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CHAPTER-1 

INTRODUCTION 

 

 Stripe (yellow) rust of wheat, caused by Puccinia striiformis f. sp. tritici is one of 

the most important disease occurring in most wheat-growing areas of the world with cool 

and moist weather conditions during the growing season (Tomar et al., 2014; Chai et al., 

2015). This disease has been most widely distributed in cooler wheat growing regions 

comprising more than 60 countries in the world and has caused severe damage in Central 

Eastern and Western Asia, Europe, Uganda, Ethopia, Kenya, Australia, New Zealand, 

North and South America, Mexico and Chile (Wellings, 2011; Chen, 2020). Early 

infection of the disease on susceptible varieties has resulted in yield losses of up to 100 

per cent, whereas it may vary from 10-70 per cent during the epidemics (Chen, 2005; Ali 

et al., 2017). Stripe rust poses a major threat to the farming communities throughout the 

world because majority of winter wheat cultivars are either susceptible or possess low 

level of resistance against the disease (Sharma et al., 2016). Wheat infection at the 

seedling stage usually results in reduced root growth, plant height, dry matter production, 

size and number of flowering spikes and shriveled grains (Wellings, 2011).  

In India, during last decades, stripe rust has become more severe and has posed 

serious menace in the wheat production areas particularly that of northern west plains 

zone (NWPZ), northern and southern hills zones (NHZ & SHZ) (Prashar et al., 2007; 

Saharan et al., 2013; Bhardwaj et al., 2019), covering more than 12.0 million ha, 

annually. Stripe rust has appeared in severe form in plain areas in Jammu and Kashmir, 

foot hills of Punjab and Himachal Pradesh, parts of Haryana, Tarai region of Uttarakhand 

(Sharma and Saharan, 2011). During 2007-08, epidemics of stripe rust in northern plains 

and hills zones was responsible for 25 per cent yield losses with monetary loss of rupees 

ten thousand million, because the commonly grown mega-cultivar PBW343 succumbed 

to this disease, signifying the importance of the disease in food security of the nation 

(Jindal et al., 2012). 
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 Epidemics of the stripe rust mainly depend on geographic location, cultivar 

response, prevailing virulent pathotypes and environmental conditions in the area 

(Zadoks 1985; Jindal et al., 2012). Weather plays a major role in the disease initiation, 

multiplication and dispersal of the P. striiformis f. sp. tritici. Severe epidemics have 

usually resulted due to quick and successive five to six disease cycles in a season, during 

conducive environmental conditions. Under Indian conditions, in the absence of alternate 

host, the primary inoculum of P. striiformis f. sp. tritici survives in the form of 

urediospores, on volunteer plants, summer wheat crop or some other grasses/plants 

grown on the Himalayan hills and subsequently causes infection to the wheat crop of the 

northern west plains zone and Indo-Gangetic plains every year.  

 Change in climate resulting in increased temperature which has acute 

consequences on plant diseases through exotic incursions of plant pathogens, 

modification of host phenology, change in geographical distribution of plant pathogens, 

out-break of aggressive and virulent races, increased over summering and overwintering 

of plant pathogens, faster dissemination, increased severities, rate of invasion, 

adaptations, and growth and reproduction of plant pathogens (Luck et al., 2011). On an 

average twenty per cent of yield losses have been reported due to the plant diseases from 

sowing to post harvest stages which aggravate more (9-16%), due to climate change 

driven impacts in the important crops such as maize, rice, wheat, barley, potato, soybean, 

cotton and coffee (Oerke et al., 1994). 

Weather based forecasting models are known to reduce the cost of production by 

optimizing the adequate planning, proper timing and frequency of fungicide applications, 

which ensures the sustainable production and environmental safety. Quantitative 

relationship between disease severity and prevailing environmental conditions, temporal 

distribution and load of inoculums help in predicting the epidemics. Further, short- and 

long-term changes in prevailing climatic conditions significantly influence the growth 

and development of rust pathogens (biotropic) which ultimately increase in number of 

reproductive cycles. Quantification of air-borne inoculum using a weather-based 

predictive model can be useful for interpreting disease severity models and avoiding 

over-estimates of disease risk. Keeping in view the importance of the crop, losses caused 
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to it by stripe rust and scanty literature available on the various aspect of disease, 

especially with reference to Jammu region, it was considered imperative to study the 

disease with the following objectives: 

1. Prediction of Puccinia striiformis f. sp. tritici under future climate change 

scenario. 

2. Development of weather forecasting model for stripe rust of wheat. 

3. To study the quantification and temporal distribution of Puccinia striiformis f. sp. 

tritici inoculum. 
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CHAPTER-2 

REVIEW OF LITERATURE 

 

History 

 Although the existence of stripe rust or yellow rust has been there long before 

human beings started to grow wheat as a staple food, yet the first report on the disease 

was documented by Gadd in Europe in 1777. In 1794, the epidemic of the stripe rust 

appeared on rye in Sweden (Singh et al., 2002). Severe epidemics of stripe rust all around 

the world with immense limiting potential of wheat yield, marked with profound 

economic importance makes it a global disease (Roelfs et al., 1992). The first record of 

yellow rust in the USA was in 1915, but there were no potentially serious outbreaks until 

1960s (Line, 2002). Yellow rust first appeared in Eastern Australia in 1979 and then it 

spread to New Zealand in 1980 (Wellings et al., 1987). Yellow rust was reported in South 

Africa in 1996 and after eight years in Western Australia, a new isolate of the pathogen 

suggested that it may have been derived from East Africa (Boyd, 2005). 

 Stripe rust has been more important in areas with cool and wet environmental 

conditions therefore, it occurs regularly in Northern Europe, the Mediterranean region, 

Middle East, Western United States, Australia, East African highlands, China, the Indian 

subcontinent, New Zealand and South America (Danial, 1994; Mamluk et al., 1996). 

However, recent disease outbreaks, in countries closer to the equator, suggested a new 

level of adaptation of the pathogen (Khanfri et al., 2018).  

 Stripe rust is widely distributed across all continents except Antarctica. Its 

epidemics have become more frequent in the USA (particularly the Pacific Northwest 

region of North America), South America, North Africa (Morocco, Algeria and Tunisia), 

East Africa (Ethiopia and Kenya), East Asia (Northwest and Southwest China), South 

Asia (India, Pakistan and Nepal), Oceania (Australia and New Zealand), the Nile Valley 

and Red Sea (Egypt and Yemen), West Asia (Lebanon, Syria, Turkey, Iran, Iraq and 

Afghanistan), Central Asia (Kazakistan, Uzbekistan, Tajikistan and Turkmenistan), 

Caucasus (Georgia, Armenia and Azerbaijan) and Europe (UK, Northern and Southern 
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France, Netherlands, Northern Germany, Denmark, Spain and Sweden) (Solh et al., 

2012; Sanders, 2018; Waqar et al., 2018). Stripe rust has been reported to be more 

prevalent in tropical areas of higher altitudes of North Africa, Mexico, Himalayan 

foothills of India and Pakistan, due to the favourable environmental conditions and 

cultivation of mega-varieties (McIntosh, 1980). 

 Transcaucasia is considered as the center of origin for Puccinia striiformis f. sp. 

tritici (Hassebrauk, 1965; Stubbs, 1985). Recent studies of P. striiformis f. sp. tritici 

populations reported highest levels of genetic diversity and recombinant population 

structure in Himalayan and near-Himalayan regions which demonstrated the center of 

origin and diversity for P. striiformis f. sp. tritici  (Ali et al., 2014; Thach et al., 2016). 

 India has witnessed several rust epidemics in past several years resulting in heavy 

yield losses (Barclay, 1892). Mehta (1950) estimated the loss of about  200 million due 

to rust of the wheat every year. Nayar et al. (1997) reported that both leaf rust and stripe 

rust occurred each year from 1967 to 1974. Stripe rust is destructive and important in the 

northern areas of India specially in Punjab, Haryana, Western Uttar Pradesh and Jammu 

& Kashmir, where frequent epidemics occurred since 1982 (Nagrajan et al., 1984). 

Sporadic high incidence of stripe rust was recorded in some parts of Punjab and in north-

western areas (Gangwar et al., 2013, 2017).  

Losses 

 Stripe rust of wheat is the most important disease of wheat worldwide and if the 

disease appeared very early in the growing season, plants usually remain stunted and 

weakened, causing severe yield losses up to 70 per cent (Khanfri et al., 2018). Yield 

losses caused by stripe rust depends on several factors such as cultivar susceptibility, 

infection time, rate of disease development, duration of the disease and weather 

conditions (Chen, 2005). About 90-100 per cent grain yield losses was reported on the 

occurrence of infection on susceptible cultivars during an early growth stage of the crop 

which remained for a long time under favourable conditions (Afzal et al., 2007). Losses 

of up to 20 and 75 per cent in wheat were reported in the USA (Doling and Doodson, 

1968; Roelfs, 1978). Epidemics of wheat stripe rust occurred in North Africa and the 

http://en.wikipedia.org/wiki/File:Indian_Rupee_symbol.svg
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Middle East in the 1970s (Saari and Prescott, 1985). In Asia, about 46 per cent yield 

losses were caused due to the epidemics of stripe rust (Singh et al., 2004). Epidemics in 

China (Wan et al., 2004), Pakistan and Iran (Bimb and Johnson, 1997) caused serious 

yield losses across different wheat growing seasons. Khan and Mumtaz (2004) reported 

yellow rust epidemic during 1995 on wheat varieties, Pak 81 and Pirsabak 85 and on 

Inquilab 91 during 2003 in Pakistan. Afzal et al. (2007) reported the yield losses of 5.77, 

6.63 and 14.90 per cent caused by stripe rust on Inqlab-91, Wafaq-2001 and Bakhtawar, 

respectively, in Pakistan. Syria and Turkey were most affected countries due to the 

disease and half of their wheat harvest was lost in 2010, followed by Ethiopia (45%), 

Morocco and Uzbekistan (35%) (Yahyaoui and Rajaram, 2012). 

 Losses of  2 billion were reported during 1997 and 1998 in Pakistan due to 

progressive increase of virulent pathotypes of P. striiformis f. sp. tritici (Hussain et al., 

2004). Losses of nearly $2.25 million were estimated in the 1998 in South Africa 

(Pretorius, 2004). Ahmed et al. (1991) reported $8 million losses in three districts of 

Baluchistan. In China, a widespread stripe rust epidemic affected about 6.6 million 

hectares of wheat in 11 provinces during 2001-2002, causing yield loss of 13 million 

tonnes (Wan et al., 2004). Substantial losses were reported between 1999 and 2000 in 

Central Asia with yield losses from 20 to 40 per cent (Morgounov et al., 2004). In 

Australia, $40 million of fungicides, in 2003, were used to manage the disease (Wellings 

and Kandel, 2004). The most severe yield losses of 9 million bushels of wheat were 

recorded in at least 20 states of USA in 2000 (Markell and Milus, 2008). Several yellow 

rust epidemics have occurred in Turkey in the last decades resulting in more than 10-30 

per cent crop losses with an estimated grain loss of 1-2 million tonnes (Aktas and 

Zencirci, 2016). 

 Wheat rust epidemics in India have significant impact on the wheat production 

(Nagarajan and Joshi, 1975). Rust epidemics have occurred during 1843 in Delhi and in 

1884 and 1895 at Allahabad, Banaras and Jhansi. Later on, in 1905 rust epidemic was 

reported in Punjab and sub-mountainous regions of Gorakhpur (Gupta et al., 2017a). 

India has witnessed significant losses of grain yield, generally in northwestern regions, 

northern foothills and adjacent plains and in the Nilgiri and Pulney hills in the south, due 

http://en.wikipedia.org/wiki/File:Indian_Rupee_symbol.svg


7 

to the cultivation of susceptible cultivars (Joshi, 1976) which are generally attributed to 

several factors, such as early appearance of the disease, congenial environmental 

conditions, inoculum load and the grown cultivars (Srivastava et al., 1984). Wide spread 

occurrence of stripe rust was observed during 2008-09 in sub-mountainous districts of 

Punjab on the widely cultivated wheat variety PBW-343 with disease severity of 60S-

80S, resulting in drastic reduction in yield (Jindal et al., 2012). 

Present status 

 Puccinia striiformis f. sp. tritici has remained a noteworthy threat in most of the 

global wheat growing areas, with possibility to impose consistent regional crop damages. 

It has been an important biotic constraint to winter bread wheat production in Central 

Asia over the last 15 years (Nazari et al., 2008; Ziyaev et al., 2011; Sharma et al., 2013). 

Morgounov et al. (2012) reported substantial increases in the severity of stripe rust 

between 2001 and 2010 in Central and West Asia which was responsible for the 

epidemics in different parts of Central Asia during 2009-2014 (Ziyaev et al., 2011; 

Sharma et al., 2013, 2014). 

 In 2014, the Central Research Institute for Field Crops (CRIFC) in Ankara and the 

Regional Cereal Rust Research Center (RCRRC) in Izmir reported a new P. striiformis f. 

sp. tritici race, “Warrior” in Turkey which was previously identified in the United 

Kingdom in 2011. Turkish commercial cultivars known to be resistant to the previously 

characterized races of P. striiformis f. sp. tritici  succumbed to this new race (Khanfri et 

al., 2018). The “Warrior” was present in high frequencies in most European countries and 

North Africa (Mert et al., 2016) and also in Morocco in 2013 and Algeria in 2014, with 

relatively higher genetic diversity than other previously documented races of P. 

striiformis f. sp. tritici  (Hovmoller et al., 2016).  

Life Cycle 

 Puccinia striiformis f. sp. tritici  belongs to the family Pucciniaceae within the 

order Pucciniales (Hibbett et al., 2007), obligate biotrophic fungi (Voegele et al., 2009) 

highly diverse with respect to host preference and number of spore stages within the life 

cycle (Vander et al., 2007; Liu and Hambleton, 2010). Life cycle of P. striiformis f. sp. 
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tritici  has remained a mystery for more than a hundred years, it requires two 

taxonomically unrelated hosts and it alternates between a graminaceous host for asexual 

reproduction and barberry where sexual reproduction may occur (Jin et al., 2010; Berlin 

et al., 2017) and includes five types of different spores (Schwessinger, 2017). 

Urediniospores and teliospores of the fungus are dikaryotic, whereas, teliospores produce 

haploid basidiospores (Chen, 2005). The diakaryotic phase of the life cycle is confined to 

the primary host (wheat), upon which urediniospores, teliospores and basidiospores are 

produced. As the nutrient supply in the infected tissues declines, the telial stage is 

initiated. Teliospores overwinter on residual senesced tissues and germinate on the 

following spring to produce four haploid basidiospores. The fungus does not have any 

known alternate hosts for the basidiospores to infect, and thus, it does not have any 

known pycnial and aecial stages (Stubbs, 1985). However, recently, pycnial and aecial 

spore stages of the fungus has been identified on Berberis spp. (B. chinensis, B. holstii, B. 

koreana and B. vulgaris), that serve as alternate hosts for the P. striiformis f. sp. tritici 

(Jin et al., 2010). 

Infection process 

 An accurate description of how stripe rust fungus infects its hosts has been given 

by Cartwright and Russell (1981) by using the fluorescence microscopy. They observed 

the entering of urediniospores of the P. striiformis f. sp. tritici in the leaf through stomata. 

Urediniospores are mainly responsible for the initiation and spread of the disease (Chen, 

2005; Bux et al., 2012). After urediniospores adhere to the surface of wheat leaf with 

optimum temperature and humidity condition, germ tube is produced which grows 

towards stoma initiating primary infection in the stomatal cavity (Ma and Shang, 2009; 

Sorensen, 2012). After the germ tube produces an appressorium, the plant is invaded 

through the stomata and the fungus differentiates a series of infection structures, the 

substomatal vesicle, primary infection hypha, haustorial mother cell, and finally a 

haustorium. In the secondary infection, excessive network of mycelium is formed in the 

mesophyll layer within the mesophyll tissue and form nutrient-absorbing haustoria, 

which are localized between the host cell wall and the plasma membrane. Taking up 

nutrients from its host through haustoria, the fungus forms sporogenic tissue, the 
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uredinium, near the surface of the leaf and produces urediniospores, completing the 

asexual life cycle (Voegele et al., 2001; Kang et al., 2002; Wang et al., 2010; Zhang et 

al., 2012; Jiao et al., 2017). Approximately one week after the infection, chlorotic spots 

appear at the leaf surface, sporulation starts and the distinctive yellow streaks appear on 

leaf (Chen, 2005; Sorensen, 2012). Optimum temperature for germination of the spores is 

10-12°C. High temperature inhibits sporulation or forces the fungus to enter into 

dormancy. Under optimum conditions, the time between inoculation and sporulation is 

12-13 days (Line, 2002). 

Symptoms 

 All growth stages of the wheat crop are susceptible to the infection by P. 

striiformis f. sp. tritici (Line, 2002). Initial symptoms of stripe rust appear about one 

week after infection, as small, yellow spots or flecks on the leaf sheaths. These spots 

develop into long and narrow stripes on leaf sheaths, glumes and awns. Mature pustule 

break open and release yellow-orange masses of urediniospores (Khanfri et al., 2018). 

The infected tissues may become brown and dry when plants begin to senescence or 

become stressed. These spores have the ability of rapid germination in presence of 

moisture along with optimum temperature of 7 to 12°C (Waqar et al., 2018). The 

pathogen reduces plant vigour by confiscating plant nutrients and water and results in 

desiccation of leaves. Severe early infection can result in stunted plant (Line, 2002; Chen, 

2005; Singh et al., 2017). With an increase in temperature or through the late growth 

phases of the host, urediniospore production is usually followed by two-celled, dark 

brown, thick walled black teliospores which infect barberry (Berberis spp.) leaves and 

produce pycnia on the upper surface and aecia on the lower surface. Oregon grape 

(Mahonia aquifolium), also act as alternate host for P. striiformis f. sp. tritici  in which 

pycnia and aecia are produced on the upper and lower side of leaves, respectively (Wang 

and Chen, 2013; Khanfri et al., 2018). 

Weather Conditions for disease development 

 With the presence of pathogen inoculum and susceptible host, the development of 

stripe rust depends on weather conditions such as moisture, temperature and wind (Chen, 
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2005). Spore germination, infection, dispersal and survival of P. striiformis f. sp. tritici, 

are directly affected by moisture. Continuous moisture for three hours is required for 

urediniospores germination and infection (Rapilly, 1979). A relative humidity near to 

saturation before inoculation increases rates of spore germination considerably (Line, 

2002). Precipitation, especially light rains provide encouraging conditions for infection. 

However, high moisture affects viability of spores which lack the ability to cause and 

spread of the disease. Individual or cluster dispersal of urediniospores also depends on 

the relative humidity (Chen, 2005). 

 Temperature also influences the germination, infection and survival of spores. 

Temperature range of 2.8-21.7°C is capable of P. striiformis f. sp. tritici  germination, 

however, 10-12°C is suitable for their faster germination (Line, 2002), although the 

minimum and maximum temperature requirements for the growth of the pathogen are 3 

and 20oC, respectively (Sharp, 1965; Tollenaar and Houston, 1966; Stubbs, 1967; Roelfs 

et al., 1992; Line, 2002). The latent period varies among isolates and can be 11 days at 

optimum conditions and 180 days at near freezing (Sharp and Hehn, 1963; Roelfs et al., 

1992; Bux et al., 2012). Lower temperatures adversely affect survival of the pathogen 

and further development could be stopped below at -10°C (Chen, 2005). Temperatures 

above 30°C limit pathogen development and survival. Infections are more likely to occur 

at night, where both dew formation and cool temperatures occur together (Sorensen, 

2012; Khanfri et al., 2018). 

Quantification and distribution of inoculum 

 Molecular methods, especially the polymerase chain reaction (PCR), have been 

developed in the last decades for specific, sensitive and rapid detection of several plant 

pathogenic fungi such as Phytophthora nicotianae (Lacourt and Duncan, 1997; Grote et 

al., 2002; Ippolito et al., 2002), Phytophthora infestans (Judelson and Tooley, 2000), 

Phytophthora parasitica (Goodwin et al., 1990), Fusarium solani (Li and Hartman, 

2003), Phakopsora pachyrhizi (Frederick et al., 2002), Colletotrichum gloeosporioides 

(Mills et al., 1992) and Leptosphaeria korrae (Tisserat et al., 1991). 
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 Puccinia striiformis f. sp. tritici causes stripe rust of wheat, a devastating disease 

with worldwide distribution (Zadoks, 1961; O’Brien et al., 1980; Li and Zeng, 2002; 

Line, 2002; Viljanen-Rollinson et al., 2002). At the end of the growing season, large 

numbers of urediniospores can be produced and blown away from contaminated fields. 

Although most urediniospores are deposited near their source (Roelfs and Martell, 1984), 

some can be dispersed over considerable distances by the wind (Hirst and Hurst, 1967). 

P. striiformis f. sp. tritici  being an obligate biotroph, is difficult to culture on artificial 

media, therefore, a PCR-based technique would be very useful for its detection in host 

tissues (Aggarwal et al., 2018). Molecular methods, especially real-time PCR with 

species-specific primers, offer several advantages over microscopic spore counting, 

(West et al., 2008; West and Kimber, 2015). 

 Dispersal of airborne inoculum from the source and after deposition on a crop is a 

complex process which is influenced by wind direction and turbulence (McCartney and 

Fitt, 1998; Aylor, 1999, 2003; McCartney and West, 2007). Recent developments in 

molecular biology, however, have made it easier to estimate spore concentration above 

the canopy of wheat fields which could help in predicting epidemics more accurately, 

where disease severity is influenced by timing or amount of inoculum (West et al., 2008). 

Spore traps, combined with inoculum detection and real-time PCR assays, are being 

increasingly used to quantify the airborne inoculum of plant pathogens and to improve 

precision in disease risk management and fungicide applications (Luo et al., 2007; 

Rogers et al., 2009; Dedeurwaerder et al., 2011; Duvivier et al., 2013, 2016; Wieczorek 

and Jørgensen, 2013; Almquist and Wallenhammar, 2014; Chandelier et al., 2014) 

 Pan et al. (2010) established a real-time polymerase chain reaction (PCR) assay to 

quantify the inoculum level of P. striiformis f. sp. tritici in leaves by quantifying the 

latent infection levels and estimating potential disease intensity in the field. By targeting 

latent infection foci with fungicide applications, the initial inoculum could be effectively 

lessened, reducing the build-up of rust epidemic (Yan et al., 2012).  

 Air-sampling devices, such as the Burkard 7-day volumetric trap (Hirst-type) 

have been routinely used to collect airborne particles such as pollen and fungal spores. 

