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Chapter 1 INTRODUCTION 

Differential geometry is probably as old as any branch of 

mathematics and certainly was well launched after Newton and Leibnitz 

had laid the foundation of calculus. Differential geometry has a long 

history of change from time to time in its approach due to change in 
/" 

analysis. The introduction of analysis of manifold has given a rigorous 

approach to it to some extent, its application in various disciplines of 

mathematics namely relativity, fluid mechanics, etc., have put it on such a 

height that without its knowledge the study of mathematics is incomplete. 

The theory of structure on manifolds is an interesting topic of 

modern differential geometry and the differential geometric aspects of 

submanifold of manifolds with certain structures are vast and fruitful 

fields for Riemannian geometry. 

The theory of submanifolds of an almost Hermitian manifold is one 

of the most interesting topics in differential geometry. In an almost 

Hermitian manifold, its almost c01!lplex structure F transforms a vector 

into a vector perpendicular to it. Perhaps this was the natural motivation 

to study submanifolds of an almost Hermitian manifold, according to the 
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behavior of its tangent bundle under the action of almost complex 

structure F of the ambient manifold. 

There are two well known classes of submanifolds namely 

invariant submanifold and anti-invariant submanifolds. In the first case 

tangent space of the submanifold remains invariant under the action of 

/ 
almost complex structure F whereas in the second case, it is mapped into 

the normal space. Study of differential geometry of CR-submanifolds is a 

generalization of invariant and anti-invariant submanifold of an almost 

Hermitian manifold was initiated by Bejancu in 1978 and was followed 

by several geometers. Chen further generalized the concept of CR-

submanifold in 1981 that introduced generic submanifold. 

Bejancu and Papaghuic initiated the study of semi-invariant 

submanifolds in a Sasakian manifolds in 1981. Kobayashi in 1981, Yano-

Kon in 1982 and 1983, studied the same concept under the name contact 

CR-submanifold. 

A semi-invariant submanifold is nothing but the extension of the 

concept of CR-submanifold of a Kaehlerian manifold to submanifold of 

an almost contact metric manifold. 

In 1981 M. Kobayashi studied CR-submanifolds of a Sasakian 

manifold. Further in 1986, he studied semi-invariant submanifolds of a 



certain class of almost contact manifold. In 1985 Oubina introduced a 

new class of almost contact structure namely the trans Sasakian structure. 

In 1989, Kalpana gave some results related to almost semi-invariant 

submanifold of SP-Sasakian manifold. In 1991 Shahid studied CR-

submanifolds of trans Sasakian manifold. In 1991 Sinha and Yadav ,-
studied some results on semi-invariant submanifolds of a certain class of 

almost contact manifolds. In 1992 Sinha and Srivastava studied semi-

invariant submanifold of Kenmotsu manifold with constant ~-

holomorphic sectional curvature. In 1993 Shahid studied semi-invariant 

submanifolds of a nearly Sasakian manifold. In 1996 Tripathi also studied 

semi-invariant submanifolds of trans Sasakian manifold. Pandey and 

Verma in 1999 studied para Sasakian manifold. Tripathi in 2000 studied 

CR-submanifold of a nearly and closely Cosymplectic manifolds. 

In 1973 Dube studied almost hyperbolic Hermitian manifolds. In 

1978 Dube and Niwas studied almost r-contact hyperbolic structure in a 

product manifold. In 1980 Pal ~nd Mishra studied Hypersurfaces of 

almost hyperbolic Hermite manifolds. Dube and Mishra in 1981 studied 

hypersurface immersed in an almost hyperbolic Hermitian manifold. In 

1993 Mishra studied hypersurface of almost Hermite manifold. 
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The present work, is the study of CR-submanifold of trans para 

Sasakian manifold and nearly, closely para Cosymplectic manifold, semi-

invariant submanifold of nearly r-Sasakian manifold, r-Kenmotsu ,,-- . 

manifold. We also studied the CR-submanifold of trans hyperbolic 

Sasakian manifold and semi-invariant submanifold of para Kenmotsu 

manifold. In the present work, we have also studied hypersurfaces of 

hyperbolic Hermitian manifolds and obtained the conditions under which 

the given hypersurfaces will be totally geodesic and hyperbolic 

Cosymplectic manifolds such as hyperbolic Sasakian, K-contact 

hyperbolic Riemannian manifold, normal quasi hyperbolic Sasakian 

manifold. Some other interesting properties of the hypersurfaces of 

hyperbolic manifolds have also been investigated. 

1.1 Structures on Manifolds: 

1.1.1 Almost complex manifold: 

If in a differentiable manifold M, there exists a vector valued 

linear function F, of differentiability class eX) satisfying 

(1.1.1) 
., 

F- =-1 , 

then M is called an almost complex manifold and the structure F is called 

an almost complex structure [25]. 
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Nijenhuis tensor with respect to F IS a vector valued skew-

symmetric bilinear function N given by 

(1.1.2) N(X,Y) = [FX,FY] + F2[X,Y] ~ F[FX,Y] - F[X,FY], 

-
For all vector fields X,Y of M. 

An almost complex manifold with vanishing Nijenhuis tensor is 

called a complex manifold. 

1.1.2 Almost Hermitian manifold: 

An almost Hermitian manifold is an almost complex manifold is 

an almost complex manifold endowed with a Hermite metric g 

( 1.1.3 ) a) g(FX,FY) = g(X, Y) <=> b) g(FX, Y) = - g(X,FY). 

The structure {F ,g} is called almost Hermitian structure [107], 

1.1.3 Almost product manifold: 

-
If in the differentiable manifold M, there exists a vector valued 

linear function F, of differentiability class Coo satis.fying 

(1.1.4) 

then M is said to be an almost product manifold [107,52]. 

If in the almost product manifold 

(1.1.5) g(FX,FY) = g(X,Y) 

and 

(1.1.6) g(FX,Y) = g(X,FY), 



where g is positive definite Riemannian metric, then 1\1 is called almost 

product Riemannian manifold. If in the almost product Riemannian 

manifold (VxF)Y =0, where V is the Riemannian connection, then 1\1 is 

called almost product~ almost decomposable manifold. 

1.1.4 Almost contact manifold: 

If in an odd dimensional differentiable manifold M, there exists 

a vector valued linear function F, a vector field U and a I-form u, 

satisfying 

(1.1.7) F2 = -I + u®U, FU=O , 

then M is called an almost contact manifold and {F,U,u} is called almost 

contact structure [78]. 

In an almost contact manifold 

(1.1.8) u(U) = 1, uoF = 0. 

An almost contact structure can be obtained on a non-invariant 

hypersurface of an almost Hermitian manifold. 

An almost contact manifold in which the metric tensor g satisfies 

(1.1.9) g(FX,FY) = g(X, Y) - u(X)u(Y), 

is called almost contact metric manifold and {F,U,u,g} is called almost 

contact metric structure. 

An almost contact metric manifold for which 

6 



(1.1.10) VxF=O, 

is called a Cosymplectic manifold [29]. 

An almost contact metric manifold for which 

(1.1.11) (VxF)X = 0, . 

is called a nearly Cosymplectic manifold [9]. 

An almost contact metric manifold is called closely Cosymplectic 

ifF is killing and u is closed, that is [12] 

(1.1.12) VuF=O, VU=O , Vu=o. 

An almost contact metric manifold structure (F,U,u,g) is called a 

Sasaki an manifold if [10] 

(1.1.13) (VxF)(Y) = g(X,Y)U-u(Y)X 

Kenmotsu if [39] 

(1.1.14) (VxF)(Y) = g(FX,Y)U-u(Y)FX 

and trans Sasakian if [65] 

(1.1.15) (VxF)(Y) = a(g(X,Y)U-u(Y)X) + ~(g(FX,Y)U-u(Y)FX) 

for function a, ~. 

An almost contact metric manifold is called a nearly Sasakian if 

[10] 

(1.1.16) (VxF)(Y) + (VyF)(X) = u(Y)X + u(X)Y - 2g(X,Y)U. 
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1.1.5 Almost r-contact metric manifold: 

If in an odd dimensional differentiable manifold M, there exists 

a vector valued linear function P, r-vector fields Up and r I-form uP 

(p=I,2, ... ,r) such that 

(1.1.17) p2 = -I + uP®Up, 

It gives 

(1.'1.18) uPoP = 0, 

and a metric 

PUp=o. 

(1.1.19) g(PX,PY) = g(X,Y) - uP(X)uP(y), 

then M is called an almost r-contact metric manifold and {P,Up,uP,g} is 

called almost r-contact metric structure [77, 105). 

1.1.6 Almost para contact manifold: 

-
If in an odd dimensional differentiable manifold M, there exists 

a vector valued linear function P, a vector field U and a I-form u 

satisfying 

(l.1.20) p2 = I - u@U, PU=o. 

It gives 

uoP = 0, u(U) = 1, 

8 



then M is called an almost para contact manifold and {F,U,u} is called 

almost para contact structure. 

An almost para contact manifold in which the metric tensor g satisfies 

g(FX,FY) = g(X, Y) - u(X)u(Y), 

is called almost para contact metric manifold and {F,U,u,g} is called 

almost para contact metric structure [79]. 

1.1. 7 Almost hyperbolic Hermitian manifold: 

If in a differentiable manifold M, there exists a vector valued 

linear function, F of differentiability class COO satisfying 

(1.1.21) a) F2 = I, b) g(FX,FY) = -g(X,Y) 

then M is said to be an almost hyperbolic Hermitian manifold [20]. 

1.1.8 Almost contact hyperbolic metric manifold: 

If in a differentiable manifold M, there exists a vector valued 

linear function F, a I-form u and a vector field U,_satisfying 

(1.1.22) F2 = 1+ u®U, 

It gives 

(1.1.23) uoF = 0 

FU=O. 

u(U) = -1, 

then M is called almost contact hyperbolic manifold and {F,U,u} IS 

called almost contact hyperbolic structure. 

9 
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An almost contact hyperbolic manifold in which metric tensor g 

satisfies 

(1.1.24) g(FX,FY) = -g(X,Y) - u(X)u(Y), 

is called almost contact hyperbolic metric manifold and {F,U,u,g} IS 

called almost contact hyperbolic metric structure [103]. 

1.2 Submanifolds: 

Let M and Kif be two Coo manifolds of dimension nand m (m>n) 

-
respectively. A map i : M --?- M is called an immersion if its differential 

map i* is injective for every xEM and i(M) is called imbedding of M 

- -
into M and the image i(M) is called a submanifold of M and it is 

-
identified with M. Manifold M is said to be a submanifold of M if it is a 

- -
subset of M and if the map i : M --?- M is immersion and injective both. 

IfM is open, then the submanifold is called open submanifold. 

-
Let M be a submanifold of a Riemannian manifold M with a 

Riemannian metric g, then Gauss and Weingarten formulae are given 

respectively by 

(1.2.1) \7x Y = \7x Y + h(X,Y), 

(1.2.2) 
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for all X,Y E TM and N E Tl_M, where \7, V, Vl_ are the Riemannian, 

induced Riemannian and induced normal connections in M, M and the 

normal bundle of M respectively and h is the second fundamental form 

related to A by 

(1.2.3) g(h(X,Y),N) = g(ANX,Y), 

IfF is a (1,1) tensor field on M fo~ X,Y E TM and N E TJ.M, we put 

(1.2.4) FX = PX + QX, PX E TM, QX E Tl_M, 

(1.2.5) FN = BN + CN, BN E TM, CN E TJ.M. 

- -
Let Rand R are the curvature tensors of M and M respectively, then 

equation of Guass and Coddazzi are given respectively by 

-
(1.2.6) g( R(X,Y)Z,W)=g(R(X,Y)Z,W)-g(h(X,W),h(Y,Z» 

+g(h(Y ,W),h(X,Z», 

(1.2.7) (R(X,Y)Zl = (Vxh)(Y,Z) - (Vyh)(X,Z), 

where ( R(X,Y)Zl is the normal component of R(X,Y)Z, and 

(1.2.8) . (Vxh)(Y,Z)=(VxJ.h)(Y,Z)- h(Vx Y,Z)-h(Y, VxZ), V X,Y,ZETM. 

The submanifold M is said to be totally geodesic if h = 0 and 

totally umbilical if 

(1.2.9) h(X,Y) = g(X,Y)H. 



