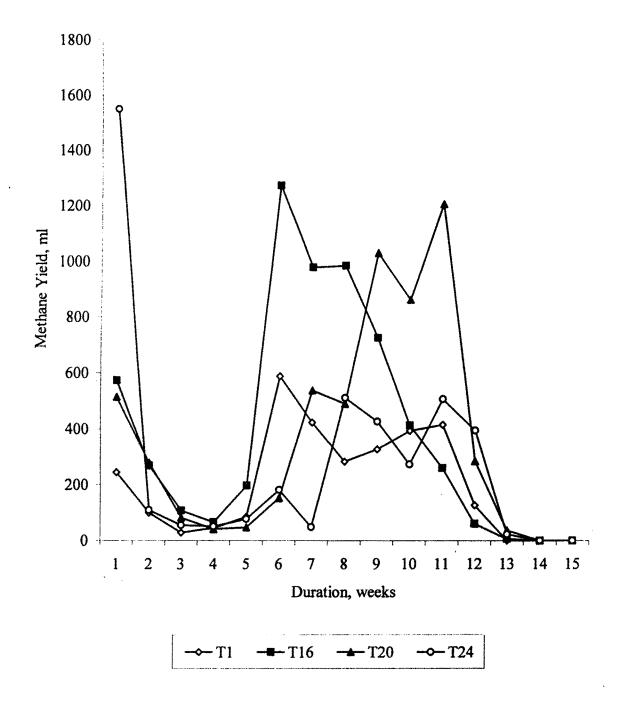


Fig 4.29 METHANE YIELD FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 5% TS

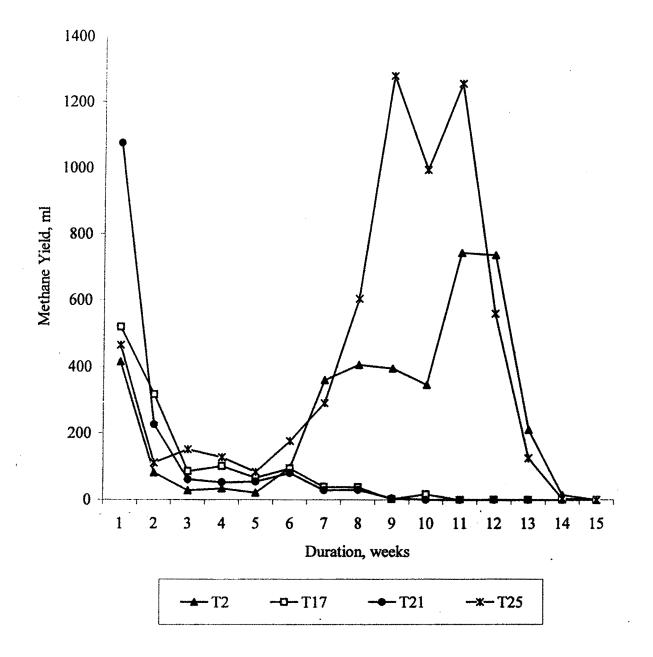


Fig 4.30 METHANE YIELD FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 10% TS

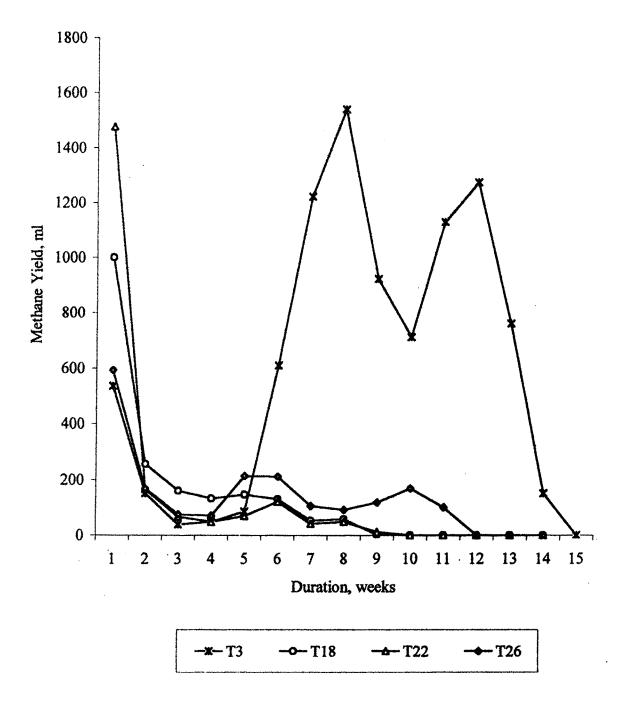


Fig 4.31 METHANE YIELD FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 15% TS

From figure 4.32 the methane yield during 1^{st} week was very high, whereas the methane yield dropped to very low level in the following weeks except cowdung mixed with poultry deep litter in 2:1 ratio (T₂₇) which reached to a peak value of 1647 ml during 9^{th} week. The methane yield from all the combinations of poultry deep litter material was very low as ranged between 1282 ml to 7078 ml.

Among all these deep litter material combination methane yield recorded as 7078 ml as maximum in cowdung mixed with poultry deep litter with 2:1 ratio (T_{27}). But methane yield was very low compared to all other poultry waste. This lower yield was due to lower methane content of 30 to 45 per cent.

4.2.2.3. Methane yield from poultry droppings based material combinations.

The methane production from poultry droppings based material combination with 5 per cent TS was shown in figure 4.33. All the combinations of poultry dropping produced higher methane during 1^{st} week as compared to cowdung alone as feed material. The methane production dropped during first three weeks and increased during 5^{th} week then dropped upto 9^{th} week and then it had increased during 10^{th} week. The methane yield stopped after 13^{th} week in all the combinations. The highest methane production per week was from cowdung and poultry droppings mixed with 2:1 ratio (T₃₄) during 1^{st} week as 1749 ml. All other poultry droppings based material combination produced peak methane yield during 1^{st} week itself.

Figure 4.34, it indicates that the methane yield from poultry droppings based combinations with 10 per cent TS were also peak production was during 1^{st} week and followed the same trend as that of 5 per cent TS. All the combination produced more methane yield than cowdung as feed material and the highest yield per week was 4029 ml from cowdung and poultry droppings mixed with 2:1 ratio (T₃₅) during 1^{st} week.

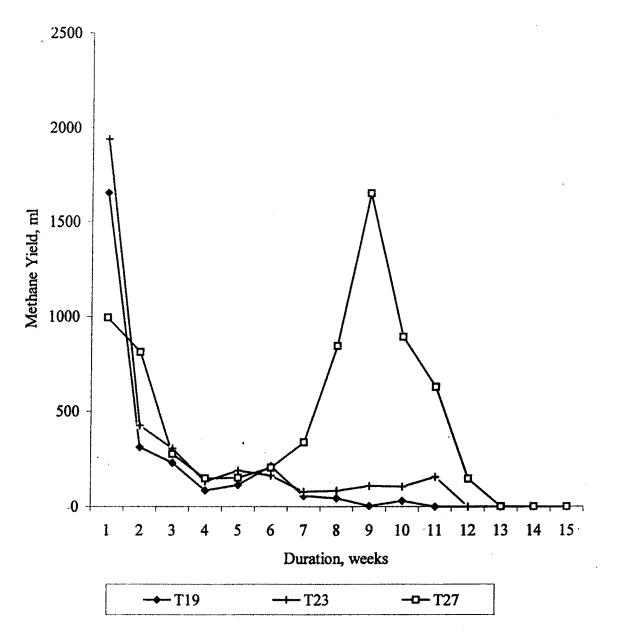
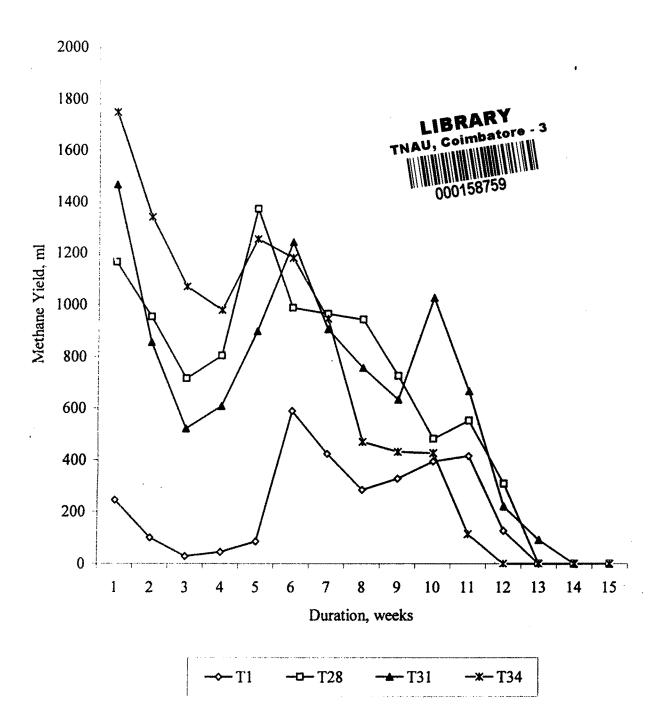



Fig 4.32 METHANE YIELD FROM POULTRY DEEP LITTER BASED MATERIAL COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 20% TS

. .

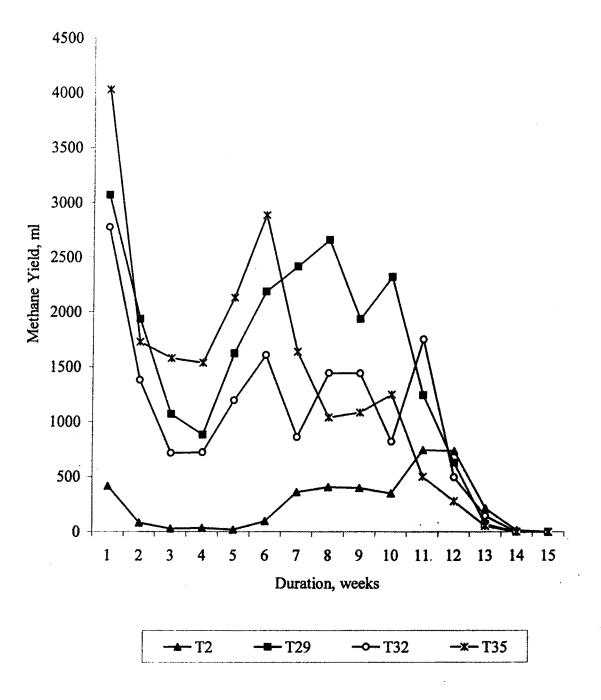


Fig 4.34 METHANE YIELD FROM POULTRY DROPPINGS BASED MATERIAL COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 10% TS

ţ

The methane yield from poultry droppings based material combination with 15 per cent TS are shown in figure 4.35. The trend was very similar to that of 5 per cent, 10 per cent TS. The highest methane production was more than 5000 ml per week in cowdung and poultry droppings mixed with 1:1 ratio (T_{30}) and cowdung and poultry droppings mixed with 1:1 ratio (T_{30}) and cowdung and poultry droppings mixed with 2:1 ratio (T_{36}) as compared to the highest methane yield per week as 4029 ml in cowdung and poultry droppings mixed with 2:1 ratio (T_{35}) with 10 per cent TS. All the combinations produced more methane as compared to cowdung alone as feed material.

Among poultry droppings based material combinations in the ratios of 1:1, 1:2 and 2:1 with 5, 10, and 15 per cent TS, the highest methane yield from cowdung and poultry droppings combination (T_{36}) mixed with 2:1 ratio as 27567 ml which also produced highest total biogas. The methane yield was also high in all the poultry dropping based material combinations. This high yield of methane is due to high methane per cent. The range of methane per cent was 60 to 65 per cent as compared to 30 to 45 per cent in poultry deeplitter based material combination. Oba and Honda (1981) stated methane content of 60 to 84 per cent from agricultural and cattle waste which were confirmed in this experiment.

Figure 4.36, it shows that the methane yield from poultry droppings and cowdung alone as feed material with 5, 10 and 15 per cent TS. The highest methane yield produced per week during first week was 4610 ml in poultry droppings alone as feedstock with 15 per cent TS (T_{39}) and also it had another peak methane yield during 10th week. All the treatments produced higher methane during first week followed by decreasing trend and then increased except the poultry droppings alone as feedstock with the addition of desired quantity of waste to have the 5 per cent TS (T_{37}) which produced highest methane yield during the second week. Among these feed stock, the poultry droppings alone as feedstock with 15 per cent TS (T_{39}) produced highest total methane yield of 27567 ml.

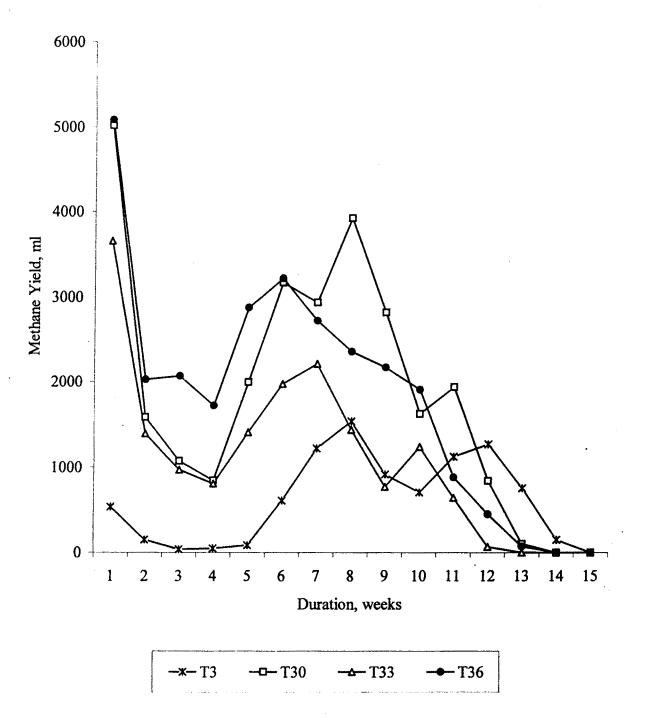


Fig 4.35 METHANE YIELD FROM POULTRY DROPPINGS BASED MATERIAL COMBINATIONS IN THE RATIOS OF 1:1, 1:2 & 2:1 WITH 15% TS

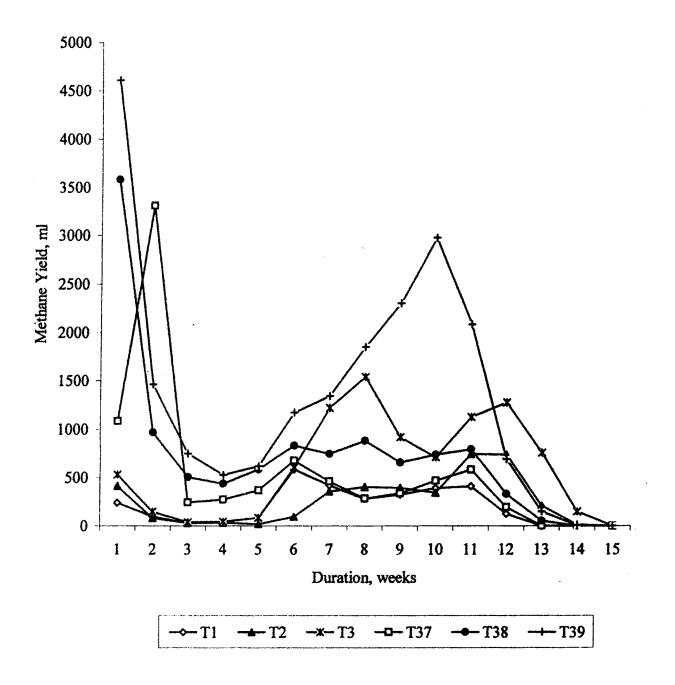


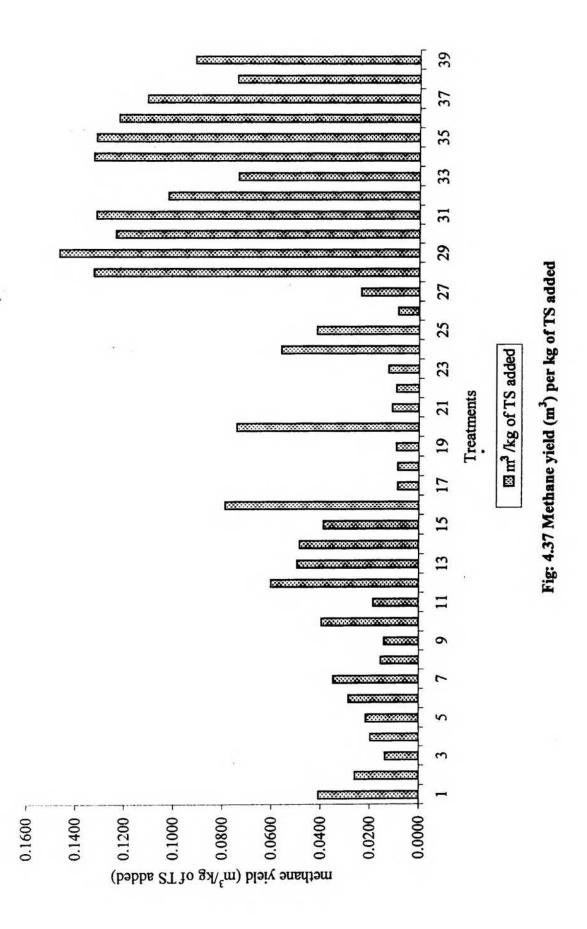
Fig 4.36 METHANE YIELD FROM POULTRY DROPPINGS ALONE WITH 5%, 10% & 15% TS

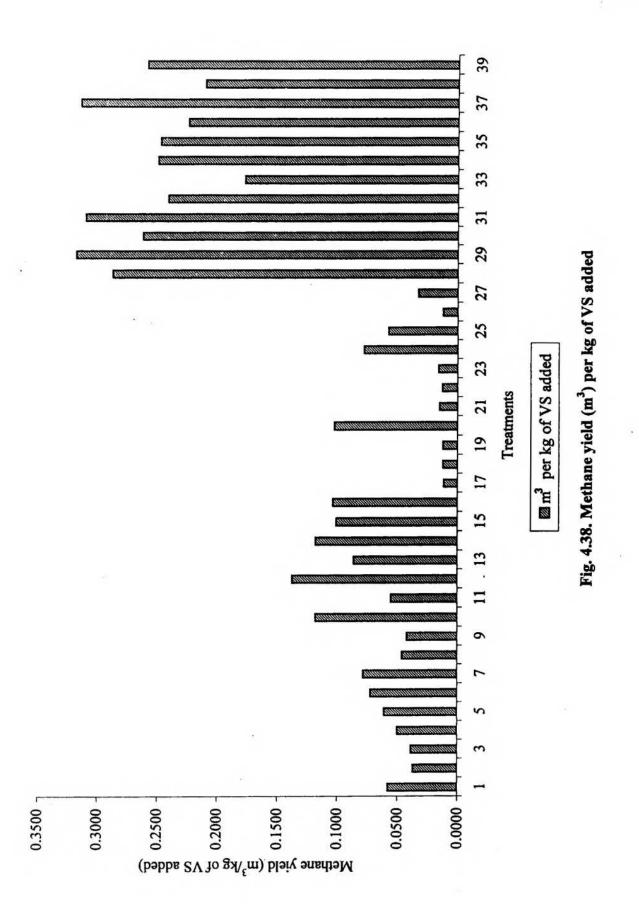
Statistical analysis was carried out for methane production with 39 treatments using Agres 7.1 package and the ANOVA table is given in Appendix B.