The particles adhere onto a wax coating on a transparent plastic film attached to a 
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supporting surface. Traditionally, the wax-coated film is mounted as a microscope slide 

and particles of interest attached identified and counted (Sutton and Jones, 1979; Xu et 

al., 1995; Trapero-Casas et al., 1996; Blanco et al., 2004; Khan et al., 2009; Cao et al., 

2012). These air samplers, combined with inoculums detection using PCR assays or 

microscopy observations, have been used to study the density of airborne inoculums of 

various plant pathogens (Calderon et al., 2002; Holb et al., 2004; Luo et al., 2007; 

Rogers et al., 2009; Fountaine et al., 2010). The accuracy and sensitivity of the real-time 

PCR method compared with that of microscopy observation to investigate the 

development of epidemics in crops had already been demonstrated by Fraaije et al. 

(2005); Luo et al. (2007); Rogers et al. (2009) and Fountaine et al. (2010). Fraaije et al. 

(2005) used a specific real-time PCR assay to study the role of ascospores in the spread 

of quinine-outside inhibitors (QoI) resistance strains in Mycosphaerella graminicola. 

They observed that the frequency of R-allele increased from 35-80 per cent in first spray 

and up to 95 per cent in second spray in QoI treated fields. 

 Schweigkofler et al. (2004) studied Real-time PCR to detect the presence of 

Fusarium circinatum inoculum in the air causing pine pitch canker in Pinus radiata 

(Monterey pine). They observed that the liners correlation between threshold cycle (Ct) 

and DNA concentration from 101 to 104 pg and 102 to 105 spores/100 µl, and the lower 

reliable detection threshold was 10 pg or 102 spores/100 µl for F. circinatum which 

demonstrated that species-specific real-time PCR amplification can improve spore 

detection significantly compared to more traditional approaches. 

 Real-Time qPCR assay was conducted to quantify the inoculum of Verticillium 

dahlia, causal organism of Verticillium wilt in olive, a serious disease in the 

Mediterranean countries and worldwide. Defoliating D and non-defoliating ND strains of 

V. dahlia were present at a significantly higher level in Amfissis (susceptible cultivar) 

than in Kalamon and Koroneiki (tolerant cultivars).  Relative amount of the pathogen in 

roots was lower than in stems and shoots which further declined in plant tissues over time 

(Markakis et al., 2009).  

 The airborne inoculum of Sclerotinia sclerotiorum responsible for Sclerotinia 

stem rot (SSR) was quantified for disease-forecasting at Rothamsted in England by a 
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SYBR-green quantitative PCR (qPCR). A linear relationship was found between 

ascospore numbers and S. sclerotiorum DNA (R2 = 0·76, P < 0·001) with mean 0·35 pg 

DNA per spore, whereas, no relationship between rainfall and numbers of airborne 

ascospores of S. sclerotiorum were observed during the severe period of infection in 2007 

as large numbers of airborne ascospores were detected when the recorded daily rainfall 

was < 0·2 mm (Rogers et al., 2009) 

 Carisse et al. (2009) demonstrated that qPCR assay was reliable for quantifying 

Botrytis squamosa, airborne inoculum in commercial onion fields and molecular conidia 

quantification could be used as a component of a risk management system for Botrytis 

leaf blight. A linear relationship was observed between numbers of conidia counted with 

a compound microscope and those determined with the qPCR assay by using receiver 

operating characteristic curve (ROC) analysis. The results further showed that the area 

under curves (AUCs) were significantly higher for the TaqMan qPCR assay with AUC = 

0.94 and 0.95 than for the microscope counts with AUC = 0.85 and 0.84 with P = 0.0029 

and 0.0016 for damage threshold (Dth) = 5 and 10 lesions/leaf, respectively. 

 A real-time polymerase chain reaction (PCR) assay was applied to quantify the 

level of latent infection of stripe rust of wheat in Gangu and Shangzhuang, China (Yan et 

al., 2012). The computer software SURFER showed that the spatial distribution patterns 

of molecular disease index (MDX) had a linear relationship with disease indices (DX) in 

field plots (P=0.01). Application of triadimefon fungicide on the detected latent infection 

foci reduced both the initial inoculum and disease development, resulting in an average 

reduction of disease area (73-81 per cent). 

 Mean daily quantities of airborne inoculum of Mycosphaerella graminicola, 

causative agent of spot blotch in wheat was up to 60.7 cDNA by real-time PCR during 

the stem elongation and flowering stages, which contribute to the infection of upper 

leaves later in the season (Duivier et al., 2013). 

 Klosterman et al. (2014) performed real-time quantitative polymerase chain 

reaction (qPCR) assay for detection of airborne inoculum of Peronospora effuse, causing 

downy mildew of spinach (Spinacia oleracea) in California. Significant correlation (R2 = 
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0.7603) was observed between DNA copy number of P. effuse derived from a standard 

curve of the amplification of rDNA and counts of spores obtained from light microscopy. 

 Meitz-Hopkins et al. (2014) studied molecular detection and quantification of 

ascospore discharge of Venturia inaequalis and the use of this method for orchard 

sanitation treatments by using volumetric spore traps (VSTs). Primary inoculum was 

estimated to be 51 per cent lower in the orchard sections where leaves had been removed 

using the CYP51A1 primer pair for amplification of genomic regions of the mitochondrial 

CYP51A1 gene which indicated that this method could be used to evaluate the efficacy of 

alternative control strategies such as leaf removal to reduce potential ascospore dose. 

 Quantification of inoculum of Canola seedling blight caused by Rhizoctonia 

solani and Fusarium spp. which resulted in large yield losses to canola (Brassica napus) 

was studied by Zhou et al. (2014). They found that from a conventional PCR 

amplification, an 88-bp product was amplified from all isolates classified as AG-2-1 with 

the primers Rs21F and Rs21R and no product was amplified with DNA from isolates 

belonging to other anastomosis groups of R. solani. A high correlation for both R. solani 

AG-2-1 and F. avenaceum (R2 = 0.93 and R2= 0.92, respectively) was observed between 

the quantity of DNA from soil samples with different inoculum densities estimated using 

qPCR and the number of colony-forming units (cfu) obtained from the same soil samples. 

 Cao et al. (2016) quantified the air-borne inoculum of Blumeria graminis f. sp. 

Tritici (Bgt) using Burkard 7-day spore traps in Langfang City, Hebei Province, China. 

They found significant correlation (R2= 0.99) in air with P < 0.01 between spore 

concentrations of Bgt by compound microscope and the real-time PCR assay.  

 Duvivier et al. (2016) studied the real-time PCR quantification and spatio-

temporal distribution of airborne inoculum of Puccinia triticina in Belgium and observed 

that the mean daily quantities of airborne inoculum were 0–131.4 spores/day during the 

stem elongation (GS30) to the flag leaf stage (GS39). Rainfall in late summer and 

autumn, whereas, mean minimum temperature in winter positively influence (R2 = 0.73) 

the spore density. 
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 Lastra et al. (2018) developed a new TaqMan real-time polymerase chain reaction 

(qPCR) to detect and quantify the soil-borne fungus Fusarium solani, in plant and soil 

samples of strawberry. They observed a linear relationship (R2=0.994) between DNA 

concentration of F. solani in plants and quantification cycles (Ct) in the qPCR reactions 

using the designed primers and TaqMan probe. They also found a significant correlation 

(P=0.0002) between the amount of genomic DNA of F. solani detected by qPCR and the 

number of fungal propagules present in artificially inoculated soils. Based on the results 

and observations, this novel qPCR assay represented a useful tool for rapid assessment of 

pre-planting soils and nursery plants to prevent F. solani infection and production losses. 

 TaqMan PCR assays for quantification of Neofabraea spp. (N. alba and N. 

perennans) and Cadophora spp. (C. malorum and C. luteo-olivacea), causing post-

harvest diseases of apple and pear, were developed by Kohl et al. (2018). They found that 

N. alba was detected in 73 per cent samples of apple orchards and 48 per cent from pear 

orchards. On the other hand, C. luteo-olivacea was detected in 99 per cent from apple 

orchards and 93 per cent from pear orchards. N. perennans was present in a few samples 

and C. malorum was not detected in any sample. They further observed that in apple 

orchards the colonization by pathogens decreased from April until August and increased 

from September until December, but this pattern was less pronounced in pear. Therefore, 

knowledge on population dynamics is essential for the development of preventative 

measures to reduce risks of fruit infections during the growing season. 

 Both conventional and quantitative PCR techniques (cPCR and qPCR) were used 

by Gadaga et al. (2018) for the detection and quantification of Colletotrichum 

lindemuthianum, causal agent of anthracnose in common bean seeds. They observed that 

the efficiency of the qPCR was of 1.03, as determined by the linear regression equation, 

with the mean values of the corresponding amplifications (r2 = 0.99). Therefore, it was 

found that the qPCR technique was more sensitive than the cPCR one. 

 Moein et al. (2019) quantified oomycete of apple pathogens by real-time 

quantitative PCR (qPCR). Pythium sylvaticum, Pythium irregulare, Pythium ultimum, P. 

vexans and Phytophthora cactorum were quantified in artificially (glasshouse) inoculated 

apple seedlings roots and P. irregulare from naturally (nursery) infected nursery tree 
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roots. They correlated the relative and absolute pathogen DNA quantities in infected 

glasshouse seedling roots and nursery tree roots with percent roots infect and found that 

both trials significantly negatively correlated (r = -0.569 to -0.684; P = 0.001 to 0.009 and 

r = -0.589 to -0.701; P = 0.0001 to 0.006, respectively) with the increase in seedling 

length for P. sylvaticum, P. vexans and P. ultimum infected seedlings, however, this was 

not true for P. cactorum (r = -0.057 and 0.067; P = 0.812 and 0.780) and P. irregulare (r 

= -0.443 and -0.415; P = 0.058 and 0.078). The percent infected roots also had a 

significantly negative correlation (r = -0.515 to -0.725; P = < 0.0001 to 0.010) with 

increase in seedling length for P. sylvaticum, P. vexans and P. ultimum and P. irregulare, 

but not for P. cactorum (r = -0.398; P = 0.054).  

Development of weather forecasting models 

 Among the different abiotic factors, temperature and moisture are the major 

limiting factors for the development of stripe rust epidemics and have been used to 

develop forecasting models for the disease (Sharma-Poudyal and Chen, 2011). Various 

weather forecasting models have been developed for the management of many plant 

diseases (James, 1974; Zadoks, 1984; Coakley et al., 1985; Hardwick, 1998; Xu, 1999; 

Audsley et al., 2005; De Wolf et al., 2003; Savary et al., 2006; De Wolf and Isard, 2007) 

including stripe rust (Coakley and Line, 1981; Coakley et al., 1988; Line, 2002).  

 Prediction model is based on the relationship between the environmental 

conditions and the severity of the disease (Kaundal et al. 2006). Forecasting systems for 

the plant diseases have been developed to reduce uses of fungicide or make its judicious 

use. An accurate prediction is crucial for properly application of disease control measures 

in order to avoid crop losses and over application of fungicide. Such system not only 

reduces the cost of production but also promote the environmental safety for the operator 

and consumers by reducing chemical usage (Malicdem and Fernandez, 2015). 

 Temperature has the most profound effect on the life cycle of P. striiformis f. sp. 

tritici, influencing its survival, dispersal, infection, latent period and sporulation, 

therefore, has been used to develop forecasting models for stripe rust (Coakley and Line, 

1981, 1982, 1988; Madden et al., 2007). Time series models have long been of interest as 
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they are used to predict epidemiological behaviours of the plant diseases by modeling 

historical surveillance data (Zhang et al., 2014). 

 The multiple regression models, autoregressive integrated moving average 

(ARIMA) model and artificial neural network (ANN) architecture have been widely used 

for forecasting yield as well as pests of different crops (Agarawal and Mehta, 2007; 

Kumari et al., 2013, 2014, 2016, 2017). Multiple linear regressions (MLR) are 

explanatory model and more suitable to short term or intermediate term forecasting 

(Varmola et al., 2004; Chauhan et al., 2009). ARIMA model (Box and Jenkins, 1970) is a 

forecasting technique that projects the future values of a series based entirely on its own 

inertia and work best when data exhibits a stable or consistent pattern overtime with a 

minimum amount of outliers (Gorantiwar et al., 2011; Kumar et al., 2013; Kumari et al., 

2017) 

 Stepwise multiple regression computer programme was performed to generate 

epidemic prediction model for wheat leaf rust caused by P. triticina by incorporating 

weekly urediospores numbers, cumulative urediospore numbers, average maximum and 

minimum temperatures and hours of free moisture (dew, rain per day and days of 

precipitation). The developed multiple regression model observed a variation of over 70 

per cent in actual and predicted disease severity. Minimum temperature was responsible 

for the variation in severity and inclusion of precipitation increased the accuracy 

(Eversmeyer and Burleigh, 1969). 

Khan and Trevathan (1999) developed multiple regression models used for 

forecasting leaf rust caused by Puccinia triticina in wheat and found a linear relationship 

between minimum temperature (12 to 18oC) and relative humidity (70 to 85%) having 

coefficient of determination (R2) of more than 0.90 for the development of disease.  

 Forecasting models have also been developed for prediction of stripe rust of 

wheat (Coakley and Line, 1981; Coakley et al., 1988; Line, 2002). The relationships 

between temperature and stripe rust epidemics on winter wheat were quantified by 

Coakley and Line (1981) during 1963 to 1979 and found significant correlation between 

stripe rust disease index and cumulative negative (December 1 to January 31) and 
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positive degree days (April 1 to June 30). Coakley et al. (1982) used these weather 

descriptors to develop simple linear regression models for predicting stripe rust disease 

severity for the Pullman area which were further extended to other locations in the Pacific 

Northwest (PNW). Predictive models with multiple regression approach were developed 

to estimate disease intensity by analyzing temperature and other meteorological factors 

such as the amount and frequency of precipitation from 1968 to 1986 at Pullman, 

Washington (Coakley et al. 1988). However, the simple linear models based on negative 

and positive degree days have been used mostly in forecasting for stripe rust in the PNW 

(Line, 2002; Chen, 2005). Another forecasting models for stripe rust disease severity with 

logistic regression approach was developed by Eddy (2009) based on relative humidity 

(>87%), leaf wetness duration and mean relative humidity that predicted infection with 

93, 80 and 76 per cent accuracy, respectively. 

 The roles of ascospores and condia are very crucial for the life cycle and 

forecasting the severity of leaf spot in rape seed oil crop (Brassica napus) caused by 

Pyrenopeziza brassicae (Gilles et al., 2000). They noticed that epidemics was initiated 

primarily by ascospores produced from apothecia that survived on the infected debris 

during summer, while in winters the epidemic was commenced by rain splashed conidia 

that spread the disease from foci to the main crop.  

 Uddin et al. (2003) developed a prediction model for gray leaf spot caused by 

Pyricularia grisea of perennial ryegrass turf based on four different temperatures (20, 24, 

28 and 30oC) and leaf wetness duration (3 to 36h at 3h interval), and observed that 

disease severity increased with the increase in leaf wetness duration at each selected 

temperature. Low disease incidence was observed at 20oC with leaf wetness duration of 3 

to 9h which increased with 12 to 18 hours wetness duration and attained maximum 

severity (57%) at 36 hours of wetness duration at 28oC. Thus, they found that increase in 

temperature from 20 to 32oC with leaf wetness duration of 3 to 6h resulted in an increase 

in disease incidence but decreased with increase in leaf wetness duration (> 21h). 

 Paul and Munkvold (2005) combined regression and artificial neural network 

(ANN) modeling approaches to develop models to predict the severity of gray leaf spot of 

maize, caused by Cercospora zeae-maydis. They revealed that the best ANN models (A1, 
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A2, A3, A5, A6, and A10) had R2 ranging from 0.70 to 0.75 and MSE ranging from 

174.7 to 202.8. The daily temperatures between 22 and 30°C (85.50 to 230.50h) and 

hours of nightly relative humidity ≥90 per cent (122 to 330h) were found to be the most 

valuable predictors for forecasting the onset of the grey leaf spot disease. 

 Kaundal et al. (2006) developed the prediction of disease severity of rice blast by 

support vector machine (SVM) which was better than multiple regression (REG), back-

propagation neural network (BPNN) and generalized regression neural network 

(GRNN).Conventional multiple regression (REG) approach exhibited correlation 

coefficient (r) of 0.50 and per cent mean absolute error (per cent MAE) of 65.42 for the 

relationship between disease severity and its associated environmental conditions 

(minimum temperature, maximum temperature minimum relative humidity, maximum 

relative humidity and rainfall), whereas, back-propagation neural network (BPNN) 

showed better correlation coefficient (r) of 0.60 and per cent mean absolute error (per 

cent MAE) of 52.24. With generalized regression neural network (GRNN), the r 

increased to 0.70 and per cent MAE also improved to 46.30, which further increased by 

support vector machine (SVM) based method having r = 0.77 and per cent MAE = 36.66. 

Similarly, in cross-location validation of rice blast severity, correlation coefficient (r) of 

0.48, 0.56 and 0.66 were recorded for REG, BPNN and GRNN, respectively, with their 

corresponding per cent MAE as 77.54, 66.11 and 58.26. The SVM-based method out 

performed all the three approaches by further increasing r to 0.74 with improvement in 

per cent MAE to 44.12. 

 Statistical methods like multiple stepwise regression, principal component 

analysis and partial least-square regression were explored to calculate and estimate the 

disease severity of rice brown spot caused by Bipolaris oryzae (Zhan-yu et al., 2007). 

The root mean square errors (RMSEs) for training (n = 210) and testing (n = 53) dataset 

were 6.5 and 5.8 per cent, respectively. The partial least-square regression with seven 

extracted factors could most effectively predict disease severity compared with other 

statistical methods with RMSEs of 4.1 per cent and 2.0 per cent for the training and 

testing dataset, respectively, where as principal component analysis showed 

approximately 80 per cent of the variance of the original hyperspectral reflectance. 
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 The multiple correlation and regression analyses of the weather data during 1991-

2001 in Coimbatore was conducted with the downy mildew of pearl millet caused by 

Sclerospora graminicola (Krishaveni et al., 2008). They observed a positive correlation 

value of 0.7566 and regression value of 0.73 (at 5% level of significance) between 

average rainfall (55.3 mm) and average minimum temperature (21.4oC). They further 

inferred that rainfall (avg. 45.3 mm) and minimum temperature (20.8oC) during the 

vegetative phase (30 days after the sowing) were favourable for the maximum incidence 

of the disease. 

 Various meteorological variables were assessed to develop regression equations 

for predictions of wheat leaf rust caused by Puccinia triticina at Bahawalpur and 

Faislabad during 2002 to 2007 (Jamshed et al., 2008). They reported that relative 

humidity along with total precipitation were critical for the onset of leaf rust having 

coefficient of determination (R2) of more than 0.75. Further, comparison of different 

models revealed that regression model with maximum temperature (15-22oC) and 

average relative humidity (>60%), was best suited for forecasting the leaf rust severity. 

 Te Beest et al. (2009) developed early warning weather-based prediction model 

for Septoria leaf blotch of wheat caused by Mycospharella graminicola in which the 

accumulated rainfall of more than 3 mm in 80-day period along with minimum base 

temperature (0oC) in 50-day period preceding growth stage (GS31) extremely favoured 

the development of disease. The developed disease model had a run-length of 3 window-

pane with low misclassification value (<0.20), a positive proportion value of 0.61, 

specificity of 0.18 along with sensitivity value of 0.83 which indicated its good predictive 

value. 

 The 14 years of meteorological data (1991 to 2004) was analyzed by Sharma et 

al. (2010) to study the epidemiology of Kernel smut caused by Tilletia barclayana of 

rice. They found positive correlation of 0.24 and 0.22 for maximum temperature (33.5oC) 

and sunshine duration (7.5h) respectively, with the disease intensity during 33rd standard 

meteorological week. They further revealed that high temperature during day time 

coupled with bright sunshine hours favoured the formation and multiplication of sporidia, 
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whereas, other weather variables viz., rainfall and number of rainy days showed least 

impact on the development of the disease. 

 Maximum (34oC) and minimum temperatures (26oC) along with maximum 

relative humidity (>90%) were favourable for the spread of rice sheath blight caused by 

Rizoctonia solani. High coefficient of determination (R2) of 0.80 per cent significantly 

validated the model (Biswas et al., 2011). 

 Sharma-Poudyal and Chen (2011) developed models for predicting potential yield 

loss by conducting correlation and regression analyses of weather parameters and yield 

loss data from 1993 to 2007 for winter wheat and 1995 to 2007 for spring wheat. They 

observed that in winter wheat the sum of daily temperatures and accumulated negative 

degree days were significantly correlated to yield loss (55.9 to 87.6%), whereas, in spring 

wheat, it was 34.9 to 64 per cent to rainfall days. 

Fernández-González et al. (2012) forecasted ARIMA models for atmospheric 

vineyard pathogens, Botrytis cinerea spores in two vineyards, one located in Cenlle 

(Spain) and other in Amares (Portugal), from 2005-2007. During the grapevine cycle the 

highest total spore concentrations were recorded in 2007 in both locations i.e.16, 145 

spores in Cenlle and 1,858 spores in Amares, and the lowest, in 2005 in Cenlle (1,700 

spores) and in Amares (800 spores) in 2006. The best adjusted model was an ARIMA 

(0,2,2) in Cenlle while in Amares there was an ARIMA (1,2,3). 

 Kumar (2014) selected humid thermal ratio, maximum temperature and special 

humid thermal ratio as predictor variables to develop weather based prediction models of 

wheat leaf rust and observed that weather during 7-9th standard meteorological weeks at 

Ludhiana, Faizabad and Sabour and 10-12th SMW at Kanpur had the highest correlation 

coefficient of 0.53 with minimum temperature, 0.64 with relative humidity, 0.85 with 

humid thermal ratio and 0.77 with special humid thermal ratio in Indo-Gangetic plains of 

India. He further reported that in all four locations, highest average seasonal humid 

thermal ratio coincided with the highest disease severity which established it as a critical 

predictor variable for disease development model. 
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 The partial least squares (PLS) and multiple linear regression (MLR) were used to 

identify suitable bands and develop spectral models for assessing severity of yellow rust 

disease caused by Puccinia striiformis f. sp. tritici  in winter wheat (Krishna et al., 2014). 

MLR model yielded acceptable results in the form of r2 as 0.89 for calibration and 0.90 

for validation with SEP of 3.90 and RMSEP of 3.70. The result showed that the 

developed model had a great potential for precise delineation for detection of yellow rust 

disease in winter wheat crop. 

 Ahmed et al. (2015) developed a disease predictive model using stepwise multiple 

regression analysis for potato late blight (PLB) caused by Phytophthora infestans (Mont.) 

de Bary. The model showed 80 per cent disease variability under favorable 

environmental conditions of maximum and minimum temperatures, relative humidity, 

rainfall and wind speed. The coefficient of determination R2 (maximum value) and mean 

square error MSE (minimum value) of MLR model were found to be 0.80 and 0.55 at 

P<0.05 respectively. 