12 

1.3 CR-Submanifolds: 

Let M be an almost Hermitian manifold with almost complex 

structure tensor F, where of is (1,1) tensor field. We consider a 

submanifold M of M and denote by T xM and T /M the tangent space and 

the normal space ofM at XEM respectively. IfTxM is invariant under the 

action of F for each x E M, that is if FT xM c T xM for each x E M, then M 

is called an invariant (or holomorphic) submanifold of M. On the other 

hand, if the transform ofTxM by F is contained in the normal space T/M 

for each xEM, that is FTxM c T/M for each xEM, then M is called an 

-
anti-invariant (or totally real) submanifold of M. 

Let M be an almost Hermitian manifold with almost complex 

-
structure tensor F, a submanifold M of M is called a CR-submanifold 

-
of M if there exists a differentiable distribution D: x ~ Dx on M 

satisfying the following conditions: 

(i) D is invariant, that is, FDx c Dx for each xEM, 

(ii) the complementary orthogonal distribution Dl.: x ~ Dxl. c TxM of 

D is anti-invariant, that is, FD/ c T/M for each XEM. 



13 

1.4 Semi-invariant submanifolds: 

A semi-invariant submanifold is nothing but the extension of the 

concept of the CR-submanifold of Kaehler manifold to submanifold of 

almost contact metric manifolds. 

Let M be submanifold of an almost contact metric manifold M 

with almost contact metric structure (F,U,u,g). Then M is called a semi-

-
invariant submanifold of M if there exist two differentiable distributions 

D and D.l on M satisfying 

(i) TM=D EB D.lEB {U}, where D, D.l and {U} are mutually orthogonal 

to each other. 

(ii) The distribution D is invariant by F, that is F(Dx) c Dx for each 

XEM. 

(iii) The distribution D.l is anti-invariant by F, that is FD/ c T/M for 

each XEM. 

1.5 Connection: 

1.5.1 Symmetric Connection: 

A linear connection V on a COO manifold is said to be symmetric 

if its torsion tensor is zero, that is 

(1.5.1) T(X,Y) = VxY - VyX- [X,Y]. 
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1.5.2 Metric Connection: 

A linear connection V on a Coo manifold is said to be metric 

connection if its tensor g is parallel, that is 

(1.5.2) (Vxg)(Y,Z) = o. 

1.5.3 Riemannian Connection: 

A linear connection V on a Coo manifold is said to be 

Riemannian connection if it is symmetric as well as metric connection. 

1.6 Hypersurfaces: 

- -
A submanifold M of M is said to be a hypersurface of M if 

dimension of M is one greater than dimension of M. In case of a 

hypersurface there is only one normal vector field to M. Let M be an 

-
almost contact manifold and M be an orientable hypersurface of M, and 

i* the differential of the immersion i of Minto M. Let X,Y,Z be tangent 

to M and N a unit normal vector, then we have 

(1.6.1) a) FBX = BfX + u(X) N 

(1.6.2) g(BX,BY)ob = h(X,Y), 

b) FN=- BU 

where f is a tensor field of type (1,1) and u is a I-form, U is a vector field 

and h is a induced metric tensor on M. 
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If u is identically zero, then M is said to be an invariant 

hypersurface, that is tangent space ofM is invariant by F. Ifu:;tO, then M 

is called a non-invariant hypersurface of M. 

Let E be the induced metric connection on the hypersurface M. 

Then we have 

(1.6.3) a) DBXBY = BEx Y + 'H(X,Y)N, b) DBXN = -BHX, 

where 'H is the second fundamental tensor on M and H is the associate 

tensor given by 

(1.6.4) 'H(X,Y) = h(HX,Y). 
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Chapter 2 REVIEW OF LITERATURE 

Schouten and Dontzing (1930) first tried to transfer the results in 

differential geometry to space with Riemannian metric and with affine 

connection to the case of spaces with complex structures and thus opened 

a new era of complex manifolds. Later on, Ehresmann (1947) defined an 

almost complex manifold, which carries a tensor field f whose square is 

minus unity. Newlander and Nirenberg (1957) studied the case when the 

complex space is merely differentiable. In solving these problems 

Nijenhuis (1951) introduced an important tensor, later known as 

Nijenhuis Tensor. Chern (1946), Bochenner (1947), Sasaki (1960), 

Kobayashi (1961), Yano (1965) studied differential geometry of complex 

manifolds and Riemannian manifolds. 

Walker (1955) studied the properties of the manifold with an 

almost product structure, in which there exist a mixed tensor field f 

whose square is unity. The idea off structure on a differentiable manifold 

was first initiated and developed by Yano (1963) and studied some of its 

properties and integrability condition relating to this structure. He also 

studied some of the properties on a structure defined by a tensor field f of 

type (1,1), satisfying f3 + f= 0 and f3 - f= O. 
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Tanno (1969), Yano et al. (1969) proved that any invariant 

submanifold of a normal contact metric manifold is minimal. Mashiro et 

al. (1973) gave the condition for an invariant submanifold of a K -contact 

Riemannian manifold· to be minimal and also gave the necessary and 

sufficient conditions for the given manifold to be totally geodesic. 

Blair (1971) studied almost contact manifolds with Killing 

structure tensors (called nearly Cosymplectic) and showed that if this 

structure is normal, it is Cosymplectic; in particular the (almost) contact 

distribution is integrable. Blair, Showers and Yano (1976) studied the 

notion of a nearly Sasakian structure and shown that a normal nearly 

Sasakian structure is Sasakian structure and hence in particular is contact. 

They also studied that a hypersurface of a nearly Kaehler manifold is 

nearly Sasakian if and only if it is quasi Umbilical with respect to the 

(almost) contact form. 

Hyperbolic Kaehlerian space has studied by Pravanovic (1971). 

Rasevaski (1948) was the first to consider such spaces; 'later on Sirokov 

studied it in 1961. Dube (1973) defined and studied almost hyperbolic 

Hermitian manifold and gave a classification to such spaces as nearly 

hyperbolic Kaehlerian, quasi hyperbolic Kaehlerian, semi hyperbolic 

Kaehlerian and hyperbolic Hermitian manifolds. Dube and Niwas (1978) 

defined r-contact hyperbolic structure in a product manifold, which is 
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generalization of almost contact hyperbolic structure. Pal and Mishra 

(1980) shown that a hypersurface of hyperbolic Hermite manifold admits 

an induced hyperbolic contact structure and also obtained a condition for 

hypersurface of an almost hyperbolic Hermite manifold with vanishing 

curvature tensor to be conformally flat. Further Dube and Mishra (1981) 

studied hypersurfaces of an almost hyperbolic Hermitian manifold. 

Mishra (1973) studied a differentiable manifold with f-structure of 

rank r and also obtained integrability condition of that manifold. M. Kon 

(1973) studied some properties of invariant submanifold in a K-contact 

Riemannian manifold. He also studied in 1974 the pinching problem for 

the length of the second fundamental form of an invariant submanifold of 

a normal compact metric manifold of constant sectional curvature and 

gave the condition for an invariant submanifold to be totally geodesic. 

K. Matsumoto (1974) have studied a conformal C-killing vector 

field in a compact Sasakian manifold and shown that a compact (2n+ 1)

dimensional Sasakian manifold, let u be a conformal C-killing vector 

field and v be a C-harmonic p-form (p:$n) then we have L(u)v = 0, that is 

the Lie derivative of any C-harmonic p-form (p:$n) with respect to a 

conformal C-killing vector field always vanishes. H. Endo (1974) studied 

invariant submanifolds in a K-contact Riemannian manifold and 
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generalized the result any invariant submanifold of a Sasakian manifold is 

minimal to K-contact Riemannian manifold. Ram Hit (1974) studied 

almost contact submanifolds and find the conditions for a metric 

submanifold of an almost contact metric Cosymplectic manifold to be 

Cosymplectic. He also obtained the conditions for an almost contact 

metric submanifold to be nearly Cosymplectic. Stavre, Petre (1975) 

studied some properties of a regular almost contact metric structure and 

structure induced on the orbit space. 

Upadhyay and Dube (1976) defined and studied almost contact 

hyperbolic (f,g, 11 ,~) structure and obtained some results. Mishra (1976) 

considers a generalization of an almost contact structure and introduces 

ce~ain structure in a differentiable manifold and find their properties. 

Sato (1976) studied a differentiable manifold with structure tensors 

(~,~,11) satisfying ~2 = I - 11®~ and 11(~) = 1, where ~ is a (1,1) tensor, ~ a 

vector field, 11 a I-form on the manifold and I is the identity such a 

structure may be considered as analogues to the almost contact structure 

which is closely related to the almost complex structure. This is closely 

related to almost product structure. This is known as almost para contact 

structure and manifold is an 'almost para contact manifold. Further in 
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1977 he studied normal para contact Riemannian manifold, which is the 

most specialized form of almost para contact Riemannian manifolds. 

M. Kon (1976) studied an anti-invariant submanifold tangent to the 

structure vector field of a Sasakian maniold is not totally umbilical and 

defined the notion of compact totally umbilical submanifolds of a 

Sasakian manifold which corresponds to that of totally umbilical 

submanifoltls of a Kaehlerian manifold. He proved that any compact 

totally umbilical, anti-invariant submanifold tangent to the structure 

vector field of a Sasakian manifold with vanishing compact Bochner 

curvature tensor is locally a product of a conformally flat Riemannian 

manifold and I-dimensional space. Yano and Kon (1976) studied 

invariant and anti-invariant submanifolds of Sasakian manifolds. 

Paljakov (1977) studied detailed account of recent work concerning 

non-invariant submanifolds of an almost contact manifold as well as 

certain problems on distribution theory of connection on an almost 

contact manifold are also discussed. 

Bejancu (1978) initiated a new class of submaniolds of a complex 

manifold, which he called CR-submanifold and obtained some interesting 

results. Mishra (1978) studied different structures in a differentiable 

manifold and also some of their important properties. He studied almost 
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complex structures, almost contact structures, general structures and also 

studied some of the application of the above structures. 

Das, Lovejoy (1979) studied an almost contact manifold satisfying 

certain natural conditions can be considered as a principal g bundle over 

an almost complex manifold. The properties of this bundle studied by 

Staver (1975). The author extends the results ofStavre concerning almost 

contact manifolds of almost r-contact manifolds. Olszak, Zbigniew 

(1979) studied a contact metric manifold of dimension (2n+l) and let 

(~,~,l1,g) be its contact metric structure where ~2=_I +11®~, ~~=O, l1o~ =0, 

11(~) = 1, g( ~X,~ Y) = g(X,Y) - l1(X)l1(Y), g(X,~) = 11 (X), ~(X, Y) = 

g(X,~ Y) =d11(X,Y) and proved some theorems for this structure. He also 

studied some properties of a nearly Sasakian manifold. Mishra (1979) 

studied submanifolds of 3-structure metric manifold, 3-structure almost 

Sasakian manifold, 3-structure quasi Sasakian m~pifold and Sasakian 3-

structure metric manifold. 

Adati and A. Kandatu (1980) studied hypersurfaces ofP-Sasakian 

manifolds and manifolds admitting a concircular vector field. T. 

Miyazawa (1980) have been studied an invariant submanifold V 

immersed in this almost paracontact Riemannian manifold and showed 

that the V admits either an almost paracontact Riemannian structure or an 
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almost product Riemannian structure (~,g) excepting the case where ~ is 

trivial. 

Zbigniew Olszak (1981) studied the structure of almost 

Cosymplectic manifolds. He also studied some examples, basic definition 

and some preliminary properties of an almost Cosymplectic structure. 

Mishra (1981) defined a conformal K-contact Riemannian manifold as an 

almost Sasakian manifold with structure tensor (~,~,l1,g) in which the 

associated vector field ~ is a conformal killing vector field, that is, 

(Vxll)Y + (Vyll)X = 2pg(X,Y), where V is the Riemannian connection, 

X,Y are arbitrary vector fields and p is a scalar. R.S. Mishra (1981) has 

studied structures in submanifolds of an almost Hermite manifold and 

proved that the hypersurface of an almost Kaehler manifold is· quasi 

Sasakian manifold. T. Hasanis (1981) has studied necessary and 

sufficient condition for the hypersurface to be minimal. 

M. Kobayashi (1981) has initiated a new class of submanifolds of a 

Sasakian manifold and introduced the concept of ~-horizontal and ~

vertical CR-submanifolds of a Sasakian manifold and gave their basic 

properties. He also studied the D-parallel normal section and (D,~) flat 

normal connection of a CR-submanifold of a Sasakian manifold. Some 
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kinds of sectional curvatures, the Ricci tensor the scalar curvature of a 

CR-submanifold of a Sasakian space form were examined. 

M. Ko~ayashi (1982) studied CR-submanifolds of a Sasakian space 

form with flat normal connection. He also studied the integrability of 

horizontal and vertical distribution on CR-submanifolds of a nearly 

Sasakian manifold. Further he studied contact CR-products of Sasakian 

manifolds. 

