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Introduction ............ 

INTRODUCTION 
 

Bayesian Inference is a tool for statistical analysis that exploits the simple idea 

that the only satisfactory description of uncertainty can be done by means of 

probability. It involves the use of the Bayes theorem to update the probability of an 

event when another event has occurred. It utilizes the information already available to 

us about the unknown parameter and thus helpful to get better results. 

Earlier the notion of Bayesian analysis was being greatly criticized and 

overlooked as the fundamental purpose of estimation is to know about the unknown 

population but if we have prior information than there is no need of estimating the said 

population.  

Later Bayesian approach developed extensively and is being used nowadays in 

most of the analysis to obtain the better results of the estimation with the available prior 

information. It can be used in any distribution. 

In recent times Bayesian analysis is being extensively used in lifetime 

distributions but its implementation is so tough because it may result in analytically 

inflexible posterior models which are very challenging from the conventional numerical 

perspective. In recent times the statistical analysis of life time and failure time data has 

a great importance. The main purpose of analyzing life time models is to gather 

information concerning failure. This information is used in order to quantify reliability, 

improve product reliability and find out whether safety and reliability goals are being 

achieved. Some very important probability distributions which are used as  life testing 

models are exponential, Weibull, normal, gamma, generalized gamma etc. It was 

Bhattacharya who first introduced the concept of Bayesian analysis in reliability and 

life testing and in estimating the parameter and reliability of one-parameter exponential 

distribution under type II censoring.  

The exponential and gamma distributions are familiar probability distributions 

used for modeling lifetime data. The exponential distribution being a special case of the 

gamma distribution has been used in modeling time-to-event data or modeling waiting 

times and their various extensions can be obtained in the literature for describing the 

uncertainty behind real life phenomena arising in the area of survival modeling and 
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reliability engineering. In many real situations it has been observed that their extensions 

fit better than their corresponding standard ones. In recent times the utility of finite 

mixture distributions is increasing widely in the statistical literature as they arise in a 

large variety of fields like from atomic physics to life testing, reliability and 

microbiology and also because of a little interest in their mathematical properties. The 

finite mixture distributions generated from the standard distributions model the real-life 

phenomena in a better way than the standard ones.  

The xgamma distribution is a continuous distribution obtained as a special finite 

mixture of exponential and gamma distributions and hence the name proposed. It 

provides an adequate fit for the data set. The weighted xgamma distribution is a 

weighted version of xgamma distribution. It can be shown as a generalization of 

xgamma distribution by considering a non negative weight function. When the weight 

function depends on the lengths of units of interest (i.e., w(x)=x), the resulting 

distribution is called length-biased thus a special case of weighted xgamma distribution 

is called as length biased xgamma distribution.  

In many observational studies it was observed that the sampling frames were 

not well defined and the recorded observations were biased. They did not have an equal 

chance of being recorded. Such observations don’t follow the original distribution 

unless an equal chance is given to each observation for recording and thus their 

modeling gave rise to the theory of weighted distributions.  Thus the concept of 

weighted distributions was laid by Fisher in 1934 to study the effect of methods of 

ascertainment upon estimation of frequencies. Further C.R. Rao (1965) provided a 

unified approach and identified the situations that can be modeled using weighted 

distributions. Weighted distributions take into account the method of ascertainment, by 

adjusting the probabilities of actual occurrence of events to arrive at a specification of 

the probabilities of those events as observed and recorded. Zelen (1974) introduced the 

weighted distribution in context of cell kinetics and early detection of disease and 

perceived it as length-biased sampling. Suppose that the original observation X has 

fo(x) as the pdf and that the probability of recording the observation x is 0 < w(x) < 1, 

then the pdf of X
w
 the recorded observation is  

 
   
 

)1.1(
)(xwE

xfxw
xf o  
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Where w is the normalizing factor obtained to make the total probability equal to unity. 

Thus w may be referred to as the visibility factor. Rao (1985) introduced such kind of 

distributions where w(x) is a non-negative function which may exceed unity and gave 

practical examples where w(X) = X or X
r
 are appropriate and called such distributions 

with arbitrary w(x) as weighted distributions. The length biased distribution has 

enormous applications in biomedical field such as early detection of a disease viz. 

breast cancer. Rao (1985) made use of length biased distribution in the study of human 

families and wild-life population. Further it has been used in a cardiology study 

involving two phases. Thus due to its wider applicability it became necessary to study 

various structural properties of weighted random variables with respect to original 

random variables. 

The xgamma density for a parameter θ is given by 
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The weighted xgamma density for a parameter θ is given by 
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The weighted xgamma distribution is a special finite mixture distribution of 

Gamma(3,2θ) and Exp(2θ) in  mixing proportion 1/(4θ+1) and 4θ/(4θ+1), respectively. 

Reliability Function 

 It is the probability of survival beyond a particular time period t. It is the 

complement of cumulative distribution function and obtained by subtracting CDF from 

1.  

 The Bayesian-Weighted xgamma model uses the available prior information on 

parameter θ to fit a given set of data. 

Hazard Rate Function 

 It is also called instantaneous failure rate and is defined by 

)(

)(
)(

tR

tf
th   where R(t) is the reliability function at time t. 
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Objectives 

The present study was undertaken with the following objectives: 

1. To obtain Bayes estimators of the parameters of the weighted xgamma 

distribution under different priors. 

2. To obtain Bayes estimators of the reliability and hazard rate functions of the 

weighted xgamma distribution under different priors. 

3. To compare the above said estimators by using a suitable loss function. 

4.  To illustrate the above methodology by means of numerical examples. 
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Review of Literature  
 

Patil and Rao (1978)  examined some general models that lead to weighted 

distributions, for examples probability sampling in sample surveys, visibility bias 

dependent on the nature of data collection, additive damage models and two-stage 

sampling. Several important distributions and their size-biased versions were also 

obtained and gave a few theorems on the inequalities between the mean values of two 

weighted distributions. They applied their results to the study of data relating to human 

populations and wildlife management.   

Tierney and Kadane (1986) proposed a more convenient method of 

approximation than Lindley’s method as Lindley’s method involve computation of 

third order derivative of log-likelihood function which is cumbersome to obtain in case 

of vector valued parameters. Their method provided an approximation of posterior 

means and variances of a positive function of a real or vector valued parameter and to 

the marginal posterior densities of the arbitrary parameters which can be used to 

evaluate approximate predictive densities and they are more accurate than the usual 

normal approximations.  

Pandey et al. (1993) proposed Bayesian estimation for estimating the 

parameters of the linear hazard- rate model. They worked out the Bayes estimates of 

the 2-parameters from a type-2 censored sample. The Bayes risk of the regression 

estimator is compared with the minimum Bayes risk using Monte Carlo simulation 

study. They validated their results for continuous distribution as well.  

Nanda and Jain (1999) derived some partial ordering results concerning the 

original and the weighted distributions of random variables and random vectors. They 

also studied length biased and equilibrium distributions and derived their results. They 

discussed bivariate weighted distributions and obtained some of the results regarding 

them. They further derived some characterization results of different ageing properties 

in terms of residual life distributions. 

Gove (2003) surveyed some of the possible uses of size- biased distribution 

theory in forestry and its related fields, since the traditional equal probability method 

was supposed to be inappropriate in such situations and size-biased theory provided 

Chapter 2 
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better estimate. He reviewed some more results on size-biased distributions related to 

parameter estimation in forestry.  

Marin et al. (2005) introduced the construction, prior modeling estimation and 

computation of mixture distribution in Bayesian paradigm and they showed that 

mixture distributions provide a more flexible expression for statistical analysis. They 

also depicted some of the properties of mixture distributions along with two different 

motivations.  

Abu-Taleb et al. (2007) studied the Bayes estimates of the parameters of 

lifetime distributions, assuming that both the survival and censoring time are 

independent exponentially distributed. They made use of conjugate inverted gamma 

priors to derive the Bayes estimates, marginal posterior and credible sets. 

Shukla and Kumar (2008) obtained the Bayes estimators of the scale 

parameter of generalized gamma type model under different priors using Lindley’s 

approximation and they further obtained the Bayes estimators of reliability function and 

hazard rate function.  