 Chen et al. (2015) analyzed an auto-regressive integrated moving average 

(ARIMA) model to predict daily chlorophyll a (Chl a) concentrations, for algal bloom 

forecasting and its management in China. ARIMA (1, 1, 2) model was observed to be the 

best model with respect to the absolute error of peak value, root mean square error and 

index of agreement. ARIMA model needs only one input variable therefore it shows 

greater applicability as an algal bloom early warning system using online sensors of Chl 

a. 

 Linear regression model for assessing the yield loss of mustard due to Alternaria 

leaf blight disease was analyzed by Mahapatra and Das (2016). The correlation co-

efficients (r) of avoidable seed yield loss for the two years and the pooled mean were 

observed to be r = -0.973, r = -0.973, and r = -0.969, respectively. Further, the co-

efficient of determination (R2) were R2 = 0.947, R2 = 0.946, and R2 = 0.939, respectively. 

 Bhardwaj et al. (2016) analyzed the yield of gram by using Auto-regressive 

Integrated Moving Average (ARIMA), structural time series models from 2009-10 to 

2014-15 of promising varieties (Vijay, JG-6, JG-11, JG-14, JG-16, JG-63, JG-74, JG-
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130, JG-226, Vaibhav and JAKI-9218), and observed that maximum yield (27.95q/ha) 

was obtained for Vaibhav variety for the year 2017-18 with upper and lower limits of 

41.16 and 14.75 q/ha, respectively. The minimum yield was obtained for JG-6 (7.82 q/ha) 

with upper and lower of limit 1.37 and 14.28 q/ha, respectively. 

 Ilić et al. (2016) studied the forecasting of future trends in corn production in 

Serbia from 1947 to 2014, and 100 models with different combinations of AR and MA 

variables were examined. The most acceptable model was AR (1) MA (1) MA (2), i.e. 

(1,1,1,2) model according to the values of the Akaike and Schwarz tests. 

 Hossain et al. (2016) made an attempt to identify the Auto-Regressive Integrated 

Moving Average (ARIMA) model from 1972 to 2013, to forecast the production of 

banana in Bangladesh. ARIMA (0,2,1) was found to be the best to forecast the banana 

productions in Bangladesh. The graphical comparison between the observed and 

forecasted banana production indicated the fitted model behaved statistically well during 

and beyond the estimation period. 

Fernández-González et al. (2016) used ARIMA models as a tool for Integrated 

Pest Management protocols to forecast the spore concentrations of powdery mildew 

caused by Uncinula necator and downy mildew produced by Plasmopara viticola in the 

North-West Spain vineyards during the grapevine active period 2004–2012. It was found 

that the annual total U. necator spore amount ranged from the 578 spores in 2007 to 

4,145 spores sampled during 2008, whereas, the highest annual total P. viticola spores 

quantity was observed in 2010 (1,548 spores) and the lowest in 2005 (210 spores). The 

most accurate models were an ARIMA (3.1.3) for U. necator and (1.0.3) for P. viticola. 

Kumari et al. (2017) conducted comparison of different time series statistical 

models like autoregressive integrated moving average (ARIMA) and artificial neural 

network (ANN) with explanatory multiple linear regression model for predicting pod 

damage in pigeon-pea caused by pod borer in Varanasi region of Uttar Pradesh during 

1985-86 to 2011-12. Based on their empirical studies, ANN was found to be best suited 

model with lowest RMSE, MSE and R2 of 1.97, 3.89 and 0.77, respectively. 
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 Osman et al. (2017) studied on Auto-Regressive Integrated Moving Average 

(ARIMA) model to forecast the tomato production in Bangladesh over the period of 1971 

to 2013. The best model was found to be ARIMA (0,2,1) as this model forecasts well 

during and beyond the estimation period. 

 Vennila et al. (2018) studied abundance, infestation and disease transmission by 

thrips on groundnut at Kadiri of Anantapur (Andhra Pradesh) during 2011-16 through 

multiple linear regression (MLR) models. The prediction models showed that peanut bud 

necrosis disease (PBND) incidence combining weather and thrips abundance (R2:0.39) 

and weather and infestation (R2:0.53) was dependent on relative humidity and prevalent 

wind. They observed significantly higher abundance of thrips in 2016 over 2011 to 2015 

and also minimum temperature had a positive effect on the incidence of PBND, whereas, 

rainfall had a negative effect on thrips infestation. 

 Aswathi and Duraisamy (2018) compared the prediction accuracy of Multiple 

Linear Regression, ARIMA and ARIMAX model for pest incidence of cotton with 

weather factors, rainfall, maximum temperature, minimum temperature, morning 

humidity and evening humidity on weekly basis for aphid, thrips, jassid and whitefly at 

the TNAU region, Coimbatore. The results showed that for all pests ARIMAX model 

possessed lowest RMSE value compared to ARIMA and MLR. Thus, ARIMAX was 

considered the best fit model for prediction of pest incidence.  

 Ajetomobia and Olaleye (2019) attempted to forecast Nigerian cocoa (Theobroma 

cacao L.) production between 2018 and 2025 using the ARIMA. It was found that 

ARIMA (1,1,0) was the most appropriate for forecasting from the automated analytical 

procedure implemented in R software. It was revealed from the results that cocoa 

production would fall by more than 20 per cent in 2025 in comparison with the 2017 

figure.  

 Singh et al. (2019) studied the impact of climate on spot blotch severity on wheat 

crop over Eastern Gangetic Plains of India for three consecutive years (2014-15, 2015-16, 

and 2016-17), under both timely and late sown conditions. R2 for disease severity in 

Mutiple Linear Regression (MLR) was found to be 0.74 and 0.72 for timely and late 
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sown conditions, respectively. Out of eight ARIMA models, ARIMA (1,0,1) was found 

to be the best to predict disease severity. R2 and RMSE were found to be 0.88 and 7.61, 

respectively, for timely sown conditions; and 0.86 and 5.48, respectively, for late sown 

conditions. Thus it was found that the risk of spot blotch increased after heading in those 

areas where average maximum temperature was above 30oC with high relative humidity 

(>50%). 

 Chiu et al. (2019) performed modelling and forecasting of greenhouse whitefly 

incidence using time-series and ARIMAX analysis to provide a more efficient way for 

applying pesticides by predicting the possible increase in whitefly population in 

greenhouses. The ARIMA and ARIMAX models were compared by setting different 

combinations of input data for around 60 days to 90 days. ARIMA included only the 

whitefly count while ARIMAX included the whitefly count and environmental data. 

ARIMAX was found to be the best model with input data including the increase in 

whitefly counts, temperature and humidity. The RMSE for 7-day forecasting was found 

to be around 1.30. Thus, four levels of increase in whitefly count were defined such as 

Normal, Moderate, High and Critical to assist farmers in decision-making for pesticide 

application scheduling.  

Prediction of disease under future climate change scenario  

 Temperature is an important weather variable affecting the production and 

productivity of various cultivated crops. The last three decades have witnessed a sharp 

rise in mean annual temperature throughout the country. Annual mean temperature has 

risen by 0.51°C over the period of 1901–2005. This rise in temperature is primarily due 

to rise in maximum temperature (Mathukumalli et al., 2016). However, since 1990, 

minimum temperature is steadily rising and rate of its rise is slightly more than that of 

maximum temperature (Arora et al., 2005). In every 1°C rise in temperature throughout 

the growing period of wheat, losses of 4 - 5 million tonnes was reported (Aggarwal, 

2008). Zacharias et al. (2014) and Sandhu et al. (2016) have studied the climate change 

impacts on the productivity of Indian wheat yields. The unusual warming trends during 

grain filling stage are causing yield declines, especially in eastern and central India 

(Chatrath et al., 2007). Bapuji Rao et al. (2015) identified exposure to continual 
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minimum temperature (Tmin) exceeding 12°C for 6 days and terminal heat stress with 

maximum temperature (Tmax) exceeding 34°C for 7 days during the post-anthesis period 

as thermal constraints in realizing potential productivity. 

 Stripe rust principally attacks wheat grown in cooler climate. The minimum of 

3°C and maximum of 20°C temperatures have been observed for the growth of pathogen 

(Line, 2002). The recent attack of some species on the wheat grown in dry areas 

demonstrated its adaptation to high temperature. Therefore, the knowledge of temperature 

at a specific location can give information to predict the presence or absence of stripe rust 

(Chen, 2005). 

 Numerous weather generators such as Climate weather generator (Climgen), 

Weather Generator (WGEN), Long Aston Research Station (LARS-WG), Mark-Sim are 

available for synthetic generation of data on weather variables such as temperature and 

precipitation. Utilization of weather generators has become essential for climate change 

studies as the GCM output is often given in terms of anomalies at monthly interval under 

future climate change scenarios. Representative concentration pathways (RCP), the latest 

generation of scenarios that provide input to climate models consist of four climate 

change scenarios viz., RCP8.5, RCP 6, RCP 4.5 and RCP 2.6 (previously called as A2, 

A1B and B1 emission scenarios) describe four possible future climates, (Garg et al., 

2015). In order to make use of the datasets for crop, pest and disease modeling or 

prediction of disease, it is essential that the information be temporally downscaled using 

weather generators. Mark-Sim GCM was developed to simulate weather from known 

sources of monthly climate data. It combines the spatial downscaling of weather data of 

selected GCMs to the point of interest and temporal downscaling to daily level (Rao et al. 

2015). 

 He et al. (2012) predicted the early seeding dates of spring wheat (Triticum 

aestivum L.)  in the Canadian Prairies under four climate databases that included a 

baseline (1961–1990) and three climate change scenarios (2040–2069), generated by the 

Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) 

emission scenarios (A2, A1B and B1). They observed that compared to the baseline 

conditions, there was no reduction in grain yield because precipitation increased during 
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sensitive growth stages of wheat, suggesting that there was potential to shift seeding to an 

earlier date. The average advancement of seeding dates varied among sites and chosen 

scenarios. The Swift Current (south-west) site had the highest potential for earlier seeding 

(7 to 11 days), whereas, such advancement was small in the Melfort (north-east, 2 to 4 

days) region. The results may be used for adaptation assessments of seeding dates under 

possible climate change to mitigate the impact of potential warming. 

 The prediction of carbon dioxide (CO2) concentration in the atmosphere is going 

to change in the future and its influence on crops and insect pests was studied by Rao et 

al. (2012). Substantial influence of elevated CO2 on Spodoptera litura was observed 

which was reared on peanut (Arachis hypogea L.) foliage grown under elevated CO2 

concentrations (550 ppm and 700 ppm). They noticed that there was increased 

consumption of peanut foliage by S. litura larvae under elevated CO2.  

 Manimanjari et al. (2014) also studied the prediction of increase in temperature 

and atmospheric CO2 concentration and its influence on the growth of crop plants and 

phytophagous insects. It was found that finite (k), intrinsic rates of increase (rm), net 

reproductive rate (Ro), mean generation time, (T) and doubling time (DT) of S. litura 

increased significantly with temperature up to 27–30oC and declined with further increase 

in temperature. It was predicted that increased ‘rm’, ‘k’, and ‘Ro’ and reduced ‘T’ would 

occur during near future NF and distant future DF scenario over present period at all 

locations. Therefore, the results indicated that temperature and CO2 were vital in 

influencing the population growth of S. litura and pest incidence may possibly be higher 

in the future. 

 Rao et al. (2015) predicted more generations of S. litura. Fab. (peanut pest) would 

occur during the three future climate periods i.e., Near future (NF)-2020, Distant future 

(DF)-2050 and Very Distant future (VDF)-2080, with significant variation among 

scenarios (A2, A1B and B1) and models. They predicted that, 1–2 additional generations 

would occur during DF and VDF due to higher maximum and minimum temperatures. 

They further observed that generation time would decrease by 18–22 per cent over 

baseline (1975) due to future temperature projections of these models. With the increase 

in temperature the incidence of S. litura may increase in future climate change periods 
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due to increase in number of generations and reduction of generation time across the six 

peanut growing locations of India, viz., Bhubaneswar, Jalgaon, Junagadh, Raichur, 

Tirupathi and Vridhachalam. 

 The weather data of future daily maximum and minimum temperatures was 

simulated from seven General Circulation Models (GCM) viz., BCCR-BCM2.0, CNRM-

CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with Ensemble 

AVERAGE-AVG for three emission scenarios (A2, A1B & B1) using MarkSim 

(Mathukumalli et al., 2016). They found more (one to two) generations of Helicoverpa 

armigera with reduced generation time (15%) would occur with CSIRO-Mk3.5 and 

ECHams5 models due to higher temperatures during all the three future climate periods 

viz., 2020, 2050 and 2080, which indicated that the incidence on pigeon pea could be 

higher due to the increase in temperature.  

 Pramod et al. (2017) observed the wheat yield responses to three future climatic 

periods (2025, 2050 and 2075), with daily weather from three CMIP-5 climate models’ 

(GFDL-ESM2M, MIROC5, and NorESM1-M) at four sites (Ludhiana, Raipur, Akola and 

New Delhi). They observed that day temperatures were projected to rise conspicuously at 

Ludhiana, representing northwest parts of the country, and moderately over central parts 

of India (Akola and Raipur). Further, positive rainfall anomalies at Ludhiana (+76%) and 

negative anomalies at Raipur (-15%) were projected in future. Therefore, with these 

climate changes, wheat was likely to experience warmer days (+1.1°C) at Ludhiana and 

nights at Raipur (+2.8°C) and more seasonal moisture availability at Ludhiana in future. 

Therefore, it could be inferred that wheat yields in future are likely to decline in absence 

of adaptation options for major wheat growing regions.  

 The prediction of generations and generation time of Oriental fruit fly, Bactrocera 

dorsalis which is a major pest of mango crop in India was studied for baseline (1961 to 

1990), present (1969 to 2005), near future (2021 to 2050) and distant future (2071 to 

2098) periods using A1B emission scenario data by Providing Regional Climates for 

Impacts Studies (PRECIS) model. It was estimated that faster accumulation of degree 

days would make possible for occurrence of one or two additional generations with 

shortened mean life cycle (5 to 7 days less) in near and distant future climate change 



29 

periods compared to baseline and present periods at majority of selected locations. 

Increased number of generations and reduction of generation time at majority of mango 

growing locations of India suggested that the incidence of B. dorsalis was likely to 

increase due to the projected increase in temperatures during future climate change 

scenarios (Choudhary et al., 2017). 

 Alkishe et al. (2017) assessed the potential distribution of Ixodes ricinus under 

current and future climate conditions to understand the effect of climate change over a 

continental extent that included Europe, North Africa, and the Middle East, based on 

future projections of climate data from 17 general circulation models (GCMs) under 2 

representative concentration pathway emissions scenarios (RCPs), for the years 2050 and 

2070.The results showed that present and future potential distributions of I. ricinus 

overlapped across most of the western and central Europe, and in more narrow zones in 

eastern and northern Europe, and North Africa. These results indicate that I. ricinus 

populations could emerge in areas in which they were currently lacking, posing increased 

risks to human health in those areas. 

 Artificial Neural Network (ANN) and Least Square Support Vector Machine 

(LSSVM) were used by Nourani et al. (2018) to statistically downscale and project 

rainfall data from CMIP5 (GCM) for Tabriz and Ardabil stations in north-west Iran. They 

performed the calibration, validation and projection of the proposed downscaling models 

over the periods of Jan. 1951 to Dec. 1991, Jan. 1992 to Dec. 2005 and Jan. 2017 to Dec. 

2100. They used the ANN, LSSVM and Multiple Linear Regression (MLR) models to 

capture relationship between the large-scale climate data and the stations’ observed 

rainfall values. It was found that the projection of rainfall for near and distant future 

(2017-2050 and 2050-2100) by the proposed multi-GCM ensemble framework yielded to 

rainfall alteration pattern; 40 per cent - 41per cent and 35 per cent- 42 per cent decrease 

at Tabriz station and 6 per cent-12 per cent and 5 per cent-13 per cent increase at Ardabil 

station under RCPs 4.5 and 8.5, respectively. 

 He et al. (2018) obtained data across the rice belt in southern China from Coupled 

Model Inter comparison Project phase 5 (CMIP5) with two emissions scenarios (RCP 4.5 

for current emissions and RCP 8.5 for increasing emissions) to calculate the heat stress 
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indices. They observed that multi-model projections over the historical period (1960–

2010), and found that the frequency of heat stress events was projected to increase by 

2061–2100 in both scenarios (up to 185 and 319% for RCP 4.5 and RCP 8.5, 

respectively). Thus, the increasing risk of exposure to heat stress above 30°C during 

flowering and grain filling was predicted to impact rice production and therefore it was 

suggested to adapt or mitigate strategies, such as selection of heat-tolerant cultivars and 

adjustment of planting date in a warmer future world. 

 ALRahahleh et al. (2018) studied the use of certain tree species in forest 

regeneration and their effect on volume growth, timber yield, and carbon stock of boreal 

forests in Finland under the current climate (1981–2010) and recent-generation global 

climate model (GCM) predictions using the representative concentration pathways RCP 

4.5 and RCP 8.5, over the period of 2010–2099. They observed that the volume growth 

increased in the south from 5.8 to 7.0 m3 ha−1a−1, and in the north from 2.8 to 3.3 m3 ha−1 

a−1; the mean annual timber yield range in the south was 4.2–4.3 m3 ha−1 a−1 and, in the 

north, 1.5–1.8 m3 ha−1 a−1; and the carbon stock (in trees and soil) of forests increased 

from 79 to 87 Mg ha−1 in the south, and from 72 to 88 Mg ha−1 in the north. Therefore, 

the magnitude of the climate change impacts depended largely on the geographical region 

and the severity of the climate projection.  

 Shahsavari et al. (2019) predicted the spatial and temporal non-uniformity of 

water availability in the climate change projections in five climatic zones of Iran, based 

on the future projections (2041–2070), under four emission scenarios, including RCP 2.6, 

RCP 4.5, RCP 6.5, and RCP 8.5. The results indicated that in hyper-arid region global 

warming projections there was a positive increase of 0.3–146.2 per cent in green water 

availability and a reduction of 5.1–266.4 per cent in drought severity in future climate. 

Hence, sustainable dryland agriculture, highly depends on regionally prioritizing 

susceptible area for dry farming was required, since the criteria indices showed an 

extreme spatial and temporal variability over the mid twenty-first century. 

 Most of the optimal and medium suitability areas of tea (Camellia sinensis) 

habitat in Sri Lanka in the low elevation areas would be lost to a greater extent in 

comparison to the high elevation areas for all tested RCPs by 2050 and 2070 under both 
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GCMs of MIROC5 and CCSM4, in response to the current and future climate change 

scenarios (Jayasinghe and Kumar, 2019). They found that in relation to the current time, 

areas of 6090 km2 (9.3%), 5769 km2 (8.8%), and 5086 km2 were projected as potential 

areas of having optimal, medium and marginal climate suitability for tea, respectively, 

using the correlative habitat suitability model MaxEnt. On comparison of the current and 

future distributions of suitable tea growing areas a decline of approximately 10.5, 17 and 

8 per cent in total 'optimal', 'medium', and 'marginal' suitability areas, respectively, was 

observed, which implied that climate would have a negative effect on the habitat 

suitability of tea in Sri Lanka by 2050 and 2070. 

 Choudhary et al. (2019) observed significant variation of future temperature 

(MaxT. and MinT.) projected by eight models i.e., BCC-CSM1-1(BC), CSIRO-Mk3-6-

0(CS), FIO-ESM (FI), GFDL-ESM2M (GF), HadGEM2-ES (Had), IPSL-CM5A-MR 

(IP), MIROC-ESM-CHEM (MI) including Ensemble. It was inferred that the maximum 

and minimum temperatures would fluctuate by ±0.47 to ±4.02oC and ±0.43 to ±6.78oC, 

respectively, during three future climate periods (2020, 2050 and 2080) over Baseline 

period (1969–2005) of four scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) at ten 

locations of India viz., Lucknow, Mohanpur, Paria, Ranchi, Rewa, Rupnagar, Bengaluru, 

Vengurle, Sangareddy and Dharampuri. They further indicated that there will be addition 

of 1-2 generations during 2050 and 2080 due to higher temperature projected in CS and 

Had models. The temperature projections of these models also indicated that the 

generation time of Bactrocera dorsalis (19.31 to 25.38 days), Bactrocera zonata (20.74 

to 25.97 days) and Bactrocera correcta (47.66 to 61.69 days) on mango will decrease by 

15-24 per cent during future climate change periods over baseline which will lead to 

increase in voltinism and infestation of mango fruits and will have significant impacts on 

mango protection and production. 
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CHAPTER-3 

MATERIALS AND METHODS 

 

The present investigation titled ‘Comparative study of forecasting models for 

stripe rust of wheat’ was carried out during the years 2017-2019, at the Research Farm, 

Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and 

Technology of Jammu, Chatha. The research materials used and the methodologies 

followed to conduct the study have been described under the following headings: 

3.1 Prediction of stripe (yellow) rust under future climate change scenario 

Six location viz., Jammu (Jammu and Kashmir), Ludhiana (Punjab), Dhaulakuan 

(Himachal Pradesh), Hisar (Haryana), Meerut (Uttar Pradesh) and Leh (Ladakh), 

representing the northern western plains zone and northern hills zones of wheat growing 

regions of India, were selected based on the occurrence of stripe rust epidemics in past. 

Future projected temperatures (maximum and minimum) at selected study prefectures 

were downloaded from MarkSim® DSSAT weather file generator (http://gisweb.ciat. 

cgiar.org/MarkSimGCM/) for the six General Circulation models (GCMs) under the four 

greenhouse gas concentration trajectories scenarios, RCP 2.6, RCP 4.5, RCP 6.0 and RCP 

8.5 (Van Vuuren et al., 2011) with 20 replicates of each (Jones and Tornton, 2013).  The 

details of the six  GCMs used in present study were the Chinese Beijing Climate Centre, 

China Meteorological Administration and Analysis model BCC-CSM1-1 (BCC); the 

Australian Commonwealth Scientific and Industrial Research Organization model 

CSIRO-Mk3-6-0 (CSIRO); the US National Oceanic and Atmospheric Administration’s 

Geophysical Fluid Dynamics Laboratory model GFDL-ESM2M (GFDL); the French 

Institute Pierre-Simon Laplace model IPSL-CM5A-MR (IPSL); the Japan’s Atmosphere 

and Ocean Research Institute, National Institute for Environmental Studies and Agency 

for Marine Earth Science and Technology model MIROC-ESM-CHEM (MIROC) and 

the National Aeronautics and Space Administration, Goddard Institute for Space Studies 

(GISS).  
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 Baseline data was considered of the year 1975, where the daily temperatures 

(maximum and minimum) of all the selected locations were obtained from Indian 

Meteorological Department (IMD) grid temperature data available at 1×1 degree 

resolution. Climate projections were studied over four time periods, viz., 2020 (near 

future), 2050 (distant future) and 2080 (very distant future) and compared with Baseline 

(BL) (1975) periods from each GCM for six prefectures. The projected maximum and 

minimum temperature data were collected for four climate change periods (1975, 2020, 

2050 and 2080), across six models with four different Representative Concentration 

Pathways (RCPs; RCP2.6, 132 RCP4.5, and RCP8.5) for each model and at six wheat 

growing locations of India to estimate duration of latent period (days per generation) and 

number of infection cycles for Puccinia striiformis f. sp. tritici, the causal organism of 

stripe/yellow rust of wheat. 