K. Yano and M. Kon (1983) studied generiC submanifolds of a 

Kaehlerian product manifolds. Bucki (1984) studied invariant 

submanifolds of an almost r-paracontact manifold. H. Endo (1985) 

studied invariant submanifolds in an almost Cosymplectic manifold. 

S. Deshmukh, A. Sharfuddin and SJ. Husain (1986) studied 

invariant and non-invariant hypersurfaces of almost para ,contact metric 

manifold be an almost product metric manifold and an invariant 

hypersurface of a para contact metric (para Sasakian) manifold. M. 

Kobayashi (1986) studied semi-invariant submanifolds of a certain class 

of almost contact manifold and obtained many important results. Gupta 

and Prasad (1986) defined and studied almost para r-contact structure 

manifold. They also defined the Nijenhuis tensor of this structure and 

almost para r-contact Riemannian manifold and established some results. 
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M.D. Upadhyay and C.S. Prasad (1987) obtained integrability 

condition of an almost para contact structure. S.l. Husain and S. 

Deshmukh (1987) initiated the study of CR-submanifolds of a nearly 

Kaehler manifold and obtained their fundamental properties. The 

conditions under which the distributions required by CR-submanifolds 

are integrable were obtained. Mixed totally geodesic D-totally geodesic 

and D.l-totally geodesic CR-submanifolds have been studied as well as 

totally umbilical CR-submanifolds under some condition have been 

shown to be totally geodesic. 

R. Niwas, R. Singh (1988) studied almost r-contact structure 

manifolds. They considered r-linearly independent eX) vector fields Ux 

and r(Coo
) I-forms u\ r some finite integer and studied the notion of 

almost r-contact structure. 

Kalpana (1989) obtained some of the properties of an almost semi

invariant submanifold of an SP-Sasakian manifold. The integrability 

conditions of the distribution D, D.l, D, DEB{~}, D.lEB{~) and DEB{~} 

have also been studied. B. Ravi and C S. Bagewadi (1989) have obtained 

some conditions for the invariant submanifold of a conformal K-contact 

Riemannian manifold to be minimal and totally geodesic. D.E. Blair 
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(1990.) showed non existence of 4-dimensional almost Kaehler manifold 

of constant curvature. 

R.S. Mishra (1991) studied an almost contact metric manifold and 

discovered three new manifold namely, generalized quasi-Sasakian 

manifold of first kind, almost contact metric pseudo-normal manifold, 

quasi-nornlal manifold. Hasan Shahid (1991) studied CR-submanifolds of 

a trans Sasakian manifold that generalizes both a-Sasakian and ~

Kenmotsu structure. He obtained the integrability conditions for 

distributions naturally arise in CR-submanifold. Further in 1994 he 

studied geometry of leaves on CR-submanifolds of a trans Sasakian 

manifold and also CR-submanifolds with parallel structures. Sinha and 

Yadav (1991) studied results on semi-invariant submanifolds ofa c"ertain 

class of almost contact manifold, in which they studied the (D,D.l) 

geodesic semi-invariant submanifolds ofKenmotsu·manifold. 

Hasan Shahid (1992) studied CR-submanifolds of Kaehlerian 

product manifold. Sinha and Srivastava (1992) studied submanifolds of a 

Kemnotsu manifold to be a semi-invariant submanifolds in particular case 

when it is a Kenmotsu space form of constant $-holomorphic sectional 

curvature. Tripathi and Singh (1992) studied some properties of 

submanifolds of an almost r-para contact Riemannian manifold of s-para 

contact type. They proved result concerning non-existence of an anti-
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invariant distributionon the submanifold of an almost r-para contact 

Riemannian manifold ofP-Sasakian type or SP-Sasakian type. 

Hasan Shahid (1993) studied semi-invariant submanifold of a 

nearly Sasakian manifold and obtained some basic lemmas and properties 

of parallel horizontal distribution and also obtained the integrability 

condition of distributions involved in semi-invariant submanifold. Das 

Lovejoy (1993) studied a differentiable manifold satisfying an algebraic 

structure X = a2X + LAp(X)TP, which is generalization of almost r

contact hyperbolic structure. C. S. Prasad (1993) obtained integrability 

condition of a manifold admitting almost para r-contact structure. Prasad 

and Ojha (1993) studied CR-submanifolds of trans Sasakian manifolds 

and obtained integrability conditions of horizontal and vertical 

distributions. Maeda, Ohnita and Udagawa (1993) studied slant 

immersions into Kaehler manifolds, in which they studied slant 

submanifolds in complex projective space and obtained some sufficient 

conditions for an isometric immersion of a compact Kaehler manifold 

into a Kaehler manifold to be slant. Mishra (1993) studied the 

hypersurfaces of almost Hermite manifolds in which some of new 

manifolds have been obtained geometrically as the hypersurfaces of 

almost Hermite manifolds. In 1995 he studied normality of the 

hypersurfaces of almost Hermite manifolds. 
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Dutta (1994) studied (1,2) symplectic structures, nearly Kaehler 

structures and S6 and obtained exact relations between the,Hermitian, the 

symplectic and nearly Kaehler structures. Mishra (1994) studied anti

invariant suhmanifolds of a Kenmotsu manifold. Sinha and Yadav (1994) 

studied semi-invariant submanifolds of a Kenmotsu manifold. in which 

they obtained the integrability conditions of distributions and the 

geometry of leaves on a semi-invariant suhmanifolds in a Kenmotsu 

manifold. 

Tripathi (1995) studied almost semi-invariant ~j_ submanifolds of 

trans Sasakian manifolds. He proved that an almost semi-invariant ~1 

submanifold of a normal almost contact metric (and hence trans Sasakian) 

manifold with' proper invariant distribution always possesses a CR

structure. He also obtained integrability conditions for certain natural 

distributions on almost semi-invariant ~j_ submagifolds. He showed that 

the anti-invariant distribution of almost semi-invariant ~j_ submanifold of 

a trans Sasakian manifold is always integrable. The author also showed 

the non existence of proper mixed foliated semi-invariant submanifolds 

of Sasakian manifolds. Gadea and Oubina (1995) studied homogeneous 

almost para Hermitian structures. They gave classification of 
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homogeneous almost para Hermitian structures by using their results for 

the almost para Hermitian case. 

Dube (1996) defined para Kenmotsu manifold and studied different 

curvature tensors on para Kenmotsu manifold and also the property of 

parallel 1t null planes. Tripathi, Singl{ (1996) studied almost semi-

invariant submanifolds of a manifold with a s-framed metric structure. 

They established some necessary and sufficient conditions for a 

submanifold to be an almost semi-invariant submanifold. He also 

obtained some necessary and sufficient conditions for submanifolds of an 

s-manifold to be f-invariant, anti-invariant and totally geodesic. Tripathi 

(1996) studied almost semi-invariant submanifolds of trans Sasaki an 

manifolds, in which he obtained some basic results concerning 

submanifolds of almost contact metric manifolds and trans Sasakian 

manifolds and defined almost semi-invariant submanifold of an almost 
.. -

contact metric manifold. He also studied some properties and integrability 

conditions for certain distribution on almost semi-invariant submanifolds 

of trans Sasakian manifolds. Totally umbilical, minimal and totally 

geodesic submanifolds have been studied. Tripathi (1996) studied CR-

submanifolds of generalized complex space form. The author obtained 

some necessary and sufficient conditions for submanifolds of a 

generalized complex space form to be CR-submanifolds. 
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Tripathi (1997) studied genenc submanifolds of generalized 

complex space forms, where such submanifolds generalize holomorphic, 

totally real, slant CR-antiholomorphic, A~eneric, generalized CR

submanifolds and skew CR-submanifolds. The author obtained necessary 

and sl:lfficient conditions for integrability of totally real distribution. He 

also studied almost semi-invariant submanifold of a parallel E-framed 

metric manifold and obtained some necessary and sufficient conditions 

for certain distributions on the submanifolds to be integrable. Totally 

umbilical and totally geodesic almost semi-invariant submanifolds are 

also studied. G. Zhen, J.L. Cabrerizo, L. M. Fernandrz and M. Fernandez 

(1997) studied the notion of ~-conformally flat on a contact metric 

structure and it is proved that any K-contact metric manifold is ~-

conformally flat if and only if it is ll-Einstein Sasakian manifold. 

Pandey and Verma (1999) have studied saine properties of para 

Sasakian manifold satisfying R(X,Y)R = ° and R(X,Y)C = 0, where 

R(X, Y) is the endomorphism of the Riemannian curvature tensor Rand 

C(X,Y,Z) is conformal curvature tensor. They have proved that if in a P

Sasakian manifold R(X,Y)C= 0, then either it is SP-Sasakian manifold or 

the structure vector ~ normal to T(Mn). Bhatt, Joshi and Dube (1999) 

have studied non-invariant hypersurface of Kenmotsu manifold and 
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obtained some interesting results. Prasad and Bagewadi (1999) obtained 

necessary and sufficient condition for a semi-invariant submanifold of a 

Kenmotsu manifold to be ~-horizontal.fiifld ~-vertical in terms of 

integrability of distributions D and Dj_. 

Jong Tock Cho (2000) have given a classification of real 

hypersurfaces of a complex hyperbolic space ct. Hn satisfying a point wise 

nullity condition for the structure vector field~, that is k{ll(Y)X -ll(X)Y}, k 

characterize a horo sphere in ct. Hn by the condition R(X,Y)~ = {ll(Y)X -

ll(X)Y},that is k = 1. Prasad (2000) obtained certain results on P-Sasakian 

manifolds. Pujar (2000) introduced a P-structure on a differentiable 

manifold of dimension n that is a tensor field of type (1,1) satisfYing p3 - P 

= O. Further if there exists a P-structure of rank (n-I), then it is shown that 

there exists a Riemannian metric g such that g(PX,Py) = g(X, Y) + 

r(X)llY(Y) and g(PX,Y) = g(X,PY), where llx and ~Y (x,y = r+ II = 2, ... ,n) 

are the linearly independent covariant vectors (that is I-form) corresponding 

to the distribution Dr of dimension n-r with respect to the operator T and r is 

the dimension of the distribution DL (orthogonal to Dr) with respect to the 

operator L. It is also shown that CR-submanifolds of a Lorentzian para 

Sasakian manifold carry the P-structure. M.M. Tripathi (2000) has studied 

CR-submanifold of nearly Cosymplectic and· Closely Cosymplectic 
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manifolds. Properties such as integrability autoparallelness of certain 

distributions on the submanifold were studied. Totally umbilical, totally 

contact umbilical totally geodesic and totally contact geodesic submanifolds 

were also studied. Shukla and Tripathi (2000) studied the hypersurfaces of a 

-----Riemannian manifold equipped with a Kenmotsu 3-structure. In 2001 they 

studied generic submanifolds of a Riemannian manifold equppied with a 

Kenrnotsu3-structure. 

LK. Mishra and R.H.Ojha (2001) have been introduced D-

conformal transformation in a SP-Sasakian manifold. Some properties of 

curvature tensors are also obtained. M.Tarafdar and A. Bhattacharyya 

(2001) have studied Lorentzian para Sasakian (LP-Sasakian) manifolds 

with conformally flat and quasi conformally flat curvature tensor. It was 

shown that in both the cases, the manifold is locally isometric with an 

unit sphere Sn(l). Further, it was shown that a LP=~asakian manifold with 

R(X,Y)C = 0 was locally isometric with a unit sphere Sn(l). Joshi and 

Dube (2001) defined and studied semi-invariant submanifold of an almost 

r-contact hyperbolic metric manifold and obtained some results. A.K. 

Sengupta and U.C. De (2001) studied the generalized CR-submanifolds 

of a trans Sasakian manifold and obtained their basic properties. The 

conditions of integrability of the distributions of generalized CR-

submanifold were also obtained. 
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Chapter 3 MATERIALS AND METHODS 

/ 
This chapter is divided into 5 sections. Section 1 is divided in two 

subsections leA) and l(B). We have studied CR-submanifolds of a trans 

para Sasakian manifold and CR-submanifold of nearly and closely para 

Cosymplectic manifold in section leA) and l(B) respectively. FUliher 

section 2 is divided in two subsections 2(A) and 2(B). We have studied 

semi-invariant submanifolds of a nearly r-Sasakian manifold and semi-

invariant submanifolds of r-Kenmotsu manifold in section 2(A) and 2(B) 

respectively. Section 3 is divided in two subsections 3(A) and 3(B). 