From the analysis it is inferred that the treatment with cowdung and poultry droppings (T_{30}) in 1:1 ratio with 15 per cent total solids gave the highest methane production of 27889 ml. The methane production ranged between 1150 ml to 27889 ml.

Statistical analysis was carried out for gas production with 39 treatments using Agres 7.1 package and the ANOVA table is given in Appendix B.

From the analysis, the treatment with cow dung mixed with poultry droppings (T_{36}) in 2:1 ratio with 15 per cent TS is proved to give the highest gas production and the gas production ranged between 1698 ml and 47273 ml.


4.2.3. Methane yield per kg of Total Solids added and Volatile Solids added


The total biogas produced from all the 39 combinations of feedstocks were observed and volume (m^3) of total methane produced per kg of TS added and volume (m^3) of total methane produced per kg of VS added were calculated and given in table 4.17.

Total methane production (m^3) per kg of TS and VS added for different combinations of feedstocks are shown in figures 4.37 and 4.38. It can be seen from figure 4.37, that the maximum methane production of 0.1470 m³ per kg of TS added was observed in the combination of poultry droppings mixed with cowdung in 1:1 ratio (T₂₉). The lowest methane production of 0.0085 m³ per kg of TS added was observed in the combination of poultry deep litter mixed with cowdung in 1:1 ratio (T₁₇). Most of the combinations from poultry droppings based material produced more methane yield (m³) per kg of TS added, the treatments from poultry droppings mixed with cowdung in 1:1 ratio (T₂₈) to cowdung mixed with poultry droppings in 2:1 ratio (T₃₆).

Treatment	Total methane	Methane production m ³ / kg					
	yield (ml)	TS added	VS added				
Ť,	3062	0.0408	0.0575				
T ₂	3897	0.0260	0.0366				
T ₃	3062	0.0136	0.0383				
T₄	1475	0.0197	0.0497				
T5	3219	0.0215	0.0604				
T ₆	6393	0.0284	0.0719				
T7	10394	0.0346	0.0780				
T ₈	1150	0.0153	0.0457				
T,	2103	0.0140	0.0416				
T ₁₀	8888	0.0395	0.1177				
T ₁₁	5532	0.0184	0.0550				
T ₁₂	4512	0.0602	0.1371				
T ₁₃	- 7417	0.0494	0.0858				
T ₁₄	10891	0.0484	0.1179				
T ₁₅	11610	0.0387	0.1005				
T ₁₆	5916	0.0789	0.1034				
T ₁₇	1282	0.0085	0.0112				
TIE	1933	0.0086	0.0118				
T ₁₉	2738	0.0091	0.0120				
T ₂₀	5562	0.0742	0.1022				
T ₂₁	1617	0.0108	0.0148				
T ₂₂	2045	0.0091	0.0124				
T ₂₃	3687	0.0123	0.0156				
T ₂₄	4208	0.0561	0.0777				
T ₂₅	6238	0.0416	0.0574				
T ₂₆	1910	0.0085	0.0119				
T ₂₇	7078	0.0236	0.0326				
T ₂₈	9968	0.1329	0.2876				
T ₂₉	22051	0.1470	0.3182				
T ₃₀	27889	0.1240	0.2624				
T ₃₁	9882	0.1318	0.3102				
T ₃₂	15368	0.1025	0.2412				
T ₃₃	16605	0.0738	0.1773				
_ T ₃₄	9960	0.1328	0.2496				
T ₃₅	19746	0.1316	0.2474				
T ₃₆	27567	0.1225	0.2245				
T ₃₇	8319	0.1109	0.3139				
T ₃₈	11135	0.0742	0.2101				
T ₃₉	20545	0.0913	0.2584				

 Table 4.17. Total methane production per kg of TS and VS added for different combinations of feedstocks

Among all the combinations, the higher yield of methane per kg of VS added from cowdung and poultry droppings mixed with 1:1 ratio (T_{29}) as 0.3182 m³ per kg of VS added are shown in figure 4.38. The lower yield of methane per kg of VS added in the combination of cowdung and poultry deep litter mixed with 1:1 ratio (T_{17}) as 0.0474 m³ per kg of VS added. Cowdung and poultry droppings mixed with 1:1 ratio (T_{29}) and cowdung mixed with poultry deep litter in 1:1 ratio (T_{17}) shows the maximum and minimum methane produced (m³) per kg of TS added and VS added respectively

4.3. Performance evaluation of the brooders

In this study, the biogas burner type brooder (hanging type) was fabricated and its performance was tested. The brooder was fueled by biogas as described and the floor temperature recorded under this brooder was compared with the LPG brooder. A thermocouple was used for measuring floor temperatures when brooders were operated at different heat input rate. The ambient temperature was 30° C. The hanging height of the brooder during the test was 100 cm, which was kept lower than usual in order to obtain a higher floor temperature field to get an explicit comparison between these brooders. In actual application, the temperature can be moderated by raising the hanging height of the brooder or adjusting the fuel flow.

4.3.1. Temperature distribution under brooder unit

The temperature distribution in the brooder unit was measured at a radial distance of 0, 15, 30, 45, 60, 75, 90, 105, 120, 135 and 150 cm from biogas burner when the burner was fixed at a height of 75 and 100 cm from the ground level. For control, temperature distribution was measured from the centre of the brooder unit.

4.3.1.1. Biogas brooder

Spatial temperature distribution in biogas brooder (Plate 4.1) at different heights of biogas burner from the ground level is shown in Figure 4.39. From the figure, it is clear that there was a decrease in level of temperature as the height of the biogas burner from the ground level and the distance from the biogas burner was increased.

The temperature of 39 °C recorded near the burner when the burner was fixed at a height of 75 cm from the ground level. For the same point, the temperature obtained was 36°C when the burner was fixed at a height of 100 cm from the ground level.

From the figure 4.39, the temperature was varied between 30 and 39°C when the height of the biogas burner was fixed at 75 and 100 cm from the ground level. The recommended temperature for the safe brooding of quail during the first week is 35-37.8°C (Reddy, 1991) and it was attained at 75 cm height.

For the second week of brooding, the temperature required for quail was recommended as 32.2-35°C (Reddy, 1991). This temperature was obtained when the biogas burner was fixed at a height of 100 cm from ground level. At this height, the recommended temperature was obtained in more base area than at other heights of burner position.

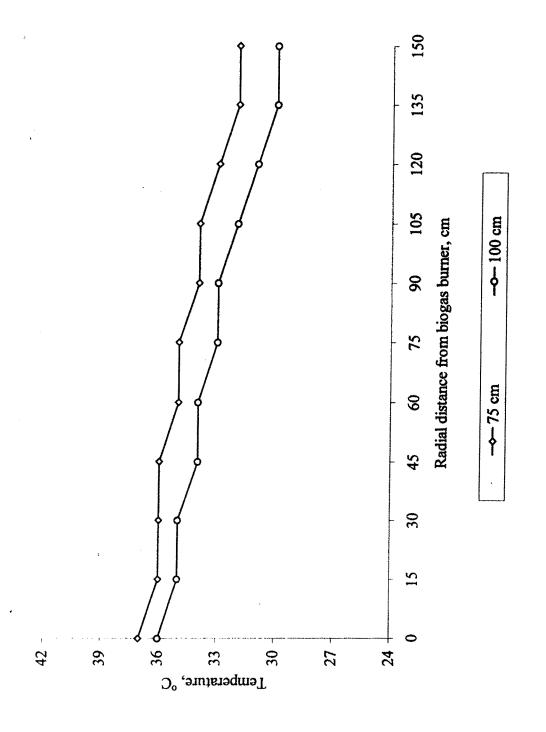
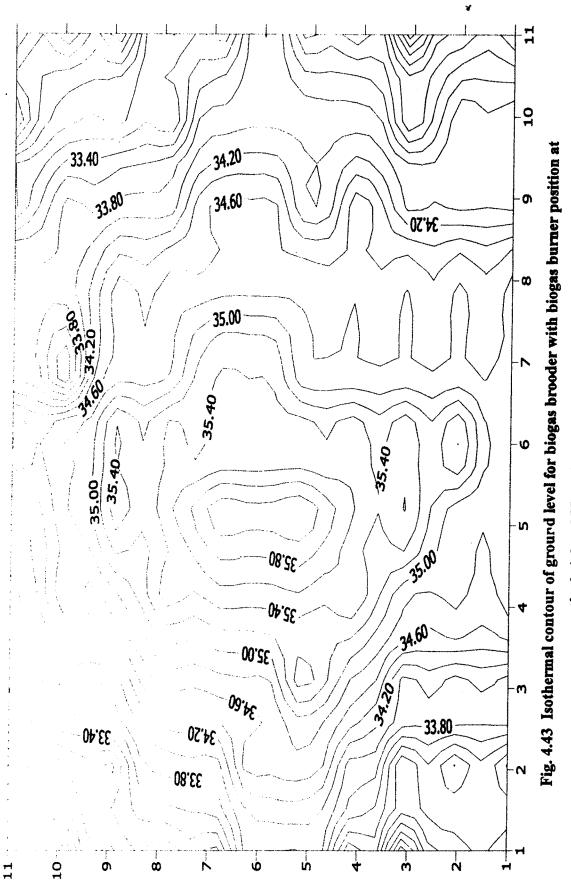
During the third week of brooding, the temperature required for quail is 26.6 - 32.2°C (Reddy, 1991). It was obtained when the biogas burner was fixed at a height of 100 cm from the ground level.

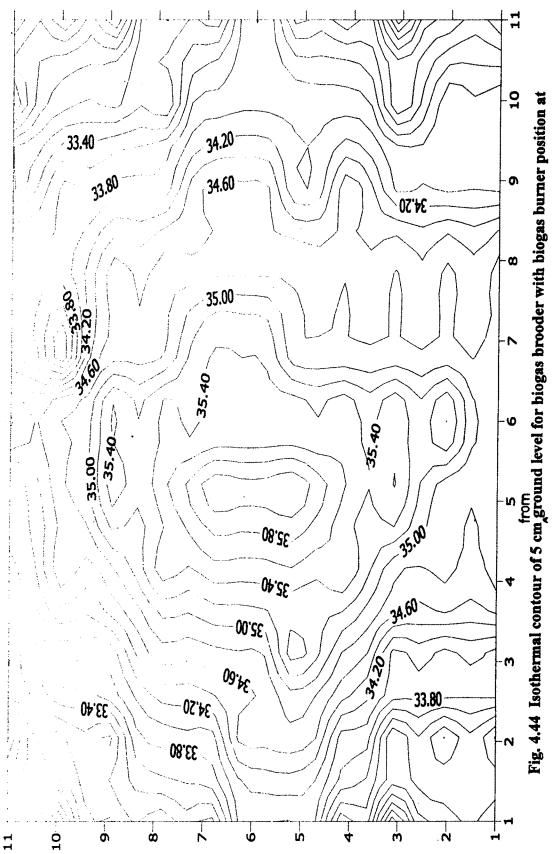
4.3.1.2. LPG brooder

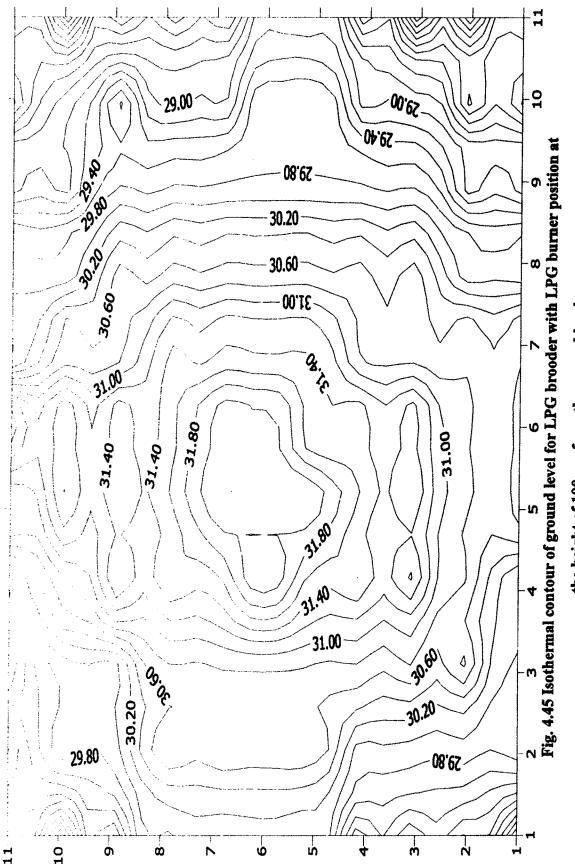
Spatial temperature distribution in LPG brooder (Plate 4.2) at different heights of heat source from the ground level is shown in Figure 4.40. From the figure, it is seen that the temperature dropped as the distance from the LPG burner was increased.

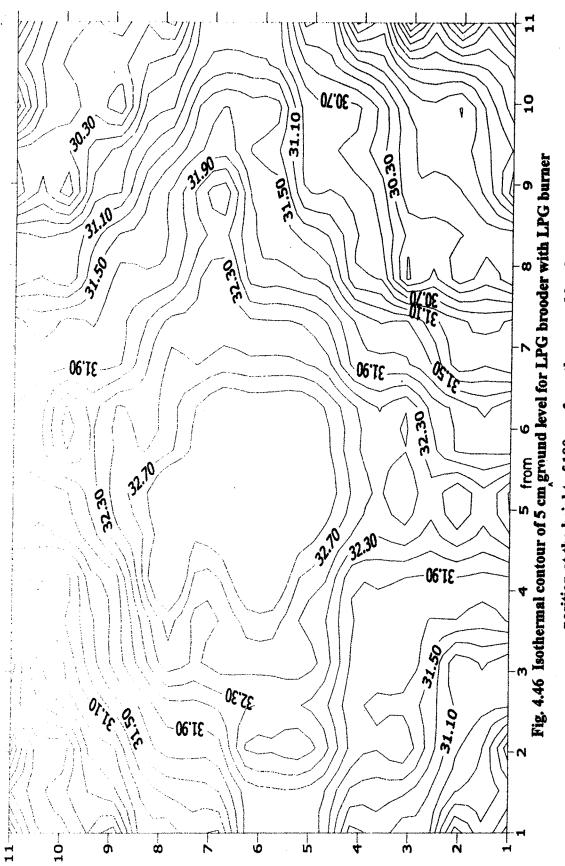
Plate No. 4.1 Temperature measurement in biogas brooder

Plate No. 4.3 Illumination measurement in biogas brooder




Plate No. 4.2 Temperature measurement in LPG brooder



the height of 75 cm from the ground level

4.3.3.1. Biogas brooder

The illumination at different heights of biogas burner in biogas brooder (Plate 4.2) is shown in Figure 4.47. The illumination (or) light intensity released by heat source (biogas burner) was decreased with increase in the distance from the biogas burner when the burner was fixed at different height from the ground level. The light intensity requirement of chicks in the brooding period was 54 lm/m² (54 lux) followed by two weeks lower light intensity reported by Hughese and Weaver (1979). The light intensity of 58 lm/m² was obtained at 75 cm height of biogas burner at a radial distance of 30 cm from the biogas burner. This illumination was achieved just above the requirement.

For second and third weeks of brooding, the required illumination was obtained when biogas burner fixed at a height of 100 cm from the ground level. The illumination decreased when the height of heat source from the ground level was increased.

4.3.3.2. LPG brooder

The illumination released from LPG burner at a height of 100 cm from the ground level for LPG brooder is shown in figure 4.48. From the figure, the illumination was decreased when the radial distance from the centre of brooder increases. Illumination was lower in outer edge of brooder because of heat source is placed in centre of the brooder.

The maximum illumination (34 lux) was obtained near to heat source and minimum was recorded as 14 lux at the edge of the brooder when heat source placed 75 cm and 100 cm from the ground level respectively. The light intensity at this height was much lower than recommended light intensity of 54 lux (Hughese and Weaver, 1979).