3.2       Estimation of growing degree-days of Puccinia striiformis f. sp. tritici 

 Growing degree-days (GDD) were calculated to predict the duration of latent 

period of P. striiformis f. sp. tritici under future climate scenarios (Danelli and Reis, 

2016). The lower threshold temperature of 4°C (LTT) for of Puccinia striiformis f. sp. 

tritici was considered for the study (Chai et al., 2015). Software ‘ingen’ (Insect 

Generations) available at www.nicra.in was employed to calculate the GDD (Rao et al., 

2015). Wheat is mainly growing during rabi season (November to April) in Jammu, 

Ludhiana, Meerut, Dhaulakuan and Hisar, whereas, in Leh it is grown during kharif 

season (April to September). By considering the previous reports of appearance of stripe 

rust in these locations, daily temperature data (maximum and minimum) with respect to 

Standard Meteorological Weeks (SMW) of each location were generated for predicting 

the variation in generations and duration of latent period of P. striiformis f. sp. tritici. 

3.3       Development of forecasting models 

3.3.1    Time series models  

 Time series is a set of numbers that measures the status of some activity over 

equally spaced time interval. Time series models, Autoregressive Integrated Moving 

Average (ARIMA) and Autoregressive Integrated Moving Average with Exogenous 
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Variables (ARIMAX) were computed for the prediction of stripe rust of wheat based 

upon weekly data of meteorological factors viz., maximum and minimum temperatures 

(oC), maximum and minimum relative humidity (%) and rainfall (mm) and per cent 

severity of stripe rust during the period 2005-2019. Disease severity during 2005-2017 

was considered as training data sets, and were collected from secondary data source, 

whereas, severity during 2017-2019 (test data sets) were generated by sowing wheat crop 

in rabi season of 2017-18 and 2018-2019. Weekly data of five different meteorological 

factors viz., maximum and minimum temperatures (oC), morning and evening relative 

humidity (%) and rainfall (mm) during 2005-2019 were collected from Agro-

meteorological section of SKUAST-Jammu. 

3.3.2 Layout of experiment  

 Susceptible wheat variety, PBW 343, was sown in experimental plots at Research 

Farm, Chatha, on 15th November, 2017 and 11th November, 2018, under randomized 

block design (RBD), with four replications, having row to row distance of 22.5 cm, in a 

plot size of 2x4m.  

3.3.3 Disease severity  

 During 2017-2019, severity of stripe rust was recorded on labelled plants (5 

plants/plot), starting from the time of disease initiation till the harvesting of the crop, at 

weekly intervals (January to April) using modified Cobb’s scale (Peterson et al., 1948).  

3.3.4    Descriptive statistics of meteorological factors and stripe rust of wheat 

 The weekly data of meteorological factors viz., maximum temperature (0C), 

minimum temperature (0C), morning relative humidity (%), evening relative humidity 

(%), rainfall (mm) and severity of stripe rust of wheat (%) during rabi seasons from 2005 

to 2019 were investigated to study the distribution pattern and quantitative description of 

these data sets for 180 observations. Computation of the descriptive statistics resulted in 

mean, median, standard deviation, skewness and kurtosis for all the selected parameters.  

3.3.5 Autoregressive Integrated Moving Average (ARIMA) Modeling 

 The equally spaced univariate time series data was analyzed and forecasted using 

the Autoregressive Integrated Moving-Average (ARIMA). An ARIMA model predicts a 
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value in a response time series as a linear combination of its own past values, past errors, 

and current and past values of other time series. The ARIMA approach was first 

popularized by Box and Jenkins (1970), therefore, ARIMA models are also referred as 

Box-Jenkins models. Five different steps were followed in order to develop prediction 

model for the severity of stripe rust of wheat by univariate time series (ARIMA) model. 

3.3.5.1 Unit Root Test 

 To check whether the univariate time series data of stripe rust of wheat was white 

noise (stationary) or not, Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests, 

in which the null hypothesis, that the series was non-stationary, was adopted. If the time 

series data was not stationary, it was transformed into stationary ones by differencing (by 

taking lag 1). 

3.3.5.2 Parameter estimation  

 ARIMA model encompassed seven parameters, in which p and P were the orders 

of general and seasonal auto regression (AR), respectively; q and Q were the general and 

seasonal moving average (MA) orders, respectively; d and D were the numbers of general 

and seasonal differencing respectively; s denoted cyclicity in ARIMA(p,d,q) (P,D,Q)s 

model. Plotting of Auto correlation function (ACF) and partial auto correlation function 

(PACF) exhibited the structure of the models in which PACF decided values for p (AR), 

whereas, ACF gave value for q (MA). 

3.3.5.3 Selection of model  

 Adding parameters or alterations, increased the likelihood of the model, but over-

fitting of model could occur. Therefore, in order to reduce the error, the model with lower 

Akaike Information Criterion (AIC) “better” was employed (Brockwell and Davis 2009).  

3.3.5.4 Diagnostic Checking  

 After the selection of model, we could test whether the residuals met white noise 

assumptions, as the residuals from the developed ARIMA model were assumed to be 

independent, homoskedastic and normally distributed. Various tests were performed to 
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study the goodness of fit of the tentative model, such as, ‘Ljung-Box Test for 

Autocorrelation test’, to check the autocorrelation in the residual series (Ljung and Box, 

1978), and ‘Shapiro-Wilk Test’, to check the Normality (Normally distribution of 

residuals in the model). 

3.3.5.5 Validation of ARIMA model 

 To validate the developed model, it was used in the test datasets to predict the 

severity of stripe rust of wheat. If the model exhibited the minimum per cent deviation 

between the observed and predicted values, the model was used for the short-term 

prediction.   

3.3.6 Autoregressive Integrated Moving Average with Exogenous Variables 

 (ARIMAX) Model 

 To develop the ARIMAX model, pre-whitening was conducted to reduce the 

association between linear autocorrelation. Cross-correlation function (CCF) between the 

severity and meteorological parameters, depicted the selection of lag regarding external 

variables (meteorological parameters). Selected meteorological parameters (with or 

without lag) were incorporated as covariates into the ARIMA to generate ARIMAX 

model. Finally, statistically significant regression coefficients and lower Akaike 

Information Criterion (AIC) value for the meteorological parameters gave the generation 

of model. The developed ARIMAX models were validated, once minimum per cent 

deviation was generated, and were used to predict the severity of stripe rust from 2020-

2022. The prediction accuracy was evaluated by the root mean square error (RMSE) and 

mean square error (MSE). 

3.3.7 Development of weather forecasting model based on multiple linear 

 regression 

 Correlation analysis of stripe rust severity of wheat during 2005-2017 and 2017-

2019 datasets were analyzed with individual weather variables like maximum and 

minimum temperatures, maximum and minimum relative humidity and rainfall. Higher 

correlation coefficient (r) showed the association between the parameters. To predict the 
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severity under the influence of different weather parameters, models were generated by 

multiple linear regression. Coefficient of determination (R2), root mean square error 

(RMSE) and mean square error (MSE) were worked out to find the impact of individual 

or combination of different abiotic factors on the disease development.  

3.4  Quantification and temporal distribution of Puccinia striiformis f. sp. tritici 

 inoculum 

3.4.1 Collection of air borne inoculum  

 Spore traps (glass slides with grease) were hanged, at different locations over the 

experimental field, from December onwards to trap P. striiformis f. sp. tritici inoculum 

(urediospores). The slides were microscopically observed for counting of the spores. The 

correlation between the number of spores with the prevailing weather parameters 

(maximum and minimum temperatures, morning and evening relative humidity and 

rainfall) were computed.  The spores were identified by using universal ITS primers 

(Bandral, 2020).  

3.5 Statistical analysis 

 All statistical analyses were conducted using the software using the statistical 

package R software (R Core Team, 2013). The values of replication, which included 

number of infection cycles and duration of latent period of P. striiformis f. sp. tritici were 

assessed by One-way analysis of variance (ANOVA) and means were compared using 

least significant difference (LSD) at probability level of 5 per cent through “agricolae” 

packages (de Mendiburu, 2016).   

  



 

 

Plate-1: Experimental Field 

 

 

      

Plate-2: Symptoms of stripe rust      Plate-3: Spores of Puccinia striiformis f.  
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CHAPTER-4 

RESULTS 

 

 This chapter includes the research findings pertaining to the investigation entitled 

“Comparative study of forecasting models for stripe rust of wheat” conducted during 

rabi season of 2017-18 and 2018-19 as under: 

4.1 Variation in projected temperatures among scenarios and models 

 Substantial variation in future maximum and minimum temperatures were 

predicted by the six adopted models (BCC, CSIRO, GFDL, IPSL, MIROC and GISS) 

when compared over four representative concentration pathways (RCPs), at four time 

periods (1975, 2020, 2050 and 2080) and six locations viz., Jammu, Ludhiana, 

Dhaulakuan, Hisar, Meerut and Leh. Data presented in Table 1 exhibit that maximum 

temperature would increase by 11.13, 6.56, 3.50°C, 7.64 and 5.18, in Jammu, Ludhiana, 

Dhaulakuan, Hisar and Meerut, respectively, whereas, it would decrease by 0.58°C in 

Leh, during the three future climate change periods (2020, 2050 and 2080), over baseline 

period (1975) of  scenario RCP 8.5. Scenario RCP 2.6, exhibited slight variation in 

maximum temperature among the future time periods (2020, 2050 and 2080), whereas, 

RCP 4.5, 6.0 and 8.5 marked sharp fluctuations during 2050 and 2080, across the selected 

locations. Maximum temporal change in maximum temperature was predicted by model 

IPSL in 2020 and 2080, whereas, by GFDL in 2050, in all the scenarios during 2020, 

2050 and 2080, in all the selected locations. Maximum fluctuations (increase) in 

maximum temperature recorded were in Jammu (6.26 to 11.13), followed by Hisar (2.78 

to 7.64), Ludhiana (3.47 to 6.56), Dhaulakuan (0.65 to 3.50) and Leh (0.58 to 5.60), 

whereas, it was minimum in Meerut (1.34 to 5.18). 

 Similarly, data in Table 2 indicate that minimum temperature would increase by 

11.58, 6.70, 6.01, 6.23, and 5.70°C in Jammu, Ludhiana, Dhaulakuan, Hisar and Meerut, 

respectively, whereas, it would decrease by 0.58°C in Leh, during 2080 as compared to 

1975. Scenario RCP 8.5 exhibited highest fluctuations (maximum increase) in the 

minimum temperature in 2080 across the six locations. Maximum temporal change in 
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minimum temperature was predicted by model IPSL in all the selected locations under 

four scenarios. Maximum variations in minimum temperature were recorded in Jammu 

(7.15 to 11.58), followed by Leh (0.58 to 5.85), Ludhiana (2.68 to 6.70), Hisar (2.16 to 

6.23) and Dhaulakuan (1.68 to 6.01), whereas it was minimum in Meerut (1.81 to 5.70). 

4.2 Latent period of Puccinia striiformis f. sp. tritici  

 Data in the Table 3 revealed that in the predicted future changes in climate during 

2020, 2050 and 2080, over the baseline data of 1975, significant differences were 

observed in the duration of latent period (days) of Puccinia striiformis f. sp. tritici, under 

each climate change scenario (RCP), across the locations viz., Jammu, Ludhiana, 

Dhaulakuan, Hisar, Meerut and Leh. In the baseline period (1975), the duration of latent 

period (days) varies from 8.58±0.09 to 21.49±0.07, across all the locations. Maximum 

reduction in latent periods were observed during 2080 under RCP 8.5 scenario, which 

were 10.23±0.29, 10.23±0.29, 10.44±0.36, 9.88±0.19, 9.84±0.18 and 9.03±0.35 in 

Jammu, Ludhiana, Dhaulakuan, Hisar, Meerut and Leh, respectively. Whereas, maximum 

duration of 11.44±0.22, 11.34±0.14, 11.66±0.24 and 11.56±0.2 was recorded at Leh 

during 2020 under four scenarios (RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5). Maximum 

reduction in latent period of 110.07, 49.27, 40.33, 35.32 and 35.87 per cent was observed 

in Jammu, Ludhiana, Dhaulakuan, Meerut and Hisar, respectively, during 2080 under 

RCP 8.5 scenario (Table 4). However, maximum per cent increase (26.41) in the latent 

period was observed at Leh under RCP 6.0 for 2020. All the scenarios showed maximum 

reduction in the latent period in all the three selected future periods at Jammu, followed 

by Ludhiana, Dhaulakuan, Meerut and Hisar, whereas, lowest increase was observed at 

Leh. Among all the models, CSIRO and IPSL indicated the maximum reduction in the 

duration of latent period of P. striiformis f. sp. tritici under each climate change scenario 

(RCPs), across all the locations in future climate periods over the baseline period (Fig. 1- 

4).   

4.3 Number of infection cycles of Puccinia striiformis f. sp. tritici   

 The number of infection cycles generated by Puccinia striiformis f. sp. tritici is 

predicted to increase under all the RCP scenarios in the three future climate periods 



Table 1: Variations in average maximum temperatures (°C) among four representative concentration pathway (RCP) scenarios across 

six wheat growing locations, during four time periods using MarkSim DSSAT weather file generator 
 

Scenario 

 

Time period Locations  

Jammu Ludhiana Dhaulakuan Hisar Meerut Leh 

Baseline 

(1975) 

25.25 29.43 30.84 31.11 30.85 19.70 

RCP 2.6 2020 31.51±0.13     

(6.26) 

32.90±0.1 

(3.47) 

30.19±0.15  

(0.65) 

33.89±0.17 

(2.78) 

32.40±0.03 

(1.55) 

14.26±0.11 

(5.44) 

2050 32.59±0.36     

(7.34) 

33.52±0.18 

(4.09) 

30.81±0.2 

(0.03) 

34.41±0.22  

(3.3) 

33.02±0.13 

(2.17) 

15.10±0.25 

(4.6) 

2080 32.28±0.22     

(7.03) 

33.63±0.2 

(4.20) 

30.83±0.23 

(0.01) 

34.72±0.18    

(3.61) 

33.12±0.17 

(2.27) 

18.42±3.15 

(1.28) 

RCP 4.5 2020 31.77±0.21     

(6.52) 

33.01±0.08 

(3.58) 

30.33±0.2 

(0.51) 

33.74±0.19    

(2.63) 

32.36±0.05 

(1.51) 

14.26±0.09 

(5.44) 

2050 32.64±0.19     

(7.39) 

34.32±0.2 

(4.89) 

31.30±0.18 

(0.46) 

35.06±0.11 

(3.95) 

33.41±0.13 

(2.56) 

15.70±0.16 

(4) 

2080 34.08±0.46     

(8.83) 

35.23±0.3 

(5.80) 

32.26±0.24 

(1.42) 

35.94±0.28 

(4.83) 

34.15±0.3 

(3.3) 

16.71±0.45 

(2.99) 

RCP 6.0 2020 31.76±0.34     

(6.51) 

32.89±0.07 

(3.46) 

29.91±0.08 

(0.93) 

33.46±0.49 

(2.35) 

32.19±0.11 

(1.34) 

14.10±0.15 

(5.6) 

2050 32.72±0.33     

(7.47) 

33.62±0.21 

(4.19) 

30.88±0.17 

(0.04) 

33.97±0.89 

(2.86) 

33.04±0.2 

(2.19) 

15.27±0.22 

(4.43) 

2080 34.22±0.49     

(8.97) 

35.06±0.14 

(5.63) 

32.3±0.41 

(1.86) 

35.24±0.76 

(4.13) 

34.22±0.2 

(3.37) 

16.73±0.38 

(2.97) 

RCP 8.5 2020 31.84±0.32     

(6.59) 

33.04±0.2 

(3.61) 

30.04±0.1 

(0.8) 

33.86±0.16 

(2.75) 

32.35±0.06 

(1.5) 

14.33±0.17 

(5.37) 

2050 33.86±0.48 

(8.61) 

34.91±0.22 

(5.48) 

31.96±0.19 

(1.12) 

34.98±0.55      

(3.87) 

34.13±0.25 

(3.28) 

16.36±0.27 

(3.34) 

2080 
36.38±0.66   

(11.13) 

37.67±0.28 

(6.56) 

34.34±0.41 

(3.5) 

37.07±0.61    

(7.64) 

36.03±0.25 

(5.18) 

19.12±0.64 

(0.58) 

± = Standard error.  

Values in parentheses are percent increase in minimum temperature (°C) over the baseline period. 



Table 2: Variations in average minimum temperature (°C) among four representative concentration pathway (RCP) scenarios, across 

six wheat growing locations, during four time periods using MarkSim DSSAT weather file generator 
 

Scenario 

Time period 
Locations  

Jammu Ludhiana Dhaulakuan Hisar Meerut Leh 

Baseline 

(1975) 
12.50 15.65 16.08 16.40 17.60 6.97 

RCP 2.6 

2020 
19. 65±0.11 

(7.15) 

18.38±0.09 

(2.73) 

17.76±0.12      

(1.68) 

18.56±0.1       

 (2.16) 

19.51±0.09      

(1.91) 

1.12±0.22 

 (5.85) 

2050 
20.63±0.36  

(8.13) 

19.08±0.18 

(3.43) 

18.49±0.26     

 (2.41) 

19.35±0.17      

(2.95) 

20.11±0.18      

(2.51) 

1.97±0.34      

(5) 

2080 
20.36±0.3  

(7.86) 

19.10±0.23 

(3.45) 

18.46±0.27      

(2.38) 

19.41±0.25      

(3.01) 

20.14±0.23      

(2.54) 

4.84±2.79  

(2.13) 

RCP 4.5 

2020 
19.70±0.13 

 (7.2) 

18.43±0.08 

(2.78) 

17.96±0.28      

(1.88) 

18.67±0.1       

 (2.27) 

19.49±0.08     

 (1.89) 

1.15±0.15  

(5.82) 

2050 
20.74±0.22  

(8.24) 

19.74±0.24 

(4.09) 

19.05±0.25      

(2.97) 

19.87±0.19     

 (3.47) 

20.63±0.2        

(3.03) 

2.58±0.35  

(4.39) 

2080 
21.83±0.38 

 (9.33) 

20.52±0.28 

(4.87) 

20.04±0.3        

(3.96) 

20.64±0.26      

(4.24) 

21.35±0.27      

(3.77) 

3.47±0.48  

 (3.5) 

RCP 6.0 

 

2020 
19.67±0.16  

(7.17) 

18.33±0.09 

(2.68) 

17.68±0.13      

  (1.6) 

18.42±0.2       

 (2.02) 

19.41±0.13      

(1.81) 

1.10±0.23 

 (5.87) 

2050 
20.69±0.21 

 (8.19) 

19.23±0.16 

(3.58) 

18.65±0.21      

(2.57) 

19.25±0.33     

 (2.85) 

20.23±0.18    

  (2.63) 

2.16±0.35  

(4.81) 

2080 
22.04±0.34 

 (9.54) 

20.59±0.22 

(4.94) 

20.9±0.48       

 (3.14) 

20.57±0.34     

 (4.17) 

21.45±0.22      

(1.94) 

3.85±0.56  

(2.73) 

RCP 8.5 

 

 

2020 
19.83±0.18  

(7.33) 

18.46±0.11 

(2.81) 

17.80±0.13      

(1.72) 

18.65±0.08     

 (2.25) 

19.59±0.1        

(1.99) 

1.22±0.21  

(5.75) 

2050 
21.74±0.35  

(9.24) 

20.41±0.26 

(4.76) 

19.74±0.29      

(3.66) 

20.40±0.19          

 (4) 

21.07±0.15      

(3.47) 

3.37±0.49 

  (3.6) 

2080 
24.08±0.54 

(11.58) 
22.35±0.53 (6.7) 

22.09±0.48     

 (6.01) 

22.63±0.3        

(6.23) 

23.30±0.32       

 (5.7) 

6.39±0.9   

(0.58) 

± = Standard error.  

Values in parentheses are percent increase in minimum temperature (°C) over the baseline period. 