Section 3(A) and 3(B) is devoted to CR-submanifolds of a trans 

hyperbolic Sasakian manifold I and CR-submanifolds of a trans 

hyperbolic Sasakian manifold II respectively. Section 4 is divided in two 

subsections 4(A) and 4(B). We have studied semi-invariant submanifolds 

of para Kenmotsu manifold I and semi-invariant submanifolds of para 

Kenmotsu manifold II respectively in section 4(A) and 4(B). Section 5 is 

devoted to the study of hypersurfaces of almost hyperbolic Hermitian 

manifolds. 
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3.1 SECTION l(A): 

ON CR-SUBMANIFOLDS OF A TRANS PARA SASAKIAN 

MANIFOLD 

Let M be an n-dimensional almost par~ntact metric manifold 

with structure tensors (F,U,u,g). 

An almost para contact metric structure (F,U,u,g) on M is called 

trans para Sasakian if 

-
(3.1.1)(A) (VxF)(Y) = a(g(X,Y)U - u(Y)X) + P(g(FX,Y)U - u(Y)FX) 

for a,p non zero constant, then it is called trans para Sasakian structure is 

of type (a,p). 

From the above equation (3. 1. l)(A), we have 

(3.1.2)(A) VxU = aFX+p(X - u(X)U). 

A submanifold M of M is called a CR-submanifold if U is tangent 

to M and there exist on M a differentiable distrihution D: x-j-Dx c TxM 

satisfying the following conditions: 

(i) Dx is invariant under F that is FDx c'Dx for each xEM, 

(ii) the complimentary orthogonal distribution Dj_: x-j-D/ c TxM is 

totally real under F, that is FD/ c T/M for each xEM, where TxM 

and T/M are tangent and normal space ofM at x respectively. 
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M is an invariant (resp. anti-invariant) submanifold of M when 

dimOj_ =0 (resp. dimO = 0), where 0 (resp.Oj_) is the horizontal (resp. 

vertical) distribution. The pair (D,Dj_) is called U-horizontal (D-vertical) 

ifUxEDx(resp.UxED/) for each xEM. 

F or a vector field X tangent to M, we put 

(3.1.3)(A) X = PX+QX, 

where PX and QX belong to the distribution D and Dl. respectively. Also 

for a vector field N normal to M, we put 

(3.1.4)(A) FN = BN+CN, 

where BN (resp. CN) denotes the tangential (resp. normal) component of 

FN. 

The Gauss and Weingarten formulas are given by 

(3.1.5)(A) 
- - l. 
Vx Y = Vx Y + h(X,Y), VxN = -ANX + Vx N, 

X,YETM, NETj_M, 

where Vj_ is the normal connection, h (resp.A) is the second fundamental 

form Crespo tensor) ofM in M satisfying 

(3.1.6)(A) g(ANX,Y) = g(h(X,Y),N). 

If we denote the orthogonal component of FDl. in Tl.M by Jl, then 

we have 
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rM = FD.lffi J.!, it is obvious that FJ.! = J.!. 

Lemma 3.1.1(A): Let M be a CR-submanifold of a trans para Sasakian 

manifold M. Then we have 

(3.1.7)(A) PVxFPY-PAFQyX-FPVx Y+(Xg(X,Y)PU+~g(FPX,Y)PU 

-au(Y)PX-~u(6px, 

(3.1.8)(A) QVxFPY-QAFQyX=Bh(X,Y)+«Xg(X,Y)+~g(FQX,Y»QU 

-au(Y)QX, 

(3.1.9)(A) h(X,FPY)+ V x IFQY=FQV x Y +Ch(X, Y)-~u(Y)FQX, 

for any X, Y E TM. 

Proof: From equations (3.1.1)(A), (3.1.3)(A), (3.1.4)(A) and (3.1.5)(A), 

we have 

- -
VxFX-F VX Y = a(g(X,Y)U-u(Y)X)+~(g(FX,Y)U-u(Y)FX) 

or VxPPY+h(X,FPY)+V/-PQY-AFQYX-PVX Y-Fh(X,Y) 

=ag(X,Y)PU+ag(X,Y)QU-au(Y)PX-au(Y)QX +~g(FPX +PQX,Y)U 

-~u(Y)FPX-~u(Y)FQX, 

or PVxFPY+QVxFPY+h(X,FPY)+Vx.lFQY-PAFQyX-QAFQYX 

=FPVx Y+PQVx Y+Bh(X,Y)+Ch(X,Y)+ag(X,Y)PU+ag(X,Y)QU 

-au(Y)PX -au(Y)QX +Pg(FPX, Y)PU+Pg(FQX, Y)QU-pu(Y)FPX 

-pu(Y)FQX. 
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Now equating the horizontal, vertical and normal components we get the 

required results, which proves our lemma. 

The horizontal distribution D is said to be parallel with respect to 

the connection Von M ifVxY ED for all vector fields X,Y ED. 

Proposition 3.1.1(A): Let M be a U-horizonUll-CR-submanifold of a 

-
trans para Sasakian manifold M. Then the distribution D is parallel if 

and only if 

(3.1.l0)(A) h(X,FY) = h(FX, Y) = Fh(X,Y), for all X,Y ED. 

Proof: parallel distribution is involutive, that is 

(3.1.11)(A) h(X,FY) = h(FX,Y), for all X,YED. 

From (3.1.9)(A) and (3.1.11)(A), we have 

(3.1.12)(A) h(X,FY) = Ch(X,Y). 

Also VxFYED, VyFXED, V X,YED, so from (3.1.8)(A) and using D-

parallelness, we get Bh(X,Y) = 0, V X,Y ED. 

From (3.lA)(A), we get 

Fh(X,Y) = Bh(X,Y)+Ch(X,Y). 

From (3.1.12)(A), Bh(X,Y) = ° and the above equation, we get 

Fh(X, Y) = Ch(X, Y) = h(X,FY), V X, Y E D, 

which proves (3.1.10)(A). This completes the proof of the theorem. 
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A CR-submanifold M of a trans para Sasakianmanifold M is said 

to be mixed totally geodesic ifh(X,Y) = 0, for XED and Y ED.l. 

A CR-submanifold M is mixed totally geodesic if and only if 

A normal vector field N '* 0 is D-parallel normal section on M if 

V'x.lN = 0, for all XED. 

Proposition 3.1.2(A): Let M be a mixed totally geodesic U-vertical CR-

submanifold of a trans para Sasakian manifold M. Then the normal 

section NEFD.lis aD-parallel if and only ifV'xFNED, for all XED. 

Proof: Let N EFD.l and as M be a mixed totally geodesic, we have 

-
V'x(FN) = V'x(FN) 

- -
or V'x(FN) = ( V'xF)N+F V'xN 

.. -- .l . 
Let normal section be D-parallel means V'x N = O. Let we have 

for all XED. 

Conversely, we have ANXED and V'xFNED, then from (3.1.13)(A), 

we get V'x J..N=O, for all XED. 

This implies that normal section N is D-parallel. 



This proves our assertion. 

Lemma 3.1.2(A): Let M be a CR-submanifold of a trans para Sasakian 

-
manifold M. Then we have 

(3.1.14)(A) AFyZ-AFZY+a(u(Z)Y-u(Y)Z) = FP[Y,Z], for any Y,ZED.L. 

Proof: We have 

- - -
VyFZ = ( VyF)(Z)+F VyZ. 

Using (3. 1.1 )(A) in the above equation, we get 

VyFZ = a(g(Y,Z)U-u(Z)Y)+~(g(FY,Z)U-u(Z)FY)+FVyZ+Fh(Y,Z) 

= a(g(Y,Z)U-u(Z)Y)+FPVyZ+FQVyZ+Bh(Y,Z)+Ch(Y,Z) 

-~u(Z)PQY. 

In view of (3 .1.5)( A) and the above equation, we have 

(3.1.15)(A) -AFzY+Vy.LFZ=a{g(y,Z)U-u(Z)Y)-~u{Z)FQY+FPVyZ 

+FQVyZ+Bh(Y,Z) +Ch(Y,Z), for all Y,ZEDJ.. 

From (3.1.9){A), for all Y,ZED.L, we obtain 

(3.1.16)(A) Vy.LpZ = PQVyZ + Ch{Y,Z) + ~u{Z)FQY. 

Now from (3.1.15)(A) and (3. 1. 16)(A), we get , 
FPVyZ = -AFZ Y - ag{Y,Z)U+au(Z)Y - Bh(Y,Z). 

Similarly we have 

FPVz Y = -AFyZ - ag(Y,Z)U + au(Y)Z- Bh(Y,Z). 

38 
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Thus from the above two equations, we get 

FP[Y,Z] = AFyZ - AFZ Y + a(u(Z)Y - u(Y)Z), for all Y,ZEDj_. 

This completes the proof of the theorem. 

A CR-submanifold of a trans para Sasakian manifold M is called 

D-umbilic (resp. Dj_ umbilic) if heX, Y) = g(X, Y)H holds for all X, Y E D 

(resp.X,Y EDj_), where H is a mean curvature vector field. 
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3.2 SECTION l(B): 

ON CR-SUBMANIFOLD OF NEARLY AND CLOSELY PARA 

. CO SYMPLECTIC MANIFOLDS 

-
Let M be an almost para contact metric manifold with structure 

tensors (F,U,u,g). 

An almost para contact metric manifold is called a para Cosymplectic 

manifold if [30] 

(3.1.1)(B) (VxF)Y = O. 

An almost para contact metric manifold IS called nearly para 

Cosymplectic ifF is a killing, that is, 

- -
(3.1.2)(B) (VxF)Y + ( VyF)X = 0, 

where V is the operator of covariant differentiation with respect to g. On 

nearly para Cosymplectic manifold, U is a killing vector field. That is, 

- - -
(3.1.3)(B) g( VxU,Y) + g( VyU,X) = 0, V, X,Y ET V. 

An almost para contact metric manifold is called closely para 

Co symplectic if F is a killing and U is a closed. On closely para 

Cosymplectic manifold we have 

- - -
(3.1.4)(B) VuF = 0, VU = 0, Vu = 0. 
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Let M be a submanifold of a Riemannian manifold Nt with a 

Riemannian metric g. Then Gauss and Wiengarten formulae are given 

respectively by 

(3.1.5)(B) 

(3.1.6)(B) 

-
V'x Y = V'x Y + h(X,Y), X,Y ETM, 

where \7, V' and V'.L are Riemannian, induced Riemannian and 

induced normal connections in M, M and the normal bundle T.LM of M 

. respectively and h is the second fundamental form related to A by 

(3.1.7)(B) g(h(X,Y),N) = g(ANX,Y), 

F is a (1,1) tensor field on M, for XETM and NET.LM we have [102] 

(3.1.8)(B) (V'xF)Y = ((V'xP)Y-AQyY-th(X,Y»+((V'xQ)Y+h(X,PY) 

-fh(X,Y», 

(3.1.9)(B) (V'xF)N = ((V'xt)N-AFN Y-PANX)+((V'xf)N+h(X,tN) 

+ h(X,tN», 

where, 

(3.1.10)(B) FX == PX + QX, PXETM, QXET.LM 

(3.1.11)(B) FN == tN + tN, tNETM, tNET.LM, 

here PX and tN are tangential parts, while QX and fN are normal 

parts ofFX and FN respectively. 



Also we have 

(3.1.12)(B) (VxP)Y == VxPY - PVxY, 

(3.1.13)(B) (VxQ)Y== Vx.LQY - QVxY, 

(3.1.14)(B) (Vxt)N == VxtN - tVx.LN, 

(3.1.15)(B) (Vxf)N == Vx.LfN - fVx.LN. 

-
The submanifolds M is said to be totally geodesic in M if h =0 

-
and totally umbilical in M if 

heX, Y) = g(X, Y)K. 

For a distribution D on M, M is said to be D-totally geodesic if 

h(X,Y)=O, 'II X,Y ED. M is said to be D-totally umbilical if we have 

h(X,Y) = h(X,Y)K, where K is a normal vector field'll X,Y ED. M is said 

to be (D,E)-mixed totally geodesic ifh(X,Y) = 0, 'II XED and Y EE. 

Let D and E be two distributions defined on a manifold M. D is 

said to be E-parallel if we have Vx Y ED, 'II Xe"E and Y ED. If D is D-

parallel then it is called autoparallel. D is said to be X-parallel if we 

haveVx Y ED, 'II XETM and Y ED. D is said to be parallel if'll XETM 

and Y ED, VxY ED. 
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If a distribution D on M is autoparallel then it is integrable, and by 

Gauss formula D is totally geodesic in M. If D is parallel then the 

orthogonal complementary distribution Dl. is also parallel. 