The light intensity released from biogas brooder was higher than LPG brooder and the adjustment in biogas burner height increased the light intensity. In the case of

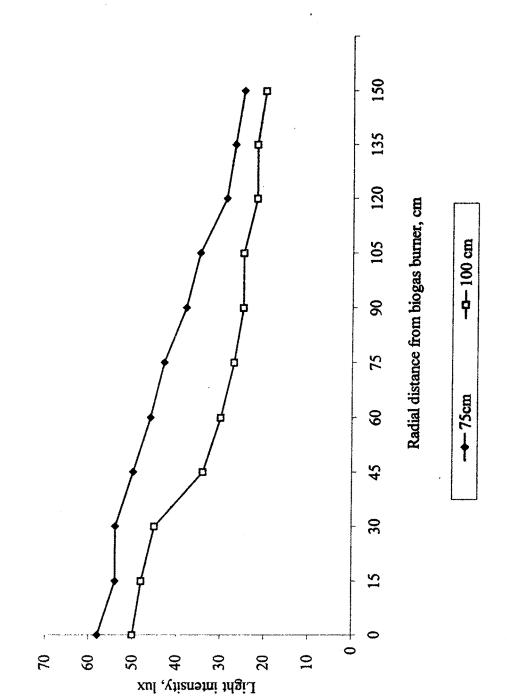


Fig. 4.47 Illumination at different height of biogas burner

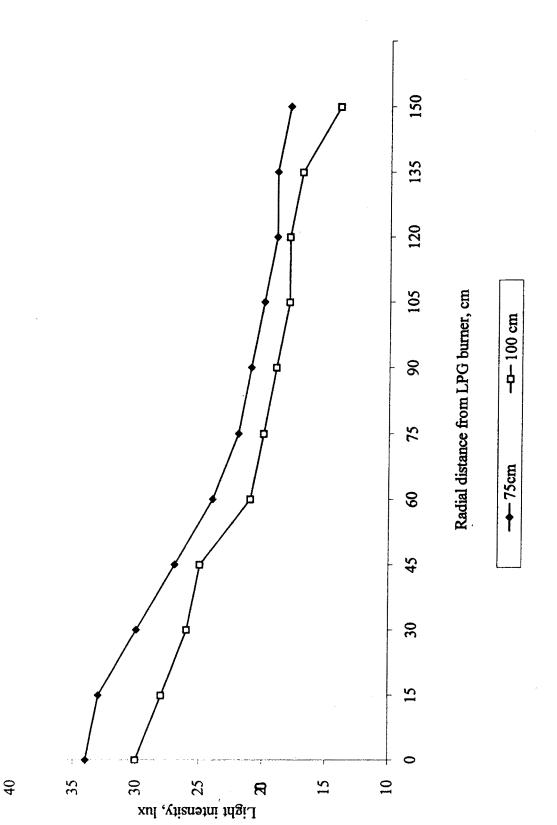


Fig 4.48 llumination at different height of LPG burner

LPG brooder also there is an possibility of adjusting the height of heat source. So the constant illumination released from the source for three week of brooding.

4.3.5.4. Bicgas and LPG consumption

The energy consumption for the brooders was given in Appendix D.

- a) Total biogas consumption in three weeks of the brooding in biogas burner type brooder was 155 m³
- b) Total LPG energy used in the LPG brooder during the three weeks of brooding was 68.25 kg.

4.4. Cost economics for brooding and incubation

Based on the daily gas requirements for brooding operation, KVIC Biogas plant of 85 m^3 capacity was selected for the study.

Fixed Cost

Cost of the biogas plant	=	Rs. 7, 25,000
Salvage value		Rs. 72,500
Life period	==	20 years
Depreciation per year	==	Rs. 32,625
Depreciation per day	=	Rs. 89.38
Interest per year (12.5per cent)	=	Rs. 90,625
Interest per day	=	Rs. 248.29
Land cost per year	-	Rs. 7,250
Land cost per day		Rs. 19.86
Total fixed cost per day	=	Rs. 109.24

Variable cost

Cost of feed stock per day (2250 kg)		Nil
Cost of water per year	=	Nil
Cost of water per day	=	Nil
Repair and maintenance	=	Rs.1,500/year = Rs. 4.10/day
Labour charge		3000 per month = Rs. 100/day
Painting cost per year	=	Rs. 1500
	=	Rs. 4.10/day
Total cost of operation per day	=	Fixed cost per day + Variable
	=	per day
		Rs. 465.73
For 1 m ³ of biogas production cost	=	Rs. 465.73/85 = Rs. 5.48
4.4.1. Biogas brooder		
Fixed cost		
Cost of biogas brooder	H	Rs. 2000
Salvage value	=	Rs. 200
Life period	=	7 year
Depreciation per year	=	Rs. 257
Depreciation per day	=	70 paise
Interest per year	=	Rs. 250
Interest per day	=	68 paise
Housing cost per year	=	Rs. 200
Housing cost per day		55 paise
Total fixed cost	=	Rs. 1.93/day

.

Variable cost

• .

•

Labour charge for 21 day of brooding	=	Rs. 400
Labour charge per day	incomi 	Rs. 19.05
Cost of biogas consumption for brooding of 750		155 m ³ x 5.48
chicks in 21 days		Rs. 849.40 = 40.45/day
Other cost	æ	Rs. 50/21 days of brooding period
		Rs. 2.38/day
Total cost of operation per day in biogas brooder	-	Rs. 61.88
Cost of brooding per chick	1112	Rs. 1.73
4.4.2. LPG brooder		
Fixed Cost		
Cost of LPG brooder		Rs. 2700
Salvage value	-	Rs. 270
Life period	=	7 year
Depreciation per year		Rs. 347
Depreciation per day		95 paise
Interest per year		Rs. 337.5
Interest per day	-	93 paise
Housing cost per year		Rs. 270
Housing cost per day	=	74 paise
Total fixed cost per day		Rs. 2.62
Variable cost		

Labour charge per day = Rs. 23.81

LPG cost for 21 days of brooding	=	68.25 kg x Rs. 26 per kg
	=	Rs. 1774.5
LPG charge for brooding per day	=	Rs. 84.5
Other cost	=	Rs. 60/21 days of brooding
	=	Rs. 2.86/day
Total variable cost	=	Rs. 111.17/day
Total cost of operation per day	=	Fixed cost + Variable cost
	=	Rs. 2.62 + Rs 111.17
Total cost of operation per day	=	Rs. 113.79
Cost of operation for brooding period	=	Rs. 2389
Cost of brooding per chick	=	Rs. 3.20

4.5. Energy inflow and outflow of the Poultry Industry

The results of energy accounting study, the estimation of energy input in the poultry industry and the energy balancing done for the replacement of conventional energy with biogas are presented in this section.

4.5.1. Energy accounting in the poultry industry

The energy input in the poultry industry could be broadly classified into the following three sections.

- 1. Hatchery Unit. (3 weeks incubation)
- 2. Brooding cum Growing Unit (Till 17th week)
- 3. Layering Unit(18th to 72nd week)

4.5.1.1. Hatchery Unit

The hatchery unit selected for the study has the capacity of hatching 5,38,128 eggs. The energy consumption for hatching is 29,952 kWh of electricity. Out of 5,38,128 eggs, the industry is having the capacity of maintaining 80,000 birds only till the layering section. The purpose of comparison study, the energy inflow and outflow was considered for 10,000 birds.

4.5.1.2. Brooding cum Growing Unit

For the brooding and growing of 10,000 birds, the energy consumption is 600 kg of butane gas and 840 kWh of electricity. The total energy equivalent is 7344 kWh.

4.5.1.3. Layering Unit

For layering of 10,000 birds, the energy consumption is estimated as 25,900 kWh for 55 weeks period.

4.5.2. Energy production potential from poultry waste

The waste available in the brooding cum growing unit and layering unit can be effectively utilized for biogas production.

4.5.2.1. Brooding cum Growing unit

The quantity of waste generated from 10,000 birds during the brooding and growing period till 17^{th} week has been estimated as 49 tonnes. The energy potential from this waste is estimated as 7,273 kWh. This is just sufficient to meet the energy demand for brooding and growing with the shortage of 71 kWh (7,344 – 7,273). The shortage is less than 1 per cent (0.97).

4.5.2.2. Layering Unit

The quantity of waste generated from 10,000 birds during the layering period $(18^{th} to 72 week)$ has been estimated as 693 tonnes. The energy production potential from this waste is 91,160 kWh. This is more than the requirement of 25,900 kWh. The surplus energy is 65,260 kWh.

CHAPTER V

SUMMARY AND CONCLUSIONS

In this chapter, the results of the experiments conducted with cowdung and poultry wastes in 39 different combinations and comparative performance evaluation of biogas brooder with the conventional liquefied petroleum gas (LPG) brooder are summarized and conclusions are drawn as follows.

- Among all the wastes, maximum total solid content was present in poultry deep litter as 89.32 per cent because of non combustible material along with bed material and the lowest total solid content was recorded in cowdung as 13.79 per cent.
- The lowest volatile solid content was present in poultry droppings as 10.60 per cent and the highest volatile solid content in poultry deep litter as 65.64 per cent among all the wastes.
- Among all the poultry waste combinations in the ratios of 1:1, 1:2 and 2:1 with 5, 10, and 15 per cent TS, the highest biogas yield from cowdung and poultry droppings (T₃₆) in 2:1 ratio with 15 per cent TS as 47273 ml. The biogas yield was also high in all the poultry droppings based material combinations.
- Among all the poultry waste combinations in the ratios of 1:1, 1:2 and 2:1 with 5, 10, and 15 per cent TS, the highest methane yield from cowdung and poultry droppings (T₃₀) in 2:1 ratio with 15 per cent TS as 27889 ml with average methane content of 65 per cent. The methane yield was also high in all the poultry droppings based material combinations.

- All the combination of feedstock had the initial methane content variation with the wide range of 15 to 94 per cent. The maximum average methane percentage was recorded as 76 per cent in the combination of poultry manure and cowdung in 1:1 ratio (T₄) with 5 per cent TS.
- ✤ The maximum methane produced as 0.1470 m³ per kg of TS added and it was obtained in the combination of poultry droppings mixed with cowdung in 1:1 ratios (T₂₉) with 10 per cent TS. The lowest methane production was obtained as 0.0085 m³ per kg of TS added from cowdung mixed with poultry deep litter in 1:1 ratio (T₁₇) with 10 per cent TS.
- Among all the combinations, the higher yield of methane observed from cowdung and poultry droppings mixed with 1:1 ratio (T₂₉) as 0.3182 m³ per kg of VS added and lower yield of methane was observed in the combination of cowdung and poultry deep litter mixed with 1:1 ratio (T₁₇) as 0.0474 m³ per kg of VS added.

Performance of the biogas brooder (hanging brooder type) was evaluated in terms of temperature distribution inside the brooder, light intensity from the heat source, energy consumption of biogas and LPG Brooder and cost of the brooding per chick. The performance was compared with an LPG brooder.

Based on observations of temperature in the biogas burner type brooder for first week of brooding, the burner height of 75 cm from the ground level was found for safe brooding whereas for the second and third week of brooding, the burner height was found to be optimum at 100 cm from the ground level by adjusting the gas flow rate.

- Based on the observation of illumination measurements, the required light intensity of 58 lux was obtained (against requirement of 54 lux) on biogas brooder whereas insufficient illumination of 31 lux had only obtained in the case of LPG brooder.
- The energy consumption in biogas brooder was 155 m³ for three weeks of brooding period, whereas the butane consumption was 68.25 kg in the case of LPG brooder.
- The energy demand of brooding and incubation for 10,000 birds was 600 kg of LPG and 560 kWh of electricity respectively and these can be fully eliminated by the biogas brooder which required 1,385 m³ for brooding and 2,129 m³ for incubation.
- In total, the energy production potential from poultry waste was 20952 m³ of biogas against the requirement of 7,076 m³ of biogas.
- The cost of operation per chick in the biogas (burner type) brooder was Rs. 1.73, whereas it was Rs. 3.20 in LPG brooder.

References

.

,

.

,

REFERENCES

- Aburas, R., M. Hammad, I. Abu Reegh, S.E. Hiary and S. Quosous. 1995. Construction and operation of a demonstration biogas plant problems and prospects. Bioresource Technology, 53: 101-104.
- Ajay Singh, 1994. Poultry farming during hot weather. Poultry Guide, 31: 11-12.
- Aklaku E.D. and A.A.M. Sayigh, 1990. Results of continuous digestion tests with poultry manure and guinea grass. Energy and Environment, 23-28: 2052-2056.
- Aller, R.F., 1979. Methane production from urban solid wastes. Federal Republic Germany. Feritag-Verlang. Klelttechnik, 2: 316-322.
- Anonymous, 1988. Production and use of biogas and utilization of by products derived from biogas production in the co-operative farm "II Rakoczi" at szecseny. MTESZ Veszprem megyei szervezete, Balatonalmadi, Hungary, pp.239-251.
- Anonymous, 1992. Japanese quail farming. New vista for prosperity in developing countries. Poultry Guide, 29: 43-45.
- Anonymous, 1996. Biomethanation of organic wastes using BIMA digesters. Bioenergy News, 1: 11-14.
- Anonymous, 1997. Biogas from poultry waste at western hatcheries. Bioenergy News, 1: 7-8.
- Anonymous, 1999. Gaushala with power and fertilizer from cow dung. **Bioenergy News**, 3: 26.

- Anonymous, 1989. Standard methods for the examination of water and waste water. (Eds). Cleseri, S.L., A.E. Greenberg and R..R. Trussell. Amer. Pub. Health Assoc., Amer. Water works Assoc. and Amer. Water Pollution Cont. Federation. Broadway, New York, p.1193.
- Arokiasamy, N.S.S., 1978. Management of energy for rural development. Energy Management, 2: 175-182.
- Balsari, P., E. Bozza, F. Casa and N. Fossati. 1987. Use of synthetic sheets in anaerobic digesters. Rivista di Ingergneria Agraria, 18: 129-135.
- Bansel, M.L., C.P. Mittal, H.S. Sondhi and S. Neelakanan, 1977. Biogas production during anaerobic digestion of livestock excreta. Indian Journal of Dairy Science, 30: 338-340.
- Barnett, A., L. Pyle and S.K.Subramanian, 1978. Biogas Technology in the third world. A multidisciplinary review. International Development Research Centre, Ottawa, pp.28-110.
- Behmel, U., M. Speckmeyer, C.Clauss and R. Meyer-Pittroff. 1997. Production of biogas from highly polluted organic effluent. In: A two stage process for the anaerobic breakdown of dairy sludge. DMZ, Lebensmittelindustrie and Milchwirtschaft. 118:540-545.
- Benjamin S. Magbanu Jr. Thomas T Adams and Philip Johnston 2001. Anaerobic codigestion of hog and poultry waste. Bioresource Technology, 76:14-16.

Bhattu, B.S. 2000. Prospects of broiler industry in India. Poultry Planner, 1: 34-35.

Bousfiled, S. P.N. Hobgon and R. Summers, 1979. A note on anaerobic digestion of cattle and poultry waste. Agrl. Wastes, 1: 161-163.

- Butland, G. 1999. Rabonank International bulletin on Indian poultry industry. **Poultry Flame**, **10**:1-10.
- Camargo, 1986. Biogas clean up and utilization. Wat. Sci. Technol., 18:143-150.
- Chandran, S., 1997. Biogas production with feedstock substitution and alternate construction material. P.G. Thesis, Tamil Nadu Agricultural University, Coimbatore.
- Chanakya, H.N. S. Borgaonkar, G. Meena and K.S. Jagadish. 1993. a. Solid phase fermentation of untreated leaf biomass to biogas. **Biomass and Bioenergy**, 5: 5, 369-377.
- Chatterjee, D., M.G. Takwale, V.S.Ghole, D.R. Ranade and V.G. Bhide, 1994. Field scale, night soil based biogas digester made from HDPE-A case study through optimization. RERIC Int. Energy J., 16: 43-49.
- Chen-Ten Hong, Wang-Jiachern, T.H. Chen and J.C. Wang. 1998. Performance of mesophilic anaerobic digestion systems treating poultry mortalities. Journal of Environmental Science and Health, 33: 487-510.
- Chowdhary, S.D.R., S.K.Gupta, S.K. Banerjee and S.D. Rou-Chowdhary. 1994. Evaluation of the potentiality of tree leaves for biogas production. Indian Farmer, 120: 720-728.
- Cowley, D. and D.A.J. Wise, 1981. Anaerobic digestion of farm wastes: a review-Part I. Process Biochemistry, 16: 28-33.
- Darmora, D.P., 1984. Performance of a compression ignition engine on biogas with different methane content. M.Tech. Thesis, G.B. Pant University of Agriculture and Technology, Pantnagar, U.P.

- Desai, M., V. Patel and Madamwar, 1994. Effect of temperature and retention time on anaerobic digestion of cheese whey-poultry waste-cattle dung. Environ. Pollut., 83: 311-315.
- Dhussa, A. 1983. Designing biogas distribution system. Bioenergy Reviews, 2: 70-83.
- Drury, L., N. Driggers and J. Clyde, 1959. Comparative performance of certain types of electric gas and coal chick brooders. Paper presented at Annual meeting of ASAE Ithaca, New York, pp: 67-71
- Dugba, P.N. and R. Zhang. 1997. Treatment of dairy wastewater with two-stage anaerobic sequencing batch reactor systems – thermophilic Vs mesophilic operations. ASAE Annual International Meeting, Minneapolis, USA, August 10-14, p.8.
- Dugba, P.N., R.H. Zhang, T.R. Rumsey and T.G. Ellis. 1999. Computer simulation of a two-stage anaerobic sequencing batch reactor system for animal wastewater treatment. Transactions of ASAE, 42: 471-477.
- Edwards, D.R. and T.C. Daniel. 1992. Environmental impacts of on-farm poultry waste disposal-a review. Bioresoruce Technology 41:9-33.
- Ellegard, A and H. Egneus. 1984. A simple, rapid and accurate of determination of carbondioxide in biogas. In: Biogas Technology, Transfer and Diffusion. Ed. RM. El-Halura of Elsevier Applied Science Publication, New York. pp: 494-497.
- Fernandez, J.L.A., 1999. Biogas generation from wastewater of citric acid industry. Bioenergy News, 3: 16-20.
- Frison, M. and G. Carrotte. 1989. Methanization of cattle slurry. Follow-up on a prototype digester. Essai, Institute Technique de-L Eterage-Bovi, 89064, p: 37.