 



Table 3: Variation in the duration of latent period (days) of Puccinia striiformis f. 

sp. tritici in wheat, for four representative concentration pathway (RCP) 

scenarios, during four time periods 

 

Scenario/ 

Time Period 

Locations 

Jammu Ludhiana Dhaulakuan Hisar Meerut Leh 

Baseline (1975) 21.49±0.07a* 15.27±0.093a 14.65±0.09a 13.37±0.08a 13.370±0.08a 8.58±0.09a 

RCP 2.6/2020 13.10±0.03b 13.10±0.03ab 13.42±0.02b 12.19±0.19b 11.91±0.05ab 11.44±0.22b 

RCP 2.6/2050 12.40±0.28b 12.40±0.28ab 13.11±0.36b 11.22±0.46b 11.62±0.03ab 10.98±0.24b 

RCP 2.6/2080 12.69±0.20b 12.69±0.20ab 13.09±0.06b 11.69±0.06b 11.63±0.03ab 10.08±0.78b 

RCP 4.5/2020 13.14±0.05b 13.14±0.05ab 13.45±0.03b 12.38±0.22b 11.90±0.05ab 11.34±0.14b 

RCP 4.5/2050 12.42±0.26b 12.42±0.26ab 12.79±0.21b 11.48±0.13b 11.34±0.16ab 10.62±0.19b 

RCP 4.5/2080 11.64±0.08b 11.64±0.08ab 12.00±0.22b 10.82±0.16b 10.79±0.17ab 10.11±0.31b 

RCP 6.0/2020 13.13±0.05b 13.13±0.05ab 14.07±0.27b 12.49±0.46b 11.94±0.07ab 11.66±0.24b 

RCP 6.0/2050 12.44±0.25b 12.44±0.25ab 12.91±0.21b 12.17±0.54b 11.50±0.13ab 10.89±0.19b 

RCP 6.0/2080 11.32±0.21b 11.32±0.21ab 11.74±0.07b 10.85±0.15b 10.67±0.07ab 10.17±0.28b 

RCP 8.5/2020 13.07±0.05b 13.07±0.05ab 13.60±0.23b 12.19±0.17b 11.84±0.06ab 11.56±0.22b 

RCP 8.5/2050 11.52±0.21b 11.52±0.21ab 12.13±0.25b 10.99±0.20b 11.08±0.20ab 10.31±0.28b 

RCP 8.5/2080 10.23±0.29b 10.23±0.29b 10.44±0.36b 9.88±0.19b 9.84±0.18b 9.03±0.35b 

P<0.001 2.2e-16 2.2e-16 2.2e-16 6.276e-13 2e-16 2.221e-12 

F calculated 319.33 60.71 44.96 13.51 60.88 12.70 

Error degree of 

freedom 
60 60 60 60 60 60 

 

 

 

 

 

 

 

 

 

 



Table 4: Per cent change in the duration of latent period (days) of Puccinia 

striiformis f. sp. tritici in wheat in four representative concentration 

pathway (RCP) scenarios during four time periods 

 

Scenario/ 

Time Period 

Locations 

Jammu Ludhiana Dhaulakuan Hisar Meerut Leh 

RCP 2.6/2020 64.05 16.56 9.17 9.68 12.26 25.00 

RCP 2.6/2050 73.31 23.15 11.75 19.16 15.06 21.85 

RCP 2.6/2080 69.35 20.33 11.92 14.37 14.96 14.88 

RCP 4.5/2020 63.55 16.21 8.92 7.99 12.35 24.34 

RCP 4.5/2050 73.03 22.95 14.54 16.46 17.90 19.21 

RCP 4.5/2080 84.62 31.19 22.08 23.57 23.91 15.13 

RCP 6.0/2020 63.67 16.30 4.12 7.05 11.98 26.41 

RCP 6.0/2050 72.75 22.75 13.48 9.86 16.26 21.21 

RCP 6.0/2080 89.84 34.89 24.79 23.22 25.30 15.63 

RCP 8.5/2020 64.42 16.83 7.72 9.68 12.92 25.78 

RCP 8.5/2050 86.55 32.55 20.78 21.66 20.67 16.78 

RCP 8.5/2080 110.07 49.27 40.33 35.32 35.87 4.98 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 1: Variation in the duration of latent period (days) of Puccinia striiformis f. sp. 

tritici in wheat, during four time periods for RCP 2.6 

 

 

Fig. 2: Variation in the duration of latent period (days) of Puccinia striiformis f. sp. 

tritici in wheat, during four time periods for RCP 4.5 



 

Fig. 3: Variation in the duration of latent period (days) of Puccinia striiformis f. sp. 

tritici in wheat, during four time periods for RCP 6.0 

 

 

Fig. 4: Variation in the duration of latent period (days) of Puccinia striiformis f. sp. 

tritici in wheat, during four time periods for RCP 8.5 



Table 5: Variations in the number of Puccinia striiformis f. sp. tritici infection cycles 

in wheat for four representative concentration pathway (RCP) scenarios 

during four time periods 

 

Scenario/ 

Time Period 

Locations 

Jammu Ludhiana 
Dhaula 

kuan 
Hisar Meerut Leh 

Baseline 

(1975) 
4.56±0.09b* 6.42±0.10b 6.55±0.12b 7.45±0.08b 7.79±0.07b 7.62±0.10a 

RCP 2.6/2020 7.74±0.04a 7.69±0.05ab 7.37±0.04ab 8.24±0.10a 8.52±0.15a 8.46±0.01b 

RCP 2.6/2050 8.29±0.10a 8.10±0.07ab 7.86±0.11ab 9.14±0.49a 8.93±0.20a 8.85±0.07b 

RCP 2.6/2080 8.11±0.10a 8.13±0.10ab 7.80±0.12ab 8.72±0.07a 10.12±1.16a 8.83±0.07b 

RCP 4.5/2020 7.73±0.06a 7.67±0.06ab 7.38±0.04ab 8.20±0.11a 8.50±0.10a 8.47±0.02b 

RCP 4.5/2050 8.26±0.12a 8.37±0.13ab 8.09±0.12ab 8.93±0.10a 9.29±0.18a 9.05±0.10b 

RCP 4.5/2080 8.88±0.14a 8.86±0.12ab 8.56±0.18ab 9.39±0.11a 9.73±0.28a 9.45±0.13b 

RCP 6.0/2020 7.75±0.10a 7.63±0.07ab 7.33±0.05ab 8.10±0.21a 8.41±0.16a 8.41±0.06b 

RCP 6.0/2050 8.24±0.10a 8.08±0.14ab 7.87±0.12ab 8.46±0.32a 8.96±0.19a 8.84±0.10b 

RCP 6.0/2080 9.01±0.15a 8.82±0.11ab 8.67±0.15ab 9.38±0.09a 9.74±0.26a 9.48±0.07b 

RCP 8.5/2020 7.83±0.08a 7.76±0.06ab 7.42±0.07ab 8.28±0.08a 8.49±0.15a 8.51±0.05b 

RCP 8.5/2050 8.85±0.20a 8.75±0.16ab 8.53±0.14ab 9.15±0.16a 9.58±0.25a 9.30±0.10b 

RCP 8.5/2080 10.12±0.23a 9.91±0.33a 9.92±0.29a 10.36±0.18a 10.97±0.42a 10.50±0.16b 

P<0.001 2.2e-16 2.2e-16 2.2e-16 5.092e-15 2.2e-16 2.435e-06 

F calculated 170.38 50.29 62.10 16.93 79.64 5.61 

Error degree of 

freedom 
60 60 60 60 60 60 



Table 6: Per cent change in number of infection cycles of Puccinia striiformis f. sp. 

tritici in wheat in four representative concentration pathway (RCP) 

scenarios during four time periods 

 

Scenario/ 

Time Period 

Locations 

Jammu Ludhiana Dhaulakuan Hisar Meerut Leh 

RCP 2.6/2020 44.99 20.74 12.77 18.50 16.67 13.89 

RCP 2.6/2050 43.77 21.03 23.02 14.56 16.03 13.70 

RCP 2.6/2080 41.01 16.29 8.35 9.15 11.25 10.03 

RCP 4.5/2020 44.79 23.29 16.15 16.57 19.04 15.80 

RCP 4.5/2050 48.65 27.54 19.94 20.66 23.48 19.37 

RCP 4.5/2080 41.16 15.86 7.37 8.02 10.64 9.39 

RCP 6.0/2020 44.66 20.54 13.06 11.94 16.77 13.80 

RCP 6.0/2050 49.39 27.21 20.02 20.58 24.45 19.62 

RCP 6.0/2080 41.76 17.27 0.35 0.48 0.67 0.59 

RCP 8.5/2020 48.47 26.63 18.69 18.58 23.21 18.06 

RCP 8.5/2050 54.94 35.22 28.99 28.09 33.97 27.43 

RCP 8.5/2080 41.09 16.52 8.57 9.59 11.13 9.93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 5: Variations in the number of generations of Puccinia striiformis f. sp. tritici in 

wheat during four time periods for RCP 2.6 

 

 

Fig. 6:  Variations in the number of generations of Puccinia striiformis f. sp. tritici in 

wheat during four time periods for RCP 4.5 



 

Fig. 7: Variations in the number of generations of Puccinia striiformis f. sp. tritici in 

wheat during four time periods for RCP 6.0 

 

 

 Fig. 8: Variations in the number of generations of Puccinia striiformis f. sp. tritici in 

wheat during four time periods for RCP 8.5 
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(2020, 2050 and 2080). The increase is predicted to be 9.91± 0.33 to 10.97± 0.42 under 

RCP 8.5 during the year 2080 (Table 5). Significant differences were observed in the 

number of infection cycles generated in all the selected locations under the four 

scenarios, for future time periods as compared to the baseline period (1975). However, 

there was no statistical difference among the scenarios, locations and future periods. 

Steady increase in number of generations was predicted in 2020 among the four RCP 

scenarios, which increased slightly in 2050 and sharply during 2080 period. Maximum 

per cent increase of 54.94, 35.22, 28.99, 28.09, 33.97  and 27.43 in number of P. 

striiformis f. sp. tritici infection cycles were recorded by RCP 8.5 scenario in Jammu, 

Ludhiana, Dhaulakuan, Hisar, Meerut and Leh, respectively during 2080 (Table 6).  

Model CSIRO and IPSL indicated the maximum number of P. striiformis f. sp. tritici 

generations under each climate change scenario (RCP), across all the locations in future 

climate periods over the baseline (Fig. 5-8).    

4.4  Auto Regressive Integrated Moving Average (ARIMA) model for stripe   

rust of wheat 

 To predict the stripe rust of wheat, disease severity at weekly intervals from 2005 

to 2019 was analysed to develop the Auto Regressive Integrated Moving Average 

(ARIMA) model, namely Box-Jenkins model. The stripe rust severity at weekly intervals 

from 2005 to 2017 was used as training data sets to build the ARIMA model which was 

validated to predict the severity of stripe rust of wheat during 2017-2019. The validated 

ARIMA model was fitted with the weekly interval meteorological factors as exogenous 

variables viz., maximum and minimum temperatures, morning and evening relative 

humidity and rainfall, from 2005 to 2019 to develop ARIMAX model (Auto Regressive 

Integrated Moving Average with Exogenous Variables), in order to predict the severity of 

stripe rust of wheat from 2020-2022. 

4.5 Descriptive statistics of meteorological factors and stripe rust of wheat 

4.5.1 Severity of stripe rust of wheat 

 The mean, median, skewness, kurtosis, and maximum and minimum severity of 

stripe rust are presented in Table 7. During the study period (2005-19), overall mean 
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disease severity was 35.30±1.41 per cent, whereas, minimum and maximum severity was 

0.27 and 59.87 per cent, respectively. Skewness and kurtosis were -0.62 and -1.10, 

respectively, indicating that severity was negatively skewed with platykurtic distributions 

(Fig. 9). 

4.5.2 Meteorological factors 

 During the period (2005-19), mean maximum temperature was 21.33±0.310C. 

The maximum and minimum values of maximum temperature were 35.40 and 10.850C, 

respectively (Table 7 and Fig. 10). Whereas, average minimum temperature during the 

period was 7.91±0.220C. The maximum and minimum values of minimum temperature 

were 16.30 and 1.470C, respectively. 

 Data in the Table 7 further exhibit that the average morning relative humidity 

(RH) was 89.30±0.37 per cent during 2015-2019. The maximum and minimum values of 

morning RH were 97.42 and 61.00 per cent, respectively. Whereas, in case of evening 

RH, the average was 52.45±0.72 per cent. The maximum and minimum values for 

minimum RH were 79.00 and 22.00 per cent, respectively (Fig. 11). During the period, 

average rainfall was 6.39±0.93mm with maximum of 80.66mm (Fig. 12). 

4.6 Identification of forecasting model for stripe rust of wheat 

 To build-up ARIMA model (univariate), per cent severity of stripe rust of wheat 

from 2005-2019 was converted into time series frame, which analysed the past 

observations to make forecasts for the future. In order to understand underlying patterns 

of the severity of stripe rust of wheat, decomposition was computed. Data in the Fig. 13 

exhibit upward and downward fluctuations in the observed data sets, indicating non-

stationary nature which implies that the mean disease severity was increasing and 

decreasing with time among the selected years. The overall increasing trend of stripe rust, 

seasonal variations between year (upward and downward pattern) and unpredictable 

influences, which were not regular and also did not repeat in a particular pattern were 

observed after decomposing. 



Table 7: Summary of weekly meteorological factors and severity of stripe rust of wheat in Jammu during 2005-2019 

 

Epidemiological variable Observation 

 

Mean Minimum 

 

P25 Median P75 Maximum 

 

Skewness Kurtosis 

Disease severity (%) 180 35.30±1.41 0.27 20.70 42.65 50.78 59.87 -0.62 -1.10 

Max. Temp. (oC) 180 21.33±0.31 10.85 18.18 20.50 24.23 35.40 0.62 0.32 

Min. Temp. (oC) 180 7.91±0.22 1.47 5.475 7.70 9.800 16.30 0.29 -0.53 

Morning RH (%) 180 89.30±0.37 61.00 86.67 90.43 92.71 97.42 -1.56 5.28 

Evening RH (%) 180 52.45±0.72 22.00 46.00 52.43 58.14 79.00 0.00 0.26 

Rainfall (mm) 180 6.39±0.93 0.00 0.000 3.46 6.855 80.66 3.37 13.50 

 

P25 = Ist Quartile; P75 = 3rd Quartile; Max. Temp. = Maximum temperature (oC); Min. Temp. = Minimum temperature (oC); 

RH = Relative humidity (%)



 

Fig. 9: Weekly severity (%) of stripe rust of wheat in Jammu during 2005 - 2019 

 

 

Fig. 10: Weekly mean temperature (maximum and minimum) in Jammu during 

2005 - 2019 



 

Fig. 11: Weekly mean relative humidity (maximum and minimum) in Jammu 

during 2005-2019 

 

 

Fig. 12: Weekly mean rainfall (mm) in Jammu during 2005-2019 



 

Fig. 13: Weekly severity (%) of stripe rust of wheat in Jammu during 2005-2019 

 

Fig. 14: 1st differencing of severity (%) of stripe rust of wheat in Jammu during 

2005-2019 
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 To make the data sets stationary (white-noise), 1st order differencing (lag 1) of 

severity data sets was performed (Fig. 14), resulting in both mean and variance constant 

and not dependent over time. In order to build ARIMA model, differencing of order one 

(d=1) was done to make the series stationary for severity of stripe rust of wheat. 

4.6.1 Unit root test  

 After making the differencing (d=1) of time series of stripe rust of wheat, 

stationarity was checked through unit root tests viz., Augmented Dickey-Fuller (ADF) 

and Phillips-Perron tests (PP). Data in the Table 8 revealed that differenced series was 

stationary as Augmented Dickey-Fuller = -9.4802, P < 0.01, and Phillips-Perron = -

71.347, P < 0.01 were significant. 

4.6.2 Auto-correlation factor (ACF) and partial auto-correlation factor  

 (PACF) 

 Plotting of auto-correlation factor (ACF) and partial auto-correlation factor 

(PACF) revealed the values of q (Moving Average, MA) and p (Auto-Regressive, AR) 

for the build up of ARIMA model. As only one significant spike in the ACF plot and two 

significant spikes in the PACF plot were outside the dotted horizontal lines, order of q 

(MA) was 1 and that of p (AR) was 2, respectively, resulting in AR=2 and MR=1 model 

(Fig. 15). 

4.7 Model generation 

 In order to find out the most suitable model for prediction of stripe rust of wheat 

for future periods, five models were selected viz., ARIMA (2,1,1)(1,1,1)7, ARIMA 

(1,1,2)(1,1,1)7, ARIMA(1,1,1)(1,1,1)7, ARIMA (1,1,1)(1,1,2)7 and ARIMA 

(1,1,1)(2,1,1)7, based on four different conditions p =  1 or 2, q = 1 or 2; P = 1 or 2; Q = 1 

or 2 with I = 1, having minimum AIC (Akaike Information Criteria) values of 387.19, 

387.62, 388.06, 389.95 and 389.89, respectively (Table 9). Simultaneously, through auto-

ARIMA function, ninety-four ARIMA models were generated, of which ARIMA 

(2,1,1)(1,1,1)7, ARIMA(1,1,1)(1,1,1)7, ARIMA (1,1,1)(1,1,2)7, ARIMA (1,1,1)(2,1,1)7 

and ARIMA (1,1,2)(1,1,1)7  were selected having lowest AIC value (Table 10). 



43 

4.8 Estimation of model parameters 

 Data in the Table 9 exhibited the parameter statistics of selected ARIMA models 

for the prediction of stripe rust of wheat. The model (2,1,1)(1,1,1)7 exhibited that 

estimation of 1st and 2nd order auto-regressive coefficient ϕ1 and ϕ2, 1st order moving 

average coefficient θ1, 1st order seasonal auto-regressive coefficient ɸ1 and1st order 

seasonal moving average coefficient Θ1 were highly significant (ϕ1 =0.37, p = 1.229e-05; 

ϕ2 =0.14, p = 0.08; θ1 = -0.96, p = < 2.2e-16; ɸ1 =0.40, p = 0.02029 and Θ1 = -0.71, p = 

1.033e-06, respectively).  

 In model ARIMA (1,1,1)(1,1,1)7, estimate of 1st order of auto-regressive 

coefficient ϕ1, moving average coefficient θ1, seasonal auto-regressive coefficient ɸ1 and 

seasonal moving average coefficient Θ1 were highly significant (ϕ1 =0.39, p = 0.0005437; 

θ1 = -0.92, p = < 2.2e-16; ɸ1 =0.39, p = 0.0199690 and Θ1 = -0.72, p = 4.92e-07, 

respectively). Whereas, in ARIMA (1,1,1) (1,1,2)7 estimates of 1st order of auto-

regressive coefficient ϕ1 and moving average coefficient θ1 were significant (ϕ1 =0.399, p 

= 0.0003461; θ1 = -0.92, p = < 2.2e-16). In ARIMA (1,1,1) (2,1,1)7, estimates of 1st order 

of auto-regressive coefficient ϕ1 and moving average coefficient θ1 along with 1st order of 

seasonal moving average coefficient Θ1 were highly significant (ϕ1 =0.39, p = 0.0002301; 

θ1 = -0.93, p = < 2.2e-16; Θ1 = -0.66, p = 0.0016030, respectively). The ARIMA (1,1,2) 

(1,1,1)7 have estimates for 1st order of auto-regressive coefficient ϕ1, moving average 

coefficient θ1, seasonal auto-regressive ɸ1 and moving average coefficient Θ1 highly 

significant (ϕ1 =0.67, p = 5.990e-06; θ1 = -1.25, p = 1.976e-11; ɸ1 = 0.39, p =0.02871 and 

Θ1 = -0.69, p = 8.398e-06, respectively). 

4.9 Performance of models 

 Data in the Table 11 show that ARIMA (2,1,1)(1,1,1)7 had lowest Root mean 

square error (RMSE) and Mean absolute percentage error (MAPE) of 0.7071721 and 

4.352807, respectively, along with  maximum Mean absolute scaled error (MASE) of 

0.04534878 with the accuracy of 95.65 per cent. ARIMA (1,1,1) (1,1,1)7 depicted the 

RMSE, MAPE, MASE and accuracy of 0.7137975, 4.529791, 0.0453234 and 95.48 per 

cent, respectively. Whereas, ARIMA (1,1,1) (1,1,2)7 showed RMSE, MAPE, MASE and 



Table 8: Unit Root stationarity tests for stripe rust of wheat 

 

Test t-statistics P value 

Augmented Dickey-Fuller (ADF) -9.480 0.01* 

Phillips-Perron (PP) -71.347 0.01* 

 *Significant at p ≤0.05 



Table 9: Estimates of the ARIMA models based on wheat stripe rust severity (%) 

parameters 

 

ϕ1 and ϕ2: 1-order and 2-order auto-regressive coefficient; θ1 and θ2: 1-order and 2-

order moving average coefficient; ɸ1 and ɸ1: 1-order and 2-order seasonal auto-

regressive coefficients; Θ1 andΘ2: 1-order and 2-order seasonal moving average 

coefficient 

 

*** Significant at p ≤ 0.001  

** Significant at p ≤ 0.01  

* Significant at p ≤ 0.05  
. Significant at p ≤ 0.1 

AIC = Akaike Information Criterion 

Model  Coefficient Estimate Standard 

Error 

t-test p-value AIC 

ARIMA(2,1,1) 

(1,1,1)7 

ϕ1(ar1) 0.37 0.09 4.37 1.229e-05 *** 387.19 

ϕ2 (ar2) 0.14 0.08 1.74 0.08119. 

θ1 (ma1) -0.96 0.03 -27.20 < 2.2e-16 *** 

ɸ1 (sar1) 0.40 0.17 2.32 0.02029 * 

Θ1 (sma1) -0.71 0.15 -4.89 1.033e-06 *** 

ARIMA 

(1,1,1)(1,1,1)7 

ϕ1(ar1) 0.39    0.11    3.46 0.0005437 *** 388.06 

θ1 (ma1) -0.92      0.07 -14.10 < 2.2e-16 *** 

ɸ1 (sar1) 0.39    0.17    2.33 0.0199690 * 

Θ1 (sma1) -0.72      0.14  -5.03 4.92e-07 *** 

ARIMA 

(1,1,1)(1,1,2)7 

ϕ1(ar1) 0.39   0.11    3.58 0.0003461 *** 389.95 

θ1 (ma1) -0.92      0.06 -14.52 < 2.2e-16 *** 

ɸ1 (sar1) 0.28    0.37    0.73 0.4656950 

Θ1 (sma1) -0.60    0.38   -1.59 0.1116735 

Θ2 (sma2) -0.06    0.17   -0.35 0.7294539 

ARIMA 

(1,1,1)(2,1,1)7 

ϕ1(ar1) 0.39 0.11 3.68 0.0002301 *** 389.89 

θ1 (ma1) -0.93 0.06 -14.96 < 2.2e-16 *** 

ɸ1 (sar1) 0.34    0.22    1.56 0.1183378 

ɸ2(sar2) -0.05    0.12   -0.43 0.6694429 

Θ1 (sma1) -0.66    0.21   -3.16 0.0016030 ** 

ARIMA 

(1,1,2)(1,1,1)7 

ϕ1(ar1) 0.67 0.15 4.53 5.990e-06 *** 387.62 

θ1 (ma1) -1.25 0.19 -6.71 1.976e-11 *** 

θ2(ma2) 0.28 0.17 1.64 0.10038 

ɸ1 (sar1) 0.39     0.18   2.19    0.02871 * 

Θ1 (sma1) -0.69     0.16 -4.45 8.398e-06 *** 



Table 10: ARIMA models generated through auto - ARIMA  

 