Kundu and Pradhan (2009) worked on the Bayesian estimation of the 

unknown parameters of the progressively censored generalized exponential distribution 

under an assumption that its scale and shape parameter have independent gamma 

priors. To obtain the closed form of the Bayes estimates of the parameters, they 

suggested the use of Lindley’s approximation method. Further they calculated the 

approximate Bayes estimates and constructed the highest posterior density credible 

intervals using the Markov Chain Monte Carlo method. To compare two different 

sampling schemes and to find the optimal one they proposed optimum censoring 

scheme. Thus they observed that if we have proper prior information, then the Bayesian 

inference has a clear advantage over the classical inference. 

Shukla and Kumar (2009) worked out the Bayes estimators of the shape 

parameter of the generalized gamma type model with the help of Lindley’s 

approximation under different priors. They also obtained the Bayes estimators of the 

hazard rate and reliability functions of the model. 

Riabi et al. (2010) derived the β-entropy for Pareto-type and related 

distributions. They further obtained the β-entropy for some weighted versions of these 
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distributions, such as order statistics, proportional hazards, proportional reversed 

hazards, probability weighted moments, upper record and lower record.  

Pradhan and Kundu (2011) considered the Bayes estimates of two parameter 

gamma distribution and assumed that scale parameter has a gamma prior and shape 

parameter has any log-concave prior which are independently distributed. They further 

used Gibbs sampling technique to generate random samples from posterior density 

functions and on the basis of those samples they calculated the Bayes estimates of 

unknown parameters. They further observed that the Gibbs sampling technique can be 

used quite effectively, for estimating the posterior predictive density and also for 

constructing predictive interval of the order statistics from the future sample. 

Singh et al. (2011) suggested the Bayes estimators of the parameter of the 

exponentiated gamma distribution and associated reliability function under General 

Entropy loss function for a censored sample. Through the simulated risk of the 

estimators they compared the proposed estimator with the corresponding Bayes 

estimators obtained under squared error loss function and maximum likelihood 

estimators. 

Azimi et al. (2012) obtained the Bayesian estimators of the parameters and 

reliability function of a Rayleigh distribution given a progressively type II censored 

sample from a Rayleigh distribution, under  asymmetric loss functions such as LINEX 

loss function, Precautionary loss function, entropy loss function for the parameter and 

reliability function. Further simulation study was carried out for the comparison 

purpose. They found that the Bayesian estimators for a given progressively type II 

censored sample from a Rayleigh distribution are superior to MLEs.  

Feroze and Aslam (2012) studied the posterior analysis of the exponentiated 

gamma distribution for type II censored samples and derived the Bayes estimators and 

associated risk for the exponentiated gamma distribution under different priors. They 

obtained the posterior predictive distributions and constructed corresponding intervals.  

The objective of their study was to find a suitable estimator of the parameter and they 

found that the under gamma prior using entropy loss function the performance of 

estimators is the best. 

Al-kadeem and Hantoosh (2013) defined and discussed the Even-power 

Weighted Distribution and its statistical properties. They discussed the Even-power 
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Weighted Normal Distribution, its shape and derived its mode, reliability function, 

hazard function, moment generating function thus also found its mean and variance. 

Guure and Bosomprah (2013) determined the Bayesian and Non-Bayesian 

estimation of the parameters and survival function of the generalized exponential 

distribution. They employed different data sets to estimate the parameters. They 

computed standard errors of the estimators and made a comparison about the estimators 

on the basis of the standard error.  They also computed the mean squared error and 

absolute bias and carried out a simulation study for comparison. 

Al-Kadim and Hussein (2014) introduced a new class of length-biased of 

weighted exponential and Rayleigh distributions. They studied some statistical 

properties and application of these new distributions. They derived the moment 

generating function, reliability function, hazard function, reverse hazard function and 

MLE’s of the unknown parameters of these distributions and considered some of their 

sub-models. Finally they found that length biased weighted Rayleigh distribution was 

quite flexible for modeling the quality of the data protection devices for the Electronic 

Industries. 

Dutta and Borah (2014) investigated size-biased Poisson-Lindley distribution 

(SBPL)  and derived some of the distributional properties of size-biased Poisson-

Lindley distribution including moments, cumulants, harmonic mean, coefficient of 

variation, reliability function etc. Estimation of parameters was carried out by 

employing method of moments and ratio of the first two relative frequencies. Finally, 

they fitted the distribution to two reported data sets for empirical comparison.    

Jain et al. (2014) introduced the weighted gamma distribution and observed 

that the hazard function is increasing or upside-down bathtub depending upon the 

values of the parameters. They further obtained the expressions for its moment 

generating functions and the moments. They computed MLEs through simulations and 

also for a real data set. They observed that weighted gamma fit better than its 

submodels Weighted Exponential (WE), Generalized Exponential (GE), Weibull and 

Exponential distributions. 

Kishan (2014) in his studies made a comparison between maximum likelihood 

estimators and Bayes estimator of the shape parameter of the generalized gamma type 

model under squared error loss function, provided shape parameter was known. He also 
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computed the relative efficiency of the Bayes estimator w.r.t. the maximum likelihood 

estimator.  

Khan and Hakkak (2014) on the basis of complete sample analyzed and 

estimated the parameters of the generalized exponential distribution. The Bayes 

estimates of the parameters of the models were computed using the Markov Chain 

Monte Carlo (MCMC). Further a comparative study of Bayes estimators with the 

classical estimator was done with the computation of the maximum likelihood estimate 

and associated confidence interval.  

Kumar et al. (2014) considered a problem where progressive type-II censoring 

scheme was applied to a life-testing experiment in which each unit under test was a 

series system and the investigator seek to obtain the estimates of the reliability of 

individual components. Their estimation was based on an assumption that the lifetimes 

of the components followed Rayleigh distribution, and thus provided the maximum 

likelihood and Bayes estimator of the lifetime parameters, mean lives and reliability 

measures of individual components using masked system lifetime data. Bayes estimates 

were computed using Lindley’s approximation and Gibbs Sampler and finally they 

carried out simulation study.  

Singh et al. (2014) used binomial removal scheme to obtain the Maximum 

likelihood and Bayes estimators of the unknown parameters of the exponentiated Pareto 

model based on progressive type II censored data. The Bayes estimates of the 

parameters were computed using the Markov Chain Monte Carlo method and by 

considering the generalized entropy loss function and squared error loss function.  

Further the Bayes estimators were compared with MLEs using Monte Carlo 

Simulation. 

Alqallaf et al. (2015) used Monte Carlo simulations to compare the finite 

sample properties of the estimates of the parameters of the weighted exponential 

distribution obtained by five estimation methods. They made use of bias and mean-

squared error as the criterion for comparison. The conclusions drawn by simulation 

study were also supported with the analysis of two real data sets. 

Singh et al. (2015) derived the Bayes estimates of the parameter and reliability 

function of exponentiated gamma distribution under the assumption of independent 

gamma prior using three different approximations methods namely Lindley’s 
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approximation, Tierney-Kadane and Markov Chain Monte Carlo methods. They further 

made a comparison of the Bayes estimates with corresponding maximum likelihood 

estimates through simulation. They illustrated their study in realistic phenomenon using 

a real data set. 

Shukla and Kumar (2015) introduced a finite range failure model and derived 

the Bayes estimators of the parameter of this finite range failure model under different 

priors using Tierney Kadane approximation method. They also obtained their expected 

losses. 

Das and Kundu (2016) discussed various reliability properties of the weighted 

exponential distribution proposed by Gupta and Kundu (2009). They further discussed 

different properties and inferential issues of its length biased version. They obtained the 

maximum likelihood estimators of the unknown parameters of the proposed length 

biased weighted exponential distribution. The applicability of the model was illustrated 

with the help of a data set and they observed that it provided a better fit in comparison 

of some of the existing three-parameter models based on K-S statistics. 

Bashir and Naqvi (2016) derived a new weighted exponential distribution and 

observed that the distribution so obtained was positively skewed. They presented 

various graphs showing the shape of the weighted exponential distribution with 

different values of parameters and weights. Further they derived moments and their 

various measures including cdf, moments, median, skewness etc. The estimation of 

parameter of the weighted exponential distribution was carried out by using maximum 

likelihood and moment estimation methods. The applicability of model has been 

illustrated on waiting time data. 

Sen et al. in 2016 studied and proposed a new distribution called the xgamma 

distribution generated as a finite mixture of gamma and exponential distribution. He 

derived various distributional, structural, mathematical and survival properties of 

xgamma distribution and it was observed that xgamma distribution is more flexible 

than the exponential distribution. He proposed the method of moments and method of 

maximum likelihood to estimate the parameters and indicated a simulation algorithm to 

generate random samples from the xgamma distribution. 