- Gadgre, R.V., D.R. Ranade and S.H. Godbole. 1990. Optimum retention time for the production of biogas from cattle dung. Indian Journal of Environmental Health, 32: 45-49.
- Ganesan, S., R.H. Balasubramanya., V.G. Khandeparkar and V. Sundaram. 1981. Biogas from textile mill waste. Indian Society of Cotton Improvement Journal, 6:102-103.
- Hardwood, F.W. and F.N. Reece, 1975. Small area chick brooding. ASAE paper No. 75, p.4534.
- Hidalgo, G., A. Silin, L.M. Fraga, J. Castellon and O. Alfonso, 1988. Production and use of biogas in poultry housing Revista - Ciencias - Tecnicas - Agropecuarias, 2:47-52.
- Hill, D.J. and R.S. Dykstra. 1980. Anaerobic digestion of cannery tomato solid matter. Journal of Environmental Engineering Division, American society for Civil Engineers, 106: 257-266.
- Hill, D.J. 1983. Simplified monod kinetic of methane fermentation of animal wastes. Agrl. Wastes, 5: 1-6.
- Hills, D.J. and Nakana, 1984. Effect of particle size on anaerobic digestion of tomato solid wastes. Agrl. wastes, 10: 285-295.
- Hughes, H.A. and W.D. Weaver, 1979. Energy saving in an insulated for ventilated broiler house. Trans. of ASAE, 22: 367-369.
- Ibrahim, G.H., Gu-Guowei, zhu-Jinfu, S.A. Tayel, M.F.A. Khairy, S.A. El-Shima, G.W. Gu and J.F.Zhu. 1997. Anaerobic digestion for wastewater poultry manure by UBF reactor. Journal of Environmental Sciences, 9:149-161.

- Ilamurugu, K. and P. Rajasekaran, 1986. Biomethane production from poultry droppings. Rural Tech. J. 3: 24-30.
- Jadhav, N.V. and Siddiqui, 1992. Managerial care and practices for successful brooding of chicks. Poultry Guide, 29: 27-30.
- Jamila, A. and A.A.M. Sayigh, 1990. Optimization of factors allowing best gas yield from anaerobic fermentation of poultry manure. Energy and Environment, 23: 2061-2064.
- Kalia, A.K. 1988. Development and evaluation of a fixed dome plugflow anaerobic digester. Biomass 16: 225-235.
- Kalia, A.K. and S. P. Singh. 1999. Case study of 85 m³ floating drum biogas plant under hilly conditions. Energy conversion and Management, 40: 693-702.
- Kamaraj, A. 2000. Biogas Production from poultry and quail wastes, M.E.Thesis, Tamil Nadu Agricultural University, Coimbatore.
- Kamaraj, S. and K.R. Swaminathan. 1987. Technology options of domestic biogas plant. Paper presented in the national seminar on biogas technology at Tamil Nadu Agricultural University, Coimbatore.
- Kamaraj, S., P. Rajasekaran, P.T. Palanisamy, K.R. Swaminathan and R.K. Sivanappan, 1981. Recycling of organic wastes for biogas production. Paper presented in the UN conference on New and Renewable Sources of Energy at Nairobi.
- Kannan, N. and B. Singh, 1994. Brooding management at high altitude, Ladakh. Poultry Guide, 31: 51-60.
- Kanwar, S.S. and R.C. Guleri. 1994. Performance evaluation of a family size rubber balloon biogas plant under hilly conditions. **Bioresource Technology**, 55: 187-194.

Khan, P.R., 1977. More food from domestic wastes. Yojana, 21: 29-32.

- Khanna, H.R., 1994. Brooding the foundation of profitability in poultry. Poultry guide, 31: 81-83.
- Khendelwal, K.C. and S.S. Mahdi, 1986. In Biogas Technology a practical technology. Tata McGraw-Hill Publishing Company Ltd, New Delhi .p.128.
- Komendant, I.T. and V.I. Shapovlov. 1991. A method for calculation of consumption of power resources by poultry houses. Tekhnika --v-Sel'skom-khozyaistve, 4:64.
- Kothandaraman, C.P., 1977. Some investigation into use of gobar gas in I.C. Engines, 4th National Conference on I.C. Engines and Combustion, 1: 44-50.
- Kugelmann, I.J. and P.L. McCarty. 1965. Cation toxicing and simulation in anaerobic waste treatment. Journal of Water Pollution Control Federation, 37:97.
- Kumar, S. and T.D. Biswas. 1982. Biogas production from different waste and animal excrete. Indian Journal of Agricultural Science, 52: 513 – 520.
- Liang, T. and D. Paquin. 1997. Using HDPE to design and fabricate a digester for liquid animal waste. ASAE Annual International Meeting, Minnepolis, USA, August 10-14. p.3.
- Lomas, J.M., C. Urbano and L.M. Camerro. 1999. Evaluation of a pilot scale downflow stationary fixed film anaerobic reactor treating piggery slurry in the mesophilic range. Biomass and Bioenergy, 17: 49-58.
- Madamwar, D., V. Patel and A. Patel 1990. Effect of agricultural and other wastes on anaerobic digestion of water hyacinth and cattle dung. Journal of Fermentation and Bioengineering, 79:343-344.

- Mahadevasamy, M., L.V.Venkataraman, 1986. Bioconversion of poultry droppings for biogas and algal production. Agrl. Wastes, 18: 93-101.
- Mahimairaja, S., N.S. Bolan, M.J. Hedley and A.N. Macgregor. 1990. Evaluation methods of measurement of nitrogen in poultry and animal manures. Fert. Res., 24 :141-145.
- Mallik, M.K., U.K. Singh and N. Ahmad. 1990. Batch digester studies on biogas production from cannabis sativa, water hyacinth and crop wastes mixed with dung and poultry litter. Biol. Wastes, 31: 315-319.
- Mapuskar, S.V., 1997. Biogas from vegetable market waste at APMC, Pune. Bioenergy News, 1: 16-19.
- Mittal, K.M., 1996. Biogas systems, principles and applications. New Age International (P) Ltd, Publishers, New Delhi. p: 272.
- Murugesan, R., 1982. Effect of temperature on the microbial digestion of organic wastes in relation to biogas generation. M.Sc (Ag.) Thesis, Tamil Nadu Agricultural University, Coimbatore.
- Nakagawa, C.H. and Q.L. Honquilada. 1987. Chinese biogas digester. A potential model for small scale, rural application (a manual for construction and operation). Report peace crops, Information collection and exchange, 51: 103.
- Nallathambi, G. 1988. Anaerobic digestion of Gliricidia leaves for biogas and organic manure. Biol. Wastes, 33: 311-314.
- Nazir, M. 1991. Biogas plants construction technology for rural areas. Bioresource Technology, 35: 283-289.
- Neelakantan, S., Kishan Singh and K.Singh, 1992. Bioconversion of different organic wastes into biogas. Indian Journal of Dairy Science, 45: 268-271.

- Nesheim, M.C., R.E. Austic and L.E. Card, 1979. In poultry production 12th Ed, Lea and Febiger, Philadelphia P.A. p.127.
- North, M.O., 1972. Commercial chicken production manual. The AVI publishing Company INC., USA. p.296.
- Oba, H. and J. Honda, 1981. Methane generation from organic waste. Japanese Patent, **Biomass Abstract**, **5:** 81-84.
- Palaniswamy, P.T. and A. Dakshnamurthy, 1986. Biogas to control rice storage pests. International Rice Research Newsletter, 11: 25.
- Panesar, B.S. and A.P. Bhatnagar, 1987. Energy norms for inputs and outputs of agricultural sector. In: Energy in Agriculture production and food processing. (Eds.) Mittal J.P., B.S. Panesar, S.S.Singh, C.P. Singh, Y.Singh, and K.D.Mannan. ISAE monograph series, No.1. pp.8-26.
- Pechan, Z., O. Knappora, B. Petrovicova, O. Adamec, 1987. Anaerobic digestion of poultry manure at high ammonium nitrogen concentration. **Biol. Wastes 20:** 117-131.
- Piper, C.S. 1996. Soil and Plant analysis . Inter science Publications Inc., New York . p. 368.
- Radhika, L.G., S.K. Seshadri and P.N. Mohandas, 1983. A study of biogas generation from coconut pith. J. Chem. Tech. Biotechnol., 33: 189-194.
- Raju, N.R., S.S. Devi and Krishnanand, 1991. Influence of trace elements on biogas production from mango processing waste in 1.5 m³ KVIC digesters. Biotechnology Letters, 13: 461-464.
- Ram Bux Singh, 1974. Biogas plant. Generating methane from organic wastes, Gobar Gas Research Station, Ajitmal Etawah, p.78.

- Ramajeyam, G., A. Ramasubramanian, R. Ramesh and S. Ramesh, 1994. Development of biogas operated incubator. U.G. Thesis, Tamil Nadu Agricultural University, Coimbatore.
- Ramesh, D. 2000. Application of Biogas for brooding and incubation in poultry industry, M.E. Thesis, Tamil Nadu Agricultural University
- Ranade, D.R. N.N. Nagarwala, J.A. Dudhbhate, R.V. Gadre and S.H. Godbole. 1990. Production of biogas at different total solid content in cattle dung. Indian Journal of Environmental Health, 32: 63-65.
- Reddy, V.R., 1991. Management and economics of quail. Poultry Guide, 28: 21-26.
- Shivapa Shetty, K., H.C. Naharaju, D.J. Bhagyaraj and R.B. Patel, 1980. Studies on the use of agricultural and animal wastes for biogas production. Proceedings RRAI symposium, Punjab Agricultural University, Ludhiana. pp: 333-340.
- Safley, L.M. and P.W. Westerman. 1989. Anaerobic lagoon biogas recovery system. Biol. Wastes, 27: 43-62.
- Safley, L.M., R.L. Vetter, D. Smith. 1987. Operating a full scale poultry manure anaerobic digester. Biol. Wastes, 19: 79-90.
- Sanchez, E.P., O. Monroy, R.O. Canizarer, L. Traviero and A. Ramos. 1995. A preliminary study on piggery waste treatment by an uplow sludge bed anaerobic reactor and packed bed anaerobic reactor; Journal of Agricultural Engineering Resource, 62: 71-76
- Sandhya, B. 1994. Factors influencing biogas production during full-scale anaerobic fermentation of farmyard manure. Bioresource Technology, 49: 17-23.
- Sandhya, X and Krishnand. 1990. A preliminary study on biogas production from cowdung using fixed bed digesters. Biol. Wastes 31: 161-165.

- Sarada, R. and Krishnanand, 1989. Start-up anaerobic digestion of tomato processing wastes for methane generation. Biol. Wastes, 30: 231-237.
- Sarapatka, B. 1994. Factors influencing biogas production during full-scale anaerobic fermentation of farmyard manure. Bioresource Technology, 49:17-23.
- Shelef, G., S. Kimchie and Grynberg, 1980. High rate thermophilic anaerobic digestion of agricultural wastes. Biotechnology and Bioengineering symposium, 10: 341-351.
- Shih, J.C.H. and J.C.H. Huang, 1980. Laboratory study of methane production from broiler, chicken litter. Biotechnology and Bioenergy symposium, 10: 317-323.
- Shinnawi, El., M.M., B.S. El-Tahawi, M. El. Housseini and S.S. Fahmy, 1989. Changes of organic constituents of crop residues and poultry wastes during termentation for biogas production. MIRCEN J. of Appl. Microbiol. and Biotechnol., 5: 475-486.
- Singh, 1995. Ventilation of poultry sheds. Poultry Guide, 32: 33-34
- Singh, L., M.S. Maurya, M. Sairam and S.I. Alam, 1993. Biogas production from night soil. Effects of loading and temperature. Bioresource Technology, 45: 59-61.
- Singh, R., R.K. Malik, M.K. Jain and P. Tauro, 1984. Biogas production at different solid concentration in daily fed cattle waste digesters. Agrl. Wastes, 11: 253-257.
- Sudhirkumar, 1996. Biogas from pressmud-A case study. Bioenergy News, 1: 15-17.
- Sushil Kumar and T.D. Biswas. 1982. Biogas production from different waste animal excreta. Indian Journal of Agricultural Science, 52: 513-520.
- Venkatachalam, P., 1998. Study on Biokinetic parameters of farm animal wastes during methanation, Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore.

\$

Waddell, E.L. 1988. Biogas production from caged layer wastes. Biocycle, 29:58-59.

- Webb. A.R. and Freda. R. Hawkes, 1985. The anaerobic digestion of poultry manure:
 Variation of gas yield with influent concentration and ammonium-nitrogen levels, Agrl.
 Wastes 14: 135-156.
- Wong-Chong, G.M., 1975. Dry anaerobic digestion. Energy, agriculture and waste management. Ann. Arbor. Science, pp: 361-371.
- Yaldiz, O., Y.Zeren, Y. Yildiz, M.T Ozcan, E.Guzel, A.Isid, and E.Bilgin, 1990.
 Methane production in the unheated biogas digester. International congress on mechanization and energy in Agriculture, 1: 712-718.
- Yao, A.L.,G.Y. Fang, K. J. Yang, Y. X. Zhaon and M.H. Wang 1989. A pilot biogas system plant using high rate chicken manure anaerobic treatment. Proceedings of international symposium on Agrl. Engg., 2:966-969.
- Yeole, T.Y. and D.R. Ranade, 1997. Production of biogas from antibiotic mycelial waste. Bioenergy News, 1: 15-16.
- Yeole, T.Y., D.R. Ranade and R.V. Eiadre, 1996. Biogas from liquid waste arising in liver and beef extract production. RERIC Int. Energy J., 11: 35-39.
- Zhenghou J., S.C., Steinsberger and Jason Shih, 1987. *Insitu* Utilization of biogas on a poultry farm: Heating, Drying and Animal Brooding. **Biomass, 14:** 269-281

Appendix

÷

APPENDIX - A

.

.

ł

Daily biogas production of 39 combinations of feedstock are given in the tables

Treatment 1 Daily biogas production of cowdung as feedstock in 100 per cent with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	230	100	165	46	190	30	110
2	100	50	75	47	100	10	55
3	25	25	25	48	120	30	75
4	30	20	25	49	120	20	70
5	0	0	0	50	180	20	100
6	20	50	35	51	120	20	70
7	50	0	. 25	52	100	10	55
8	40	10	25	53	10	160	85
9	70	20	45	54	80	20	50
10	0	0	0	55	120	40	80
11	40	10	25	56	160	10	85
12	0	20	10	57	130	30	80
13	0	0	0	58	200	20	110
14	0	0	0	59	230	40	135
15	0	0	0	60	60	10	35
16	0	0	0	61	80	60	70
17	20	10	15	62	20	10	15
18	10	20	15	63	220	40	130
· 19	0	10	5	64	100	0	50
20	0	0	0	65	180	0	90
21	10	10	10	66	400	60	230
22	10	10	10	67	380	70	225
23	0	0	0	68	90	0	45
24	20	10	15	69	70	0	35
25	20	10	15	70	80	0	40
26	20	10	15	71	290	10	150
27	0	10	5	72	270	10	140
28	10	10	10	73	400	25	212.5
29	20	20	20	74	300	20	160
30	10	20	15	75	40	40	40
31	10	10	10	76	20	20	20
32	30	30	30	77	100	20	60
33	30	30	30	78	100	30	65
34	30	30	30	79	100	20	60
35	10	10	10	80	30	20	25
36	120	30	75	81	60	20	40
37	310	20	165	82	40	30	35
38	360	70	215	83	10	0	5
39	130	30	80	84	0	ů 0	0
40	340	80	210	85	ů	Ō	0
40	350	40	195	86	30	20 ·	25
41	200	20	110	87	20	20	20
42	280	120	200	88	30	40	35
43 44	300	60	180	89	50	60	55
44 45	170	20	95	90	10	· 20	15
40	170	20	, , , , , , , , , , , , , , , , , , , 	70	• •	~~	J

150

ŧ

Treatment 2 Daily biogas production of cowdung as feedstock in 100 per cent with 10 per cent TS

1 2 3 4	(ml) 310 130	(ml) 650	(ml)		(ml)	(ml)	
23		650		1	((mm)	((m)	(ml)
1 1	130	020	480	46	10	100	55
1 1	120	100	115	47	10	200	105
	110	40	75	48	10	170	90
4	110	70	90	49	0	210	105
5	0	0	0	50	0	280	140
6	0	10	5	51	10	300	155
7	90	150	120	52	20	150	85
8	90	80	85	53	0	200	100
9	65	50	57.5	54	0	120	60
10	0	0	0	55	0	120	60
11	50	30	40	56	10	170	90
12	0	0	0	57	0	80	40
13	0	0	0	58	60	220	140
14	0	0	0	59	40	300	170
15	0	0	0	60	0	130	65
16	0	0	0	61	0	200	100
17	10	10	10	62	0	150	75
18	35	10	22.5	63	20	100	60
19	10	10	10	64	0	60	30
20	0	0	0	65	10	80	45
21	10	20	15	66	70	260	165
22	20	10	15	67	80	290	185
23	0	5	2.5	68	0	80	40
• 24	30	20	25	69	0	80	40
25	20	20	20	70	0	60	30
26	20	20	20	71	10	70	40
27	10	0	5	72	20	280	150
28	10	0	5	73	30	250	140
29	10	20	15	74	20	340	180
30	0	0	0	75	0	480	240
31	0	10	5	76	0	360	180
32	10	10	10	77	20	480	250
33	0	0	0	78	0	460	230
34	10	10	10	79	30	430	230
35	0	0	0	80	0	440	220
36	20	30	25	81	0	530	265
37	40	70	55	82	0	300	150
38	40	60	50	83	20	200	110
39	0	0	0	84	40	180	110
40	10	30	20	85	10	100	55
41	0	30	15	86	20	400	210
42	0	10	5	87	10	360	185
43	30	10	20	88	20	400	210
44	20	120	70	89	30	420	225
45	20	120	70	90	20	120	70