S.No. Model AIC S.No. Model AIC 

1 ARIMA(0,1,0)(0,1,0)[7] 452.03 48 ARIMA(1,1,1)(0,1,2)[7] 388.84 

2 ARIMA(0,1,0)(0,1,1)[7] 435.81 49 ARIMA(1,1,1)(1,1,0)[7] 393.03 

3 ARIMA(0,1,0)(0,1,2)[7] 429.53 50 ARIMA(1,1,1)(1,1,1)[7] 388.43 

4 ARIMA(0,1,0)(1,1,0)[7] 443.55 51 ARIMA(1,1,1)(1,1,2)[7] 390.48 

5 ARIMA(0,1,0)(1,1,1)[7] 429.24 52 ARIMA(1,1,1)(2,1,0)[7] 392.61 

6 ARIMA(0,1,0)(1,1,2)[7] 431.03 53 ARIMA(1,1,1)(2,1,1)[7] 390.42 

7 ARIMA(0,1,0)(2,1,0)[7] 438.53 54 ARIMA(1,1,2)(0,1,0)[7] 397.74 

8 ARIMA(0,1,0)(2,1,1)[7] 430.92 55 ARIMA(1,1,2)(0,1,1)[7] 389.25 

9 ARIMA(0,1,0)(2,1,2)[7] 432.78 56 ARIMA(1,1,2)(0,1,2)[7] 388.33 

10 ARIMA(0,1,1)(0,1,0)[7] 402.15 57 ARIMA(1,1,2)(1,1,0)[7] 391.81 

11 ARIMA(0,1,1)(0,1,1)[7] 392.95 58 ARIMA(1,1,2)(1,1,1)[7] 388.14 

12 ARIMA(0,1,1)(0,1,2)[7] 394.46 59 ARIMA(1,1,2)(2,1,0)[7] 390.92 

13 ARIMA(0,1,1)(1,1,0)[7] 394.45 60 ARIMA(1,1,3)(0,1,0)[7] 399.85 

14 ARIMA(0,1,1)(1,1,1)[7] 394.31 61 ARIMA(1,1,3)(0,1,1)[7] 391.40 

15 ARIMA(0,1,1)(1,1,2)[7] 396.41 62 ARIMA(1,1,3)(1,1,0)[7] 393.85 

16 ARIMA(0,1,1)(2,1,0)[7] 395.30 63 ARIMA(1,1,4)(0,1,0)[7] 401.82 

17 ARIMA(0,1,1)(2,1,1)[7] 396.41 64 ARIMA(2,1,0)(0,1,0)[7] 415.09 

18 ARIMA(0,1,1)(2,1,2)[7] 398.33 65 ARIMA(2,1,0)(0,1,1)[7] 404.73 

19 ARIMA(0,1,2)(0,1,0)[7] 402.42 66 ARIMA(2,1,0)(0,1,2)[7] 405.18 

20 ARIMA(0,1,2)(0,1,1)[7] 391.60 67 ARIMA(2,1,0)(1,1,0)[7] 407.02 

21 ARIMA(0,1,2)(0,1,2)[7] 392.49 68 ARIMA(2,1,0)(1,1,1)[7] 404.84 

22 ARIMA(0,1,2)(1,1,0)[7] 393.87 69 ARIMA(2,1,0)(1,1,2)[7] 406.99 

23 ARIMA(0,1,2)(1,1,1)[7] 392.09 70 ARIMA(2,1,0)(2,1,0)[7] 406.84 

24 ARIMA(0,1,2)(1,1,2)[7] 394.23 71 ARIMA(2,1,0)(2,1,1)[7] 406.99 

25 ARIMA(0,1,2)(2,1,0)[7] 394.38 72 ARIMA(2,1,1)(0,1,0)[7] 398.91 

26 ARIMA(0,1,2)(2,1,1)[7] 394.22 73 ARIMA(2,1,1)(0,1,1)[7] 389.72 

27 ARIMA(0,1,3)(0,1,0)[7] 402.38 74 ARIMA(2,1,1)(0,1,2)[7] 387.73 

28 ARIMA(0,1,3)(0,1,1)[7] 391.20 75 ARIMA(2,1,1)(1,1,0)[7] 393.36 

29 ARIMA(0,1,3)(0,1,2)[7] 389.42 76 ARIMA(2,1,1)(1,1,1)[7] 387.72 

30 ARIMA(0,1,3)(1,1,0)[7] 394.68 77 ARIMA(2,1,1)(2,1,0)[7] 390.75 

31 ARIMA(0,1,3)(1,1,1)[7] 389.50 78 ARIMA(2,1,2)(0,1,0)[7] 399.85 

32 ARIMA(0,1,3)(2,1,0)[7] 393.03 79 ARIMA(2,1,2)(0,1,1)[7] 391.39 

33 ARIMA(0,1,4)(0,1,0)[7] 403.03 80 ARIMA(2,1,2)(1,1,0)[7] 393.82 

34 ARIMA(0,1,4)(0,1,1)[7] 391.54 81 ARIMA(2,1,3)(0,1,0)[7] 401.99 

35 ARIMA(0,1,4)(1,1,0)[7] 395.50 82 ARIMA(3,1,0)(0,1,0)[7] 412.97 

36 ARIMA(0,1,5)(0,1,0)[7] 404.80 83 ARIMA(3,1,0)(0,1,1)[7] 404.50 

37 ARIMA(1,1,0)(0,1,0)[7] 420.90 84 ARIMA(3,1,0)(0,1,2)[7] 404.62 

38 ARIMA(1,1,0)(0,1,1)[7] 409.84 85 ARIMA(3,1,0)(1,1,0)[7] 406.61 

39 ARIMA(1,1,0)(0,1,2)[7] 406.97 86 ARIMA(3,1,0)(1,1,1)[7] 404.42 

40 ARIMA(1,1,0)(1,1,0)[7] 414.35 87 ARIMA(3,1,0)(2,1,0)[7] 406.27 

41 ARIMA(1,1,0)(1,1,1)[7] 407.21 88 ARIMA(3,1,1)(0,1,0)[7] 400.43 

42 ARIMA(1,1,0)(1,1,2)[7] 409.00 89 ARIMA(3,1,1)(0,1,1)[7] 391.50 

43 ARIMA(1,1,0)(2,1,0)[7] 409.92 90 ARIMA(3,1,1)(1,1,0)[7] 394.41 

44 ARIMA(1,1,0)(2,1,1)[7] 409.03 91 ARIMA(4,1,0)(0,1,0)[7] 411.30 

45 ARIMA(1,1,0)(2,1,2)[7] 411.15 92 ARIMA(4,1,0)(0,1,1)[7] 400.53 

46 ARIMA(1,1,1)(0,1,0)[7] 401.46 93 ARIMA(4,1,0)(1,1,0)[7] 402.73 

47 ARIMA(1,1,1)(0,1,1)[7] 389.93 94 ARIMA(4,1,1)(0,1,0)[7] 402.35 



Table 11: ARIMA models fit statistics of severity (%) of stripe rust of wheat 

 

Model 
Ljung-Box test RMSE MAPE MASE Accuracy 

 
Statistics DF Significance 

ARIMA(2,1,1)(1,1,1)7 34.046 25 0.1069 0.7071721 4.352807 0.04534878 95.65 

ARIMA(1,1,1)(1,1,1)7 35.438 25 0.05216 0.7137975 4.529791 0.0453234 95.48 

ARIMA 1,1,1)(1,1,2)7 37.162 25 0.05573 0.713325 4.540096 0.0452683 95.46 

ARIMA 1,1,1)(2,1,1)7 37.034 25 0.05731 0.7130573 4.546114 0.0452238 95.46 

ARIMA 1,1,2)(1,1,1)7 33.713 25 0.1142 0.7083732 4.37238 0.04514377 95.63 

RMSE = Root mean square error, MAPE = Mean absolute percentage error  

MASE= Mean absolute scaled error 



 

Fig. 15: Autocorrelation (ACF) and Partial-autocorrelation (PACF) plots of 1-step 

differences of severity (%) of stripe rust of wheat 

 

 

Fig. 16: Validation of the ARIMA model (2,1,1) (1,1,1)7for severity (%) of stripe rust 

of wheat 

Red lines = 2005-2017 and Green lines = 2018-2019 



Table 12: Forecast accuracy of severity (%) of stripe rust of wheat by ARIMA 

model (2,1,1)(1,1,1)7 

 

Year SMW 
Observed 

severity (%) 

Estimated 

severity (%) 

Percent relative 

deviation (RD%) 

 

 

 

 

 

2018 

1st 1.05 1.41   25.53 

2nd 5.10 5.23 2.54 

3rd 13.24 13.64 3.20 

4th 25.67 25.44 0.89 

5th 38.00 38.43 1.13 

6th 44.45 42.28 4.88 

7th 48.97 44.98 8.14 

8th 50.12 47.91 4.40 

9th 52.33 50.99 2.56 

10th 54.67 54.28 0.71 

11th 56.71 55.78 1.64 

12th 58.25 57.47 1.34 

 

 

 

 

 

2019 

1st 1.89 1.60  15.34 

2nd 5.25 5.33 1.52 

3rd 14.78 13.84 6.36 

4th 26.78 25.44 5.00 

5th 38.98 38.53 1.15 

6th 45.67 42.34 7.29 

7th 49.25 45.08 8.46 

8th 51.23 48.07 6.17 

9th 53.47 51.11 4.41 

10th 54.68 54.18 0.91 

11th 57.45 55.88  2.73 

12th 59.87 57.57 3.84 

 

  

 

 



Table 13: Prediction of severity (%) of stripe rust of wheat by ARIMA model 

(2,1,1)(1,1,1)7 

 

SMW 
Year  

2020 2021 2022 

1st 3.22±0.73 3.83±1.052 4.37±1.28 

2nd 6.53±0.79 7.17±1.087 7.73±1.32 

3rd 15.72±0.83 16.30±1.11 16.85±1.34 

4th 27.24±0.85 27.67±1.13 28.16±1.36 

5th 39.57±0.86 40.07±1.14 40.58±1.37 

6th 45.66±0.86 45.95±1.14 46.37±1.38 

7th 49.29±0.87 49.60±1.15 50.03±1.39 

8th 51.45±0.87 51.84±1.16 52.30±1.39 

9th 53.84±0.88 54.28±1.16 54.77±1.40 

10th 55.38±0.88 55.97±1.17 56.51±1.41 

11th 58.01±0.88 58.54±1.17 59.06±1.42 

12th 60.20±0.88 60.64±1.18 61.12±1.42 
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accuracy of 0.713325, 4.540096, 0.0452683 and 95.46 per cent, respectively. The RMSE, 

MAPE, MASE and accuracy of ARIMA (1,1,1) (2,1,1)7 and ARIMA (1,1,2) (1,1,1)7 were 

0.7130573, 4.546114, 0.0452238 and 95.46 per cent; 0.7083732, 4.37238, 0.04514377 

and 95.63 per cent, respectively. Box-Ljung test of all the developed models viz., ARIMA 

(2,1,1)(1,1,1)7, ARIMA(1,1,1)(1,1,1)7, ARIMA (1,1,1)(1,1,2)7, ARIMA (1,1,1)(2,1,1)7 

and ARIMA (1,1,2)(1,1,1)7  showed  that the residuals are random and that the model 

provides an adequate fit to the data (χ2 = = 34.046, p = 0.1069; χ2 = = 35.438, p = 

0.05216; χ2= 37.162, p = 0.05573, χ2 = 37.034 , p = 0.05731 and χ2 = 33.713 , p = 

0.1142).   

 Based on the lowest value of RMSE and MAPE and highest accuracy, ARIMA 

(2,1,1)(1,1,1)7 was selected among the five developed models and was tested with the 

data sets of 2017-2019 (Fig. 16). Data in the Table 12 exhibited that the developed model 

predicted the severity of stripe rust of wheat in 2018-2019 with minimum per cent 

relative deviation (0.71 to 8.14; 0.91 to 8.46) except in the first week of both the tested 

years, favouring the use of ARIMA (2,1,1)(1,1,1)7 for short-term forecasts. ARIMA 

(2,1,1)(1,1,1)7 predicted the stripe rust severity of 3.22±0.73 to 60.20±0.88; 3.83±1.052 to 

60.64±1.18 and 4.37±1.28 to 61.12±1.42 for the year 2020, 2021 and 2022, respectively 

(Table 13). 

4.10 Diagnostic measures 

 After the selection and validation of ARIMA (2,1,1)(1,1,1)7, for forecasting 

severity (%) of stripe rust of wheat, pattern in the residuals was tested whether the 

residuals could meet white noise assumptions, as the residuals from the ARIMA 

(2,1,1)(1,1,1)7, assumed to be independent, homoscedastic, and usually normally 

distributed. Auto-correlation factor (ACF) and partial auto-correlation factor (PACF) 

plots of the residuals showed no significant auto-correlations since all the values were 

within the threshold limits, indicating that the residuals were behaving like white noise 

(Fig. 17a to 17c). Almost all the values were laid on the line in Normal QQ plot (Fig. 18); 

and the shape of the Histogram appeared “Bell Shaped” (Fig. 19) curve indicating that 

the residuals of the fitted model could be referred as normal. Box-Ljung test failed to 
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reject the null hypothesis (model does not lack goodness of fit) of independence with a P-

value of 0.1394 (Fig. 20). 

4.11 Auto Regressive Integrated Moving Average with Exogenous Variables 

 (ARIMAX)  

 The Box-Jenkins methodology of specification, estimation of parameters, and 

diagnostic check was similar to both ARIMA as well as ARIMAX models. There was an 

additional step known as pre-whitening in ARIMAX applied to remove autocorrelations 

among meteorological factors viz., maximum and minimum temperature, morning and 

evening relative humidity and rainfall which acted as exogenous variables in case of 

ARIMAX modelling 

4.11.1 Selection of meteorological factors 

 Cross-correlation factor (CCF) was explored to investigate the relationship 

between meteorological factors and per cent severity of stripe rust of wheat. Data on 

weekly intervals DS and meteorological factors during 2005-2019 were pre-whitened. 

Cross-correlation between the pre-whitened meteorological factors (maximum and 

minimum temperature, morning and evening relative humidity and rainfall) and DS 

exhibited that only minimum temperature showed the presence of relationship at one lag 

with DS. All the associations generated through CCF were used in establishing the 

ARIMAX model (Fig. 21a to 21e). 

4.11.2 Developing ARIMAX model 

 The meteorological factors viz., maximum temperature, morning and evening 

relative humidity at lag 0 and minimum temperature along with rainfall at lag 1 were 

used as covariates to fit in ARIMA model (2,1,1)(1,1,1)7. Data in the Table 14  portray 

that ARIMA model with covariates of minimum temperature at lag 1 and rainfall at lag 1, 

along with the two covariates (minimum temperature and rainfall at lag 1), had 

statistically significant parameters and lower Akaike Information Criteria (AIC) value. 

Minimum temperature at lag 1 had AIC value of 382.68, rainfall at lag 1 had 381.66 and 

two covariates (minimum temperature and rainfall at lag 1) had 381.28 (p = 0.02094, 



 

(a) 

   

(b) 

 

(c) 

 

Fig. 17: Diagnostic plot of ARIMA model (2,1,1)(1,1,1)7 

                        a) Residuals, b) Residual ACF and c) Residual PACF 



 

Fig. 18: Normality Q-Q Plot of residuals from ARIMA (2,1,1)(1,1,1)7 

 

 

Fig. 19: Histogram of residuals from ARIMA (2,1,1)(1,1,1)7 

 

 

Fig. 20: Ljung-Box test plot of residuals from ARIMA (2,1,1)(1,1,1)7 



      

      (a)                                                         (b) 

 

     

                          (c)                    (d) 

 

 

       (e) 

 

Fig. 21: Cross-Correlation Function of Disease severity with a) Maximum 

Temperature, b) Minimum Temperature, c) Morning Relative Humidity, 

d) Evening Relative Humidity and e) Rainfall 



Table 14: ARIMAX (2,1,1) (1,1,1)7 model with different meteorological factors 

 

Model 

Meteorological factors 

AIC RMSE MAPE MASE Accuracy Meteorological 

factors 

Lag Estimate Standard 

Error 

t p-value 

ARIMAX 

(2,1,1) 

(1,1,1)7 

Max. Temp. (oC) 0 -0.026 0.020 -1.30 0.19624 387.52 0.7035842 

 

4.414205 

 

0.04630282 

 

95.59 

Min. Temp. (oC) 1 0.059 0.025 2.31 0.02094 * 382.68 0.6980256 

 

4.192062 

 

0.04746611 

 

95.81 

Morning RH (%) 0 0.006 0.012 0.56 0.57716 388.88 0.7064467 

 

4.284273 

 

0.04536242 

 

95.72 

Evening RH (%) 0 0.0006 0.0050 0.14 0.89009 389.17 0.7071308 

 

4.36033 

 

0.04540233 

 

95.64 

Rainfall (mm) 1 -0.011 0.0040 -2.83 0.004651 

** 

381.66 0.6917779 

 

4.186273 

 

0.04651539 

 

95.82 

Min. Temp. (oC) 1 -0.010   0.0039513   -2.65    0.00797 ** 

 

381.28 0.6831378 

 

4.00381 

 

0.04797156 

 

96.00 

Rainfall (mm) 1 

Max. Temp. = Maximum temperature (oC); Min. Temp. = Minimum temperature (oC); RH = Relative humidity (%); AIC = Akaike Information 

Criterion; RMSE = Root mean square error, MAPE = Mean absolute percentage error; MASE= Mean absolute scaled error 

 

** Significant at p ≤ 0.01,  

* Significant at p ≤ 0.05



Table 15:  Prediction of severity (%) of stripe rust of wheat by ARIMAX model  

    (2,1,1)(1,1,1)7 

 

SMW 
Year 

2020 2021 2022 

1st 4.02±0.71 4.04±1.06    4.66±1.32 

2nd 6.75±0.78 7.55±1.10 8.09±1.35 

3rd 15.94±0.82 16.67±1.13 17.27±1.38 

4th 27.73±0.85 28.09±1.15 28.80±1.40 

5th 39.89±0.86 40.25±1.16 40.75±1.41 

6th 46.31±0.87 46.30±1.17 47.13±1.42 

7th 49.75±0.87  50.01±1.18 50.26±1.43  

8th 52.25±0.88 52.46±1.18 52.36±1.44 

9th 54.11±0.88 54.44±1.19 54.66±1.45 

10th 55.29±0.88 55.35±1.20 56.58±1.46 

11th 58.35±0.89 58.55±1.20 58.92±1.46 

12th 60.46±0.89 60.95±1.21 61.32±1.47 

 

 



 

 

 

 

 

 

Fig. 22: Prediction of severity (%) of stripe rust of wheat by ARIMA model (2,1,1) 

(1,1,1)7 
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(c) 

 

Fig. 23: Diagnostic plot of ARIMAX model (2,1,1) (1,1,1)7 

               a) Residuals, Residual ACF and c) Residual PACF 



 

Fig. 24: Normality Q-Q Plot of residuals from ARIMAX (2,1,1)(1,1,1)7 

 

 

Fig. 25: Histogram of residuals from ARIMAX (2,1,1)(1,1,1)7 

 

 

Fig. 26: Ljung-Box test plot of residuals from ARIMAX (2,1,1)(1,1,1)7 
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0.004651 and 0.00797, respectively). Further, the two covariates (minimum temperature 

and rainfall at lag 1) together had lowest RMSE, MAPE (0.6831378 and 4.00381) and 

highest MASE and accuracy (0.04797156 and 96.00). Whereas, minimum temperature at 

lag 1 had RMSE, MAPE, MASE and accuracy of 0.6980256, 4.192062, 0.04746611 and 

95.81, respectively. In rainfall at lag 1, RMSE, MAPE, MASE and accuracy were 

0.6917779, 4.186273, 0.04651539 and 95.82, respectively.  

Disease forecasting was done to predict weekly stripe rust for the year 2020, 2021 

and 2022 based on the ARIMAX model. The predicted values of stripe rust by ARIMAX 

model (2,1,1) (1,1,1)7 in the Table 15 predicted 4.02±0.71 to 60.46±0.89; 4.04±1.06 to 

60.95±1.21 and 4.66±1.32 to 61.32±1.47 per cent severity of stripe rust in 2020, 2021 and 

2022, respectively (Fig. 22). 

4.11.3  Diagnostic check for ARIMAX model 

 After the generation of ARIMAX with minimum temperature and rainfall as 

external variable with lag 1, white noise assumptions of the residuals were tested. 

Residuals of ARIMAX (2,1,1)(1,1,1)7 – t1r1 indicates that the ACF and PACF plots of the 

residuals of developed model exhibited no statistically significant correlation (Fig. 23a to 

23c). Further, all the values were almost laying on the line in Normal QQ plot (Fig. 24), 

and the shape of the histogram appeared as a “Bell Shaped” curve (Fig. 25). So the 

residuals of the fitted model ARIMAX (2,1,1)(1,1,1)7 – t1r1 was considered as normal. 

Box-Ljung test failed to reject the null hypothesis of independence (χ2 = 30.666, p 

=0.2003) (Fig. 26). These observations confirm that the residuals from fitted model 

ARIMAX (2,1,1)(1,1,1)7 -t1r1 were independent and normally distributed. 

4.12 Multiple linear regression 

4.12.1 Effect of meteorological factors on the severity of stripe rust of wheat  during 

2005-17 

 The data presented in Table 16 indicate that the initial symptoms of stripe rust 

were recorded on 1st Standard Meteorological Week (SMW) with the mean severity of 

1.42 per cent, during 2005-2017. During the period average meteorological factors had 

maximum temperature of 17.340C, minimum temperature of 5.970C, morning relative 
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humidity of 92.23 per cent, evening relative humidity of 55.08 per cent and rainfall of 

5.40 mm. A steep increase in the mean severity occurred from 4.86 to 13.33 per cent 

during 2nd to 3rd SMW with corresponding mean maximum and minimum temperature of 

18.07 and 5.520C, maximum and morning relative humidity of 90.73 and 53.76 per cent, 

and rainfall of 1.17 and 5.48 mm. Maximum mean disease severity of 56.31 per cent was 

recorded during 12th SMW, when average maximum temperature was 27.840C, minimum 

temperature 12.380C, morning relative humidity 83.21 per cent, evening relative humidity 

44.14 per cent and rainfall 1.91mm. 

4.12.2 Effect of meteorological factors on the severity of stripe rust of wheat during 

2017-19 

 During 2017-2019, stripe rust (1.47%) appeared during the 1st SMW, when 

average meteorological factors had maximum temperature of 17.530C, minimum 

temperature of 4.350C, morning relative humidity of 93.64 per cent, evening relative 

humidity of 53.21 per cent and rainfall of 5.50 mm (Table 17). However, the  mean 

disease severity increased sharply from 5.18 to 14.01 per cent from 2nd to 3rd SMW, when 

maximum temperature was 19.600C, minimum temperature 4.460C, morning relative 

humidity 91.36 per cent, evening relative humidity 53.21 per cent and rainfall 2.70 mm. 

Disease severity reached maximum (59.06%) at crop maturity stage when maximum 

temperature was 26.690C, minimum temperature 11.580C, morning relative humidity 

87.93 per cent, evening relative humidity 48.29 per cent and rainfall 7.65 mm. 