Sen and Chandra in 2017 introduced a two-parameter probability distribution 

for the purpose of modeling lifetime data as an extension of xgamma distribution and 
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called it as quasi xgamma distribution. Important distributions of its order statistics 

have been obtained and they studied various structural and distributional properties of 

quasi xgamma distribution. To estimate the parameters of the proposed distribution 

they depicted the method of moments and maximum likelihood estimation. The 

suitability and applicability of the model has been illustrated with the help of a bladder 

cancer survival data. 

Sen et al. 2017 introduced the weighted version of xgamma distribution and 

studied its properties by considering weight function as rth power of x. And finally 

studied its distributional and survival properties for the special case when r=1. They 

obtained MLE’s and moment estimators of the parameter of the proposed distribution. 

They illustrated the theory with the help of random samples of various sizes generated 

through simulation technique. Further, a real life data set was used to illustrate the 

results and for comparing with other lifetime and length biased models.  
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Materials and Methods  
 

 This chapter depicts various methods used and the mathematical expressions 

solved in order to get the required results. Following headings have been used to 

precisely describe the procedure and complete the objectives: 

 3.1 Methodology and Synthesis  

            3.2  Classical Estimation  

 3.3  Bayes estimation of θ under prior 1 

            3.4  Bayes estimation of θ under prior 2 

 3.5  Simulation study   

 3.6 Real life application 

3.1 Methodology and Synthesis 

The classical estimates as well as the Bayes estimates of the parameter θ of the 

weighted xgamma distribution have been evaluated for the purpose of comparison. The 

methods and techniques used have been well described in this section as under: 

3.1.1  Likelihood Function 

The likelihood function of a set of parametric values, say θ, given outcomes x1, x2, x3 

,........., xn   is the joint probability of x1, x2, x3 ,........., xn given the parametric values, i.e. 

L(θ|x1 , x2, x3 ,........., xn)= P(x1, x2, x3,.......,xn|θ) 

3.1.2  Newton Raphson Method 

Newton Raphson method named after Sir Isaac Newton and Joseph Raphson is used to 

find successive better approximations to the roots of a real-valued function f(θ). 

Mathematically the method can be expressed as: 

)('

)(
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where, 

f(θk-1) is the value of function of θ at (k-1)
th 

iteration. 
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f’(θk-1) is the first derivative of the function of θ at (k-1)
th

 iteration. 

3.1.3  Maximum Likelihood Estimate 

The values of the parameters that maximize the sample likelihood function are 

known as the Maximum Likelihood Estimates. 

3.1.4  Bayes Estimation 

It is an approach to statistical inference which utilizes the available prior 

information about the unknown population parameter. The Bayesian theory is based on 

incorporating the information from the data as well as the prior information of the 

parameters to obtain the posterior distribution of the parameters. 

3.1.5  Prior Distribution 

The prior distribution is an appropriately chosen probability density function 

that summarizes the available information about the parameters in the form of a model. 

It expresses an investigator’s beliefs about the unknown parameters even before some 

evidence is taken into account. 

3.1.6  Posterior Distribution 

The posterior distribution is the distribution of unobserved data conditional on 

the observed data. It incorporates the information from the data as well as the prior 

information. 

3.1.7  Tierney and Kadane Method 

 Tierney and Kadane method can be used to find the Bayes estimate of 

any parametric function when the integral formed is not in closed form or cannot be 

solved analytically. Bayes estimates of a function g(θ) can be evaluated by: 
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Here ̂  maximize   and   *

g respectively. 

3.1.8 The weighted xgamma distribution and its characteristics 

The PDF of the weighted xgamma distribution can be obtained by using equation (1.1) 

We have from equation (1.2) 
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Reliability Function R(t) is 
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Hazard rate function H(t) is 
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Moments and associated measures: 

The moment generating function of X is given by MX(t) 

 
     

)6.3....(2;
2

1
2

1

14

8
2

2























 t

tt
tM X

 

The characteristic function (CF) of X is given by 
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Therefore,  
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3.2 Classical Estimation 

3.2.1 Method of moment estimator 

Let X1, X2, X3, .......,Xn be a random sample of size n drawn from the weighted 

xgamma distribution 

If X denotes the sample mean, then by applying the method of moments, we have 
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Let M̂ be the method of moment estimator of θ then 
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3.2.2 Maximum Likelihood Estimator 

Let ),....,,('~
21 nxxxx   be sample observations on X1, X2, ...., Xn. The likelihood 

function of θ given x~ is written as: 
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The log-likelihood function is given by

 

)18.3....(
2

1log2)14log(8log)~|(
1

2

1

2














n

i

i

n

i

i xxnnxL




 

Differentiating it with respect to θ and equating to 0, we have the log-likelihood 

equation as 
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Differentiating it twice with respect to θ, we get 
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The equation cannot be solved analytically thus to find the maximum likelihood 

estimate )ˆ(  of θ we have applied Newton-Raphson method. 

  )21.3....(ˆ)ˆ.(..
2

  EESM

 

Then MLE’s   ))(ˆ,ˆ( thtR  of reliability function R(t) and hazard rate function h(t) are 

obtained by using invariance property. 



 
 
 

Materials and Methods............ 

     
 

)22.3....(
1ˆ4

1ˆ
ˆ21ˆ2expˆ 



















t
tttR

 

        )23.3....(ˆˆ...
2

tRtREtRESM 

 

 
)24.3....(

1ˆ4ˆ2ˆ2

2

ˆ
1ˆ8

)(ˆ
22

22
























tt

t

th

 

        )25.3....(ˆˆ...
2

ththEthESM 

 

3.3 Bayes Estimation of θ under Prior 1 

Let the prior distribution of θ be 
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Posterior distribution of θ under Prior 1 is given by
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The integration in the denominator is not in the closed form. 

Bayes estimator of θ is obtained by solving 
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The integral so formed is the ratio of two integrals which cannot be solved directly. 

Thus we have applied Tierney and Kadane method to solve it. 

The method consists of the following steps: 
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Then we find, 
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Substituting the above said values in the following formula, we get the Bayes estimator 

of θ as 
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Bayes estimator of reliability function is obtained as  



 
 
 

Materials and Methods............ 

    

 
 

 

)40.3....(

2
12exp

14

2
12exp

1414

1
212exp

~

0 1

2

1

12

1

2

0 1

12

 

 














































































n

i

i

n

i

in

n

n

i

i

n

i

in

n

dxx

dxx
t

tt

tREtR






















 

The integral so formed is the ratio of two integrals which cannot be solved directly. 

Thus we have applied Tierney and Kadane method to solve it. 

Now, 
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Substituting the above said values in the following formula, we get the Bayes estimator 

of R(t) as 
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Bayes estimator of hazard rate function is calculated as below 
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 th
~

 is again the ratio of two integrals which cannot be solved directly. 

Thus we have applied Tierney and Kadane method to solve it. 
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Substituting the above said values in the following formula, we get the Bayes estimator 

of h(t) as 

      
       ˆˆexp

~ *

*





 th

th
nthEth

 



 
 
 

Materials and Methods............ 