•

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	270	300	285	46	230	330	280
2	140	160	150	47	210	200	205
3	90	70	80	48	300	110	205
4	100	75	87.5	49	320	260	290
5	0	0	0	50	330	220	275
6	150	70	110	51	450	60	255
7	100	200	150	52	340	300	320
8	80	160	120	53	630	300	465
9	90	110	100	54	650	350	500
10	0	0	0	55	600	420	510
11	30	50	40	- 56	500	220	360
12	0	0	0	57	290	360	325
13	0	0	0	58	430	250	340
14	0	10	5	59	240	430	335
15	0	0	0	60	90	90	90
16	0	20	10	61	200	180	190
17	10	20	15	62	120	100	110
18	30	30	30	63	200	200	200
19	0	20	10	64	0	0	0
20	0	0	0	65	30	20	25
21	10	10	10	66	380	48 0	430
22	20	20	20	67	350	470	410
23	0	10	5	68	120	80	100
24	20	30	25	69	80	70	75
25	30	20	25	70	70	70	70
26	10	30	20	71	350	0	175
27	0	0	0	72	320	0	160
28	10	10	10	73	510	0	255
29	30	30	30	74	310	10	160
30	0	10	5	75	600	400	500
31	0	0	0	76	60	450	255
32	30	30	30	77	150	540	345
33	0	10	5	78	140	600	370
34	40	40	40	79	120	560	340
35	40	20	30	80	120	520	320
36	90	100	95	81	200	670	435
37	110	60	85	82	250	520	385
38	110	250	180	83	190	350	270
39	30	40	35	84	200	380	290
40	200	240	220	85	100	200	150
41	270	270	270	86	350	250	300
42	130	130	130	87	360	270	315
43	150	130	140	88	390	340	365
44	520	640	580	89	370	350	360
45	270	340	305	90	150	300	225

Treatment 3 Daily biogas production of cowdung as feedstock in 100 per cent with 15 per cent TS

•

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
•	(ml)	(ml)	(ml)		(ml)	(ml)	(mi)
1	25	10	17.5	46	10	25	17.5
2 3	0	0	0	47	0	20	10
3	0	0	.0	48	20	50	35
4	30	30	30	49	0	10	5
5	0	10	5	50	10	20	15
6	0	0	0	51	30	70	50
7	10	10	10	52	20	20	20
8	50	30	40	53	10	0	5
9	65	55	60	54	0	10	5
10	0	0	0	55	0	20	10
11	10	10	10	- 56	0	10	5
12	0	60	30	57	0	0	0
13	30	10	20	58	0	0	0
14	20	10	15	59	10	10	10
15	20	30	25	60	0	0	0
16	35	15	25	61	0	0	0
17	30	30	30	62	0	0	0
18	60	150	105	63	26 0	20	140
19	50	120	85	64	0	0	0
20	40	60	50	65	0	0	0
21	40	30	35	66	10	20	15
22	40	50	45	67	0	20	10
23	30	40	35	68	0	0	0
24	50	80	65	69	0	0	0
25	40	70	55	70	20	10	15
26	40	60	50	71	0	0	0
27	10	20	15	72	0	0	0
28	30	40	35	73	0	0	0
29	50	40	45	74	0	0	0
30	10	10	10	75	0	0	0
31	20	0	10				
32	30	40	35				
33	50	20	35				
34	40	50	45				
35	20	50	35				
36	50	100	75				
37	90	70	80				
38	100	80	90				
39	40	20	30				
40	60	50	55				
41	10	20	15				
42	0	0	0				
43	60	40	50				
44	40	40	40				
45	10	20	15				

Treatment 4 Daily biogas production of cowdung and poultry manure as feedstock in 1:1 ratio with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	20	30	25	46	40	30	35
23	0	0	0	47	30	30	30
1	0	0	·0	48	40	60	50
4	10	20	15	49	20	40	30
5	0	0	0	50	40	50	45
6	40	20	30	51	60	120	90
7	100	80	90	52	20	50	35
8	40	70	55	53	50	50	50
9	70	80	75	54	30	10	20
10	0	0	0	55	30	30	30
11	50	50	50	56	30	30	30
12	50	100	75	57	20	30	25
13	60	60	60	58	70	50	60
14	100	50	75	59	100	100	100
15	20	30	25	60	0	0	0
16	40	50	45	61	30	40	35
17	30	40	35	62	10	10	10
18	40	90	65	63	0	0	0
19	50	100	75	64	50	40	45
20	60	40	50	65	0	0	0
21	160	150	155	66	60	80	70
22	90	120	105	67	50	90	70
23	130	40	85	68	0	0	0
24	120	110	115	69	0	0	0
25	90	100	95	70	0	0	0
26	60	110	85	71	10	20	15
27	100	90	95	72	10	20	15
28	140	120	130	73	0	0	0
29 20	180	180	180	74	0	0	0
30	140	130	135	75	0	0	0
31	100	110	105	76	10	10	10
32	100	210	155	77	5	5	5
33	110	120	115	78	0	0	0
- 34	160	160	160	79	0	0	0
35	100	100	100	80	0	0	0
36 27	150	250	200		. I		1
37	70	200	135				
38	110	100	105]		
39 40	20	10	15]		
40	150	140	145				
41	40	60 20	50				
42	10	20	15				
43	30	250	140				
44	140	130	135				
45	20	50	35	l]

Daily biogas production of cowdung and poultry manure as feedstock in 1:1 ratio with 10 per cent TS

.

Treatment 6

Day Rep.1 Rep.2 Average Day Rep.1 Rep.2 Average (ml) (ml) (ml) (ml) (ml) (ml) 107.5 42.5 132.5

Daily biogas production of cowdung and poultry manure as feedstock in 1:1 ratio with 15 per cent TS

Treatment 7

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
i	60	85	72.5	46	320	320	320
2	30	50	40	47	0	320	160
3	0	15	7.5	48	200	180	190
4	60	80	70	49	160	260	210
5	0	0	0	50	140	140	140
6	0	10	5	51	110	150	130
7	200	170	185	52	130	100	115
8	0	110	55	53	130	120	125
9	100	120	110	54	60	80	70
10	10	0	5	55	60	90	75
11	110	120	115	56	120	100	110
12	110	40	75	57	60	110	85
13	10	10	10	58	170	170	170
14	50	40	45	59	300	280	290
15	40	30	35	60	0	0	0
16	20	40	30	61	110	120	115
17	70	80	75	62	50	30	40
18	100	40	70	63	130	150	140
19	140	50	95	64	10	40	25
20	140	60	100	65	40	30	35
21	190	130	160	66	250	130	190
22	260	140	200	67	240	140	190
23	350	100	225	68	30	80	55
24	400	120	260	69	10	60	35
25	410	170	290	70	10	40	25
26	500	50	275	71	170	180	175
27	540	10	275	72	150	160	155
28	370	320	345	73	280	310	295
29	680	450	565	74	140 80	160	150 120
30	450	420	435	75		160	
31	300	280 490	290 450	76 77	40 90	110 110	75 100
32 33	410 400	490 460	430 430	77 78	90 80	100	90
33	550	460 580	430 565	78 79	8 0 70	110	90 90
34	330	430	405	79 80	70 50	80	90 65
35	950	430 770	403 860	80 81	100	100	100
30	930 740	700	720	82	60	80	70
38	570	700 540	555	82 83	20	20	20
39	280	220	250	85 84	10	10	20
40	580	740	66 0	85	0	0	10
40	440	440	440	86	100	100	0
42	450	330	390	87	100	110	100
43	430	390	405	88	100	120	105
44	300	160	230	89	120	140	110
45	410	360	385	90	100	110	130

Daily biogas production of cowdung and poultry manure as feedstock in 1:1 ratio with 20 per cent TS

.

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)	L	(ml)	(ml)	(ml)
1	65	35	50	46	210	240	225
2	0	0	0	47	10	0	5
3	0	0	0	48	0	0	0
4	10	10	10	49	0	0	0
5	0	0	0	50	0	10	5
6	0	0	0	51	10	0	5
7	5	5	5	52	0	10	5
8	10	10	10	53	0	0	0
9	70	60	65	54	0	10	5
10	0	0	0	55	0	0	0
11	20	20	20	56	0	10	5
12	0	0	0	57	0	0	0
13	0	0	0	58	0	0	0
14	0	0	0	59	10	10	10
15	10	0	5	60	0	0	0
16	0	0	0	61	0	0	0
17	10	20	15	62	0	0	0
18	20	30	25	63	0	0	0
19	0	10	5	64	0	0	0
20	0	0	0	65	50	20	35
21	20	30	25	66	0	0	0
22	10	20	15	67	0	0	0
23	10	10	10	68	0	0	0
24	10	20	15	69	0	0	0
25	10	20	15	70	0	0	0
26	20	30	25	71	0	0	0
27	0	0	0	72	0	0 '	0
28	10	0	5				
29	30	30	30				
30	0	10	5				
31	10	5	7.5				
32	20	20	20				
33	0	0	0				
34	10	20	15				
35	0	0	0				
36	30	30	30				
37	50	60	55				
38	40	20	30				
39	10	10	10				
40	10	20	15				
41	0	0	0				
42	0	0	0				
43	10	20	15				
44	520	540	530				
45	320	310	315				

Treatment 8 Daily biogas production of cowdung and poultry manure as feedstock in 1:2 ratio with 5 per cent TS

antmont Q

Dail	ly biogas p		1 rea 1 of cowdur 2 ratio wit		-	nure as fe	edstock in	
	Dom 1	Don 2		Der	Dom 1	Dom 2	A	٦

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	40	30	35	46	30	20	25
2	0	0	0	47	10	10	10
3	0	0	0	48	20	40	30
4	10	10	10	49	10	10	10
5	0	0	0	50	10	20	15
6	140	60	100	51	20	3 0	25
7	30	30	30	52	10	0	5
8	10	10	10	53	10	30	20
9	60	50	55	54	10	10	10
10	0	0	0	55	10	20	15
11	60	60	60	56	10	10	10
12	0	0	0	57	10	10	10
13	0	5	2.5	58	60	40	50
14	20	40	30	59	100	70	85
15	40	20	30	60	20	20	20
16	0	10	5	61	10	20	15
17	50	30	40	62	0	0	0
18	60	60	60	63	20	20	20
19	60	50	55	64	0	0	0
20	50	10	30	65	0	0	0
21	90	120	105	66	60	60	60
22	95	100	97.5	67	60	70	65
23	60	50	- 55	68	0	0	0
24	100	100	100	69	0	0	0
25	100	120	110	70	0	0	0
26	90	80	85	71	30	10	20
27	40	30	35	72	40	20	30
28	70	70	70	73	50	20	35
29	90	100	95	74	40	30	35
30	40	40	40	75	0	20	10
31	50	20	35	76	0	0	0
32	50	40	45	77	0	10	5
33	20	40	30	78	0	0	0
34	50	60	55	79	0	0	0
35	30	40	35	80	0	0	0
35 36	120	40	80	00	·		U
30 37	80	140	110				
37 38		140	65				
	30	1	1				
39 40	0	0	0				
40	40	40	40				
41	0	10	5				
42	0	0	0				
43	40	30	35				
44	30	20	25				
45	10	20	15				

Treatment 10 Daily biogas production of cowdung and poultry manure as feedstock in 1:2 ratio with 15 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	_ (ml)		(ml)	(ml)	(ml)
1	50	80	65	46	80	120	100
2	10	1130	570	47	100	130	115
3	0	610	305	48	10	440	225
4	120	130	125	49	10	440	225
5	130	570	350	50	40	230	135
6	0	20	10	51	40	520	280
7	0	550	275	52	40	400	220
8	0	350	175	53	20	350	185
9	100	140	120	54	30	370	200
10	30	160	95	55	30	360	195
11	100	240	170	56	10	380	195
12	40	310	175	57	20	310	165
13	100	80	90	58	60	360	210
14	150	70	110	59	110	460	285
15	20	60	40	60	0	0	0
16	60	70	65	61	20	250	135
17	80	100	90	62	10	80	45
18	. 100	90	95	63	70	250	160
19	90	110	100	64	0	150	75
20	75	75	75	65	10	100	55
21	120	110	115	66	20	80	50
22	140	120	130	67	10	70	40
23	120	70	95	68	10	180	95
24	200	220	210	69	10	110	60
25	210	230	220	70	20	100	60
26	210	10	110	71	40	250	145
27	110	80	95	72	60	260	160
28	160	110	135	73	65	460	262.5
29	230	200	215	74	60	220	140
30	170	140	155	75	20	140	80
31	180	80	130	76	10	220	115
32	130	130	130	77	20	200	110
33	50	30	40	78	20	180	100
34	100	90	95	79	10	140	75
35	120	170	145	80	0	140	70
36	280	410	345	81	20	140	80
37	230	330	280	82	160	100	130
38	190	310	250	83	20	20	20
39	0	80	40	84	20	10	15
40	130	290	210	85	10	0	5
40	60	250	155	86	30	90	60
42	20	190	105	87	20	100	60
43	80	360	220	88	40	120	80
44	70	40	55	89	50	100	75
45	40	120	80	90	60	80	75 70
С т		120				<u> </u>	10

179

Treatment 11 Daily biogas production of cowdung and poultry manure as feedstock in 1:2 ratio with 20 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)	· .	(ml)	(ml)	(ml)
1	30	10	20	46	70	70	70
2	0	0	0	47	90	100	95
3	0	0	0	48	100	100	100
4	0	0	0	49	20	60	40
5	0	15	7.5	50	70	90	80
6	10	0	5	51	30	110	70
7	65	25	45	52	50	60	55
8	50	60	55	53	60	70	65
9	70	20	45	54	30	50	40
10	20	20	20	55	30	30	30
11	70	130	100	56	0	40	20
12	50	40	45	57	50	60	55
13	10	20	15	58	120	100	110
14	40	50	45	59	110	150	130
15	30	15	22.5	60	0	0	0
16	30	10	20	61	40	20	30
17	90	60	75	62	20	30	25
18	100	100	100	63	20	70	45
19	130	60	95	64	10	20	15
20	105	65	85	65	20	20	20
21	160	200	180	66	140	120	130
22	180	200	190	67	140	100	120
23	180	170	175	68	, 120	110	115
24	220	220	220	69	90	80	85
25	220	210	215	70	90	90	90
26	280	140	210	71	50	90	70
27	170	130	150	72	60	90	75
28	210	180	195	73	80	160	120
29	270	220	245	74	80	80	80
30	200	150	175	75	30	70	50
31	180	170	175	76	20	40	30
32	190	290	240	77	40	60	50
33	140	90	115	78	60	60	60
34	200	170	185	79	0	0	0
35	120	130	125	80	70	40	55
36	290	360	325	81	50	70	60
37	330	290	310	82	20	20	20
38	220	210	215	83	0	0	0
39	30	30	30	84	. 0	0	0
40	240	200	220	85	0	0	0
41	130	120	125	86	0	0	0
42	90	70	80	87	30	70	50
43	120	140	130	88	20	20	20
44	40	400	220	89	20	10	15
45	90	80	85	90	0	0	0

.

160

Treatment 12 Daily biogas production of cowdung and poultry manure as feedstock in 2:1 ratio with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	30	10	20	46	70	70	70
2	0	0	0	47	90	100	95
3	0	0	0	48	100	100	100
4	0	0	0	49	20	60	40
5	0	15	7.5	50	70	90	80
6	10	0	5	51	30	110	70
7	65	25	45	52	50	-60	55
8	50	60	55	53	60	70	65
9	70	20	45	54	30	50	40
10	20	20	20	55	30	30	30
11	70	130	100	56	0	40	20
12	50	40	45	57	50	60	55
13	10	20	15	58	120	100	110
14	40	50	45	59	110	150	130
15	30	15	22.5	60	0	0	0
16	30	10	20	61	40	20	30
17	90	60	75	62	20	30	25
18	100	100	100	63	20	70	45
19	130	60	95	64	10	20	15
20	105	65	85	65	20	20	20
21	160	200	180	66	140	120	130
22	180	200	190	67	140	100	120
23	180	170	175	68	120	110	115
24	220	220	220	69	90	80	85
25	220	210	215	70	90	90	90
26	280	140	210	71	50	90	70
27	170	130	150	72	60	90	75
28	210	180	195	73	80	160	120
29	270	220	245	74	80	80	80
30	200	150	175	75	30	70	50
31	180	170	175	76	20	40	30
32	190	290	240	77	40	60	50
33	140	90	115	78	60	60	60
34	200	170	185	79	0	0	0
35	120	130	125	80	70	40	55
36	290	360	325	81	50	70	60
37	330	290	310	82	20	20	20
38	220	210	215	83	0	0	0
39	30	30	30	84	0	0	0
40	240	200	220	85	0	0	0
41	130	120	125	86	0	0	0
42	90	70	80	87	30	70	50
43	120	140	130	88	20	20	20
44	40	400	220	89	20	10	15
45	90	80	85	90	0	0	0

÷

.

Daily biogas production of cowdung and poultry manure as feedstock in 2:1 ratio with 10 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)	ļ	(ml)	(ml)	(ml)
1	45	45	45	46	180	160	170
2	0	0	. 0	47	160	100	130
3	5	0	2.5	48	130	110	120
4	60	50	55	49	180	100	140
5	0	0	0	50	130	120	125
6	60	0	30	51	110	90	100
7	0	145	72.5	52	150	100	125
8	0	140	70	53	100	100	100
9	80	50	65	54	70	50	60
10	30	30	30	55	80	60	70
11	90	140	115	56	20	80	50
12	120	130	125	57	70	60	65
13	30	15	22.5	58	140	120	130
14	80	120	100	59	180	130	155
15	50	60	55	60	10	10	10
16	130	100	115	61	60	60	60
17	160	140	150	62	60	50	55
18	400	140	290	63	80	300	190
19	630	260	445	64	60	- 500 60	60
20	285	350	317.5	65	10	10	10
20	285	240	230	65 66	180		220
21	390		1		1	260	
	{	250	320	67 (1)	190	210	200
23	350	180	265	68	40	50	45
24	390	240	315	69 70	30	50	40
25	380	250	315	70	20	60	40
26	260	180	220	71	100	100	100
27	150	140	145	72	100	100	100
28	230	230	230	73	180	170 -	175
29	250	300	275	74	100	100	100
30	270	200	235	75	80	60	70
31	250	190	220	76	70	90	80
32	300	310	305	77	60	70	65
33	50	190	120	78	60	60	60
34	200	300	250	79	60	40	50
35	210	260	235	80	50	30	40
36	570	470	520	81	60	50	55
37	400	400	400	82	70	70	70
38	50	350	200	83	20	40	30
39	80	100	90	84	10	10	10
40	270	110	190	85	0	0	0
41	190	170	180	86	40	40	40
42	140	140	140	87	0	0	0
43	130	150	140	88	10	10	10
44	190	130	160	89	10	10	10
45	110	90	100	90	40	50	45

.