A submanifold M of an almost para contact metric manifold M 

with UETM is called a CR-submanifold of M if for each xEM, TxM = 

I ° . Dx EEl Dx EEl {U}x, where, 

Dx l = Ker(QI{u}.l)x = { XxE {U}/: II XX II = II PXx II }= TxMnF(TxM), 

Dxo = Ker(PI{u/)x = (XxE {U}/: II XX II = II QXx II}= TxMnF(Tx .lM). 

The condition TxM = Dxl EEl Dxo EEl {U}x implies that p3 - P = 0 [74] on M 

and hence 

DimCDxl) = Rank(Px) is independent ofxEM and so is that Dxo. 

Now we have TM = DI Ei.1 DO Ei.1 {U}. 

These distributions are also differentiable. We have T.lM = lSI Ei.1 lSD, 

A CR-submanifold of an almost para contact manifold reduces to 

invariant submanifold (resp. anti-invariant submanifold [4, 111]) if 

DO={O} (resp. Dl = {O} ). 



~~ 

Let M be a submanifold of a nearly para Cosymplectic manifold, 

tangent to U. By virtue of equation (3.1.2)(B) and equation (3.1.8)(B) we 

have 

(3.1.16)(B) «VxP)Y + (VyP)X - AQYX - AQxY - 2th(X,Y» + «VxQ)Y 

+ (VyQ)X + h(X,PY) + h(PX,Y) - 2fh(X,Y» = 0. 

Proposition 3.1.1(B): Let M be a submanifold of a nearly para 

Cosymplectic manifold M. IfU ETM then V X,Y ETM we have 

(3.1.17)(B) (VxP)Y + (VyP)X - AQYX -AQx Y - 2th(X,Y)= 0, 

(3.1.18)(B) (VxQ)Y + (VyQ)X + h(X,PY) + h(PX,Y) - 2fh(X,Y) = 0. 

Proof: Equating tangential and normal parts of equation (3 . 1. 16)(B ), we 

get the desired results 

Proposition 3.1.2(B): Let M be a submanifold of a nearly para 

Cosymplectic manifold M. If U E TM then V X, Y E TM we have 

(3.1.19)(B) VxFY+ VyFX-F[X,Y]=2«VxP)Y-AQY Y-th(X,Y» 

+2( (V xQ)Y +h(X,PY)-fh(X, Y». 

The proof is obvious and hence omitted. 



Proposition 3.1.3(B): Let M be a submanifold of a nearly para 

Cosymplectic manifold. Then (P,U.u,g) is a nearly para Cosymplectic 

structure on the distribution D1Ee{U}ifth(X,Y)=0 V X,Y E D1Ee{U}. 

Proof: Using D1Ee{U} = Ker(Q) and p2 + tQ = I - u®U we obtain p2 == I -

u®U on D1Ee{U}. We also get PU = 0, u(U) = 1, uoP= 0. Using 

DiEe{U}= Ker(Q) and th(X,Y)=O in equation (3.1.17)(B) we have 

(V'XP)Y + (V'yP)X =0, V X,Y E D1EB{U}. 

This proves our assertion. 

Let M be a Riemannian manifold with a Riemannian connection V. 

, A distribution D on M is said to be nearly autoparallel if V X,Y E D we 

have (Vx Y + VyX) E D or equivalently VxX ED. 

We have 

Parallel => Autoparallel => Nearly autoparallel, 

Parallel => Integrable, 

Autoparallel => Integrable, and 

Nearly autoparallel + Integrable => Autopanillel. 

Lemma 3.1.1(:8): Let M be a CR-submanifold of a nearly para 

-
Cosymplectic manifold M. Then 

(3.1.20)(B) 3( AQX Y - AQYX) = P[X,y], X,Y E D°Ee{U}. 



Proof: Let X,Y E DOEB{U} and ZETM. We have from equation 

(3.1.5)(B) and (3.1.6)(B) 

.l - - - -
. -AFXZ+VZ FX= VzFX=( VzF)X+F VzX=- ( VxF)Z+ FVzX + Fh(Z,X), 

so that, 

.1 -
Fh(Z,X) = -AFXZ + Vz FX - FVzX + ( VxF)Z, 

and hence 

- -
g(Fh(Z,X),Y) = -g(AFX Z,Y)+g(( VxF)Z,Y) = g(AFX Y,Z)+g(( VxF)Y,Z). 

Now we have 

g(Fh(Z,X),Y) = g(h(Z,X),FY) = g(AFyX,Z). 

Thus from the above two equations, we have 

-
(3.1.21)(B) g(AFyX,Z) = g(AFX Y,Z) + g(( VxF)Y,Z). 

Now for X,Y E DOEB{U}, we have 

- - .1.1 
VxFY- VyFX = Apx Y - ApyX + Vx FY - Vy FX 

- - - -
and VxFY - VyFX = ( VxF)Y - ( VyF)X-+ F[X,Y] 

from above two equations, we get 

- - .l.l 
( VxF)Y - ( VyF)X = AFX Y - AFyX + Vx FY - Vy FX- F[X,Y]. 

Using equation (3.1.2)(B) and above equation, we get 

- .l .l 
( VxF)Y = 'h(AFX Y - AFyX + Vx FY - Vy FX - F[X,Y]). 



From the above equation and equation (3.1.21 )(B) we get the required 

result. 

Lemma 3.1.2(B): Let M be a submanifold of a closely para Cosymplectic 

-
manifold M, tangent to U. Then the integral curve ofU in M is geodesic 

in M, and U is an asymptotic direction. 

-
Proof: Since in a closely para Cosymplectic manifold we have VU == O. 

Now in view of equation (3.1.5)(B), we get h(U,U) = O. This completes 

the proof. 

Proposition 3.1.4(B): Let D be a distribution on a submanifold M of a 

closely para Cosymplectic manifold such that U ETM. If M is D-totally 

umbilical then M is D-totally geodesic. 

Proof: For D-totally umbilical we have 

h(X,Y) = g(X,Y) K, 'if X,Y E D. 

A direction U at a point of M is an asymptotic direction if normal vector 

field K = 0, which implies that h(X,Y) = 0 , which shows that M is D-

totally geodesic. 

Proposition 3.1.5(B): Every totally umbilical submanifold M of a closely 

para Cosymplectic manifold M, tangent to U, is totally geodesic. 

Proof: The proof follows from proposition (3.1.4)(B). 
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Let M be a submanifold of an almost para contact metric manifolds, 

tangent to U. 

In this case TM = {U}EB{U} j_, where {U} is the distribution spanded by 

{U} and {U} j_ is the complementary orthogonal distribution of {U} in M. 

This completes the proof of the theorem. 

A submanifold M of an almost para contact metric manifold M, 

tangent to U, is called 

(l) totally para contact umbilical if it is {U} j_ -totally umbi I ical, and 

(2) totally para contact geodesic if it is {U} j_ -totally geodesic. 

The condition of totally para contact umbilical and totally para 

contact geodesic are respectively 

(3.1.22)(B) h(P2X,P2y) = g (P2X,P2Y) K, X,Y E TM 

(3.1.23)(B) h(P2X,F2y) = 0, X,Y E TM 

where K is normal vector field. 

Using (1.1.20) in (3.1.22)(B) and (3.1.23)(B),we get the following 

respectively. 

(3.1.24)(B) h(X,Y) = g(PX,FY) K + u(X)h(Y,U) + u(Y)h(X,U) 

(3.1.25)(B) h(X,Y) = u(X)h(Y,U) + u(Y)h(X,U) 
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3.3 SECTION 2(A): 

ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY r-

. SASAKIAN MANIFOLDS 

-
Let M be (2m+ 1 )-dimensional almost r-contact metric manifold 

with structure tensors (F,Up,uP,g). 

An almost r-contact metric structure (F,Up,uP,g) (where p=l , .... ,r) 

-
on M is called nearly r-Sasakian if 

(3.2.l)(A) (VxF)(Y) + ( VyF)(X) = uP(y) X + uP(X)Y-2g(X,Y)Up, 

-
where V denotes the Riemannian connection with respect to g. If M 

satisfies 

(3.2.2)(A) (VxF)(Y) = uP(y) X -g(X,Y)Up, VxUp = FX, 

then the structure is called r-Sasakian. On a nearly r-Sasakian 

manifold M, the r-vector fields Up (where p = 1, ... ,r) is killing, that is, 

- - -
(3.2.3)(A) g( VxUp,Y) + g( VyUp,X) = O,for each X,Y E T M. 

An n-dimensional Riemannian submanifold M of a nearly r-

Sasakian manifold M is called a semi-invariant submanifold if Up is 

tangent to M and there exist on M a pair of orthogonal distribution (D,D.l) 

such that 
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(ii) the distribution D is invariant under F, that is FDxcDx, for all xEM, 

(iii) the distribution D.i is anti-invariant under F, that is F(D/) cT/M, 

for all xEM, 

where TxM and T/M are tangent space and normal space ofM at x. 

The distribution D (resp. D.i) is called the horizontal (resp.vertical 

distribution).A semi-invariant submanifold M is said to be an invariant 

(resp. anti-invariant) submanifold if we have D/ = {O} (resp.Dx = {O}) 

for each XEM. We also call M proper if neither D nor O.i is null. 

-
We denote by g the metric tensor field of M as well as that 

induced on M. Let \7 (resp. \7) be covariant differentiation with respect to 

-
the Levi-Civita connection on M (resp. M). The Gauss and Weingarten 

formulas for M are respectively given by 

(3.2.4)(A) V'x Y = V'x Y + h(X,Y), 

for X,Y ETM,NET.iM, where h(resp. A) is the second fundamental form 

- .i 
(resp. tensor) of M in M, and V' denotes the operator of the normal 

connection. We have also 

(3.2.5)(A) g(h(X,Y),N) = g(ANX,Y), 

For a vector field X tangent to M, we put 

(3.2.6)(A) X = PX + QX + uP(X)Up, 
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where P and Q are projection operators and PX and QX belong to the 

distribution D and Dj_ respectively. 

F or any vector field N normal to M, we put 

(3.2.7)(A) FN = BN + CN, 

where Band C are projection operators and BN (resp.CN) denotes the 

tangential (resp.normal) component ofFN. 

A semi-invariant submanifold is said to be mixed totally geodesic 

ifh(X,Z)=O for all XeD and ZeDj_. 

Let us calculate the Nijenhuis tensor on a nearly r-Sasakian 

-
. manifold M. 

- - - -
(3.2.8)(A) NF(X,Y) =( VFxF)(Y)-( VFyF)(X)-F( VxF)(Y)+F( VyF)(X), 

for any X,YeT M. 

From (3.2.1)(A) putting FX in place of X, we have 

( VFxF)(Y)+( VyF)(FX)=uP(Y)FX-2g(FX,Y)Up, 

(3.2.9)(A) (VFxF)(Y) = uP(Y)FX - 2g(FX,Y)Up - ( VyF)(FX). 

Now, we have 

- - 2 -
( VyF)(FX) = VyF X-F VyFX 

- - 2 - -
( VyF)(FX) = VyF X-Fe VyF)(X)-F(F VyX) 



( VyF)(FX) =- VyX+( VyuP(X»Up+uP(X) VyUp-F( VyF)(X)+ VyX 

-uP( VyX)Up, 

(3.2.10)(A) ( VyF)(FX) =( VyuP(X»Up+uP(X) VyUp-F( VyF)(X) 

-uP( VyX)Up• 

Using (3.2.1 O)(A) in equation (3.2.9)(A), we get 

(3.2.11)(A) ( VFXF)(Y)=-2g(FX,Y)Up+uP(Y)FX+F( VyF)(X) 
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+uP( VyX)Up- uP(X) vyUp - ( VyuP(X»Up' 

Again using equation (3.2.11 )(A) in equation (3.2.8)(A), we get 

NF(X,Y)=-2g(FX,Y)Up+uP(Y)FX+F( VyF)(X)+uP( VyX)Up- uP(X) vyUp 

-( VyUP(X»Up+2g(FY,X)Up-uP(X)FY-F( VxF)(Y)-uP( Vx Y)Up 

+uP(Y) VxUp+( VxuP(Y»Up -F( VxF)(Y)+F( VyF)(X) 

NF(X,Y) = 2F« VyF)(X)-( VxF)(Y»+uP(Y)FX-uP(X)FY-uP(X) vyUp 

+uP(Y) vxUp-4g(FX,Y)Up+uP( VyX)Up-uP( Vx Y)Up 

- VyuP(X)Up+ VxuP(Y)Up. 