 

 
)56.3....(

1ˆ4ˆ2ˆ2

2

ˆ
1ˆ8

22

22

*




























tt

t
th

 

Mean square error of  th
~

 is given by 

        )57.3....(
~~ 2

ththEthMSE 

 

Now Bayes estimator of h
2
(t) is obtained by using 

      

 
      ˆˆexp

~ *

*

22
2

2







th

th
nthEth

 

 

 
)58.3....(

1ˆ4ˆ2ˆ2

2

ˆ
1ˆ64

2
22

2

24
*

2




























tt

t
th

 

Risk of  th
~

 is given by 

       )59.3....(
~~~ 2

2 thththRisk   

3.4 Bayes Estimation of θ under Prior 2 

 The prior PDF of θ is 

    


  exp
1 1

2

b

b
g  

Then posterior distribution of θ is given by 

 
   

    




dgxl

gxl
xg






0

2

2

2

.~

.~
~  

 
 

 
  























































0 1

2

1

12

1

2

1

12

exp.
2

12exp
14

exp.
2

12exp
14

n

i

i

n

i

in

bn

n

i

i

n

i

in

bn

dxx

xx

















 



Materials and Methods............ 

 

 

)60.3...(

2
112exp

14

2
112exp

14

0 1

2

1

12

1

2

1

12

 












































































n

i

i

n

i

in

bn

n

i

i

n

i

in

bn

dxx

xx
















 

To solve (3.60) we have used Tierney Kadane method of approximation again. 
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Substituting the above said values in the following formula, we get the Bayes estimator 

of θ as 
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To solve (3.74) we have used Tierney Kadane method. 
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Substituting the above said values in the following formula, we get the Bayes estimator 

of R(t) as 
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Bayes estimator of hazard rate function is calculated as below 
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Equation (3.84) has been solved by using Tierney Kadane method 
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Substituting the above said values in the following formula, we get the Bayes estimator 

of h(t) as 
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3.5 Simulation Study 

 Simulation is a technique applied to a probability model to generate random 

samples of required sizes. Whenever we estimate parameters for a given model under 

hypothetical or randomly generated values, the question over its application for 

different sets is raised. For validating our approximated values for a large population, 

so large that it can be treated as real, we apply simulation technique. 
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 In present work, the estimated values of parameter, reliability function and all 

other related measures have been computed using a simulated data replicated 10,000 

times using R software.  

3.6 Real life application 

 The following real life data set of size 23 fatigue life for deep-groove ball 

bearings, compiled by American Standards Association and reported in Lieblein and 

Zelen (1956) has been analyzed to illustrate the applicability of the proposed model. 

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 67.80,  

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

To see whether the proposed weighted xgamma distribution is a good fit to the above 

said data, we have classified the values into 8 class intervals as given below: 

 

Class 

Interval 

Observed 

frequency 

(O) 

F(y)  yF  
Expected 

Frequency 

(E) 

 yFN.  

 
E

EO
2


 

0-20 
1 0.082764621 0.082764621 1.903586 0.428911 

20-40 
2 0.254538153 0.171773532 3.950791 0.963247 

40-60 
8 0.458446915 0.203908762 4.689902 2.336244 

60-80 
4 0.637605614 0.179158699 4.12065 0.003533 

80-100 
3 0.771564572 0.133958958 3.081056 0.002132 

100-120 
2 0.862296048 0.090731476 2.086824 0.003612 

120-140 
2 0.919795393 0.057499345 1.322485 0.347094 

140-160 
1 0.974789832 0.054994439 1.844702 0.386795 

Total 
23   23 4.471567 

  

Table 3.1: chi-square goodness of fit 

 

Here, 471567.42 cal   

which is insignificant as the chi-square value at 7 d.f and at 1% level of significance is 

18.47531. Thus the proposed model is a good fit to the above said data set. 
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Chapter 4 RESULTS AND DISCUSSION  
 

 This chapter documents the Bayes estimates of the parameter θ of the weighted 

xgamma distribution along with its reliability function R(t), hazard rate function h(t) and 

other associated measures computed for random samples of various sizes generated through 

R software. Each random sample is replicated 10,000 times to increase the sample size 

considerably. The values of Bayes estimates of R(t) and h(t) are obtained at initial time t=1.2 

everywhere.  

 The random samples of sizes 20, 40, 60 and 80 were drawn from the weighted 

xgamma distribution with values 1.0, 1.5 and 2.0 of θ using R software. Each random sample 

was replicated 10,000 times. The maximum likelihood estimates of θ, reliability function R(t) 

and hazard rate function h(t) were evaluated along with their Mean Square Errors for 

different values of the sample size n. Besides, Bayes estimates of θ, reliability function R(t) 

and hazard rate function h(t) were evaluated along with their Mean Square Errors and Risks 

under Squared Error Loss Function(SELF) for two priors mentioned in Chapter 3. The values 

of Bayes estimates of θ, R(t) and h(t) corresponding to θ=1.0, 1.5 and 2.0 are given in Tables 

4.1, 4.2, and 4.3 respectively. 

 Besides, the values of the maximum likelihood estimates (MLEs) of R(t) and h(t) are 

calculated for different values of t ranging from 0 to 3.2 and are given in Table 4.4. The 

figures for reliability function R(t) and hazard rate function h(t) for different values of t are 

shown in Fig. 4.1 and 4.2 respectively. 

  

 

 

 

 

 

 



 

Θ=1.0 

 

MLE Estimates 

Bayes Estimates 

Prior 1 Prior 2 

Θ R(t) h(t) Θ R(t) h(t) Θ R(t) H(t) 

n=20 1.041736 
 
 

0.18443 
 
 

1.412612 
 

1.02338 0.183794 
 

1.379791 
 

1.025139 
 
 

0.183854 
 
 

1.382915 
 

MSE 0.04361 
 

0.004493 
 

0.12361 
 

0.040574 
 

0.004476 
 

0.113737 
 

0.040867 
 

0.004477 
 

0.114678 
 

Risk(SELF)  0.000678 
 

8.48E-07 
 
 

0.00216 
 

0.000556 
 

6.96E-07 
 

0.001776 
 

n=40 1.042759 
 

0.18417 
 

1.414359 
 

1.02438 
 

0.183534 
 
 
 

1.381491 
 

1.026141 
 

0.183595 
 

1.38462 
 

MSE 0.044246 
 

0.004501 
 

0.125569 
 

0.041146 
 

0.004485 
 

0.115484 
 

0.041445 
 

0.004486 
 

0.116447 
 

Risk(SELF)  0.000681 
 

8.47E-07 
 

0.002169 
 

0.000558 
 

6.94E-07 
 

0.001782 
 
 

n=60 1.04254 
 

0.184049 
 

1.413913 
 
 

1.024163 
 

0.183413 
 

1.381052 
 

1.025924 
 
 

0.183474 
 

1.384181 
 
 

MSE 0.04339 
 

0.004463 
 

0.123011 
 

0.040335 
 

0.004446 
 

0.113086 
 

0.04063 
 

0.004448 
 

0.114031 
 

Risk(SELF)  0.00068 
 

8.46E-07 
 

0.002164 
 

0.000557 
 
 

6.94E-07 
 
 

0.001779 
 

n=80 1.04561 
 

0.183284 
 

1.419157 
 

1.027168 
 

0.18265 
 

1.386163 
 

1.028936 
 
 
 