Treatment 14 Daily biogas production of cowdung and poultry manure as feedstock in 2:1 ratio with 1 5 per cent TS

Day	Rep.1	Rep.2	Average	·Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	35	65	50	46	330	310	320
2	10	20	15	47	330	330	330
3	20	70	45	48	300	270	285
4	100	150	125	49	200	210	205
5	0	0	0	50	120	200	160
6	0	20	10	51	350	160	255
7	120	180	150	52	120	180	150
8	100	110	105	53	170	180	175
9	90	110	100	54	100	120	110
10	30	30	30	55	110	130	120
11	110	120	115	56	130	150	140
12	70	90	80	57	120	120	120
13	20	20	20	58	160	190	175
14	100	50	75	59	220	200	210
15	20	25	22.5	60	50	60	55
16	40	20	30	61	100	110	105
17	150	170	160	62	60	50	55
18	160	190	175	63	150	130	140
19	220	260	240	64	150	100	125
20	190	200	195	65	40	30	35
21	190	180	185	66	300	340	320
22	320	420	370	67	300	340	320
23	320	410	365	68	50	70	60
24	370	650	510	69	50	60	55
25	370	570	470	70	60	60	60
26	310	620	465	71	100	170	135
27	460	420	440	72	100	170	135
28	570	400	485	73	190	210	200
29	500	450	475	74	120	160 ່	140
30	410	380	395	75	200	160	180
31	350	260	305	76	150	130	140
32	310	310	310	77	130	140	135
33	280	530	405	78	120	120	120
34	350	420	385	79	100	120	110
35	300	430	365	80	70	100	85
36	690	890	790	81	100	100	100
37	540	630	585	82	70	70	70
38	450	540	495	83	20	40	30
39	200	300	250	84	20	20	30
40	550	550	550	85	10	0	5
41	350	450	400	86	40	40	40
42	340	330	335	87	30	20	25
43	360	320	340	88	20	20	20
44	470	450	460	89	20	10	10
45	380	350	365	90	0	0	0

.

.

Treatment 15 Daily biogas production of cowdung and poultry manure as feedstock in 2:1 ratio with 20 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	230	200	215	46	200	180	190
2	10	65	37.5	47	310	200	255
3	5	20	12.5	48	320	200	260
4	80	125	102.5	49	300	300	300
5	0	0	0	50	260	140	200
6	0	20	10	51	280	150	215
7	120	180	150	52	270	160	215
8	150	100	125	53	250	170	210
9	80	90	85	54	120	80	100
10	20	20	20	55	170	80	125
11	90	80	85	56	110	90	100
12	80	40	60	57	190	170	180
13	20	30	25	58	300	100	200
14	60	100	80	59	300	200	250
15	30	40	35	60	80	60	70
16	30	20	25	61	160	80	120
17	160	80	120	62	160	70	115
18	200	150	175	63	170	150	160
19	200	200	200	64	140	120	130
20	150	140	145	65	30	20	25
21	140	180	160	66	150	170	160
22	350	370	360	67	160	170	165
23	360	450	405	68	260	110	185
24	490	500	495	69	210	60	135
25	480	490	485	70	190	50	120
26	600	300	450	71	190	100	145
27	600	450	525	72	190	100	145
28	540	510	525	73	310	180	245
29	550	600	575	74	200	120 [·]	160
30	390	360	375	75	120	60	90
31	410	350	380	76	120	40	80
32	320	250	285	77	130	100	115
33	250	200	225	78	80	100	90
34	370	280	325	79	120	100	110
35	390	330	360	80	90	120	105
36	720	220	470	81	170	110	140
37	700	440	570	82	100	100	100
38	570	400	485	83	50	50	50
39	250	260	255	84	50	50	50
40	560	300	430	85	40	80	60
41	430	280	355	86	40	60	50
42	660	340	500	87	20	60	40
43	510	410	460	88	30	40	35
44	500	300	400	89	80	100	90
45	250	130	190	90	90	110	100

- .

150

Treatment 16 Daily biogas production of cowdung and poultry deep litter as feedstock in 1:1 ratio with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	320	490	405	46	200	100	150
2	425	415	420	47	310	290	300
3	205	230	217.5	48	320	300	310
4	260	300	280	49	300	250	275
5	50	70	60	50	280	410	345
6	40	90	65	51	270	270	270
7	200	180	190	52	250	380	315
8	100	100	100	53	240	240	240
9	130	120	125	54	170	180	175
10	40	30	35	55	220	200	210
11	140	110	125	56	230	180	205
12	80	40	60	57	220	170	195
13	30	20	25	58	300	200	250
14	30	60	45	59	270	250	260
15	20	60	40	60	0	120	60
16	10	30	20	61	160	200	180
17	40	30	35	62	170	180	175
18	50	70	60	63	200	150	175
19	50	70	60	64	70	100	85
20	0	30	15	65	60	50	55
21	40	40	40	66	220	280	250
22	40	40	40	67	210	270	240
23	20	30	25	68	80	10	45
24	40	40	40	69	70	10	40
25	40	50	45	70	80	20	50
26	50	60	55	71	100	50	75
27	30	30	30	72	100	50	75
28	70	40	55	73	170	60	115
29	130	70	100	74	100	60 .	80
30	120	40	80	75	30	50	40
31	80	60	70	76	70	90	80
32	70	50	60	77	50	60	55
33	210	40	125	78	20	20	20
34	160	80	120	79	10	30	20
35	150	100	125	80	20	20	20
36	820	310	565	81	40	30	35
37	800	340	570	82	30	30	30
38	50	310	180	83	0	0	0
39	250	310	280	84	0	10	5
40	360	280	320	85	0	0	0
41	300	250	275	86	0	0	0
42	90	80	85	87	10	10	10
43	90	110	100	88	0	0	0
44	250	250	250	89	40	40	40
45	210	130	170	90	20	30	25

Treatment 17 Daily biogas production of cowdung and poultry deep litter as feedstock in 1:1 ratio with 10 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)	l	(ml)	(ml)	(ml)
1	500	1800	1150	46	0	0	0
2	570	1255	912.5	47	0	0	0
3	230	630	430	48	20	20	20
4	290	310	300	49	30	0	15
5	110	120	115	50	10	20	15
6	120	100	110	51	20	20	20
7	180	290	235	52	10	10	10
8	150	250	200	53	30	10	20
9	150	160	155	54	10	10	10
10	80	80	80	55	10	0	5
11	110	110	110	56	0	10	5
12	110	140	125	57	0	10	5
13	50	70	60	58	0	0	0
14	50	40	45	59	0	0	0
15	50	40	45	60	0	0	0
16	40	60	50	61	0	0	0
17	100	100	100	62	0	0	0
18	30	80	55	63	0	0	0
19	50	50	50	64	0	0	0
20	20	30	25	65	0	0	0
21	60	70	65	66	20	20	20
22	60	70	65	67	20	20	20
23	30	40	35	68	0	0	0
24	60	60	60	69	0	0	0
25	80	60	70	70	0	0	0
26	40	70	55	71	0	0	0
27	40	50	45	72	0	0	0
28	40	50	45	73	0	0	0
29	50	70	60	74	0	0 '	0
30	10	30	20			ł	
31	20	20	20				
32	40	70	55				
33	10	30	20				
34	40	50	45				
35	20	30	25				
36	50	80	65				
37	40	40	40				
38	50	30	40				
39	0	0	0				
40	10	10	10				
41	20	20	20				
42	0	0	0				
43	10	20	15				
44	30	20	25				
45	19	10	10				

.

•

1.5

Treatment 18 Daily biogas production of cowdung and poultry deep litter as feedstock in 1:1 ratio with 15 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(mi)	(ml)	(ml)		(ml)	(ml)	(ml)
1	1340	1630	1485	46	10	10	10
2	1310	1290	1300	47	10	0	5
3	810	840	825	48	40	10	25
4	850	850	850	49	0	0	0
5	270	230	250	50	30	30	30
6	120	160	140	51	40	20	30
7	350	470	410	52	20	10	15
8	250	270	260	53	10	20	15
9	240	270	255	54	20	5	12.5
10	150	140	145	55	10	0	5
11	150	130	140	56	20	10	15
12	110	90	100	57	0	10	5
13	60	50	55	58	0	0	0
14	60	80	70	59	0	0	0
15	30	50	40	60	0	0	0
16	50	50	50	61	0	0	0
17	80	130	105	62	0	0	0
18	100	150	125	63	0	0	0
19	50	50	50	64	0	0	0
20	30	60	45	65	0	0	0
21	90	110	100				
22	90	80	85				
23	60	60	60				
24	100	80	90				
25	100	90	95				
26	30	60	45				
27	60	40	50			[
28	60	30	45			.	
29	100	70	85			, i	
30	40	10	25				
31	50	20	35				
32	80	50	65				
33	30	10	20	Í			
34	70	40	55				
35	30	20	25				
36	120	40	80				
37	90	40	65	l			
38	80	40	60				
39	10	10	10				
40	20	10	15				
41	0	0	0				
42	10	0	5				
43	10	10	10				
44	50	30	40				
45	20	10	15				

Treatment 19 168 Daily biogas production of cowdung and poultry deep litter as feedstock in 1:1 ratio with 20 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	1750	1850	1800	46	0	0	0
2	1650	1230	1440	47	5	15	10
3	1760	1700	1730	48	40	30	35
4	1800	1850	1825	49	0	0	0
5	30	20	25	50	30	40	35
6	320	210	265	51	20	40	30
7	1230	1100	1165	52	10	20	15
8	530	410	470	53	30	10	20
9	430	250	340	54	10 ·	10	10
10	320	180	250	55	0	0	0
11	350	320	335	56	10	0	5
12	360	130	245	57	10	10	10
13	150	70	110	58	0	0	0
14	120	50	85	59	0	0	0
15	75	30	52.5	60	0	0	0
16	120	100	110	61	0	0	0
17	280	150	215	62	0	0	0
18	110	100	105	63	0	0	0
19	50	50	50	64	0	0	0
20	20	20	20	65	0	0	0
21	70	70	70	66	40	40	40
22	70	80	75	67	30	30	30
23	0	30	15	68	0	0	0
24	60	70	65	69	10	10	10
25	60	8 0	70	70	0	0	0
26	60	70	65	71	0	0	0
27	30	30	30	72	0	0	0
28	10	30	20	73	0	0	0
29	80	90	85	74	0	0 '	0
30	10	10	10	75	0	0	0
31	20	0	10				
32	130	80	105				
33	30	80	55				
34	50	40	45				
35	10	20	15				
36	80	120	100				
37	70	80	75				
38	70	70	70				
39	10	10	10				
40	10	40	25				
41	40	160	100				
42	0	0	0				
43	10	10	10			l	
44	60	70	65				
45	10	10	10		1		·

Treatment 20 Daily biogas production of cowdung and poultry deep litter as feedstock in 1:2 ratio with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	350	420	385	46	20	250	135
2	295	510	402.5	47	30	250	140
3	230	210	220	48	30	200	115
4	190	185	187.5	49	20	260	140
5	60	70	65	50	70	270	170
6	100	20	60	51	80	40	60
7	150	150	150	52	70	150	110
8	120	100	110	53	120	40	80
9	100	130	115	54	130	250	190
10	60	55	57.5	55	110	230	170
11	110	80	95	56	200	240	220
12	50	40	45	57	260	300	280
13	50	30	40	58	400	380	390
14	30	40	35	59	480	520	500
15	25	45	35	60	0	0	0
16	100	50	75	61	400	450	425
17	20	50	35	62	130	160	145
18	30	50	40	63	300	340	320
19	20	30	25	64	280	140	210
20	0	10	5	65	130	130	130
21	40	80	60	66	400	400	400
22	15	20	17.5	67	300	300	300
23	0	10	5	68	190	220	205
24	60	50	55	69	170	200	185
25	50	60	55	70	180	210	195
26	20	30	25	71	530	210	370
27	10	20	15	72	610	200	405
28	10	20	15	73	800	400	600
29	30	30	30	74	580	240 ·	410
30	10	20	15	75	500	100	300
31	5	10	7.5	76	80	60	70
32	30	20	25	77	260	160	210
33	20	30	25	78	220	140	180
34	30	40	35	79	100	120	110
35	30	20	25	80	130	60	95
36	60	20	40	81	160	80	120
37	60	110	85	82	90	20	55
38	70	150	110	83	80	10	45
39	0	0	0	84	80	30	55
40	20	20	20	85	40	20	30
41	40	160	100	86	50	40	45
42	0	0	0	87	60	50	55
43	30	180	105	88	40	20	30
44	50	500	275	89	10	0	5
45	20	310	165	90	0	0	0

169

Treatment 21 Daily biogas production of cowdung and poultry deep litter as feedstock in 1:2 ratio with 10 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(mi)	(ml)
1	1970	2200	2085	46	0	0	0
2	1130	1170	1150	47	0 ·	0	0
3	450	450	450	48	10	10	10
4	365	330	347.5	49	0	0	0
5	50	70	60	50	0	10	5
6	80	60	70	51	0	20	10
7	220	420	320	52	20	0	10
8	210	280	245	53	30	20	25
9	200	220	210	54	0	0	0
10	110	110	110	55	0	0	0
11	120	210	165	56	10	10	10
12	60	50	55	57	0	0	0
13	20	20	20	58	0	0	0
14	30	40	35	59	10	10	10
15	20	25	22.5	60	0	0	0
16	20	10	15	61	0	0	0
17	40	50	45	62	0	0	0
18	50	60	55	63	0	0	0
19	30	20	25	64	0	0	0
20	10	10	10	65	0	0	0
21	60	50	55	. 66	0	0	0
22	50	40	45	67	0	0	0
23	10	10	10	68	0	0	0
24	30	30	30				
25	20	30	25				
26	40	40	40				
27	20	30	25			.	
28	20	20	20				
29	50	50	50				
30	30	10	20 ·				
31	10	10	10				
32	30	20	25				
33	20	10	15				
34	30	30	30				
35	10	10	10				
36	60	40	50	l			1
37	30	80	55				
38	70	40	55				
39	0	0	0				:
40	10	10	10				
41	0	20	10				
42	0	0	0			Ì	
43	0	10	5				4
44	30	30	30				
45	0	0	0				

Treatment 22	
--------------	--

Daily biogas production of cowdung and poultry deep litter as feedstock in 1:2 ratio with 15 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	1800	1750	1775	46	0	0	0
2	1950	1600	1775	47	0	0	0
3	1120	1220	1170	48	20	30	25
4	1690	1750	1720	49	0	10	5
5	110	80	95	50	10	20	15
6	180	100	140	51	10	30	20
7	560	160	360	52	20	20	20
8	350	120	235	53	10	20	15
9	220	200	210	54	0	10	5
10	90	80	85	55	10	20	15
11	310	200	255	56	20	10	15
12	120	110	115	57	10	10	10
13	30	60	45	58	0	0	0
14	90	80	85	59	10	20	15
15	20	20	20	60	0	0	0
16	30	40	35	61	0	0	0
17	120	180	150	62	0	0	0
18	20	40	30	63	0	0	0
19	0	0	0	64	0	0	0
20	5	0	2.5	65	0	0	0
21	60	40	50	66	0	0	0
22	30	40	35	67	0	0	0
23	10	10	10	68	0	0	0
24	30	30	30				
25	20	40	30				
26	50	30	40				
27	10	20	15				
28	20	30	25				
29	50	60	55				
30	0	10	5				
31	10	20	15				
32	40	30	35				
33	10	30	20				
34	40	40	40				
35	10	10	10				
36	50	70	60				
37	90	80	85				
38	40	40	40				
39	0	0	0				
40	20	20	20				
41	0	20	10		Í		
42	0	0	0			ц	
- 43	10	20	15		ļ		
44	30	40	35				
45	10	10	10				

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	2215	2120	2167.5	46	10	10	10
2	970	1030	1000	47	10	0	5
3	1720	1730	1725	48	30	50	40
4	1950	1750	1850	49	0	0	0
5	650	550	600	50	20	20	20
6	600	510	555	51	20	40	30
7 8	110	940	525	52	20	10	15
8 9	410	690 180	550	53	20	30	25
9 10	160 100	180 80	170 90	54 55	20 20	10	15 20
10	320	330	325	55	20	20 20	20
12	240	420	330	57	20	10	15
12	150	200	175	58	60	60	60
13	220	200	210	59	30	120	75
15	125	140	132.5	60	10	20	15
16	200	170	185	61	10	10	10
17	180	160	170	62	0	0	0
18	100	110	105	63	20	20	20
19	80	50	65	64	0	0	0
20	90	65	77.5	65	10	10	10
21	90	90	90	66	100	100	100
22	100	80	90	67	90	90	90
23	70	60	65	68	0	0	0
24	90	80	85	69	0	0	0
25	110	90	100	70	0	0	0
26	80	70	75	71	70	50	60
27	40	50	45	72	80	60	70
28	0	30	15	73	100	100	100
29	60	40	50	74	70	50 ·	60
30	5	10	7.5	75	0	0	0
31	10	30	20	76	20	20	20
32	80	70	75	77	10	0	5
33	20	30	25	78	0	0	0
34	50	50	50	79	0	0	0
35	20	30	25	80	0	0	0
36	100	100	100	81	0	0	0 ,
37	140	120	130	82	0	0	0
38	50	120	85	83	0	0	0
39	10	10	10	84	0	0	0
40	• 20	40	30	85	0	0	0
41	30	30	30				
42	10	10	10				
43	30 50	20	25				
44	50	60 20	55				
45	10	20	15				

Daily biogas production of cowdung and poultry deep litter as feedstock in 1:2 ratio with 20 per cent TS