4.12.3 Correlation of meteorological factors with the severity of stripe rust of 

 wheat  

 The data related to the correlation analysis, presented in Table 18 exhibit that the 

severity of stripe rust had positive and highly significant correlation with maximum and 

minimum temperatures, having correlation value (r) of 0.89 and 0.91 during 2005-2017; 

and 0.91 and 0.75 during 2017-2019, respectively. Whereas, morning relative humidity 

had significantly negative correlation with the disease severity, having r = -0.84 and -

0.80, in 2005-17 and 2017-19, respectively. While evening relative humidity and rainfall 



 

Table 16: Effect of meteorological factors on mean disease severity (%) of stripe 

rust of wheat during 2005-2017 

  

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.42 17.34 5.97 92.23 55.08 5.40 

2nd 4.86 17.60 5.33 92.15 53.81 1.71 

3rd 13.33 18.07 5.52 90.73 53.76 5.48 

4th 23.33 18.00 5.92 92.99 50.73 7.15 

5th 34.38 19.84 6.76 90.91 56.10 4.52 

6th 39.57 21.15 7.37 88.96 54.52 8.87 

7th 43.56 21.80 7.92 89.71 55.92 2.81 

8th 46.68 22.12 8.55 88.74 56.04 4.74 

9th 49.49 22.91 9.68 86.88 52.63 6.78 

10th 51.52 24.24 9.72 87.45 51.04 14.09 

11th 54.55 25.33 11.00 85.15 46.67 4.59 

12th 56.31 27.84 12.28 83.21 44.14 1.91 

 

SMW = Standard meteorological week, Max. Temp. (oC)=Maximum temperature, 

Min. Temp. (oC) =Minimum temperature, RH = Relative humidity  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 17: Effect of meteorological factors on mean disease severity (%) of stripe 

rust of wheat during 2017-19 

 

SMW Disease severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.47 17.53 4.35 93.64 53.21 5.50 

2nd 5.18 19.11 3.88 93.21 45.93 2.60 

3rd 14.01 19.60 4.46 91.36 53.21 2.70 

4th 26.23 16.71 4.76 93.71 61.21 21.50 

5th 38.49 19.86 6.07 90.71 52.21 4.40 

6th 45.06 20.15 6.07 90.14 47.00 29.60 

7th 49.11 19.87 8.54 92.79 59.93 13.65 

8th 50.68 22.25 9.20 89.14 56.29 34.15 

9th 52.90 21.23 9.23 88.15 57.32 6.00 

10th 54.68 24.79 9.57 89.57 46.00 0.00 

11th 57.08 26.74 10.36 87.64 42.07 5.40 

12th 59.06 26.69 11.58 87.93 48.29 7.65 

 

SMW = Standard meteorological week, Max. Temp. (oC)=Maximum temperature, 

Min. Temp. (oC) =Minimum temperature, RH = Relative humidity  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 18: Correlation of meteorological factors with severity of stripe rust of 

wheat 

 

Meteorological factors 2005-2017 2017-2019 

Max. Temp. (oC) 0.89***    0.91*** 

Min. Temp. (oC) 0.91*** 0.75** 

Morning RH (%) -0.84*** -0.80** 

Evening RH (%) -0.45 -0.12 

Rainfall (mm) 0.21 0.22 

 

Max. Temp. (oC)=Maximum temperature, Min. Temp. (oC) =Minimum temperature, 

RH = Relative humidity  

 

Significant codes =  ‘***’; 0.001 ‘**’; 0.01  

 



 

Fig. 27: Correlation between meteorological  factors and severity of stripe rust of 

wheat during 2005-2017 

 

 

Fig. 28: Correlation between meteorological  factors and severity of stripe rust of 

wheat during 2017-2019 
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during 2005-17 and 2017-19 had non-significant relationship with the disease severity 

(Fig. 27 and 28). 

4.12.4 Multiple linear regressions of meteorological factors with the severity of 

 stripe  rust of wheat  

To develop predictive model to forecast stripe rust of wheat, multiple linear 

regressions were performed to determine the contribution of different meteorological 

factors. Data in the Table 19 exhibited that the generated model (Y1) was highly 

significant (p=0.003) in predicting the severity of stripe rust of wheat during 2005-2017, 

with the coefficient of determination (R2) of 0.913. This explains that 91.3 per cent of the 

variation in the severity of stripe rust was influenced by the maximum and minimum 

temperature, maximum and evening relative humidity and rainfall. The root mean 

squared error (RMSE) of 5.5125 and mean absolute percentage error (MAPE) of 0.8106 

indicate that developed model was effective in predicting per cent severity of stripe rust 

of wheat. 

 Further, data presented in Table 19 unveil that in the model developed, based on 

the data for the period of 2017-19, dependent and independent variables were highly 

significant (p= 0.006) in predicting the severity of stripe rust. The model had coefficient 

of determination (R2) of 0.8952, which revealed that 89.52 per cent of the variation was 

influenced by the maximum and minimum temperature, maximum and evening relative 

humidity and rainfall. The root mean squared error (RMSE) and mean absolute 

percentage error (MAPE) values of 6.4525 and 0.9331, respectively, showed that the 

developed model was effective in predicting per cent disease intensity of stripe rust of 

wheat during 2017-2019. 

4.12.5 Assumption of multiple linear regressions for stripe rust of wheat 

 The data regarding global test of model assumption (gvlma) presented in Table 20 

divulged that all the assumptions were acceptable as the global stat, skewness, kurtosis, 

link function and heteroscedasticity test having p value of 0.9256, 0.4873, 0.6203, 0.7003 

and 0.8968 for both data sets of 2005-17 and 2017-2019 (Fig. 29). 
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 Perusal of the data presented in Table 20 indicate that Shapiro-wilk test for 

normality, Bonferroni outlier test for outlier’s detection and non-constant variance (ncv) 

test for the homoscedasticity rejected the null hypothesis for the developed model of 

stripe rust of wheat. Shapiro-wilk test was having the p value of 0.1049 and 0.04132, 

Bonferroni outlier test had the p value of 0.24943 and 0.77744, whereas, ncv test had the 

value of 0.38693 and 0.36655 for 2005-2017 and 2017-19, respectively, which explains 

that the model was statistically good and effective for the prediction of stripe rust of 

wheat (Fig. 30). 

4.12.6 Performance of MLR models 

 Both the models developed by multiple linear regressions for 2005-17 and 2017-

2019 predicted the severity with minimum per cent deviation (Table 21 and 22).     

4.13 Quantification of inoculum of Puccinia striiformis f. sp. tritici 

 Data presented in Table 23 revealed that spore concentration of Puccinia 

striiformis f. sp. tritici  (0.25) was reported in the 51th Standard Meteorological Week,  

when the corresponding meteorological parameters had maximum temperature of 21.70C, 

minimum temperature of 4.950C, morning relative humidity of 86.50 per cent and 

evening relative humidity of 53 per cent. The spore concentration increased with time and 

1.63 was observed in 7th SMW with maximum temperature of 19.650C, minimum 

temperature of 19.650C, morning relative humidity of 8.95 per cent, evening relative 

humidity of 57 per cent and rainfall of 11.15mm. 

 Correlation of spore concentration of Puccinia striiformis f. sp. tritici  exhibited 

non-significant relationship with meteorological parameters having r = 0.20, -0.14, -0.43, 

10 and -14 for  maximum temperature, minimum temperature, morning relative humidity 

of 8.95 per cent, evening relative humidity and rainfall, respectively (Fig. 31). 



 

Table 19:  Multiple linear regression of meteorological factors with per cent severity of stripe rust of wheat during during 2005-17 and 

2017-19  

 

Years Regression Equation R2 Adjusted R2 RMSE MAPE P value 

2005-17 Y=  -02.1392 + 0.6373X1 + 8.5741X2 + 3.0402X3  + 1.4227X4 + 0.5764X5 0.913 0.8405 5.512589 0.8106821 0.003905 

2017-19 Y=  322.5683 + 9.4103X1 - 4.1446X2 - 2.5589X3 - 0.7089 + 0.2609X5 0.8952 0.8079 6.452588 0.9331274 0.006682 

 
X1= Maximum temperature; X2= Minimum temperature; X3= Morning relative humidity; X4= Evening relative humidity; X5= Rainfall; RMSE = root mean 

square error; MAPE = Mean absolute percentage error 



Table 20:  Assessment of the multiple linear model of stripe rust of wheat by 

global test of model assumptions (gvlma) 

 

Test 
Data sets  

2005-2017 2017-2019 

Global Stat 0.9256 0.9256 

Skewness 0.4873 0.4873 

Kurtosis 0.6203 0.6203 

Link Function 0.7003 0.7003 

Heteroscedasticity 0.8968 0.8968 

Shapiro-Wilk normality test 0.1049 0.04132 

Outlier Test 0.24943 0.77744 

Non-constant Variance Score Test 0.38693 0.36655 
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Fig. 29: Residual plots of multiple linear regressions for stripe rust of wheat during 

2005-2017 and 2017-19 
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Fig. 30: Linearity graph for stripe rust of wheat during 2005-2017 and 2017-19 



Table 21:  Prediction of severity (%) of stripe rust of wheat by MLR model for 

2005-2017 

 

SMW 
Per cent severity of stripe rust of wheat 

Observed Predicted 

1st 1.42 12.21 

2nd 4.86 9.86 

3rd 13.33 11.79 

4th 23.33 14.97 

5th 34.38 31.08 

6th 39.57 37.03 

7th 43.56 43.74 

8th 46.68 45.21 

9th 49.49 43.38 

10th 51.52 58.49 

11th 54.55 49.97 

12th 56.31 61.26 

 

 

 

Table 22: Prediction of severity (%) of stripe rust of wheat by MLR model for 

2017-2019 

 

SMW 
Per cent severity of stripe rust of wheat 

Observed Predicted 

1st 1.47 14.95 

2nd 5.18 9.48 

3rd 14.01 12.51 

4th 26.23 20.53 

5th 38.49 29.40 

6th 45.06 39.92 

7th 49.11 44.22 

8th 50.68 57.83 

9th 52.9 56.80 

10th 54.68 48.07 

11th 57.08 56.56 

12th 59.06 63.68 



Table 23: Effect of meteorological factors on inoculum of Puccinia striiformis         

f. sp. tritici during 2017-19 

 

SMW Average no. 

of 

Urediospores 

Max. 

Temp. 

 (oC) 

Min. 

Temp.  

(oC) 

Morning 

RH 

(%) 

Evening  

RH 

(%) 

Rainfall  

(mm) 

50th  0 18.25 7.7 89 68 37.6 

51st 0.25 21.7 4.95 86.5 53 0 

52th  0.43 20.75 3.85 87.5 58.25 0 

1st 0.95 18.1 4.6 91 59.5 3 

2nd 1.07 19.2 4.8 90 52.5 0.75 

3rd 1.21 20.35 4.85 88 54.5 1.3 

4th 1.34 16.75 5.4 91 63 13.4 

5th 1.5 19.7 6.25 88 54 5.05 

6th 1.57 20.5 5.65 86 53 24.3 

7th 1.63 19.65 8.95 89 57 11.15 

 

SMW = Standard meteorological week, Max. Temp. (oC)=Maximum temperature, 

Min. Temp. (oC) =Minimum temperature, RH = Relative humidity  
 

 

 



 

 

 

 

 

 

 

Fig. 31: Correlation of meteorological factors with spore concentration of Puccinia 

striiformis f. sp. tritici rust of wheat during 2017-2019 
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CHAPTER-5 

DISCUSSION 

 

In the present study, all the six Generation Circulation Models (GCMs) predicted 

an increasing trend in the temperature projections (maximum and minimum), during 

future climate change periods (2020, 2050, 2080) in all the scenarios in Jammu, Hisar, 

Ludhiana, Dhaulakuan and Meerut. However, at Leh, decreasing trend in temperature 

projections (maximum and minimum) was observed. In the current study, maximum 

temperature increased by ±0.08 to ± 11.13°C and minimum temperature by ±1.88 to 

±11.58°C during future climate change periods over the baseline of four scenarios (RCP 

2.6, RCP 4.5, RCP 6.0 and RCP 8.5) at selected locations except Leh, where maximum 

and minimum temperature decreased by ±5.60 and ±5.87°C, respectively. This indicates 

that average temperature at almost all the locations would increase significantly during 

the three future climate change periods under different scenarios. In India, mean 

temperature is projected to increase by 0.48 to 2.0°Cin kharif (summer) and 1.1 to 4.5°C 

in rabi (winter) by 2070 (Anonymous, 1996). Increase in maximum temperature at 

Ludhiana (+15%) and minimum nights at Raipur (+17%) and Akola (+22%), has 

exhibited sharp decline in wheat yield (Pramod et al., 2017). Increasing trends of 

maximum and minimum temperature in different locations of India using MarkSim GCM 

multimodal has also been reported (Rao et al., 2015; Rao et al., 2016). Mean temperature 

is likely to increase by 1.7-2.0°C and 3.3-4.8°C during 2030s and 2080s, respectively, 

relative to preindustrial times in India (Chaturvedi et al., 2012).  

 The projected climate change fluctuations by the six models under four scenarios 

in the present study confirm the earlier reports (Kumar et al., 2013; Choudhary et al., 

2017, 2019). India would witness a warming of 0.5oC by the year 2030 and of 2-4oC by 

the end of this century, with the maximum increase over northern India (Anonymous, 

1996). Globally, temperature and CO2 concentration may increase by 3.4°C and 1250 

ppm, respectively, by 2095 (Savary et al., 2012). Global mean temperature has increased 

by 0.74±0.18°C during 1906–2005 and is predicted to increase by an additional 1.0-3.7°C 
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by the end of this century, due to the accumulation of greenhouse gasses (Pachauri et al., 

2014; Anderson et al., 2016; Huang et al., 2017) 

 In the present study, shorter duration of latent period of Puccinia striiformis f. sp. 

tritici was reported in Jammu, Ludhiana, Meerut, Hisar and Dhaulakuan, whereas, an 

increase was observed in Leh, under all scenarios in the three future time periods (2020, 

2050, 2080) as compared to baseline period (1975). Maximum reduction of 110, 49, 36, 

35 and 40 per cent was observed in the duration of latent period (days) of P. striiformis f. 

sp. tritici in Jammu, Ludhiana, Dhaulakuan, Meerut and Hisar, respectively, during 2080 

under RCP 8.5 scenario. However, 26 per cent increase was observed in the latent period 

(days) of P. striiformis f. sp. tritici at Leh during 2020 under RCP 6.0 scenario. Under 

global warming conditions pathogens are expected to withstand new thermal fluctuations. 

Maximum per cent increase in number of infection cycles of 55, 36, 34, 29, 28 and 27 in 

P. striiformis f. sp. tritici were recorded by RCP 8.5 scenario in Jammu, Ludhiana, 

Meerut, Dhaulakuan, Hisar, and Leh, respectively, in three future time periods (2020, 

2050, 2080)  over the baseline period (1975). However, significant increase in the 

number of infection cycles was observed across all the locations under different scenario 

during three future periods. The shorter the latent period, the more aggressive the 

pathotypes due to more number of infection cycles. Changes in temperature have been 

reported to have significant effects on the initiation and epidemics of crop pests and 

diseases (Goudriaan and Zadoks, 1985; Coakley et al., 1999; Rosenzweig et al., 2001; 

Jonnson et al., 2009).   P. striiformis f. sp. tritici infection process is mainly affected by 

temperature. Minimum, optimum, and maximum temperatures of 2, 9-13, 23°C are 

required for penetration of P. striiformis f. sp. tritici, whereas, 5, 12-15, 20°C is required 

for sporulation, respectively (Roelfs et al.,1992). Temperature more than 23°C, especially 

in the late season, halts the epidemics of stripe rust, by affecting infectious lesion 

(Gladders et al., 2007). 

 For Puccinia striiformis f. sp. tritici, latent period of 11 days at 12-19°C has been 

reported by earlier workers (Zadoks 1961; Tollenaar and Houston, 1967; Burleigh and 

Hendrix, 1970). Temperature from 7 to 20°C shortened the latent period of P. striiformis 

f. sp. tritici which was mainly 9 to 20 days at 10-20°C (McGregor and Manners, 1985). 
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Maximum incubation period of 15 days and latent period 19 days was recorded in the 

month December during 2010-11. Whereas, incubation and latent period of 20 and 22 

days and 16 and 19 days were recorded in January during 2011-12 and 2012-13, 

respectively (Sunil, 2013). An average latent period (13.5days) of P. striiformis f. sp. 

tritici was observed in Huixianhong’s, high-susceptible and fast-developing variety of 

wheat during 2011-2013 (He et al., 2019). Aggressiveness of P. striiformis f. sp. tritici 

increases due to the prevalence of new races having affiliation to high temperature and 

shortening of latent period (de Vallavieille et al., 2018). Shift in climatic conditions such 

as warmer winter, intermittent and erratic rainfall has resulted in the modification of host 

phenology to synchronization life-cycle of pathogen, shift in population dynamics, more 

generation and risk of invasion of exotic races of the pathogen (Juroszek and Tiedemann, 

2013). Temperature (maximum and minimum), had a significantly positive correlation 

with the severity of stripe rust of wheat in cultivar PBW 343 having correlation co-

efficient (R) values of 0.83, and 0.83, respectively, under early sowing conditions (Gupta 

et al., 2017b). Increase in temperatures by 1°C for 2041-2050 and by 3.7°C for 2091-

2100, as compared to 1991-2000, indicated positive trends in favourable infection of leaf 

rust in wheat (Junk et al., 2016). 

 The appearance of stripe rust during the past decades has mainly been induced 

due to the susceptibility of cultivars growing in the field. Thus, a precise forecast of stripe 

rust based on predictive models is critical for researchers, growers, field functionaries and 

policy makers, to clearly comprehend the disease epidemic characteristics, track seasonal 

changes in advance, and prepare early response activities such as the surveillance and 

monitoring of the disease and deployment of alternative management strategies (Yang et 

al., 2018). Autoregressive integrated moving average (Box and Jenkins, 1970), a time 

series model has been widely employed as classical approach for the short-term 

prediction of insect pests (Aswathi and Duraisamy, 2018; Chiu et al., 2019), plant 

diseases (Fernández-González et al., 2012, 2016; Ling et al., 2019; Singh et al., 2019), 

weather parameters (Powell and Reinhard, 2016), human diseases (Zhang et al., 2014; 

Yan et al., 2017; Tian et al., 2019) and crop production (Saeed et al., 2000; Suresh and 

Priya, 2011; Dash et al., 2020). The model (ARIMA) encompasses, regression between 
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present and past values in the AR (Auto regressive) model, whereas, current value 

depends on the previous forecast errors in MA (Moving average) model.  

 In the present study, stripe rust of wheat, during 2005-2019, exhibited non-

stationary nature of the data sets (trend and seasonality). In order to transform the time 

series data into stationary (mean and variance remains constant and do not change with 

time), differencing (lag 1), between successive observations was made, which was 

statistically proved by the unit root tests. Augmented Dickey-Fuller and Phillips-Perron 

exhibited = -9.4802, P < 0.01, and = -71.347, P < 0.01 values, respectively. Both these 

tests were applied to identify and check the stationary of the data sets (Mamun et al., 

2018). The generation of ARIMA model requires the differencing orders (d, D), general 

and seasonal operators (p, q, P, Q), as well as the assessment of structures in the auto 

regressive (AR) and moving average (MR) models. Autocorrelation (ACF) and Partial-

autocorrelation (PACF) defined the parameters for general and seasonal AR and MR 

which in turn buildup five different ARIMA model viz., ARIMA (2,1,1) (1,1,1)7, ARIMA 

(1,1,2) (1,1,1)7, ARIMA (1,1,1) (1,1,1)7, ARIMA (1,1,1) (1,1,2)7 and ARIMA (1,1,1) 

(2,1,1)7. Both ACF and PACF graphs were widely used for identification of the model 

structure (Zhang et al., 2008, 2016; Lin et al., 2012; Yan et al., 2017).  

 Although all the models had significant co-efficient ϕ1 and ϕ2: 1-order and 2-order 

auto-regressive coefficient; θ1 and θ2: 1-order and 2-order moving average coefficient; ɸ1 

and ɸ1: 1-order and 2-order seasonal auto-regressive coefficients; Θ1 andΘ2: 1-order and 

2-order seasonal moving average coefficient, ARIMA (2,1,1)(1,1,1)7 was selected having 

lowest Akaike Information Criterion (AIC) value (387.19). Based on the predicting 

measured errors RMSE (0.7071721), MAPE (4.352807), MASE (0.04534878) and 

accuracy of 95.65 per cent, ARIMA (2,1,1)(1,1,1)7 was used for stripe rust prediction 

during  2017-2019. Prediction of test data indicated minimum per cent relative deviation 

of 0.71 to 8.46 across the standard meteorological weeks except 1st week. Further, 

ARIMA (2,1,1)(1,1,1)7 predicted the disease severity of 3.22±0.73 to 60.20±0.88, 

3.83±1.052 to 60.64±1.18 and 4.37±1.28 to 61.12±1.42 during 2020, 2021 and 2022, 

respectively, irrespective of cultivars’ response and environmental conditions. ARIMA 

(3,1,3) and (1,0,3) models have been employed for the prediction of for powdery mildew 
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(Uncinula necator) and downy mildew (Plasmopara viticola) in vineyards, as both the 

diseases are also caused by the obligate pathogens as in case of stripe rust (Fernández-

González et al., 2016).  

 Further, ARIMA were explored in conjugation with X (meteorological factors) to 

increase the accuracy in prediction of stripe rust of wheat. The finest adjusted model was 

again ARIMA (2,1,1) (1,1,1)7, including the minimum temperature (oC) and rainfall with 

lag 1 having maximum accuracy of 96.00 per cent. ARIMA (0,2,2), with relative 

humidity four days earlier, and ARIMA (1,2,3), having relative humidity three days 

earlier and rainfall two days earlier were best in predicting Botrytis cinerea spores in 

vineyards at Cenlle, and Amares (Fernández-González et al., 2012). Non-linear 

regression model with ARMA errors proficiently predicted the disease progress, with 

R2 of 75·42 and 79·03 per cent for severity and incidence of brown eye spot in coffee 

(Souza et al., 2015).  

 ARIMA is widely used for the temporal assessment for the prediction of spore 

concentration of Podosphaera leucotricha, causing powdery mildew of apple (Xu et al., 

1995). Under timely and late sown conditions, ARIMA (1, 0, 1) was best fitted to predict 

the disease severity of spot blotch (SB) in wheat caused by Bipolariss orokiniana, with 

R2 and RMSE of 0.88 and 7.61, and 0.86 and 5.48, respectively (Singh et al., 2019). 

Whereas, ARIMAX model was best in the prediction of cocoa black pod incidence 

caused by Phytophthora palmivora, with the minimum values of MSE (0.00955), RMSE 

(0.09773) and MAE (0.07765) (Ling et al., 2019). 

Among the different epidemiological factors, weather played a major role in the 

onset of stripe rust epidemics in wheat, at regional and continental scales. The pathogen, 

Puccinia striiformis f. sp. tritici (Pst) responsible for the disease is very sensitive to 

environmental conditions. Out of different weather parameters, temperature, moisture and 

wind are mainly responsible for the epidemics of the disease (Chen, 2005). Temperature, 

leaf-wetness duration and light intensity influenced the sporulation capacity and infection 

efficiency of P. striiformis f. sp. tritici (de Vallavieille-Pope et al., 1995). Various models 

have been developed for predicting the stripe rust of wheat (Kuang et al., 2013; Khajuria 

https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-12-16-1766-RE#b6


55 

et al., 2016; Gupta et al., 2017a; 2017b; El Jarroudi et al., 2017; Singh et al., 2018; 

Naseri and Sharifi, 2019).  