0.18271 
 
 

1.389306 
 

MSE 0.045192 
 

0.004506 
 
 

0.128487 
 

0.041951 
 

0.004491 
 

0.117955 
 
 
 

0.042265 
 

0.004492 
 

0.118963 
 

Risk(SELF 

 

) 

 0.000686 
 

8.42E-07 
 

0.002187 
 

0.000562 
 

6.90E-07 
 

0.001797 
 

 

Table 4.1: Estimated values of θ, R(t) and h(t) along with their MSE and risks 

 It is revealed from Table 4.1 that Bayes risks under SELF are smaller for prior 2 

compared to prior 1 for all sample sizes. The value of Bayes estimate of θ is 1.025139 with 

minimum risk 0.000556 at n=20 and similarly Bayes estimate of R(t) is 0.18271 with 

minimum risk 6.90E-07 at n=80 and Bayes estimate of h(t) is 1.382915 with minimum risks 

0.001776 at n=20. Finally it is concluded that prior 2 is superior to prior 1 for θ=1. 



 

 

Θ=1.5 

 

MLE Estimates 

Bayes Estimates 

Prior 1 Prior 2 

θ R(t) h(t) Θ R(t) h(t) Θ R(t) h(t) 

n=20 1.571361 
 

0.068902 
 

2.32408 
 

1.54091 
 

0.068581 
 

2.266965 
 

1.544086 
 
 

0.068614 
 

2.272886 
 

MSE 0.107267 
 

0.001503 
 

0.339341 
 
 

0.099084 
 
 

0.001492 
 

0.310183 
 

0.099925 
 

0.001493 
 
 
 

0.313147 
 
 

Risk(SELF)  0.001857 
 

2.38E-07 
 

0.00651 
 
 

0.001496 
 

1.92E-07 
 

0.005257 
 

n=40 1.570029 
 

0.069676 
 

2.322101 
 

1.539603 
 

0.069354 
 

2.26503 
 

1.542777 
 

0.069387 
 

2.270948 
 

MSE 0.113104 
 

0.001591 
 

0.358195 
 

0.104723 
 

0.001578 
 
 

0.32823 
 

0.10559 
 
 

0.001579 
 
 

0.331294 
 

Risk(SELF)  0.001861 
 

2.42E-07 
 

0.006527 
 

0.001498 
 

1.95E-07 
 

0.00527 
 

n=60 1.563832 
 

0.07003 
 

2.310884 
 

1.533554 
 

0.069706 
 

2.254121 
 

1.53671 
 
 

0.069739 
 

2.260001 
 
 

MSE 0.106609 
 

0.001581 
 

0.336925 
 

0.098884 
 

0.001568 
 

0.309286 
 

0.099678 
 

0.001569 
 

0.312095 
 

Risk(SELF)  0.001838 
 

2.43E-07 
 

0.006436 
 

0.00148 
 

1.96E-07 
 

0.005198 
 

n=80 1.571169 
 

0.069401 
 

2.324022 
 

1.540719 
 

0.06908 
 

2.266904 
 

1.543896 
 

0.069113 
 

2.272826 
 

MSE 0.111834 
 

0.001583 
 

0.354084 
 

0.103451 
 

0.00157 
 

0.324149 
 
 

0.104316 
 

0.001572 
 
 

0.327205 
 

Risk(SELF)  0.001862 
 

2.41E-07 
 
 

0.00653 
 

0.001499 
 

1.94E-07 
 
 

0.005273 
 

 

Table 4.2: Estimated values of θ, R(t) and h(t) along with their MSE and risks 

 It is revealed from Table 4.2 that Bayes risks under SELF are smaller for prior 2 

compared to prior 1 for all sample sizes. The value of Bayes estimate of θ is 1.53671with 

minimum risk 0.00148 at n=60 and similarly Bayes estimate of R(t) is 0.068614 with 

minimum risk 1.92E-07 at n=20 and Bayes estimate of h(t) is 2.260001 with minimum risks 

0.005198 at n=60. Finally it is concluded that prior 2 is superior to prior 1 for θ=1.5. 

 



 

 

Θ=2.0 

 

MLE Estimates 

Bayes Estimates 

Prior 1 Prior 2 

Θ R(t) h(t) θ R(t) h(t) Θ R(t) h(t) 

n=20 2.093607 
 
 

0.026843 
 

3.262102 
 

2.05071 
 

0.02669 
 

3.179228 
 

2.055412 
 

0.026707 
 

3.188257 
 

MSE 0.210423 
 

0.000446 
 

0.709117 
 

0.194579 
 

0.000441 
 

0.649436 
 
 

0.19627 
 
 

0.000442 
 
 

0.65574 
 
 

Risk(SELF)  0.003684 
 

6.40E-08 
 
 

0.013699 
 

0.002934 
 

5.11E-08 
 

0.010942 
 

n=40 2.095749 
 

0.026681 
 

3.265863 
 

2.052802 
 

0.026528 
 

3.182886 
 

2.05751 
 

0.026545 
 
 

3.191927 
 

MSE 0.205735 
 

0.000446 
 

0.692203 
 

0.189953 
 

0.000441 
 

0.632879 
 

0.191632 
 
 

0.000441 
 

0.639126 
 

Risk(SELF)  0.003686 
 

6.35E-08 
 

0.013705 
 

0.002936 
 

5.07E-08 
 

0.010947 
 

n=60 2.093173 
 

0.026859 
 

3.261208 
 

2.050287 
 

0.026705 
 

3.178356 
 

2.054987 
 
 

0.026722 
 

3.187383 
 

MSE 0.205577 
 

0.000454 
 

0.691447 
 

0.190007 
 

0.000449 
 

0.63287 
 

0.191663 
 

0.00045 
 

0.639038 
 

Risk(SELF)  0.003677 
 

6.42E-08 
 

0.013668 
 

0.002929 
 

5.13E-08 
 

0.010918 
 

n=80 2.092435 
 

0.026746 
 

3.259771 
 

2.049567 
 
 

0.026593 
 

3.176959 
 

2.054265 
 

0.026609 
 

3.18598 
 

MSE 0.204393 
 

0.000439 
 

0.688173 
 

0.18893 
 

0.000434 
 

0.629977 
 

0.190576 
 

0.000435 
 

0.636106 
 

Risk(SELF)  0.003673 
 

6.35E-08 
 

0.013652 
 

0.002926 
 

5.07E-08 
 

0.010905 
 

 

Table 4.3: Estimated values of θ, R(t) and h(t) along with their MSE and risks 

 It is revealed from Table 4.3 that Bayes risks under SELF are smaller for prior 2 

compared to prior 1 for all sample sizes. The value of Bayes estimate of θ is 2.054265 with 

minimum risk 0.002926 at n=80 and similarly Bayes estimate of R(t) are 0.026545 and  

0.026609  with minimum risk  5.07E-08 at n=40 and n=60. Further, Bayes estimate of h(t) is 

3.18598 with minimum risks 0.010905 at n=80. Finally it is concluded that prior 2 is superior 

to prior 1 for θ=2.0. 



 Finally, it is concluded from Tables 4.1, 4.2 and 4.3 that Prior 2 is superior to Prior 1 

for all values of θ and for all sample sizes for finding Bayes estimates of θ, R(t) and h(t). 

Further, it is observed that R(t) decreases with increasing value of θ and h(t) increases with 

increasing value of θ. 

Time (t)  tR̂   tĥ  

0 1 1.68221 

0.2 0.72319 1.564755 

0.4 0.533486 1.483416 

0.6 0.398688 1.433888 

0.8 0.300127 1.409433 

1 0.226601 1.403222 

1.2 0.171073 1.409476 

1.4 0.128878 1.423772 

1.6 0.096762 1.442926 

1.8 0.072351 1.464741 

2 0.053854 1.487747 

2.2 0.039901 1.510988 

2.4 0.029427 1.533859 

2.6 0.021605 1.555995 

2.8 0.015793 1.577187 

3 0.011497 1.597332 

3.2 0.008337 1.616392 

 

Table 4.4 MLEs of R(t) and h(t) for different values of t 

 It is concluded from Table 4.4 that MLE of R(t) decreases with increasing value of 

time (t). It takes value 1 at initial time 0 and 0.008337 at time 3.2. Moreover the MLE of 

hazard rate function h(t) takes value 1.68221 at initial time 0 and then decreases up to 

1.403222 at time 1 and after this goes on increasing continuously. This is shown graphically 

in Figures 4.1 and 4.2 respectively. 



 

Fig. 4.1: Reliability Curve  

 

Fig. 4.2: Hazard Rate Curve  
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(b) Real data set  

 A real life data set of size 23 fatigue life for deep-groove ball bearings, compiled by 

American Standards Association and reported in Lieblein and Zelen (1956) has been 

analyzed to illustrate the applicability of the proposed model. It has already been mentioned 

in Chapter 3 that the proposed model is a good fit to the above said data. The MLE of θ for 

this data set is found to be 0.01998142. Using this value of θ we have calculated Bayes 

estimates of θ, R(t) and h(t) under two different priors which are given in Table 4.5. 

 Prior 1 Prior 2 

θ R(t) h(t) θ R(t) h(t) 

Estimates 0.019832 
 

0.996475 

 

0.002828 

 

0.019838 

 

0.996476 

 

0.002829 

 

Risk 4.36331E-08 
 

3.79151E-09 
 

3.40913E-09 
 

4.00057E-08 

 

3.46966E-09 
 

3.13142E-09 
 

 

Table 4.5: Estimated values of θ, R(t) and h(t) along with their MSE and risks for real data set 