Treatment 24 Daily biogas production of cowdung and poultry deep litter as feedstock in 2:1 ratio with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
•	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	390	310	350	46	20	40	30
2	2300	2430	2365	47	10	440	225
3	140	140	140	48	70	500	285
4	180	180	180	49	10	400	205
5	70	60	65	50	20	500	260
6	120	140	130	51	10	450	230
7	270	160	215	52	0	360	180
8	100	150	125	53	20	430	225
9	140	145	142.5	54	10	320	165
10	30	10	20	55	20	10	15
11	100	100	100	56	20	320	170
12	40	40	40	- 57	10	490	250
13	40	30	35	58	70	80	75
14	40	30	35	59	150	380	265
15	45	35	40	60	30	30	30
16	50	50	50	61	20	320	170
17	50	30	40	62	10	110	60
18	50	30	40	63	60	180	120
19	20	30	25	64	60	10	35
20	0	5	2.5	65	30	180	105
21	30	40	35	66	120	180	150
22	20	20	20	67	170	280	225
23	10	10	10	68	30	50	40
24	20	20	20	69	30	40	35
25	30	20	25	70	50	40	45
26	40	40	40	71	150	130	140
27	20	20	20	72	160	120	140
28	. 50	30	40	73	180	190 ,	185
29	70	70	70	74	180	140	160
30	10	10	10	75	420	120	270
31	20	0	10	76	70	250	160
32	30	40	35	77	340	80	210
33	20	20	20	78	300	100	200
34	40	50	45	79	300	120	210
35	10	40	25	80	280	30	155
36 ·	50	100	75	81	340	200	270
37	100	130	115	82	60	60	60
38	100	110	105	83	130	40	85
39	20	20	20	84	200	30	115
40	30	30	30	85	150	20	85
41	30	130	80	86	150	20	85
42	0	60	30	87	150	80	115
43	20	110	65	88	110	60	85
44	70	350	210	89	160	60	110
45	20	20	20	90	100	100	100

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	1150	1400	1275	46	200	180	190
2	970	960	965	47	0	40	20
3	130	140	135	48	10	40	25
4	420	270	345	49	0	60	30
5	110	80	95	50	20	80	50
6	40	120	80	51	40	110	75
7	220	190	205	52	10	70	40
8	150	200	175	53	20	280	150
9	200	185	192.5	54	20	250	135
10	40	30	35	55	390	430	410
11	200	170	185	56	20	500	260
12	50	30	40	57	20	700	360
13	40	20	30	58	170	900	535
14	20	50	35	59	100	700	400
15	20	45	32.5	60	0	500	250
16	40	30	35	61	40	900	470
17	30	20	25	62	20	170	95
18	70	60	65	63	80	360	220
19	40	40	40	64	30	130	80
20	30	35	32.5	65	110	130	120
21	60	40	50	66	320	360	340
22	60	50	55	67	300	300	300
23	30	60	45	68	280	290	285
24	60	60	60	69	310	380	345
25	50	40	45	70	320	360	340
26	50	60	55	71	420	500	460
27	20	20	20	72	400	520 .	460
28	40	40	40	73	250	790	520
29	40	50	45	74	420	480	450
30	20	20	20	75	180	120	150
31	30	10	20	76	110	350	230
32	40	40	40	77	200	100	150
33	20	10	15	78	180	80	130
34	40	40	40	79	260	60	160
35	20	10	15	80	300	30	165
36	70	50	60	81	380	70	225
37	50	100	75	82	430	40	235
38	120	40	80	83	300	20	160
39	15	15	15	84	260	30	145
40	60	20	40	85	160	20	90
41	20	30	25	86	160	40	100
42	20	20	20	87	110	50	80
43	40	30	35	88	110	50	85
44	70	100	85	89	100	60	80
45	220	200	210	90	80	50	65

Daily biogas production of cowdung and poultry deep litter as feedstock in 2:1 ratio with 10 per cent TS

Treatment 26

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	1570	1970	1770	46	10	30	20
2	1330	1240	1285	47	0	10	5
3	800	780	790	48	10	40	25
4	700	710	705	49	0	10	5
5	120	170	145	50	0	30	15
6	100	180	140	51	40	40	40
7	360	430	395	52	20	20	20
8	340	330	335	53	40	20	30
9	290	290	290	54	20	10	15
10	100	180	140	55	30	10	20
11	240	230	235	56	20	20	20
12	100	130	115	57	10	10	10
13	20	30	25	58	50	30	40
14	60	60	60	59	100	130	115
15	40	40	40	60	0	0	0
16	30	20	25	61	20	10	15
17	100	80	90	62	0	0	0
18	40	20	30	63	20	20	20
19	40	30	35	64	0	0	0
20	20	10	15	65	60	40	50
21	50	50	50	66	110	150	130
22	50	40	45	67	110	140	125
23	30	20	25	68	0	0	0
24	50	60	55	69	0	0	0
25	60	40	50	70	0	0	0
26	50	40	45	71	50	20	35
27	10	10	10	72	40	20 .	30
28	20	0	10	73	100	40	70
29	140	150	145	74	40	40	40
30	50	50	50	75	20	0	10
31	40	30	35	76	0	0	0
32	50	40	45	77	0	0	0
33	Ó	20	10	78	0	0	0
34	60	40	50	79	0	0	0
35	10	20	15	80	0	0	0
36	120	60	90	81	0	0	0
37	130	90	110	82	0	0	0
38	60	40	50	83	10	10	10
39	20	20	20	84	0	0	0
40	25	30	27.5	85	0	0	0
41	20	30	25				
42	10	10	10				
43	50	10	30				
44	70	90	80				
45	20	20	20				

Daily biogas production of cowdung and poultry deep litter as feedstock in 2:1 ratio with 15 per cent TS

Treatment 27

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	1250	910	1080	46	80	120	100
2	1070	1220	1145	47	180	110	145
3	600	780	690	48	140	150	145
4	680	670	675	49	180	100	140
5	220	300	260	50	230	200	215
6	400	480	440	51	180	280	230
7	650	690	670	52	200	150	175
8	360	320	340	53	300	290	295
9	320	380	350	54	240	250	245
10	260	285	272.5	55	350	350	350
11	600	400	500	56	350	460	405
12	600	450	525	57	550	900	725
13	250	260	255	58	600	700	650
14	250	180	215	59	780	720	750
15	120	100	110	60	360	350	355
16	280	190	235	61	700	400	550
17	260	210	235	62	220	210	215
18	140	120	130	63	410	420	415
19	80	90	85	64	200	210	205
20	70	65	67.5	65	190	180	185
21	130	120	125	66	400	720	560
22	100	60	80	67	400	700	550
23	60	50	55	68	180	190	185
24	100	90	95	69	160	170	165
25	90	80	85	70	180	170	175
26	80	90	85	71	350	220	285
27	80	70	75	72	360	200	280
28	80	70	75	73	620	400 [°]	510
29	140	160	150	74	340	220	280
30	50	50	50	75	180	100	140
31	40	40	40	76	80	40	60
32	90	90	90	77	100	100	100
33	40	30	35	78	90	90	90
34	50	80	65	79	80	80	80
35	70	50	60	80	60	60	60
36	170	160	165	81	160	80	120
37	190	190	190	82	50	50	50
38	80	80	80	83	20	20	20
39	40	50	45	84	10	10	10
40	50	60	55	85	0	0	0
41	90	90	90	86	20	20	20
42	40	40	40	87	10	10	10
43	50	40	45	88	0	0	0
44	170	150	160	89	50	50	50
45	100	120	110	90	30	50	40

Daily biogas production of cowdung and poultry deep litter as feedstock in 2:1 ratio with 20 per cent TS

Day Rep.1 Rep.2 Average Day Rep.1 Rep.2 Average (ml) (ml) (ml) (ml)(ml) (ml) 297.5 267.5 17. 50 ·

Daily biogas production of cowdung and poultry droppings as feedstock in 1:1 ratio with 5 per cent TS

Treatment 29 Daily biogas production of cowdung and poultry droppings as feedstock in 1:1 ratio with 10 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	620	430	525	46	360	320	340
2	640	· 1270	955	47	730	500	615
3	670	635	652.5	48	580	550	565
4	1120	1190	1155	49	210	530	370
5	610	580	595	50	580	590	585
6	780	620	700	51	600	720	660
7	970	830	900	52	410	600	505
8	530	420	475	53	610	750	680
9	380	400	390	54	500	580	540
10	330	350	340	55	470	530	500
11	320	360	340	56	460	650	555
12	680	720	700	57	420	480	450
13	300	310	305	58	460	600	530
14	300	300	300	59	490	700	595
15	135	150	142.5	60	250	320	285
16	180	190	185	61	450	400	425
17	550	600	575	62	180	220	200
18	230	270	250	63	480	420	450
19	180	160	170	64	360	450	405
20	130	120	125	65	460	520	490
21	180	170	175	66	300	720	510
22	190	200	195	67	300	720	510
23	150	150	150	68	690	670	680
24	230	220	225	69	570	570	570
25	220	210	215	70	570	590	580
26	120	200	160	71	250	410	330
27	160	180	170	72	260	430	345
28	220	40	130	73	470	250	360
29	340	320	330	74	280	400	340
30	410	360	385	75	200	200	200
31	350	390	370	76	200	250	225
32	410	400	405	77	180	240	210
33	190	170	180	78	170	200	185
34	330	340	335	79	160	180	170
35	330	300	315	80	140	160	150
36	700	610	655	81	250	250	250
37	500	440	470	82	110	110	110
38	420	480	450	83	100	100	100
39	300	330	315	84	80	80	80
40	330	320	325	85	40	40	40
41	400	470	435	86	100	100	100
42	340	360	350	87	90	70	80
43	460	510	485	88	100	120	110
44	520	540	530	89	70	130	100
45	310	320	315	90	90	110	100

,

Treatment 30

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	860	1430	1145	46	500	480	490
2	1530	1370	1450	47	650	720	685
3	900	610	755	48	550	800	675
4	1380	1450	1415	49	540	720	630
5	1420	1250	1335	50	760	900	830
6	1510	1340	1425	51	820	1000	910
7	450	430	440	52	720	810	765
8	430	400	415	53	980	820	900
9	500	640	570	54	800	600	700
10	620	700	660	55	860	940	900
11	80	280	180	56	930	950	940
12	300	320	310	57	1100	950	1025
13	260	180	220	58	860	920	890
14	220	260	240	59	700	. 900	800
15	135	120	127.5	60	350	380	365
16	200	220	210	61	450	450	450
17	380	240	310	62	260	120	190
18	550	600	575	63	400	450	425
19	150	270	210	64	320	320	320
20	200	180	190	65	280	310	295
21	180	220	200	66	400	450	425
22	230	220	225	67	300	720	510
23	200	200	200	68	240	270	255
24	240	240	240	69	210	200	205
25	240	270	255	70	230	200	215
26	60	300	180	71	320	360	340
27	140	190	165	72	310	370	340
28	330	350	340	73	510	540	525
29	360	440	400	74	300	390	345
30	360	360	360	75	600	300	450
31	250	310	280	76	320	320	320
32	410	400	405	70 77	316	300	305
33	430	380	405	78	280	280	280
34	430 510	520	515	78 79	200	240	220
35	370	450	410	80	130	230	180
36	700	430 1050	875	80 81	280	230 240	260
37	400	750	575	82	180	160	170
37	400 640	600	620	82 83	30	120	75
39	430	430	430	83 84	20	120	60
40	430 460	430 440	430 450	85	10	40	25
40	400 600	440 670	430 635	85 86	60	40 90	75
41 42	300	550	425	80 87	40	90 80	60
	1	550 640	423 530	87 88	40 40	40	40
43	420				40 40	40 60	40 50
44	580	700	640	89	40	00	50

Daily biogas production of cowdung and poultry droppings as feedstock in 1:1 ratio with 15 per cent TS

Treatment 31 Daily biogas production of cowdung and poultry droppings as feedstock in 1:2 ratio with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
and a state of the	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	125	125	125	46	190	190	190
2	230	280	255	47	270	180	225
3	310	290	300	48	200	180	190
4	290	300	295	49	90	110	100
5	180	180	180	50	130	130	130
6	220	200	210	51	200	180	190
7	420	470	445	52	180	210	195
8	230	220	225	53	200	180	190
9	220	190	205	54	160	120	140
10	130	140	135	55	150	200	175
11	150	180	165	56	180	260	220
12	310	280	295	57	160	150	155
13	120	170	145	58	220	180	200
14	160	130	145	59	240	230	235
15	50	60	· 55	60	40	40	40
16	130	150	140	61	180	130	155
17	200	210	205	62	50	70	60
18	110	150	130	63	150	200	175
19	70	120	95	64	120	180	150
20	80	90	85	65	140	110	125
21	120	140	130	66	580	180	380
22	160	170	165	67	500	190	345
23	120	120	120	68	210	180	195
24	140	150	145	69	210	220	215
25	150	150	150	70	220	220	220
26	170	150	160	71	180	180	180
27	190	150	170	72	190	180	185
28	170	180	175	73	250	290	270
29	220	250	235	74	210	200	205
30	160	170	165	75	120	140	130
31	150	130	140	76	130	170	150
32	130	210	170	77	90	130	110
33	180	180	180	78	80	100	90
34	220	220	220	79	70	60	65
35	170	170	170	80	70	60	65
36	530	510	520	81	110	130	120
37	390	380	385	82	40	50	45
38	300	300	300	83	20	50	35
39	160	190	175	84	20	20	20
40	180	170	175	85	10	10	10
41	260	240	250	86	40	60	50
42	170	160	165	87	30	40	35
43	160	190	175	88	20	20	20
44	230	260	245	89	40	40	40
45	180	190	185	90	40	60	50

.

15

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	455	515	485	46	20	200	110
2	600	800	700	47	520	20	270
3	730	780	755	48	550	530	540
4	690	600	645	49	80	80	80
5	410	460	435	50	400	160	280
6	510	590	550	51	590	150	370
7	510	160	335	52	350	230	290
8	420	400	410	53	500	410	455
9	350	335	342.5	54	420	400	410
10	230	180	205	55	500	100	300
11	250	160	205	56	500	370	435
12	390	400	. 395	57	400	400	400
13	200	210	205	58	460	490	475
14	170	200	185	59	630	470	550
15	120	100	110	60	90	80	85
16	180	200	190	61	410	300	355
17	270	250	260	62	180	190	185
18	210	220	215	63	420	380	400
19	120	120	120	64	330	300	315
20	100	90	95	65	140	110	125
21	180	190	185	66	250	350	300
22	100	120	110	67	250	350	300
23	140	150	145	68	120	100	110
24	150	150	150	69	80	110	95
25	160	150	155	70	90	110	100
26	. 190	180	185	71	440	410	425
27	150	150	150	72	410	410	410
28	190	210	200	73	700	820	760
29 20	260 200	270	265	74 75	420	420	420 380
30 21	290 210	280	285	75 76	460	300	1
31	210	220	215	76 77	250 250	250 200	250 225
32 33	240 200	230 210	235 205	77 78	230 180	200 180	180
33 34	200 390	210 280	335	78 79	120	160	140
34 35	250	300	275	80	120	130	115
33 36	630	500 600	615	80 81	180	170	175
30 37	440	550	495	81	110	90	100
37	440	460	493	82 83	90	60	75
38 39	280	400 140	210	83 84	80	60	70
40	260	160	210	85	60	60	60
40	440	420	430	86	80	100	90
41	350	360	355	87	· 70	80	75
43	430	380	405	88	70	70	70
44	270	450	360	89	40	80	60
45	20	200	110	90	80	100	90

Daily biogas production of cowdung and poultry droppings as feedstock in 1:2 ratio with 10 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	770	785	777.5	46	400	240	320
2	980	1440	1210	47	500	300	400
3	620	1000	810	48	780	20	400
4	1070	1150	1110	49	820	300	560
5	740	780	760	50	530	320	425
. 6	680	710	695	51	720	280	500
7	510	1150	830	52	800	430	615
8	400	520	460	53	500	280	39 0 ·
9	330	300	315	54	600	200	400
10	200	360	280	55	550	290	420
11	330	410	370	56	260	300	280
12	310	720	515	57	530	300	415
13	270	180	225	58	400	300	350
14	180	220	200	59	400	280	340
15	100	120	110	60	310	320	315
16	170	200	185	61	370	330	350
17	380	280	330	62	230	240	235
18	230	190	210	63	410	300	355
19	180	210	195	64	130	170	150
20	110	160	135	65	110	130	120
21	200	210	205	66	400	280	340
22	200	210	205	67 [°]	400	270	335
23	200	170	185	68	120	140	130
24	200	250	225	69	100	90	95
25	210	240	225	70	100	100	100
26	230	230	230	71	300	250	275
27	200	140	170	72	310	260	285
28	220	250	235	73	550	500	525
29	330	400	365	74	320	280	300
30	240	240	240	75	170	260	215
31	200	210	205	76	160	300	230
32	320	380	350	77	100	130	115
33	300	250	275	78	100	100	100
34	300	340	320	79	100	100	100
35	300	340	320	80	.90	200	145
36	750	300	525	81	720	200	460
37	620	290	455	82	8 0	120	100
38	580	320	450	83	50	70	60
39	290	240	265	84	40	70	55
40	560	240	400	85	20	30	25
41	570	330	450	86	60	20	40
42	530	290	410	87	8 0	70	75
43	610	380	495	88	70	70	70
44	690	270	480	89	60	60	60
		100	200	00	100	00	

0

0

Treatment 33 Daily biogas production of cowdung and poultry droppings as feedstock in 1:2 ratio with 15 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	90	120	105	46	140	180	160
2	220	270	245	47	0	250	125
3	390	370	380	48	240	240	240
4	450	380	415	49	180	200	190
5	310	260	285	50	220	220	220
6	420	280	350	51	230	60	145
7	920	590	755	52	180	120	150
8	440	400	420	53	150	500	325
9	340	350	345	54	200	150	175
10	250	250	250	55	250	180	215
11	320	290	305	56	210	110	160
12	500	500	500	57	230	160	195
13	280	250	265	58	20	160	90
14	250	200	225	59	40	160	100
15	120	130	125	60	80	90	85
16	300	190	245	61	150	70	110
17	460	300	380	62	70	40	55
18	410	200	305	63	170	- 100	135
19	280	220	250	64	100	30	65
20	220	180	200	65	30	60	45
21	170	220	195	66	220	160	190
22	0	250	125	67	210	170	190
23	160	180	170	68	90	60	75
24	240	250	245	69	60	70	65
25	240	250	245	70	50	60	55
26	230	310	270	71	120	80	100
27	220	220	220	72	110	90 ·	100
28	320	240	280	73	180	160	170
29	400	320	360	74	100	100	100
30	290	210	250	75	80	80	80
31	490	260	375	76	50	100	75
32	300	250	275	77	20	20	20
33	240	170	205	78	20	20	20
34	280	240	260	79	30	30	30
35	200	150	175	80	40	30	35
36	540	440	490	81	50	60	55
37	330	300	315	82	30	30	30
38	320	400	360	83	10	10	10
39	180	110	145	84	0	0	0
40	160	240	200	85	0	0	0
41	240	210	225	86	40	80	60
42	160	180	170	87	110	40	75
43	210	240	225	88	130	60	95
44	10	280	145	89	140	60	100
45	190	200	195	90	100	40	70