In view of(3.2.1)(A) and the above equation we get 

NF(X,Y)=2F« VyF)(X)+( VyF)(X)-uP(Y)X-uP(X)Y+2g(X,Y)Up) 

+uP(Y)FX-uP(X)FY-uP(X) VyUp+uP(Y) vxUp-4g(FX,y)Up 

+2du(X,Y)Up, 
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NF(X,Y)=4F( VyF)(X)-2uP(Y)FX-2uP(X)FY+uP(Y)FX-uP(X)FY-uP(X)FY 

+ uP(Y)FX- 2g(FX,Y)Up, 

(3.2.12)(A) NF(X,Y) = 4F( VyF)(X)-4uP(X)FY-2g(FX,Y)Up, 

-
for any X,Y ET M. 

Lemma 3.2.1(A): Let M be a semi-invariant submanifold of a nearly r-

Sasakian manifold M. Then 

-
2( VxF)(Y) = VxFY-VyFX+h(X,FY)-h(Y,FX)-F[X,Y]-2g(X,Y)Up, 

for any X,Y ED. 

Proof: In view of Gauss formula, we get 

- -
. (3.2.13)(A) VxFY- VyFX = VxFY-VyFX+h(X,FY)-h(Y,FX). 

Now on the other hand, we have 

- - - -
(3.2.14)(A) VxFY- VyFX = ( VxF)(Y)-( VyF)(X)+F[X,Y]. 

From (3.2.13)(A) and (3.2. 14)(A), we get 

(3.2.l5)(A) ( VxF)(Y)-( VyF)(X)=VxFY-VyFX+li(X,FY)-h(Y,FX) 

-F[X,Y]. 

On the other hand, from (3.2.1 )(A) and in view of uP(X) = uP(Y) = 0 for 

X,Y ED, we have 

- -
(3.2.16)(A) ( VxF)(Y) + ( VyF)(X) = - 2g(X,Y)Up-

Hence from (3.2.15)(A) and (3.2. 16)(A) we get the result. 



Lemma 3.2.2(A): Let M be a semi-invariant submanifold of a nearly r-

-
Sasakian manifold M. Then 

2( VxF) (Y)=-AFY X -Vy FX +VX j_FY -h(Y,FX)-F[X, Y]-2g(X, Y) Up, 

Proof: From Gauss and Weingarten formula, we get 

. - - j_ 
(3.2.17)(A) VxFY - VyFX = .,AFyX + VX FY - VyFX - h(Y,FX). 

On the other hand, we have 

- - - -
(3.2.18)(A) VxFY - VyFX = ( vxF)(Y) - ( VyF)(X) +F[X,Y]. 

From (3.2.17)(A) and (3.2. 1 8)(A) we get 

- - j_ . 
. (3.2.19)(A) ( VxF)(Y)-( VyF)(X)=-AFYX+VX FY-VyFX-h(Y,FX) 

-F[X,Y]. 

From (3.2.l)(A) and in view ofuP(X)=uP(y)=O for XED and Y E Dj_ , We 

have 

- -
(3.2.20)(A) ( VxF)(Y) + ( VyF)(X) = -2g(X,Y)Up: 

Thus from (3.2.19)(A) and (3.2.20)(A) we get the result. 

Lemma 3.2.3(A): Let M be a semi-invariant submanifold of a nearly r-

Sasakian manifold M. Then 

(3.2.21)(A) pVxFPY+PVyFPX-PAFQyX-PAFQX Y 

=FPVx Y +FPVy X +uP(X)PY +uP(y)PX, 



(3.2.22)(A) QVxFPY+QVyFPX-QAFQyX-QAFQXY 

=2Bh(X,Y) +uP(X)QY+uP(Y)QX, 

(3.2.23)(A) h(X,FPY)+h(Y,FPX)+Vx _!_FQY +V/-FQX 

=2Ch(X,Y)+FQVx Y +FQVyX, 

(3.2.24)(A) uP(VxFPY+VyFPX-AFQyX-AFQXY) = -2g(FX,FY), 

forX,YeTM. 

Proof: From equation (3.2.l)(A), (3.2.4)(A), (3.2.6)(A) and (3.2.7)(A), 

we have 

- - - - - -
vxFPY+ vxFQY+ VyFPX+ VyFQX=F VxY+F VyX+uP(Y)X+uP(X)Y 

-2g(X, Y)Up, 

VxFPY+h(X,FPY)-AFQyX+Vx_!_FQY+VyFPX+h(Y,FPX)-AFQXY+Vy_!_FQX 

or, PVxFPY + QVxFPY + uP(VxFPY)Up + h(X,FPY) - PAFQyX - QAFQyX 

-UP(AFQYX)Up + Vx_!_FQY + PVyFPX + QVyFPX + uP(VyFPX)Up 

+h(Y,FPX)-PAFQX Y-QArQx Y-uP(AFQX Y)Up+VyJ.FQX 

=FPVx Y +FQVx Y +FPVyX +FQV'yX +2Bh(X, Y)+2Ch(X, Y) 

+uP(X)PY +uP(X)QY +uP(y)PX +uP(Y)QX +2uP(X)uP(y)Up 

-2g(X,Y)Up• 

Now from the above equation we get (3.2.21)(A), (3.2.22)(A), 

(3.2.23)(A) and (3.2.24)(A). This completes the proof of the lemma. 

55 



56 

The horizontal distribution D is said to be parallel with respect to 

connection Von M ifvx Y eD for all X,YeD. 

Lemma 3.2.4(A): Let M be a semi-invariant submanifold of a nearly r

Sasakian manifold M. Then V'xUp=O, for XeD..L and h(X,Up)=O, for XeD. 

Proof: From equation (3.2.2)(A), (3.2.4)(A) and (3.2.6)(A) we get 

FPX + FQX = V'xUp + h(X,Up)' 

Now equating tangential and normal parts, we get 

V'xUp = FPX and h(X,Up) = FQX. 

This implies that 

V'xUp = 0, for XED..L and h(X,Up) = 0, for XeD. 

This completes the proof of Lemma 3.2.4(A). 

Proposition 3.2.1(A): Let M be a semi-invariant submanifold of a nearly 

r-Sasakian manifold M. If the horizontal distribution D is parallel then 

h(X,FY)=h(Y,FX), for all X,YeD. 

Proof: As the horizontal distribution D is parallel, we have V'xFYeD and 

VyFXeD for any X,YeD. Thus by virtue of the above facts and using 

(3.2.22)(A), we have 

Bh(X,Y) = 0, for any X,YeD. 

Now Fh(X,Y) = Bh(X,Y)+Ch(X,Y). 

We get Fh(X, Y) = Ch(X, Y). 
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From (3.2.23)(A) and the above facts we have 

(3.2.25)(A) h(X,FY)+h(Y,FX) = 2Ch(X,Y) = 2Fh(X,Y), for any X,YeD. 

Taking X=FXeD into (3.2.25)(A) and using Lemma 3.2.4(A), we get 

(3.2.26)(A) h(FX,FY)-h(X,Y) = 2Fh(FX,Y). 

Again taking Y=FYeD into (3.2.25)(A) and using Lemma 3.2.4(A), we 

get 

(3.2.27)(A) h(FX,FY)-h(X,Y) = 2Fh(X,FY). 

Hence from (3.2.26)(A) and (3.2.27)(A), we get 

Fh(X,FY) = Fh(FX, Y) 

or h(X,FY) = h(FX,Y), for any X,YeD. 

This completes the proof of proposition (3.2.l)(A). 

Lemma 3.2.5(A): Let M be a semi-invariant submanifold of a nearly r

Sasakian manifold M. Then M is mixed totally geodesic if and only if 

ANXeD for all XeD. 

Proof: M is mixed totally geodesic means h(X,Y)=O, for all XeD,Ye DJ.. 

Thus in view of equation (3.2.5)(A), we get g(ANX,Y)=O, which proves 

our assertion. 

A nOlmal vector field N :to is D-parallel normal section if VX J.N=O, 

for all XeD. 
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Proposition 3.2.2(A): Let M be a mixed totally geodesic semi-invariant 

-
submanifold of a nearly r-Sasakian manifold M. Then the normal section 

N EFD _lis a D-parallel if and only if V'xFN ED, for all XED. 

PI'oof: Let N EFDl. and as M be a mixed totally geodesic, we have 

-
V'x(FN)= V'x(FN) 

- -
Of V'x(FN)=( V'xF)N+F V'xN 

(3.2.28)(A) V'x(FN)=FV'xl.N-ANX, 

Using Lemma 3.2.5(A) and by (3.2.28)(A) V'xl.N= 0 if and only if 

V'xFN ED, for all XED. 

'Hence this completes the proof of the proposition. 

Lemma 3.2.6(A): Let M be a semi-invariant submanifold of a nearly r-

-
Sasakian manifold M. Then 

- l. l. 2( V'yF)Z=AFyZ-AFZ Y-2g(Y,Z)Up+V'Y FZ-vz FY-F[Y,Z], 

Proof: From Weingarten formula, we get 

- - l. l. 
(3.2.29)(A) V'yFZ- VzFY = AFyZ-AFZ Y+Vy FZ-Vz FY. 

On the other hand, we have 

(3.2.30)(A) VyFZ- VzFY = ( VyF)(Z)-( VzF)(Y)+F[Y,Z]. 

Now from (3.2.29)(A) and (3.2.30)(A) we get 



- - ~ ~ 
(3.2.31)(A) ( V'yF)(Z)-( V'zF)(Y)= AFyZ-AFZ Y+V'y FZ-V'z FY-F[Y,Z]. 

From (3.2.1 )(A) and in view ofuP(X)=uP(y)=O for Y,ZE D~ , we have 

- -
(3.2.32)(A) ( V'yF)(Z)+( V'zF)(Y)=-2g(Y,Z)Up• 

Thus from (3.2.31)(A) and (3.2.32)(A), we get the result. 

Proposition 3.2.3(A): Let M be a semi-invariant submanifold of a nearly 

r~Sasakian manifold M. Then 

(3.2.33)(A) AFyZ-AFZ Y=1/3FP[X,Y], for Y,ZE DJ. .. 

1. .. 
Proof: For Y,ZE D and XETM. Now from equation (3.2.S)(A) we have 

2g(AFZ Y,X)=g(h(Y,X),FZ) + g(h(Y,X),FZ) 

- -
=g( V'yX,FZ) + g( V'x Y,FZ) 

- -
=-g(F( V'yX + V'xY),Z) 

=-g(V'yFX,Z) - g(V'xFY,Z)+uP(X)g(Y,Z) 

=g(V'yZ,FX) + g(AFyZ,X) +uP(X)g(Y,Z), 

which is true for all XETM and therefore transvecting X both sides, we 

have, 

Similarly 

2AFyZ=AFZ Y -FV' z Y +g(Y,Z)Up-

Thus from the above two relations, we have 
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AFyZ-AFZ Y=1I3FP[Y,Z], for any Y,Ze D1.. This proves our assertion. 

Let M be a semi-invariant submanifold of a nearly r-Sasakian 

-
manifold M. We say that M is totally r-contact umbilical if there exist a 

normal vector field H such that the second fundamental form of M is 

given by 

h(F2X,F2Y)=g(FX,FY)H. 

From the above equation we get 

(3.2.34)(A) h(X,Y)=g(FX,FY)H+uP(X)h(Y,Up)+uP(Y)h(X,Up), 

for any vector field X,Y tangent to M. 

, If we have H=O in (3.2.34)(A), that is the second fundamental form of M 

is given by 

(3.2.35)(A) h(X,Y)=uP(X)h(Y,Up)+uP(Y)h(X,Up), 

then we say that M is totally r-contact geodesic. 
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3.4 SECTION 2(B): 

SEMI-INVARIANT SUBMANIFOLDS OF r-KENMOTSU 

MANIFOLDS 

-
Let M be an almost r-contact metric manifold with structure 

An almost r-contact metric manifold structure (F,Up,uP,g) is said to be r-

Kenmotsu if 

. (3.2.1)(B) (VxF)(Y) = g(FX,Y)Up - uP(Y)FX, 

- -
for any vector fields X,Y ET M, where V is the Riemannian connection 

. in M. From (3.2.1)(B) it follows that 

A submanifold M of an r-Kenmotsu manifold M is called a semi-

invariant submanifold of M if the following conditions are satisfied 

(i) TM = D (B Dl., where D and Dl.are differentiable orthogonal 

distributions with respect to the induced metric denoted by g itself 

onM. 

(ii) The distribution D is invariant by F, that is F(Dx)cDx, for each XEM. 

(iii) The distribution D1. is anti-invariant by F, that is F(D/) c TxM1.for 

each XEM. where TxMl. is the normal space ofM at x. 
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M is an invariant (resp.anti-invariant) submanifold of M when dimD.L =0 

(resp.dimD=O). 