 It is revealed from Table 4.5 that Prior 2 is superior to Prior 1 for obtaining Bayes 

estimates of θ, R(t) and h(t). The estimates of θ, R(t) and h(t) are 0.019838, 0.996476 and 

0.002829 respectively with Risks  4.00057E-08, 3.46966E-09 and 3.13142E-09. This 

confirms the conclusions drawn from the simulated data generated from the proposed model 

with different values of θ and establishes the utility of the proposed model for describing real 

life situations. 
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Summary and Conclusion............ 

 Summary and Conclusions  
 

 The present study, deals with the synthesis of a new continuous probability 

distribution, named weighted xgamma distribution and its parameter estimation along 

with the estimation of its reliability function and hazard rate function. The new 

distribution comes out to be lifetime distribution which may be used to fit several sets 

of real life data. The expressions for various distributional properties of weighted 

xgamma distribution including its moment generating function (mgf), cumulant 

generating function (cgf), characteristics function, moments etc. have been derived. The 

classical estimators of parameter θ are obtained using method of moments and method 

of maximum likelihood estimation. Besides, Bayes estimators of θ, reliability function 

R(t) and  hazard rate function h(t) are obtained under two different priors by means of 

Tierney and Kadane method of approximation. Maximum Likelihood estimates of θ are 

obtained by using Newton-Raphson method through R software for the random 

samples of various sizes generated through simulation technique. Moreover the 

expressions for Bayes risk of θ, reliability function(R(t)) and hazard rate function(h(t)) 

under both the priors have also been obtained using Squared Error Loss 

Function(SELF). Simulation study has also been carried out for getting reliable 

estimates with varying sample sizes through R software. Each random sample has been 

replicated 10,000 times to increase the sample size considerably. The present study was 

undertaken with following objectives: 

1. To obtain Bayes estimators of the parameters of the weighted xgamma 

distribution under different priors. 

2. To obtain Bayes estimators of the reliability and hazard rate functions of the 

weighted xgamma distribution under different priors. 

3. To compare the above said estimators by using a suitable loss function. 

4.  To illustrate the above methodology by means of numerical examples. 

Chapter 1 includes the introduction of Bayesian approach of parameter estimation and 

its importance over classical estimation, weighted distribution, form of its pdf and 

explains the weighted xgamma distribution in detail along with the objectives of the 

study. Chapter 2 presents, a brief review of literature relevant to the study. The 

Chapter 5 
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materials and methods used for synthesis of this new pdf along with its distributional 

properties, utility and classical and Bayes estimation of its parameter, reliability 

function R(t) and hazard rate function h(t) have been discussed in Chapter 3. The utility 

of the proposed model has been illustrated by means of simulated random samples of 

various sizes generated through R software in Chapter 4. Bayes estimates of θ, R(t) and 

h(t) for the random samples of different sizes and one real life data have also been 

obtained under two priors (uniform and gamma priors) through simulation and are 

given in Chapter 4. It is concluded that gamma prior is superior to uniform prior for all 

random samples and real data set. The estimated values of θ, R(t) and h(t) have also 

been calculated using the two priors and it is concluded that reliability function R(t) 

decreases with increasing value of time t and takes nearly 0 value at t=3.2. Moreover 

hazard rate function h(t) decreases with increasing value of t up to t=1 and then again 

goes on increasing continuously. The details of the work done so far in this field 

mentioned in Chapter 2 have been recorded under the heading “Literature Cited”. The 

coding of R programming for various calculations have been given in Appendix in the 

end of the thesis.  

The major findings of the study from the simulated data are as follows: 

Case 1: For randomly generated data 

 The Bayes estimates of θ, R(t) and h(t) for random samples generated from 

weighted xgamma distribution with θ=1.0 are (1.025139, 0.18271 and 1.382915) with 

minimum risks (0.000556, 6.90E-07 and 0.001776) respectively. These values for random 

samples from weighted xgamma distribution with θ=1.5 and θ=2.0 respectively are 

(1.53671, 0.068614 and 2.260001) and (2.054265, 0.026545, and 3.18598) with minimum 

risks (0.00148, 1.92E-07 and 0.005198) and (0.002926, 5.07E-08 and 0.010905). Thus Bayes 

estimate of θ, R(t) and h(t) are more precise for gamma prior (prior 2) compared to 

uniform prior (prior 1) for all assumed values of θ. 

Case 2: For real data set 

 It has been observed that for real data set, gamma prior (prior 2) is superior to 

uniform prior (prior 1) for obtaining Bayes estimates (0.019838, 0.996476 and 

0.002829) of parameter θ, reliability function R(t) and hazard rate function h(t) of 

weighted xgamma distribution with risks (4.0005E-08, 3.46966E-09 and 3.13142E-09) 

which is consistent with the conclusions drawn from the random samples generated 

from weighted xgamma distribution through R software. 
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Therefore, finally it is concluded that the proposed model is useful for describing many 

real life situations and for Bayes estimation of its parameter θ, reliability function R(t) 

and hazard rate function h(t), gamma prior (prior 2) should be preferred over uniform 

prior. 
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Appendix 

 

rm(list=ls(all='TRUE')) 

priya=function(n){ 

  Fx<- function(x,th,u){ 

    return(1-exp(-2*th*x)*(1+2*th*x*(th*x+1)/(4*th+1))-u) 

  } 

  dirFx<- function(x,th){ 

    return(4*th^2*exp(-2*th*x)*(2+th*x^2)/(4*th+1)) 

  } 

  th <- 1 

  t <- 1.2 

  b <- 3 

  n <- 20 

  itr <- 100 

  # esp <- 0.001 

  x <- matrix(c(rep(0,n),rep(0,n),runif(n)), ncol=3,nrow=n) 

  j=1 

  itr.count <- 0 

  for(i in 1:n){ 

    while(j) 

    { 

      itr.count <- itr.count+1 

      if(itr.count>=itr){ 

        break 

      } 
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      else{ 

        x[i,1] <- x[i,2] 

        x[i,2] <- x[i,1] - Fx(x = x[i,1], th = th, u = x[i,3])/dirFx(x = x[i,1],th = th) 

      } 

    } 

    itr.count<-0 

  } 

  x=x[,2] 

  Fmth<- function(n,x,mth){ 

    return((2*n/mth)-(4*n/(4*mth+1))-(2*sum(x))+sum(x^2/(2+mth*x^2))) 

  } 

  derFmth<- function(n,mth,x){ 

    return((-2*n/mth^2)+(16*n/(4*mth+1)^2)-sum(x^4/(2+mth*x^2)^2)) 

  } 

  itr2 <- 100 