In the present study, the severity of 1.42 and 1.47 per cent were observed in Ist 

standard meteorological week (SMW), when the corresponding meteorological factors of 

maximum temperature of 17.34 and 17.530C, minimum temperature of 5.97 and 4.350C, 

maximum relative humidity of 92.23 and 93.64 per cent, minimum relative humidity of 

55.08 and 53.21 per cent and rainfall of 5.40 and 5.50 mm were recorded during 2005-

2017 and 2018-2019, respectively. Minimum, optimum and maximum temperature range 

of 0 and 3°C, 11 and 9°C, 23 and 18°C with continuous 6 hours of wetness period is 

required for the infection of stripe rust (Hoggs et al., 1969; de Vallavieille-Pope et al., 

1995). For penetration and sporulation of Pst, minimum, optimum, and maximum 

temperature of 2°C, 9-13°C, 23°C and 5°C, 12- 15°C, 20°C are required, respectively 

(Roelfs et al., 1992). The disease (1%) was recorded in 1st standard meteorological week 

(SMW) during 2013-15, after 73 days after sowing (jointing stage), with corresponding 

maximum temperature of 17.50C, minimum temperature of 50C, maximum relative 

humidity of 92.50 per cent, minimum relative humidity of 59 per cent, mean wind 

velocity of 1.6 km h-1, vapour pressure of 8.2 mmHg (morning) and 9.9 mmHg (evening), 

sunshine of 2.9 h day-1, cloud cover of 3.5 (morning) and 6.0 okta (evening), soil 

temperature of 11.40C and canopy temperature of 11.70C, before one-week of disease 

appearance (Gupta et al., 2017b). Rate of disease progress (r) varied from 0.09 to 0.32 in 

pathotype 78S84, during 2011-12, and from 0.00-0.32 during 2012-13, and was higher in 

the month of January and February (Sunil, 2013). 

 Maximum periodical progression in severity of 87 and 75 per cent were recorded 

during 3rd to 4th SMW during 2005-17 and 2017-2019, respectively. The prevailing 

meteorological parameters during the corresponding period helped in the aggravation of 

stripe rust disease. Average temperature of 11.4, 10.6, 14.1 and 15.5°C, during December 

to March, respectively, contributed in the development of epidemic of stripe rust of wheat 

(Wan et al., 2002). At 12th SMW (end of the cropping season), the final severity reached 

to 56.31 and 59.06 per cent in 2005-17 and 2017-2019, respectively. Temperature >22 to 

25ºC inhibited the growth and spread of the stripe rust (Sharp, 1965; Shaner and 

https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-12-16-1766-RE#b6
https://apsjournals.apsnet.org/doi/full/10.1094/PDIS-12-16-1766-RE#b6
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Powelson, 1971). Although the maximum temperature started increasing in the month of 

March (>20ºC), the microclimatic conditions, leaf wetness, establishment of infection 

water logging conditions,e growth stage of the crop and aggressiveness and virulence of 

the prevailing pathotypes of Puccinia striiformis f. sp. tritici were the key factors 

contributing in the epidemics of the diseases. Amalgamation of relative humidity (>92%) 

and temperature (< 4°C to < 16°C) for 4 continuous hours, along with rainfall (≤0.1mm), 

were best for the progress of epidemic of stripe rust of wheat (El Jarroudi et al., 2017) 

 In the present, study, correlation between meteorological factors and severity of 

stripe rust of wheat revealed that maximum and minimum temperatures had positive and 

highly significant correlation (0.89 and 0.91; 0.91 and 0.75), whereas, morning relative 

humidity had significantly negative correlation (-0.84 and -0.80) in 2005-17 and 2017-

2019, respectively. Evening relative humidity and rainfall had non-significant correction 

with the disease severity, during 2005-17 and 2017-19, respectively. Temperature and 

moisture had pronounced impact on the stripe rust of wheat, contributing towards the 

initiation and spread of the disease. Average of maximum and minimum temperature 

(Tavg), mean of maximum temperature (Tmax) and maximum temperature were found to 

have significantly positive correlation with the severity of pathotype 78S84, with 

correlation coefficient (r) of +0.779, +0.719 and +0.635, respectively, during 2011-12 

season (Sunil, 2013). Disease incidence of stripe rust was positively and significantly 

correlated with maximum and minimum temperatures and sunshine hours during 2012-13 

and 2013-14 cropping seasons (Sandhu and Dhaliwal, 2017). Morning and evening 

relative humidity had negative correlation with disease incidence and severity (Lemaire 

et al., 2002; Gupta et al., 2017b; Sandhu and Dhaliwal, 2017). Though rainfall has no 

significant association with the disease severity but it indirectly promotes the favourable 

disease conditions (moisture and leaf wetness) for build-up of disease.  

 In the present study, the models developed by multiple linear regression during 

2005-17 and 2017-19 for the prediction of stripe rust Y= -502.1392+0.6373X1 

+8.5741X2+3.0402X3+1.4227X4+0.5764X5 and Y=322.5683 +9.4103X1- 4.1446X2-

2.5589X3-0.7089+0.2609X5 were significant. Both the models exhibited that 91 and 89 
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per cent variation in the disease severity were influenced by maximum temperature, 

minimum temperature, maximum and minimum relative humidity and rainfall. 

 Association of various weather parameters viz., maximum and minimum 

temperatures, morning and evening relative humidity, rainfall and sunshine hours played 

important role in the development and spread of stripe rust of wheat (Khajuria et al., 

2016; Rodríguez-Moreno et al., 2020). Significant R2 of 0.91 and 0.92 was recorded for 

multiple regression model of stripe rust, when maximum abiotic parameters were 

combined in cultivars, PBW 550 and PBW 343, respectively (Sandhu and Dhaliwal, 

2017). Severity of stripe rust was best predicted in susceptible cultivars by the 

combination of temperature, humidity, and rain from April to June (Beest et al., 2008). 

First Chinese simulation modal (TXLX) of stripe rust was based on the daily temperature 

and dew period (Zeng and Zhang, 1990). Both these models, predicted the severity with 

minimum per cent deviation in both data sets. All the assumptions viz., linearity, 

reliability, homoscedasticity, normality, outlier’s detection, non-constant variance and 

normality were fulfilled by the developed models signifying the stability and better 

performance of prediction of stripe rust of wheat at regional level. Various models 

generated by multiple linear regressions were used for the prediction of foliar plant 

diseases at regional scale (Eddy, 2009; Kumar, 2014; Gupta et al., 2020). 

  In the present study, 84 per cent increase in spore concentration of Puccinia 

striiformis f. sp. tritici was observed from 51st to 7th SMW during 2017 - 2019. 

Nowadays, spore traps for the detection of inoculum are being increasingly used to 

quantify the airborne inoculum of plant pathogens and to improve precision in disease 

risk management and fungicide applications (Luo et al., 2007; Rogers et al., 2009; 

Dedeurwaerder et al., 2011; Duvivier et al., 2013, 2016; Wieczorek and Jørgensen, 2013; 

Almquist and Wallenhammar, 2014; Chandelier et al., 2014). Pan et al. (2010) 

established a real-time polymerase chain reaction (PCR) assay to quantify the inoculum 

level of P. striiformis f. sp. tritici in leaves by quantifying the latent infection levels and 

estimating potential disease intensity in the field. By targeting latent infection foci with 

fungicide applications, the initial inoculum was effectively lessened, reducing the build-

up of rust epidemic.  
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CHAPTER-6 

SUMMARY AND CONCLUSIONS 

 

The study was conducted to predict the population of Puccinia striiformis f. sp. 

tritici, responsible for stripe rust of wheat in the future time period under the influence of 

climate change, to develop forewarning model of the disease in relationship with 

meteorological factors, by the time series and multiple linear regression and 

quantification of P. striiformis f. sp. tritici.  

 The study revealed highest fluctuations (increase) in maximum temperature in 

Jammu (6.26 to 11.130C), followed by Hisar (2.78 to 7.640C), Ludhiana (3.46 to 6.560C), 

Dhaulakuan (0.65 to 3.500C) and Leh (2.97 to 5.440C), whereas minimum in Meerut 

(0.58 to 3.370C). Maximum variations in minimum temperatures were also recorded in 

Jammu (7.15 to 9.240C), followed by Leh (3.66 to 5.870C), Ludhiana (2.68 to 4.760C), 

Hisar (2.16 to 4.240C) and Dhaulakuan (1.68 to 3.660C), with minimum in Meerut (0.58 

to 3.370C). Shortest latent period of P. striiformis f. sp. tritici infection was recorded in 

Jammu, followed by Ludhiana, Meerut, Hisar and Dhaulakuan, whereas, it was more in 

Leh, under all scenarios in three future time periods of 2020, 2050 and 2080 as compared 

to baseline period (1975). Maximum reduction in the latent period (days) of P. striiformis 

f. sp. tritici of 110, 49, 36, 35 and 40 per cent was observed in Jammu, Hisar, Ludhiana, 

Dhaulakuan and Meerut, respectively, during 2080, under RCP 8.5 scenario. However, 

25 per cent increase was observed in the latent period was recorded at Leh.  Maximum 

increase of 49, 27, 20, 21, 24 and 20 per cent in the number of P. striiformis f. sp. tritici 

generations were recorded by RCP 6.0 scenario in Jammu, Hisar, Ludhiana, Dhaulakuan, 

Meerut and Leh, respectively, whereas, minimum per cent increase of 41, 17, 9, 9, 11 and 

9 were recorded by RCP 2.6 scenario in these locations, respectively. 

 Univariate time series (ARIMA) model was developed to predict the severity of 

stripe rust of wheat using 2005-2017 data set. The developed ARIMA (2,1,1) (1,1,1)7  

model was validated with test data sets (2007-2019) having highest accuracy of 95 per 

cent. The model ARIMA (2,1,1) (1,1,1)7 predicted the disease severity of 3.22±0.73 to 
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60.20±0.88, 3.83±1.052 to 60.64±1.18 and 4.37±1.28 to 61.12±1.42 during 2020, 2021 

and 2022, respectively, irrespective of cultivars response and environmental conditions. 

Further, after pre-whitening with meteorological factors, ARIMAX (2,1,1) (1,1,1)7 with 

minimum temperature (oC) and rainfall (mm) with lag 1, was adjusted best having 

maximum accuracy of 96.00 per cent in predicting stripe rust of wheat for short-term 

period. 

 In the study, the initiation of disease (1.42 and 1.47%) was observed in 1st 

standard meteorological week (SMW), when the corresponding meteorological factors of 

maximum temperatures were 17.34 and 17.530C, minimum temperatures of 5.97 and 

4.350C, maximum relative humidity of 92.23 and 93.64 per cent, minimum relative 

humidity of 55.08 and 53.21 per cent and rainfall of 5.40 and 5.50 mm, during 2005-2017 

and 2018-2019, respectively. Severity of stripe rust of wheat had positive and highly 

significant correlation with maximum and minimum temperatures (0.89 and 0.91; 0.91 

and 0.75), whereas, morning relative humidity had significantly negative correlation (-

0.84 and -0.80), in 2005-17 and 2017-2019, respectively. Rainfall had non-significant 

correction with the disease during 2005-17 and 2017-19, respectively. Models viz., Y = -

502.1392+0.6373X1+8.5741X2+ 3.0402X3+ 1.4227X4+ 0.5764X5 and Y = 

322.5683+9.4103X1 - 4.1446X2 - 2.5589X3 - 0.7089+0.2609X5, developed by multiple 

regression for 2005-17 and 2017 and 2019, were highly significant in predicting stripe 

rust of wheat. Both the models exhibited that 91 and 89 per cent variation in the disease 

severity was influenced by maximum and minimum temperatures, maximum and 

minimum relative humidity and rainfall.  

The following conclusions were drawn from the present investigations: 

 Maximum temperature showed highest variations in Jammu (6.26 to 11.130C), 

followed by Hisar (2.78 to 7.640C), Ludhiana (3.46 to 6.560C), Dhaulakuan (0.65 

to 3.500C) and Leh (2.97 to 5.440C), whereas it was minimum in Meerut (0.58 to 

3.370C). Whereas, minimum temperature again exhibited maximum variation in 

Jammu (7.15 to 9.240C), followed by Leh (3.66 to 5.870C), Ludhiana (2.68 to 

4.760C), Hisar (2.16 to 4.240C) and Dhaulakuan (1.68 to 3.660C), it was minimum 

in Meerut (0.58 to 3.370C) in future time periods (2020, 2050 and 2080).   



60 

 Reduction in latent period (days) of Puccinia striiformis f. sp. tritici was 

estimated in Jammu, Ludhiana, Meerut, Hisar and Dhaulakuan for future time 

periods (2020, 2050 and 2080). Whereas, increase in the latent period was 

envisaged in Leh for future time periods. 

 Maximum increase of 49, 27, 20, 21, 24 and 20 per cent in the number of P. 

striiformis f. sp. tritici infection cycles were recorded by RCP 6.0 scenario in 

Jammu, Hisar, Ludhiana, Dhaulakuan, Meerut and Leh, respectively. 

 ARIMA (2,1,1) (1,1,1)7 with minimum temperature (oC) and rainfall (mm) with 

lag 1 was found best for predicting stripe rust of wheat. 

 The models generated for forewarning of stripe rust of wheat by multiple linear 

regression for 2005 and 2017 significantly influenced by maximum temperature, 

minimum temperature, maximum and minimum relative humidity and rainfall.  

 The urediospore population (0.25) of Puccinia striiformis f. sp. tritici started 

recorded during 51st SMW during 2017-19.  
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APPENDIX 

 

WEATHER AND DISEASE SEVERITY DATA 
 

Year - 2005 

SMW Disease 

severity 

(%) 

Max. Temp.  

(oC) 

Min. Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 0.27 17.78 6.25 92.22 51.37 6.3 

2nd 4.03 16.35 5.56 91.26 52.01 1.2 

3rd 12.40 19.51 5.14 93.57 50.29 0 

4th 22.73 21.84 7.46 94 52.57 0 

5th 32.53 24.4 7.64 95.43 49.71 0 

6th 38.10 25.51 11.41 90.43 52 3 

7th 42.37 27.53 12.86 84.29 49.86 0 

8th 45.83 26.17 11.41 91.43 52.43 5 

9th 48.27 27.29 10.21 85.29 40.71 0 

10th 50.23 23.73 12.83 91.57 64.86 32.6 

11th 53.63 25.7 11 84.57 38.86 0 

12th 55.10 26.74 10.96 84.86 47.86 0 

 

Year - 2006 

SMW Disease 

severity 

(%) 

Max. Temp.  

(oC) 

Min. Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 0.50 16.23 8.01 95.23 61.2 2.4 

2nd 4.17 18.23 7.1 94.24 56.28 1.2 

3rd 12.53 17.93 3.9 96.29 48 0 

4th 22.67 20.36 4.89 96.86 46.57 0 

5th 32.67 20.36 5.39 96.86 46.57 0 

6th 38.40 24.91 9.26 85.71 52.57 12.37 

7th 42.53 22.69 9.89 93.29 74.43 4.65 

8th 45.67 19.7 7.39 92.14 60 4.7 

9th 48.37 21.17 10.07 93 63.43 0 

10th 50.37 23.46 8.19 87.86 52.43 80.66 

11th 53.73 20.91 10.97 90.14 60.29 16 

12th 55.33 25.63 13.1 86.71 57.43 0 



95 

Year - 2007 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.17 18.54 7.2 92.1 50.02 6.1 

2nd 4.63 17.26 7.6 90.02 56.24 0.9 

3rd 12.50 16.29 8.9 89 54.02 0 

4th 22.67 19.43 4.5 91.57 31.57 0 

5th 32.73 17.6 9.37 84.43 67.86 0 

6th 38.37 16.31 7.16 94.14 67.57 0 

7th 42.63 15.83 1.47 93 31.14 3.4 

8th 45.67 16.79 2.59 92 35.29 7.4 

9th 48.43 14.21 6.93 88.71 62.14 0 

10th 50.40 19.51 2.79 93.57 33.43 0 

11th 53.77 23.01 8.87 89.43 44.14 0 

12th 55.47 24.47 9.57 90.57 42.29 0 

 

Year - 2008 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 0.50 15.78 6.45 90.45 50.16 4.1 

2nd 4.47 16.59 6.1 91.23 56.57 0.2 

3rd 12.60 17.26 5.78 90.34 78.01 0.1 

4th 22.67 15.56 5.23 90.64 49.06 0 

5th 32.80 21.06 7.81 92.71 62 2.4 

6th 38.53 20.46 8.03 87.86 64.86 25 

7th 42.73 20.46 8.03 87.86 64.86 0 

8th 45.80 21.39 7.44 94.71 61.71 0 

9th 48.53 22.59 8.4 88.43 45.71 0 

10th 50.53 21.01 9.27 90.43 62 0 

11th 53.97 23.8 8.9 93 43.43 4.2 

12th 55.63 25.04 8.41 89.14 42.14 5.13 
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Year - 2009 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.00 14.9 4.3 92 68 0 

2nd 4.70 20.6 4.3 89 48 0 

3rd 12.50 20.8 6.1 87 46 3.2 

4th 22.33 19.4 9.8 87 84 20.7 

5th 32.33 19.9 7.6 83 40 0 

6th 38.60 24.8 8.6 84 46 0 

7th 42.83 26.1 11.3 84 45 0 

8th 45.77 26.5 9.8 81 46 0 

9th 48.63 30.6 11.8 77 41 0 

10th 50.63 34 15.1 82 39 0 

11th 54.00 34.2 15.3 71 36 2.7 

12th 55.70 35.4 16.3 61 22 0 

 

Year - 2010 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.32 16.5 6 90.24 53 5.2 

2nd 4.67 17.7 4.9 91.06 48 0.2 

3rd 12.53 15.3 4.02 88.03 45.01 0.3 

4th 22.73 19.47 3.63 96.43 46 0 

5th 33.07 19.53 4.83 93.57 49.86 0 

6th 38.70 21.23 9.81 93.29 63.43 13.2 

7th 42.90 19.13 8.31 94.43 67.29 7.8 

8th 45.90 19.04 8.07 95.43 67.71 2.9 

9th 48.73 19.2 8.23 92.71 57.43 4.2 

10th 50.73 21.46 9.47 94.43 62.71 5.2 

11th 54.13 27.44 9.63 92.29 45.14 0 

12th 55.87 29.14 14 86.86 48.86 0 
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Year - 2011 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.75 16.5 6.2 90.78 50.2 10.5 

2nd 4.90 17.14 5.2 91.15 52.26 5.2 

3rd 12.90 17.34 4.74 90.01 48.57 0 

4th 22.50 15.6 3.59 88.14 46.57 0 

5th 32.97 17.61 5.74 86.57 56 11 

6th 38.73 18.11 4.67 87.14 44 9.1 

7th 43.00 18.7 6.24 94.29 59.86 0 

8th 46.03 21.53 6.54 87.86 43.71 0 

9th 48.73 24.47 8.87 82.01 41.71 25.8 

10th 50.80 23.13 7.4 85.29 38.57 2.8 

11th 54.20 26.46 11.16 81.57 39.71 0 

12th 56.03 28.23 11.64 81.14 38.14 0 

 

Year - 2012 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.80 17.89 5.8 94 52.2 2.2 

2nd 5.07 18.89 5.9 90.23 56.25 2.6 

3rd 12.90 19.25 6.04 87 60.14 20.4 

4th 22.83 17.37 4.44 91.14 60.28 0 

5th 32.77 20.28 4.28 85.14 52.42 19.8 

6th 38.97 19.42 7.3 92.28 63 22.4 

7th 43.10 21.44 4.72 90.28 52.71 10 

8th 46.10 19.3 7.95 90.28 72.42 21.93 

9th 48.90 19.72 9.42 92.14 68.42 17.9 

10th 50.87 26.1 8.45 84.85 54.57 0 

11th 54.33 26.42 12.75 80.42 58.7 5.4 

12th 56.13 27.15 11.65 82.14 48.14 17.85 
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Year - 2013 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 2.00 18 4.4 95 51.1 0 

2nd 5.20 17.8 6 96.1 65.9 0 

3rd 13.00 20.5 6.9 95.4 55.3 26 

4th 23.10 18.7 8.5 94.3 27.7 0 

5th 33.43 18.4 7.7 91.3 64.3 5.7 

6th 39.00 19.1 5.4 92.3 50.3 5.8 

7th 43.27 21.4 7.6 93.1 54.6 3.2 

8th 46.17 20.3 9.1 92 66.1 2.6 

9th 49.10 22.2 10.3 88.6 57.6 22.8 

10th 50.97 25.6 12.3 84.9 52 19.2 

11th 54.17 24.3 12.5 86 60.7 6.7 

12th 56.33 27.2 13.5 84.6 47.9 0 

 

Year - 2014-15 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.9 15.91 6.47 89.7 58.37 0 

2nd 5.8 10.85 6.34 97.42 58.14 0.77 

3rd 15 19.21 5.04 91.85 52.34 0.08 

4th 26 17.28 6.41 95.57 55.02 1.6 

5th 36 18.34 5.37 90.71 60.43 8.25 

6th 40.5 21.4 6.42 86.14 52.5 0 

7th 45 22.6 10.32 84.85 62.2 0.82 

8th 47.8 22.81 12.37 88.57 56.56 7.32 

9th 51.6 19.45 9.65 88.28 57.4 16.65 

10th 52.7 20.6 9.7 91 51.94 3 

11th 54.9 22.6 10.1 89 44.53 15.3 

12th 56.9 29.1 13.5 83 45.1 0 
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Year - 2015-16 

 

Year - 2016-17 

 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 2.1 20.24 4.58 91.28 55.39 0.25 

2nd 5.2 20.55 5.31 92.28 54.94 0 

3rd 15.8 13.01 6.45 93 58.14 0 

4th 25.2 14.15 4.04 96.28 48.1 0 

5th 37 20.48 6.3 94.14 55.21 1.42 

6th 41.5 21.64 6.25 88.14 57.5 0.4 

7th 45.2 22.88 5.5 88.85 53.54 0 

8th 48.6 25.57 9.14 85.14 60.56 1.82 

9th 51 26.97 11.04 87.28 52.6 0 

10th 53.9 27.68 12.4 79 56.02 1 

11th 55.9 22.3 12.97 87.57 53.25 7.37 

12th 58.5 27.7 12.15 85.71 45.9 0.77 

SMW Disease 

severity 

(%) 

Max. 

Temp. 

(oC) 

Min. 

Temp. 

(oC) 

Morning 

RH 

(%) 

Evening 

RH 

(%) 

Rainfall  

(mm) 

1st 1.05 17.5 3.3 94 56 0 

2nd 5.1 20 2.6 94 42 0 

3rd 13.24 21.8 3.5 91 42 0 

4th 25.67 16.8 5.1 94 69 1.4 

5th 38 21.4 6.1 91 49 0 

6th 44.45 21.9 4.1 89 37 0 

7th 48.97 20.5 7.7 92 54 6.7 

8th 50.12 24.2 9.8 87 54 0.5 

9th 52.33 24.5 12.2 84 58 0.8 

10th 54.67 27.2 10.3 88 43 0 

11th 56.71 29.2 11.6 84 38 0 

12th 58.25 28.2 12.3 84 45 1.1 
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