The equation of Gauss and Weingarten are given by 

-
(3.2.3)(B) V'xY = V'xY + h(X,Y), 

(3.2.4)(B) 

for X,YeTM, NerM, where h(resp. A) is the second fundamental form 

. (resp. tensor) of M in M, and Vol denotes the operator of the normal 

connection. We have 

g(h(X,Y),N) = g(ANX,Y), 

'the distribution D (resp. Dol) is defined by projection P(resp. Q) which 

satisfies the conditions: 

(3.2.S)(B) p2 = P, Q2 = Q, PQ = QP = 0, go(PxQ) = O. 

The distribution D (resp. Dol) is called the horizontal (resp. vertical) 

distribution. Also the pair (D,Dol) is called Up-horizontal (resp. Up-

For a vector field X tangent to M, let us put 

(3.2.6)(B) X _:PX + QX, 

where PX and QX belongs to D and Dol respectively. Also for a vector 

field N normal to M, we put 
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(3.2.7)(B) FN = BN + CN, 

where BN (resp. CN) denotes the tangential (resp. normal) components 

ofFN. 

The horizontal distribution D is said to be parallel on M ifVxYED 

for any X,Y ED. 

-
A semi-invariant submanifold M of M is said to be D-umbilic 

(resp. Dj_ -umbilic) if, 

(3.2.8)(B) h(X,Y) = g(X,Y)H, 

holds for all X,Y ED (resp. X,Y ED..L), where H being normal vector field. 

M is said to be D-totally geodesic (resp. D..L totally geodesic) if heX, Y) = 

o for all X,Y ED (resp.X,Y ED..L). 

Lemma 3.2.1(B): Let M be a semi-invariant submanifold of a r-

-
Kenmotsu manifold M. Then we have 

(3.2.9)(B) PVxFPY - PAFQyX = FPY'xY + g(FX,Y)PVp - uP(Y)FPX 

(3.2.l0)(B) QVxFPY - QAFQyX = Bh(X,Y) + g(FX,Y)QUp - uP(Y)FQX 

(3.2.11)(B) h(X,FPY) + Vi-FQY = FQVxY + Ch(X,Y). 

Proof: From equation (3.2.1 )(B), we have 

(3.2.l2)(B) ( VxF)Y = g(FX,Y)PUp+g(FX,Y)QUp-uP(Y)FPX 

-uP(Y)FQX. 
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We know that 

- - -
( VxF)Y = VxFY - F VxY, 

- - -
( VxF)Y = VxFPY + VxFQY - FVx Y - Fh(X,Y), 

- ~ 
( VxF)Y = VxFPY+h(X,FPY)-AFQYX+VX FQY-FPVx Y-FQVx Y 

-Bh(X, Y)-Ch(X, Y), 

-
(3.2.13)(B) ( VxF)Y=PVxFPY+QVxFPY+h(X,FPY)-PApQyX-QAFQYX 

+Vx~FQY-FPVx Y-FQVx Y-Bh(X,Y)-Ch(X,Y). 

From equation (3.2.12)(B) and (3.2.13)(B) equating the horizontal, 

vertical and normal components, we get the desired results. 

A normal vector field N ::j: 0 is D-parallel normal section on M if 

We say that M is totally r-contact umbilical if there exists a normal 

vector H on M such that 

(3.2.14)(B) h(X,Y) = g(FX,FY)H + uP(X)h(Y,Up}+ uP(Y)h(X,Up), 

for all vector fields X, Y tangent to M. 

IfH = 0 in (3.2.14)(B), we have 

(3.2.15)(B) h(X,Y) = uP(X)h(Y,Up) + uP(Y)h(X,Up) 

Then M is called totally r-contact geodesic. 
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3.5 SECTION 3(A): 

CR-SUBMANIFOLDS OF A TRANS HYPERBOLIC SASAKIAN 

MANIFOLD I 

-
Let M be an n-dimensional almost contact hyperbolic metric 

manifold with structure tensors (F,U,u,g). 

An almost contact hyperbolic metric structure (F,U,u,g) on M is 

called hyperbolic Sasakian if 

-
(3.3.l)(A) (V'xF)(Y) = g(X,Y)U - u(Y)X. 

A hyperbolic Sasakian manifold is called trans hyperbolic Sasakian 

if 

-
(3.3.2)(A) (V'xF)(Y) = a(g(X,Y)U - u(Y)X) + ~(g(FX,Y)U - u(Y)FX), 

for function a,~ on M. We say that trans hyperbolic Sasakian structure is 

of type (a,~). 

From the formula (3.3.2)(A) it follows that 

(3.3.3)(A) V'xU = -aFX-~(X + u(X)U). 

An m-dimensional Riemannian submanifold M of a trans 

hyperbolic Sasakian manifold M is called a CR-submanifold if U is 

tangent to M and there exist on M a differentiable distribution D: x~Dx 

c T xM satisfying the following conditions: 
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(i) Ox is invariant under F that is FOx c Ox for each xEM, 

(ii) the complimentary orthogonal distribution O_L: X~O/ c TxM is 

totally real under F, that is FD/ c T/M for each xEM, where TxM 

and T/M are tangent and normal space ofM at x respectively. 

M is an invariant (resp. anti-invariant) submanifold of 1\1 when 

dimD_L = 0 (resp. dimD = 0), where 0 (resp.O_L) is the horizontal (resp. 

vertical) distribution. The pair (D,O_L) is called U-horizontal (U-vertical) 

ifUxEOx (resp.UxEO/) for each xEM. 

The Gauss and Wiengarten formulas are given by 

-
(3.3.4)(A) Vx Y = Vx Y+h(X,Y), 

_L 
X,YETM, NET M, 

where V_L is the normal connection, h (resp.A) is the second fundamental 

form (resp. tensor) ofM in M. 

h is related to A by 

(3.3.5)(A) g(ANX,Y) = g(h(X,Y),N). 

F or a vector field X tangent to M, we put 

(3.3.6)(A) X = PX +QX, 

where PX and QX belong to the distribution D and D_L respectively. Also 

for a vector field N normal to M, we put 
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(3.3.7)(A) FN = BN+CN, 

where BN (resp. CN) denotes the tangential (resp. normal) component of 

FN. 

If we denote the orthogoi1al component of FO.L in T.LM by J,1, then we 

Lemma 3.3.1(A): Let M be a CR-submanifold of a trans hyperbolic 

-
Sasakian manifold M. Then we have 

(3.3.8)(A) PVxFPY-PAFQyX = FPVx Y+ag(X,Y)PU+~g(FPX,Y)PU 

-au(Y)PX -~u(Y)FPX, 

(3.3.9)(A) QVxFPY-QAFQyX = Bh(X,Y)+( ag(X,Y)+~g(FQX,Y»QU 

-au(Y)QX, 

(3.3.1 O)(A) h(X,FPY)+Vxj_FQY = FQVx Y+Ch(X,Y)+~u(Y)FQX, 

for any X, Y E TM. 

Proof: From equations (3.3.2)(A),(3.3.4)(A),(3.3.6)(A) and (3.3.7)(A), 

we have 

VxFX-F Vx Y = a(g(X,Y)U-u(Y)X)+~(g(FX,Y)U-u(Y)FX) 

or VxFPY+h(X,FPY)+Vxj_FQY-AFQyX-FVx Y-Fh(X,Y) 

=ag(X, Y)PU+ag(X, Y)QU-au(Y)PX -au(Y)QX 

+~g(FPX +FQX,Y)U-~u(Y)FPX-~u(Y)FQX, 
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or PV'xFPY +QV'xFPY+h(X,FPY)+V'x J.FQy -PAFQyX-QAFQYX 

=FPV'x Y+FQV'x Y+Bh(X,Y)+Ch(X,Y)+(xg(X,Y)PlJ+u,g(X,Y)Q( ] 

-au(Y)PX -au(Y)QX +Pg(FPX, Y)PU+Pg(FQY, Y)QU-pu(Y)FPX 

-pu(Y)FQX. 

Now equating the horizontal, vertical and normal components we get the 

results. 

The horizontal distribution D is said to be parallel with respect to 

the connection V' on M ifV'x Y ED for all vector fields X,Y ED. 

Proposition 3.3.1(A): Let M be aU-horizontal CR-submanifold of a 

'trans hyperbolic Sasakian manifold M. Then the distribution 0 is 

parallel if and only if 

(3.3 .11 )( A) h(X,FY) = h(FX, Y) = Fh(X, Y), for all X, Y ED. 

Proof: Every parallel distribution is involutive, that is 

(3.3.12)(A) h(X,FY) = h(FX,Y), for all X,Y ED. 

Now from (3.3.l0)(A) and (3.3.12)(A), we have 

(3.3.13)(A) h(X,FY) = Ch(X,Y). 

Also V'xFY ED, V'yFXED, V X,Y ED, so from (3.3.9)(A) and using D-

parallelness, we get Bh(X,Y) = 0, V X,Y ED. 

From (3.3.7)(A) we have 
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Fh(X,Y) = Bh(X,Y)+Ch(X,Y). 

Thus in view of(3.3.13)(A), Bh(X,Y) ° and the above equation, we get 

Fh(X,Y) = Ch(X,Y) = h(X,FY), V X,Y ED, 

which proves (3.3.11)(A). 

-A CR-submanifold M of a trans hyperboHc Sasakian manifold M 

is said to be mixed totally geodesic ifh(X,Y)=O, for XED and Y EDj_. 

A CR-submanifold is mixed totally geodesic if and only if ANX ED 

for each XED. 

A normal vector field N:t:O is D-parallel normal section if Vx j_N=O, 

for all XED. 

Proposition 3.3.2(A): Let M be a mixed totally geodesic U-verticaI CR-

submanifold of a trans hyperbolic Sasakian manifold M. Then the normal 

section NEFDj_is aD-parallel ifand only ifvxFNED, for all XED. 

Proof: Let N EFDj_ and as M be a mixed totally geodesic, we have 

-
Vx(FN) = Vx(FN) 

- -
or Vx(FN) = ( VxF)N+F VxN 

But ANXED, so by (3.3.l4)(A) we see that Vxj_N=O if and only ifVxFNE 

D, for all XED. 
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This proves our assertion. 

Lemma 3.3.2(A): Let M be a CR-submanifold of a trans hyperbolic 

Sasakian manifold M. Then we have 

(3.3.lS)(A) AFyZ-AFZY+a(u(Z)Y-u(Y)Z) = FP[Y,Z], for any Y,ZeDJ_~ 

Proof: We have 

- - -
VyFZ = ( VyF)(Z)+F VyZ. 

Using (3.3.2)(A) in the above equation, we get 

-
VyFZ = a(g(Y,Z)U-u(Z)Y)+P(g(FY,Z)U-u(Z)FY)+FVyZ+Fh(Y,Z) 

= a(g(Y,Z)U-u(Z)Y)+FPVyZ+FQVyZ+Bh(Y,Z)+Ch(X,Y) 

-pu(Z)FQY. 

Now using (3.3.4)(A) in the above equation, we obtain 

(3.3.16)(A) -AFZ Y+V/-FZ=a(g(Y,Z)U-u(Z)Y)-Pu(Z)FQY+FPVyZ 

+FQVyZ +Bh(Y,Z)+Ch(Y,Z), 

for all Y,ZeDl.. 

From (3.3. 1 O)(A), for all Y,ZeDl., we have 

(3.3.l7)(A) V/-FZ = FQVyZ + Ch(Y,Z) + pu(Z)FQY. 

Now from (3.3. 16)(A) and (3.3. 17)(A), we have 

FPVyZ = -AFZY-ag(Y,Z)U+au(Z)Y- Bh(Y,Z). 

Similarly we have 
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FPV z Y = -AFyZ - ag(Y,Z)U + au(Y)Z - Bh(Y,Z). 

Thus from the above two equations, we get 

, FP[Y,Z] = AFyZ- AFZY+a(u(Z)Y-u(Y)Z), for all Y,ZEDj_. 

This proves our assertion. 

A CR-submanifold of a trans hyperbolic Sasakian manifold M is 

called D-umbilic (resp.Dj_ umbilic) if h(X,y) = g(X,Y)H holds for all 

X,Y ED (resp.X,Y EDj_), where H is a mean curvature vector field. 
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3.6 SECTION 3(B): 

CR-SUBMANIFOLDS OF A TRANS HYPERBOLIC SASAKIAN 

MANIFOLD II 

-
Let M be an almost contact hyperbolic metric manifold with 

structure tensors (F,U,u,g). 