  mth <- matrix(c(0.1,0.1), ncol=2,nrow=1) 

  for (i in 1:itr2) { 

    mth[1,1] <- mth[1,2] 

    mth[1,2] <- mth[1,1] - Fmth(n=n, x = x, mth = mth[1,1])/derFmth(n=n, x = x, mth = 

mth[1,1])   

  } 

  mth<-mth[1,2] 

  mth 

  rt0<- function(t,th){ 

    return(exp(-2*th*t)*(1+2*th*t*(th*t+1)/(4*th+1))) 

  } 

  rt0_v<-rt0(th = th, t = t) 
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  rt0_v 

  ht0<- function(t,th){ 

    return(8*(th^2)*(1+(th*t^2)/2)/((2*(th^2)*(t^2))+(2*th*t)+(4*th)+1)) 

  } 

  ht0_v<-ht0(th = th, t = t) 

  ht0_v 

  mrt0<- function(t,mth){ 

    return(exp(-2*mth*t)*(1+2*mth*t*(mth*t+1)/(4*mth+1))) 

  } 

  mrt0_v<-mrt0(mth = mth, t = t) 

  mrt0_v 

  mht0<- function(t,mth){ 

    return(8*(mth^2)*(1+(mth*t^2)/2)/((2*(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)) 

  } 

  mht0_v<-mht0(mth = mth, t = t) 

  mht0_v 

  mseth<- function(th,mth){ 

    return((mth-th)^2) 

  } 

  mseth_v <- mseth(mth = mth, th = th) 

  mseth_v 

  msert0<- function(rt0,mrt0){ 

    return((mrt0-rt0)^2) 

  } 

  msert0_v<-msert0(mrt0 = mrt0_v, rt0 = rt0_v) 

  msert0_v 
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  mseht0<- function(ht0,mht0){ 

    return((mht0-ht0)^2) 

  } 

  mseht0_v<-mseht0(mht0 = mht0_v, ht0 = ht0_v) 

  mseht0_v 

  sigma11=function(n,x,mth){ 

    return(1/(-(2/mth^2)+(16/(4*mth+1)^2)-((sum(x^4/(2+mth*x^2)^2))/n)+(1/(n*mth 

^2)))) 

  } 

   sigma11_v<-sigma11(mth = mth, n = n, x = x) 

  sigma11_v 

  mth 

  sigma12=function(n,x,mth){ 

    return(1/(-(2/mth^2)+(16/(4*mth+1)^2)-((sum(x^4/(2+mth*x^2)^2))/n))) 

  } 

  sigma12_v<-sigma12(mth = mth, n = n, x = x) 

  sigma12_v 

  mth 

  sigma13=function(n,x,mth){ 

    return(1/(-(2/mth^2)+(16/(4*mth+1)^2)-((sum(x^4/(2+mth*x^2)^2))/n)(1/(n*mth 

^2)))) 

  } 

  sigma13_v<-sigma13(mth = mth, n = n, x = x) 

  sigma13_v 

  mth 

  sigma14=function(n,x,mth,t){ 

    return(1/(-(2/mth^2)+(16*(n+1)/(n*(4*mth+1)^2))-((sum(x^4/(2+mth*x^2)^2))/n) 
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+(1/(n*mth^2))-8*(((mth^2)*(t^4))+(mth*(t^3))+(2*mth*(t^2))+(2*t)+2)/(n*((2* 

(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)^2))) 

  } 

  sigma14_v<-sigma14(mth = mth, n = n, x = x, t = t) 

  sigma14_v 

  mth 

  sigma15=function(n,x,mth,t){ 

    return(1/(-(2/mth^2)+(16*(n+2)/(n*(4*mth+1)^2))-((sum(x^4/(2+mth*x^2)^2))/n) 

+(1/(n*mth^2))-16*(((mth^2)*(t^4))+(mth*(t^3))+(2*mth*(t^2))+(2*t)+2)/(n* 

((2*(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)^2))) 

  } 

  sigma15_v<-sigma15(mth = mth, n = n, x = x, t = t) 

  sigma15_v 

  mth 

  sigma16=function(n,x,mth,t){ 

    return(1/(-(2*(n+1)/(n*(mth^2)))+(16/(4*mth+1)^2)-((sum(x^4/(2+mth*x^2)^2))/n) 

+(1/(n*mth^2))-((t^4)/(n*(2+mth*t^2)^2))+8*(((mth^2)*(t^4))+(mth*(t^3))+ 

(2*mth*(t^2))+(2*t)+2)/(n*((2*(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)^2))) 

  } 

  sigma16_v<-sigma16(mth = mth, n = n, x = x, t = t) 

  sigma16_v 

  mth 

  sigma17=function(n,x,mth,t){ 

    return(1/(-(2*(n+2)/(n*(mth^2)))+(16/(4*mth+1)^2)-((sum(x^4/(2+mth*x^2)^2))/n) 

+(1/(n*mth^2))-(2*(t^4)/(n*(2+mth*t^2)^2))+16*(((mth^2)*(t^4))+(mth*(t^3)) 

+(2*mth*(t^2))+(2*t)+2)/(n*((2*(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)^2))) 

  } 

  sigma17_v<-sigma17(mth = mth, n = n, x = x, t = t) 
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  sigma17_v 

  mth 

  theta11=function(sigma11,sigma12,mth){ 

    return((sqrt(sigma12/sigma11))*mth) 

  } 

  theta11_v<-theta11(sigma11 = sigma11_v, sigma12 = sigma12_v, mth = mth) 

  theta11_v 

  theta12=function(sigma11,sigma13,mth){ 

    return((sqrt(sigma13/sigma11))*mth^2) 

  } 

  theta12_v<-theta12(sigma11 = sigma11_v, sigma13 = sigma13_v, mth = mth) 

  theta12_v 

  msetheta1<- function(theta11,th){ 

    return((theta11-th)^2) 

  } 

  msetheta1_v <- msetheta1(theta11 = theta11_v, th = th) 

  msetheta1_v 

  risktheta1<- function(theta11,theta12){ 

    return((theta12-(theta11^2))) 

  } 

  risktheta1_v <- risktheta1(theta11 = theta11_v, theta12 = theta12_v) 

  risktheta1_v 

  rel11=function(sigma11,sigma14,mrt0){ 

    return((sqrt(sigma14/sigma11))*mrt0) 

  } 

  rel11_v<-rel11(sigma11 = sigma11_v, sigma14 = sigma14_v, mrt0 = mrt0_v) 

  rel11_v 
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  rel12=function(sigma11,sigma15,mrt0){ 

    return((sqrt(sigma15/sigma11))*mrt0^2) 

  } 

  rel12_v<-rel12(sigma11 = sigma11_v, sigma15 = sigma15_v, mrt0 = mrt0_v) 

  rel12_v 

  mserel1<- function(rel11,rt0){ 

    return((rel11-rt0)^2) 

  } 

  mserel1_v <- mserel1(rel11 = rel11_v, rt0 = rt0_v) 

  mserel1_v 

  riskrel1<- function(rel11,rel12){ 

    return((rel12-(rel11^2))) 

  } 

  riskrel1_v <- riskrel1(rel11 = rel11_v, rel12 = rel12_v) 

  riskrel1_v 

  haz11=function(sigma11,sigma16,mht0){ 

    return((sqrt(sigma16/sigma11))*mht0) 

  } 

  haz11_v<-haz11(sigma11 = sigma11_v, sigma16 = sigma16_v, mht0 = mht0_v) 

  haz11_v 

  haz12=function(sigma11,sigma17,mht0){ 

    return((sqrt(sigma17/sigma11))*mht0^2) 

  } 

  haz12_v<-haz12(sigma11 = sigma11_v, sigma17 = sigma17_v, mht0 = mht0_v) 

  haz12_v 

  msehaz1<- function(haz11,ht0){ 

    return((haz11-ht0)^2) 
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  } 

  msehaz1_v <- msehaz1(haz11 = haz11_v, ht0 = ht0_v) 

  msehaz1_v 

  riskhaz1<- function(haz11,haz12){ 

    return((haz12-(haz11^2))) 

  } 

  riskhaz1_v <- riskhaz1(haz11 = haz11_v, haz12 = haz12_v) 

  riskhaz1_v 

  sigma21=function(n,x,b,mth){ 

    return(1/(-(2/mth^2)+((1-b)/(n*(mth^2)))+(16/(4*mth+1)^2)-((sum(x^4/(2+ 

mth*x^2)^2))/n))) 

  } 

  sigma21_v<-sigma21(mth = mth, n = n, b = b, x = x) 

  sigma21_v 

  mth 

  sigma22=function(n,x,mth,b){ 

    return(1/(-(2/mth^2)-(b/(n*(mth^2)))+(16/(4*mth+1)^2)-((sum(x^4/(2+mth*x^2 

)^2))/n))) 

  } 

  sigma22_v<-sigma22(mth = mth, b = b, n = n, x = x) 

  sigma22_v 

  mth 

  sigma23=function(n,x,b,mth){ 

    return(1/(-(2/mth^2)-((1+b)/(n*(mth^2)))+(16/(4*mth+1)^2)-((sum(x^4/(2+ 

mth*x^2)^2))/n))) 

  } 

  sigma23_v<-sigma23(mth = mth, n = n, b = b, x = x) 

  sigma23_v 



Appendix............ 

  mth 

  sigma24=function(n,x,mth,b,t){ 

    return(1/(-(2/mth^2)+((1-b)/(n*(mth^2)))+(16*(n+1)/(n*(4*mth+1)^2))-

((sum(x^4/(2+mth*x^2)^2))/n)-8*(((mth^2)*(t^4))+(mth*(t^3)) 

+(2*mth*(t^2))+(2*t)+2)/(n*((2*(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)^2))) 

  } 

  sigma24_v<-sigma24(mth = mth, n = n, b = b, x = x, t = t) 

  sigma24_v 

  mth 

  sigma25=function(n,x,mth,b,t){ 

    return(1/(-(2/mth^2)+((1-b)/(n*(mth^2)))+(16*(n+2)/(n*(4*mth+1)^2))-

((sum(x^4/(2+mth*x^2)^2))/n)-16*(((mth^2)*(t^4))+(mth*(t^3))+(2*mth*(t^2)) 

+(2*t)+2)/(n*((2*(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)^2))) 

  } 

  sigma25_v<-sigma25(mth = mth, n = n, b = b, x = x, t = t) 

  sigma25_v 

  mth 

  sigma26=function(n,x,mth,t, b = b){ 

    return(1/(-(2*(n+1)/(n*(mth^2)))+((1-b)/(n*(mth^2)))+(16/(4*mth+1)^2)-