Daily biogas production of cowdung and poultry droppings as feedstock in 2:1 ratio with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	990	800	895	46	280	340	310
2	395	610	502.5	47	490	450	470
3	1000	980	990	48	500	530	515
4	840	870	855	49	370	480	425
5	1010	950	980	50	430	490	460
6	1330	1100	1215	51	440	550	495
7	1050	1070	1060	52	350	250	300
8	350	480	415	53	520	470	495
9	430	530	480	54	310	320	315
10	350	420	. 385	55	300	270	285
11	415	360	387.5	56	150	270	210
12	600	790	695	57	300	360	330
13	360	400	380	58	280	420	350
14	400	400	400	59	270	370	320
15	500	365	432.5	60	110	130	120
16	450	370	410	61	230	200	215
17	500	300	400	62	60	90	75
18	400	230	315	63	240	250	245
19	320	280	300	64	120	150	135
20	280	240	260	65	180	190	185
21	260	290	275	66	260	340	300
22	200	340	270	67	260	340	300
23	240	280	260	68	280	310	295
24	390	370	380	69	210	260	235
25	380	370	375	70	200	240	220
26	500	200	350	71	210	390	300
27	340	350	345	72	330	360	345
28	340	440	390	73	400	520	460
29	610	630	620	74	220	320	270
30	560	520	540	75	200	200	200
31	400	390	395	76	180	200	190
32	540	480	510	77	130	130	130
33	420	500	460	78 78	120	120	120
34	520	620	570	79 00	100	120	110
35	500	190	345	80	160	160	160
36	1050	1300	1175	81	170	170	170
37	800	900	850	82	100	8 0	90
38	680 260	640 400	660	83	60 50	60 50	60 60
39 40	360	400	380	84 86	50 20	50	50
40	730	660	695 550	85 86	30	30	30
41	550	550	550	86	80 (0	120	100
42	460	540	500	87	60	100	80
43	510	590	550	88	60 70	80	70
44	640 260	420	530	89 00	70	90 50	80
45	260	380	320	90	50	50	50

Daily biogas production of cowdung and poultry droppings as feedstock in 1:1 ratio with 10 per cent TS

Treatment 36

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	1680	1300	1490	46	420	320	370
2	420	470	445	47	560	850	705
3	1000	410	705	48	730	870	800
4	1770	1600	1685	49	550	850	700
5	1320	1100	1210	50	650	810	730
6	1620	1260	1440	51	620	780	700
7	1300	1430	1365	52	500	610	555
8	250	30	140	53	700	620	660
9	550	600	575	54	490	550	520
10	490	550	520	55	450	610	530
11	500	550	525	56	430	680	555
12	1000	1200	1100	57	500	630	565
13	150	250	200	58	580	960	770
14	850	400	625	59	600	880	740
15	600	350	475	60	200	150	175
16	600	550	575	61	350	950	650
17	900	800	850	62	120	100	110
18	300	400	350	63	400	830	615
19	290	400	345	64	300	470	385
20	270	370	320	65	380	390	385
21	300	240	270	66	540	560	550
22	350	230	290	67	560	560	560
23	325	320	322.5	68	480	410	445
24	420	270	345	69	460	490	475
25	410	280	345	70	470	410	440
26	500	230	365	71	480	400	440
27	500	350	425	72	430	420	425
28	530	340	435	73	780	760	770
29	1000	510	755	74	420	460	440
30	890	290	590	75	240	280	260
31	570	300	435	76	250	270	260
32	740	790	765	77	150	280	215
33	520	320	420	78	160	230	195
34	750	520	635	79	100	220	160
35	710	550	630	80	150	600	375
36	1270	1340	1305	81	180	320	250
37	870	840	855	82	100	200	150
38	92 0	600	760	83	100	190	145
39	420	390	405	84	80	100	90
40	900	550	725	85	40	60	50
41	650	310	480	86	180	300	240
42	500	500	500	87	100	230	165
43	620	690	655	88	140	280	210
44	440	680	560	89	140	180	160
45	290	360	325	90	160	210	185

Daily biogas production of cowdung and poultry droppings as feedstock in 2:1 ratio with 15 per cent TS

				Por conc			
Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	275	160	217.5	46	100	80	90
2	120	170	145	47	120	120	120
3	300	230	265	48	110	20	65
4	250	180	215	49	60	60	60
5	200	170	185	50	80	40	60
6	340	210	275	51	70	70	70
7	400	100	250	52	50	60	55
8	200	0	100	53	90	100	95
9	220	80	150	54	40	30	35
10	105	10	57.5	55	50	40	45
11	100	30	65	56	50	50	50
12	50	20	35	57	60	50	55
13	70	40	55	58	80	60	70
14	110	0	55	59	100	80	90
15	40	20	30	60	100	120	110
16	100	70	85	61	40	20	30
17	40	40	40	62	50	50	50
18	30	80	55	63	80	70	75
19	80	60	70	64	40	20	30
20	30	30	30	65	40	30	35
21	70	50	60	66	110	170	140
22	50	50	50	67	100	170	135
23	60	50	55	68	100	150	125
24	50	50	50	69	80	120	100
25	50	60	55	70	90	110	100
26	, 70	80	75	71	120	100	110
27	40	40	40	72	140	90	115
28	70	60	65	73	180	150	165
29	100	100	100	74	200	160	180
30	70	60	65	75	90	60	75
31	60	60	60	76	130	80	105
32	110	60	85	77	80	40	60
33	60	40	50	78	70	50	60
34	100	80	90	79	60	40	50
35	70	70	70	80	30	60	45
36	250	220	235	81	80	60	70
37	190	180	185	82	60	40	50
38	170	160	165	83	5	5	5
39	40	50	45	84	0	0	0
40	160	180	170	85	0	0	0
41	120	150	135	86	40	70	55
40		100		07		co	

Treatment 37 Daily biogas production of poultry droppings as feedstock in 100 per cent with 5 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
· ·	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	600	650	625	46	250	100	175
2	1200	1270	1235	47	80	250	165
3	1050	1100	1075	48	80	270	175
4	700	710	705	49	50	280	165
5	370	240	305	50	30	280	155
6	500	360	430	51	30	280	155
7	750	885	817.5	52	40	250	145
8	310	360	335	53	30	680	355
9	410	420	415	54	10	300	155
10	0	240	120	55	20	260	140
11	140	220	180	56	20	260	140
12	50	380	215	57	30	150	90
13	100	260	180	58	50	260	155
14	70	170	120	59	80	280	180
15	50	150	100	60	110	120	115
16	100	450	275	61	20	200	110
17	100	210	155	62	50	200	125
18	100	120	110	63	50	200	125
19	60	100	80	64	10	160	85
20	60	80	70	65	30	40	35
21	120	110	115	66	140	200	170
22	130	130	130	67	130	210	170
23	110	80	95	68	210	180	195
24	110	130	120	69	180	150	165
25	100	120	110	70	170	160	165
26	90	110	100	71	30	220	125
27	80	120	100	72	50	250	150
28	170	120	145	73	70	400	235
29	200	180	190	74	80	380	230
30	120	110	115	75	30	200	115
31	100	120	110	76	40	210	125
32	160	150	155	77	20	170	95
33	140	130	135	78	40	160	100
34	60	80	70	79	30	140	85
35	110	120	115	80	20	120	70
36	180	330	255	81	20	160	9 0
37	150	300	225	82	30	130	80
38	130	270	200	83	0	100	50
39	40	150	95	84	0	50	25
40	120	270	195	85	0	20	10
41	80	250	165	86	10	60	35
42	40	180	110	87	10	30	20
43	70	140	105	88	20	50	35
44	110	270	190	89	30	50	40
45	60	100	80	90	20	10	15

Treatment 38 Daily biogas production of poultry droppings as feedstock in 100 per cent with 10 per cent TS

Day	Rep.1	Rep.2	Average	Day	Rep.1	Rep.2	Average
	(ml)	(ml)	(ml)		(ml)	(ml)	(ml)
1	610	810	710	46	180	300	240
2	560	840	700	47	270	410	340
3	1140	1170	1155	48	370	370	370
4	1150	1120	1135	49	330	350	340
5	890	920	905	50	370	510	440
6	1100	1350	1225	51	0	580	290
7	180	620	400	52	310	450	380
8	240	540	390	53	380	300	340
9	100	400	250	54	0	580	290
10	340	460	400	55	400	590	495
11	420	510	465	56	350	550	450
12	460	560	510	57	420	640	530
13	240	200	220	58	450	650	550
14	230	230	230	59	500	900	700
15	200	210	205	60	90	180	135
16	200	180	190	61	400	430	415
17	480	200	340	62	470	510	490
18	160	150	155	63	520	700	610
19	160	130	145	64	390	600	495
20	100	100	100	65	380	480	430
21	130	100	115	66	470	720	595
22	120	150	135	67	480	710	595
23	110	100	105	68	700	900	800
24	120	140	130	69	680	810	745
25	100	100	100	70	640	79 0	· 715
26	120	120	120	71	400	680	540
27	100	100	100	72	480	690 '	585
28	120	130	125	73	650	720	685
29	150	170	160	74	400	700	550
30	110	110	110	75	300	340	320
31	80	9 0	85	76	320	300	310
32	130	150	140	77	270	260	265
33	110	100	105	78	200	240	220
34	140	150	145	79	200	180	190
35	150	160	155	80	190	270	230
36	350	320	335	81	220	260	240
37	280	330	305	82	140	160	150
38	230	270	250	83	0	120	60
39	70	110	90	84	20	100	60
40	280	320	300	85	10	60	35
41	220	250	235	86	60	100	80
42	200	230	215	87	50	70	60
43	320	350	335	88	70	100	85
44	10	450	230	89	70	110	90
45	130	350	240	90	100	120	110

Treatment 39 Daily biogas production of poultry droppings as feedstock in 100 per cent with 15 per cent TS

APPENDIX-B

STATISTICAL ANALYSIS

Analysis of variance for methane production

Source	Degrees of freedom	Sum of squares	Mean sum of squares	F value	Significance
t	38	196753.92	5177.73	233.74	
w	14	240264.38	17161.74	774.75	
tw	532	245601.95	461.66	20.84	**
Error	585	12958.50	22.15	1.00	-
	SE4	CD (0.05)	r-are** <u>-</u>		

	SEd	CD (0.05)
t	1.2152	2.3868
w	0.75365	1.48020
tw	4.7065	9.2438

Analysis of variance of gas production

.

Source	Degrees of freedom	Sum of squares	Mean sum of squares	F value	Significance
î	38	9 88 16850.54	2600443.44	364.18	
d	89	17371120.83	869338.47	121.75	
td	3382	187683562.92	55494.84	7.77	**
Error	3510	25063062.50	7140.47	1.00	
	SEd	CD (0.05)			
t	8.907	17.48			
d	13.53	26.55			
td	84.50	165.82			

Appendix - C

Temperature reading under the heat source of 300x300 cm base area for biogas brooder and LPG brooder are given in the tables.

.

All the values obtained in grid points are in degree centigrade (°C).

-

Room temperature = 30 °C

Height of the biogas burner = 1 m from the ground level

Level = Ground level

11	30	30	31	32	33	34	33	32	32	31	30
10	31	30	31	32	33	34	33	33	33	32	30
6	31	31	32	33	34	35	34	34	33	32	31
8	32	32	33	33	34	35	35	35	34	32	32
7	33	33	33	34	35	35	35	35	34	33	33
6	33	34	34	35	35	36	35	35	34	33	33
5	33	33	34	34	35	35	35	35	34	33	32
4	32	33	33	33	34	35	34	34	<u>3</u> 3	33	32
Э	32	33	32	33	33	35	34	33	33	33	31
2	31	32	32	33	33	34	34	33	33	33	31
-	. 30	31	32	32	33	34	34	33	33	32	31
Grid points	1	2	3	4	5	6	7	8	6	10	11

Room temperature = 32 °C

Height of the biogas burner = 1m from the ground level

Level= 5 cm from the ground level

11	32	33	34	34	34	35	34	34	34	33	32
10	33	33	34	34	34	35	35	34	34	34	33
6	34	34	35	35	35	35	35	34	35	34	34
∞	34	34	35	35	35	35	35	35	35	35	34
2	35	35	35	35	36	36	36	35	35	35	34
6	34	35	36	36	36	36	36	35	35	35	34
5	34	35	36	36	36	36	35	35	35	35	34
4	34	34	35	35	35	36	35	35	35	35	33
e	33	34	35	35	35	35	34	34	34	34	32
5	33	34	35	35	35	35	34	34	34	34	32
1	33	34	35	35	35	35	34	34	33	33	32
Grid points	1	2	3	4	5	9	7	8	6	10	11

Room temperature = 32 °C

Height of the biogas burner = 75 cm from the ground level

Level = Ground level

11	32	32	33	34	34	35	34	34	33	32	32
10	32	33	34	35	35	35	35	34	34	33	32
6	33	33	34	35	36	36	35	35	34	33	32
∞	33	34	35	36	36	36	35	35	34	33	33
7	33	34	35	36	37	36	36	35	35	34	33
9	34	35	35	36	37	36	36	35	35	34	34
s	34	35	36	36	37	36	35	35	34	34	33
4	33	34	35	36	36	36	35	35	35	34	33
ю	32	33	34	35	36	36	35	35	34	33	32
5	33	33	34	35	35	36	35	35	34	34	33
	33	33	34	35	35	35	35	35	34	34	33
Grid points	1	2	3	4	5	9	7	8	6	10	11

۰ ^۱ ^۱ ^۱

Room temperature = 32 °C

Height of the biogas burner = 75 cm from the ground level

Level = 5 cm from ground level

p		·····				.		.	.		
1	34	34	35	36	36	35	36	35	35	34	33
10	34	34	35	36	36	36	36	35	35	35	34
6	35	35	36	37	37	37	37	36	36	36	35
∞	34	36	37	38	38	38	37	37	36	36	35
2	35	36	37	38	39	39	38	38	37	36	35
9	35	36	37	38	39	39	38	38	37	36	35
S	35	36	37	38	38	39	38	38	37	36	35
4	35	36	37	37	38	38	38	37	36	35	34
3	34	35	36	36	37	37	37	36	36	35	34
2	34	34	35	35	36	36	36	36	35	34	35
	34	34	35	35.	35	35	36	35	34	33	33
Grid points	1	2	3	4	5	9	7	8	6	10	11

LPG BROODER

Room temperature = 29 °C

Height of the LPG burner = 1 m from the ground level.

Level= Ground level

11	29	29	29	30	31	32	30	30	29	29	28
10	28	30	30	31	32	32	31	30	29	29	27
6	29	31	30	32	32	32	31	31	30	30	28
∞	30	31	31	32	32	32	32	31	30	29	28
7	30	31	31	32	33	33	32	31	30	29	28
9	30	31	31	33	33	33	32	31	30	30	29
5	30	31	31	32	33	32	32	31	30	30	29
4	29	30	31	32	32	32	31	31	30.	29	28
Э	29	30	31	32	32	32	31	31	30	29	27
5	29	30	31	31	31	32	31	31	30	29	27
	28	30	30	30	31	31	31	30	29	28	28
Grid points	1	2	3	4	5	9	7	8	6	10	11

LPG BROODER

•

Room temperature = 29 °C

Height of the LPG burner = 1 m from the ground level.

Level = 5 cm height from ground level

11	29	29	30	31	32	32	32	31	30	29	29
10	30	30	31	31	32	33	32	31	30	30	30
6	30	31	32	32	33	33	32	32	31	30	30
∞	31	32	33	34	34	33	33	32	32	31	30
7	31	32	33	33	34	34	33	33	33	32	31
6	32	33	33	34	34	34	33	32	32	32	31
S	32	33	33	33	34	34	33	32	31	31	30
4	31	32	32	32	33	33	32	31	31	31	29
æ	31	32	32	32	33	33	32	30	30	30	28
7	30	31	31	32	33	32	31	30	30	30	28
	30	30	31	32	33	32	31	30	29	29	28
Grid points	1	2	3	4	5	9	7	8	6	10	11

(a b

APPENDIX - D

ENERGY CONSUMPTION IN BROODERS

a. For biogas brooder (burner type)

•

The biogas consumption per hour in biogas burner	=	0.35 m ³
The biogas required per day per brooder	=	0.35 x 24
	=	8.4 m^3
The total biogas energy required for brooding of first two weeks	=	24 x 0.35 x 14
	=	117.6 $m^3 = 118 m^3$
For third week of brooding, the brooders were operated for 15 hours per day	=	15 x 0.35 x 7
	=	$36.75 \text{ m}^3 = 37 \text{ m}^3$
The total biogas required for 21 day of the brooding period	=	first two week biogas consumption + third week biogas consumption
	=	$118 + 37 = 155 \text{ m}^3$
Cost of brooding for 21 days in biogas brooder	=	155 x Rs. 5.48/ $m^3 = Rs. 850/-$
b. For LPG brooder		
The total LPG required per hour	=	0.15kg
The LPG required per day	=	0.15 x 24
	=	3.6 kg
The total LPG required for the first two week of brooding	=	3.6 x 14
	=	50.4 kg
For the third week of brooding, LPG was operated only 15 hours per day	=	15 x 0.15 x 7
	=	17.85 kg
The total LPG required during the brooding		
period of 3 weeks	=	50.4 + 17.85 = 68.25 kg.
Cost of brooding in LPG brooder for 21 days	=6	58.25 x Rs.26/kg = Rs.1775/-