((sum(x^4/(2+mth*x^2)^2))/n)-((t^4)/(n*(2+mth*t^2)^2))+8*(((mth^2)*(t^4)) 

+(mth*(t^3))+(2*mth*(t^2))+(2*t)+2)/(n*((2*(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)^

2))) 

  } 

  sigma26_v<-sigma26(mth = mth, n = n, b = b, x = x, t = t) 

  sigma26_v 

  mth 

  sigma27=function(n,x,mth,b,t){ 

    return(1/(-(2*(n+2)/(n*(mth^2)))+((1-b)/(n*(mth^2)))+(16/(4*mth+1)^2)-

((sum(x^4/(2+mth*x^2)^2))/n)-(2*(t^4)/(n*(2+mth*t^2)^2))+16*(((mth^2)*(t^4)) 
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+(mth*(t^3))+(2*mth*(t^2))+(2*t)+2)/(n*((2*(mth^2)*(t^2))+(2*mth*t)+(4*mth)+1)^

2))) 

  } 

  sigma27_v<-sigma27(mth = mth, n = n, b = b, x = x, t = t) 

  sigma27_v 

  mth 

  theta21=function(sigma21,sigma22,mth){ 

    return((sqrt(sigma22/sigma21))*mth) 

  } 

  theta21_v<-theta21(sigma21 = sigma21_v, sigma22 = sigma22_v, mth = mth) 

  theta21_v 

  theta22=function(sigma21,sigma23,mth){ 

    return((sqrt(sigma23/sigma21))*mth^2) 

  } 

  theta22_v<-theta22(sigma21 = sigma21_v, sigma23 = sigma23_v, mth = mth) 

  theta22_v 

  msetheta2<- function(theta21,th){ 

    return((theta21-th)^2) 

  } 

  msetheta2_v <- msetheta2(theta21 = theta21_v, th = th) 

  msetheta2_v 

  risktheta2<- function(theta21,theta22){ 

    return((theta22-(theta21^2))) 

  } 

  risktheta2_v <- risktheta2(theta21 = theta21_v, theta22 = theta22_v) 

  risktheta2_v 

  rel21=function(sigma21,sigma24,mrt0){ 
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    return((sqrt(sigma24/sigma21))*mrt0) 

  } 

  rel21_v<-rel21(sigma21 = sigma21_v, sigma24 = sigma24_v, mrt0 = mrt0_v) 

  rel21_v 

  rel22=function(sigma21,sigma25,mrt0){ 

    return((sqrt(sigma25/sigma21))*mrt0^2) 

  } 

  rel22_v<-rel22(sigma21 = sigma21_v, sigma25 = sigma25_v, mrt0 = mrt0_v) 

  rel22_v 

  mserel2<- function(rel21,rt0){ 

    return((rel21-rt0)^2) 

  } 

  mserel2_v <- mserel2(rel21 = rel21_v, rt0 = rt0_v) 

  mserel2_v 

  riskrel2<- function(rel21,rel22){ 

    return((rel22-(rel21^2))) 

  } 

  riskrel2_v <- riskrel2(rel21 = rel21_v, rel22 = rel22_v) 

  riskrel2_v 

   

   

  haz21=function(sigma21,sigma26,mht0){ 

    return((sqrt(sigma26/sigma21))*mht0) 

  } 

  haz21_v<-haz21(sigma21 = sigma21_v, sigma26 = sigma26_v, mht0 = mht0_v) 

  haz21_v 

  haz22=function(sigma21,sigma27,mht0){ 
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    return((sqrt(sigma27/sigma21))*mht0^2) 

  } 

  haz22_v<-haz22(sigma21 = sigma21_v, sigma27 = sigma27_v, mht0 = mht0_v) 

  haz22_v 

  msehaz2<- function(haz21,ht0){ 

    return((haz21-ht0)^2) 

  } 

  msehaz2_v <- msehaz2(haz21 = haz21_v, ht0 = ht0_v) 

  msehaz2_v 

  riskhaz2<- function(haz21,haz22){ 

    return((haz22-(haz21^2))) 

  } 

  riskhaz2_v <- riskhaz2(haz21 = haz21_v, haz22 = haz22_v) 

  riskhaz2_v 

c(mth,rt0_v,ht0_v,mseth_v,mrt0_v,mht0_v,msert0_v,mseht0_v,theta11_v,msetheta1_v,

risktheta1_v,rel11_v,mserel1_v,riskrel1_v,haz11_v,msehaz1_v,riskhaz1_v,theta21_v,m

setheta2_v,risktheta2_v,rel21_v,mserel2_v,riskrel2_v,haz21_v,msehaz2_v,riskhaz2_v) 

} 

th=1 

valu=replicate(10000,priya(20));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(40));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(60));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(80));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

########################## 
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th=1.5 

valu=replicate(10000,priya(20));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(40));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(60));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(80));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

########################## 

th=2 

valu=replicate(10000,priya(20));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(40));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(60));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 

valu=replicate(10000,priya(80));asd=rowMeans(valu); 

write.table(t(asd),"est2.csv",sep=",",append=T,row.names=F,col.names=F) 
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ABSTRACT 

In the present study, a new lifetime distribution, named weighted xgamma distribution has 

been proposed and its distributional properties are investigated. The maximum likelihood 

estimates of the parameter θ have been obtained by means of Newton-Raphson method. 

The expressions for various distributional properties of weighted xgamma distribution 

including its moment generating function (mgf), cumulant generating function (cgf), 

characteristic function, moments etc. have been derived. The Bayes estimators of its 

parameter (θ), reliability function R(t) and hazard rate function h(t) are obtained using 

Tierney and Kadane method of approximation under two priors namely uniform and 

gamma. The results obtained have been illustrated by means of several randomly generated 

data sets from the proposed model, each sample replicated 10,000 times The Bayes Risks 

have been evaluated by using Squared Error Loss Function (SELF). A real life data set has 

also been used to establish its utility. It is concluded that gamma prior is superior to 

uniform prior for finding Bayes estimates of the parameter θ, reliability function R(t) and 

hazard rate function h(t) of the proposed weighted xgamma distribution. 

 

 

(Vinod Kumar)                                                                                     (Priya Agrawal) 

   Advisor                                                                                                   Authoress 

JINDAL'S
Stamp

JINDAL'S
Stamp



नाभ   : प्रिमा अग्रवार      ऩरयचमाांक  : ४९३९२ 

सत्र एवां िवेश वषष : िथभ, २०१५-२०१६  उऩाधध  : स्नातकोत्तय 

भुख्म प्रवषम  : साांख्ख्मकी       प्रवबाग  : गणित, साांख्ख्मकी एवां सांगिक प्रवऻान 

गौि प्रवषम  : गणित 

शोध शीषषक  : बारयत एक्सगाभा फांटन भें फेज आकरन 
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साराांश 

 वतषभान अध्ममन भें एक नमा बारयत एक्सगाभा नाभक जीवनकार फांटन िस्ताप्रवत ककमा गमा 

है व इस फांटन की प्रवशषेताओां का अन्वेषि ककमा गमा है। न्मूटन-याफ्सन प्रवधध के द्वाया िाचर () के 

अधधकतभ सम्बाप्रवत आकरक ऻात ककमे गमे हैं। बारयत एक्सगाभा फांटन की प्रवभबन्न प्रवशषेताओां जैसे 

आघूिष जनक परन, क्मूभरेंट जनक परन, अभबरऺि परन, आघूिष इत्मादद की व्मुत्ऩख्त्त की गमी 

है। इसके िाचर (), प्रवश्वसनीमता परन (R(t)) व हैजाडष दय परन (h(t)) के फेज आकरक दो िामयों 

के तहत दटमनी व कडान ेप्रवधध द्वाया ऻात ककमे गमे हैं। िाप्त ऩरयिाभों को िस्ताप्रवत िारूऩ स ेजननत 

अनेक मादृख्छिक िनतदशों ख्जनभें स े ित्मेक को १०००० फाय दोहयामा गमा है, के उदाहयि द्वाया 

सभझामा गमा है। वगष त्रदुट हानन परन (SELF) का उऩमोग कय फेज जोणिभ ऻात ककमे गमे हैं। इस 

िारूऩ की उऩमोधगता स्थाप्रऩत कयन े हेत ुएक वास्तप्रवक आांकडा सभुछचम का उऩमोग ककमा गमा है। 

अन्तत् ननष्कषष ननकारा गमा है कक िस्ताप्रवत एक्सगाभा फांटन के िाचर (), प्रवश्वसनीमता परन 

(R(t)) व हैजाडष दय परन (h(t)) के फेज आकरन हेत ुगाभा िामय मूनीपाभष िामय की तुरना भें शे्रष्ठ 

है।  
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