An almost contact hyperbolic metric structure (F,U,u,g) on M is 

called a-hyperbolic Sasakian if 

-
(3.3.l)(B) (VxF)(Y) = a(g(X,Y)U - u(Y)X), aER, 

a-hyperbolic Kenmotsu if 

-
(3.3.2)(B) (VxF)(Y) = a(g(FX,Y)U - u(Y)FX), aER 

and trans hyperbolic Sasakian if 

(3.3.3)(B) (VxF)(Y) = 1I2n[(g(X,Y)U - u(Y)X)oF(U) 

+ (g(X,FY) U + u(Y)FX)ou] 

where 0 is the co-derivative and V is the Riemann'ian connection in M. 

A submanifold M of M is called a CR-submanifold if U is tangent 

to M and there exist on M a differentiable distribution D: x -tDx c T xM 

such that: 

(i) The distribution Dx is invariant by F, that is F(Dx) c Dx, for each 

xEM. 
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(ii) The distribution D/ is anti-invariant by F, that is F(D/)c TxM1.for 

each XEM. where TxM1. is the normal space ofM at x. 

The equation of Gauss and Weingarten are given by 

-
(3.3.4)(B) \1x Y =: \1x Y + h(X,Y), 

where V is the Riemannian connection on M, V1. is the connection on the 

normal bundle induced by V and h (resp. A) is the second fundamental 

form (resp. tensor) ofM in M, satisfying 

(3.3.5)(B) g(h(X,Y),N) =: g(ANX,Y), 

The distribution D (resp. D1.) can be defined by projection P (resp. Q) 

which satisfies the conditions: 

(3.3.6)(B) p2 =: P, Q2 =: Q, PQ =: QP =: 0, go(PxQ) =: O. 

The distribution D (resp. D1.) is called the horizontal (resp. vertical) 

distribution. Also the pair (D,D1.) is called U~horizontal (resp.U-vertical) 

. For a vector field X tangent to M, we put 

(3.3.7)(B) X=: PX + QX, 

where PX and QX belongs to D and D1. respectively. Also for a vector 

field N normal to M, we put 

(3.3.8)(B) FN = BN + eN, 
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where BN (resp. CN) denotes the tangential (resp. normal) components of 

FN. 

The horizontal distribution D is said to be parallel if V x Y E D for 

any X,YED. 

A CR-submanifold M of M is said to be D-1ll11bilic (rcsp. 0 1
_ 

umbilic) if, h(X,Y)= g(X,Y)H holds for all X,Y ED (resp.X,Y EDl.),where 

H being some normal vector field. M is said to be D-totally geodesic 

(resp. Dl. totally geodesic) ifh(X,Y) = 0 for all X,Y ED (resp. X,Y EDl.). 

Lemma 3.3.1(B): lfM be a CR-submanifold of trans hyperbolic Sasakian 

manifold M. Then we have 

(3.3.9)(B) . PVxFPY-PAFQyX = FPvx Y+ 1/2n[{g(X,Y)PU-u(Y)PX)oF(U) 

+(g(X,FY)PU +u(Y)FPX)8u], 

(3.3.10)(B) QVxFPY-QAFQYX = Bh(X,Y)+ 1/2n[(g(X,Y)QU 

..• 

-u(Y)QX)oF(U)+(g{X,FY)QU 

+u(Y)FQX)ou ], 

(3.3.11)(B) h(X,FPY) + Vxl.FQY = FQVxY + Ch(X,Y). 

Proof: From equation (3.3.3)(B), (3.3.4)(B), (3.3.7)(B) and (3.3.8)(B), 

we get 



- -
VxFY- F Vx Y = 1/2n[(g(X,Y)U - u(Y)X)oF(U) + (g(X,FY)U 

+ u(Y)FX)ou], 

- -
VxFPY+ VxFQY-FVx Y-Fh(X,Y)=1 12n[(g(X,Y)U-u(Y)X)oF(U) 

+(g(X,FY) U+u(Y)FX)ou ], 

PVxFPY+QVxFPY+h(X,FPY)-PArQyX-QAFQyX+Vx..LFQY-FPVx Y 

-FQVx Y-Bh(X,Y)-Ch(X,Y) = 1I2n[(g(X,Y)PU+g(X,Y)QU-u(Y)PX 

~u(Y)QX)OF(U)+(g(X,FY)PU 

+g(X,PY)Qu+u(y)prx +u(Y)PQX)ou]. 
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. Now equating the horizontal, vertical and normal components we get the 

results. 

Lemma 3.3.2(B): If M be a CR-submanifold of a-hyperbolic Sasakian 

-
manifold M. Then we have 

(3.3.12)(B) PVxFPY - PAFQyX = FPvxY + a(g(X,Y)PU - u(Y)PX), 

(3.3.13)(B) QVxFPY - QAFQyX = Bh(X,Y) + a(g(X,Y)QU - u(Y)QX), 

(3.3.14)(B) h(X,FPY) + Vx..LFQY = FQVx Y + Ch(X,Y). 

Proof: From equation (3.3.l)(B), (3.3.4)(B), (3.3.7)(B) and (3.3.8)(B), 

we get 

- -
VxFY - F Vx Y = a(g(X,Y)U - u(Y)X), 

VxFPY + VxFQY - FVxY - Fh(X,Y) = a(g(X,Y)U - u(Y)X), 
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PY'xFPY+QY'xFPY+h(X,FPY)-PAFQyX-QAFQyX+Y'x.LFQY-FPY'xY 

-FQY'x Y-Bh(X,Y)-Ch(X,Y) = a(g(X,Y)PU + g(X,Y)QU - u(Y)PX 

- u(Y)QX). 

Now equating the horizontal, vertical and normal components we have 

the results. 

Lemma 3.3.3(B): If M be a CR-submanifold of a-hyperbolic Kenmotsu 

-
manifold M. Then we have 

(3.3.15)(B) PVxFPY - PAFQyX = FPVxY + a(g(X,FY)PU - u(Y)FPX), 

(3.3.16)(B) QVxFPY - QAFQyX= Bh(X,Y) + a(g(X,FY)QU - u(Y)FQX), 

(3.3.17)(B) h(X,FPY) + V/-FQY = FQVxY + Ch(X,Y). 

Proof: From equation (3.3.2)(B), (3.3.4)(B), (3.3.7)(B) and (3.3.8)(B), 

we get 

- -
VxFY - F Vx Y = a(g(X,FY)U - u(Y)FX), 

'~\FPY + VxFQY - FVx Y - Fh(X,Y) = a(g(X,FY)U - u(Y)FX), 

PVxFPY+QVxFPY+h(X,FPY)-PAFQyX-QAFQyX+Y'x.LFQY-FPY'xY 

-FQY'xY-Bh(X,Y)-Ch(X,Y) = a(g(X,FY)PU + g(X,FY)QU - u(Y)FPX 

- u(Y)FQX). 

Now equating the horizontal, vertical and normal components we have 

. the results. 



Lemma 3.3.4(B): Let M be U-horizontal CR-submanifold of a trans 

hyperbolic Sasakian manifold M. then horizontal distribution D is 

parallel if 

(3.3.18)(B) h(X,FY) = h(Y,FX) = Fh(X,Y), for all X,Y ED. 

Proof: As every parallel distribution is involutive the first equality in 

(3.3.18)(B) holds that is 

(3.3.19)(B) h(X,FY) = h(FX,Y), for aU X,Y E D. 

Now from (3.3.11 )(B) and (3.3.19)(B), we have 

(3.3.20)(B) h(X,FY) = Ch(X,Y). 

Also V'xFY ED, V'yFXED, 't/ X,Y ED, so from (3.3.11)(B) and using D

parallelness, we get Bh(X,Y) = 0, \:f X,Y ED. 

77 

Therefore from Fh(X,Y)=Bh(X,Y)+Ch(X,Y), Bh(X,Y)=O and (3.3.20)(B), 

we have 

Fh(X,Y) = Ch(X,Y) = h(X,FY), 't/ X,Y ED, 

which proves (3.3.18)(B). 

A normal vector field N ;t:0 is D-parallel normal section if V/-N=O, 

for all XED. 
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Let M be a CR-submanifold of a trans hyperbolic Sasakian 

-
manifold M, then M is said be totally contact hyperbolic umbilical if 

there exists a normal vector H on M such that 

(3.3.21)(B) h(X,Y) = -g(FX,FY)H - u(X)h(Y,U) - u(Y)h(X,U), 

for all vector fields X, Y tangent to M. 

IfH = 0 in (3.3.21)(B), that is', the fundamental form is given by 

h(X,Y) = -u(X)h(Y,U) - u(Y)h(X,U), 

then we say that M is totally contact hyperbolic geodesic .. 
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3.7 SECTION 4(A): 

SEMI-INVARIANT SUBMANIFOLDS OF PARA KENMOTSU 

MANIFOLDS I 

-
Let M be an almost para contact metric manifold with structure 

tensors (F,U,u,g). 

An almost para contact metric manifold structure (F,Up,uP,g) is said to be 

para Kenmotsu if [21 ] 

-
(304.1 )(A) (V xF)(Y) = -g(X,FY)U - u(Y)FX, 

-
for any vector fields X,Y ET M, where V is the Riemannian connection 

in M. From (3.4.1)(A) it follows that 

-
(3A.2)(A) VxU = X - u(X)U. 

-
A Riemannian submanifold M of a para Kenmotsu manifold M is 

called a semi-invariant submanifold if U is tangent to M and there exist 

on M a pair of orthogonal distribution (D, D.l) such that 

(i) TM = DEE> D.l 

(ii) the distribution D is invariant under F, that is FDx c Dx, for all xEM, 

(iii) the distribution D.l is anti-invariant under F, that is F(D/) cT/M, 

for all xEM, 

where TxM and Tx.lM are tangent space and normal space ofM at x. 
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The distribution D (resp. Dl) is called the horizontal (resp. vertical) 

distribution. A semi-inv~riant submanifold M is said to be an invariant 

(resp. anti-invariant) submanifold if we have D/ = {O} (resp.Dx = {O}) 

for each XEM. We also call M proper if neither D nor D..L is null. 

Let V (resp. v) be covariant differentiation with respect to the 

-
Levi-Civita connection on M (resp. M). The Gauss and Weingarten 

formulas for M are respectively given by 

-
(3.4.3)(A) VX Y = Vx Y + h(X,Y), 

for X,Y ETM, NET1M, where h (resp. A) is the second fundamental form 

(resp. tensor) of M in M, and v..L denotes the operator of the normal 

connection. We have 

(3.4.4)(A) g(h(X,Y),N) = g(ANX,Y), 

F or a vector field X tangent to M, we put 

(3.4.5)(A) X = PX + QX, 

where P and Q are projection operators and PX and QX belong to the 

distribution D and D..L respectively. 

F or any vector field N normal to M, we put 

(3.4.6)(A) FN = BN + CN, 

where Band C are projection operators and BN Crespo eN) denotes the 

tangential (resp. normal) component ofFN. 



The distribution D (resp. D.L) can be defined by projection P (resp. 

Q) which satisfies the conditions: 

(3.4.7)(A) p2 = P, Q2 = Q, PQ = QP = 0, go(PxQ) = 0. 

The distribution D (resp. D.L) is called the horizontal (resp. vertical) 

distribution. Also the pair (D, D.L) is called U-horizontal (resp.U-vertical) 

ifUxED (resp. UxED.L) for all xEM. 

The horizontal distribution D is said to be parallel if V'x Y ED for any 

X,YED. 

A semi-invariant submanifold M of M is said to be D-umbilic (resp. D.L_ 

umbilic) if, 

(3.4.8)(A) h(X,Y) = g(X,Y)H. 

holds for all X,Y ED (resp. X,Y ED.L), where H is some normal vector 

field. M is said to be D-totally geodesic (resp. D.L totally geodesic) if 

h(X,Y) = 0 for all X,Y ED (resp.X,Y ED.L). 

Lemma 3.4.1 (A): Let M be a semi-invariant submanifold of a para 

Kenmotsu manifold M. Then we have 

(3.4.9)(A) PVxFPY - PAFQyX = FPVxY - g(X,FY)PU - u(Y)FPX, 

(3.4.10)(A) QVxFPY - QAFQyX = Bh(X,Y) - g(X,FY)QU - u(Y)FQX, 

(3.4.11)(A) h(X,FPY) + Vx.LFQY = FQVxY + Ch(X,Y). 
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Proof: From equation (3.4.l)(A), we have 

-
(3.4.12)(B) ( VxF)Y=-g(X,FY)PU -g(X,FY)QU - u(Y)FPX - u(Y)FQX. 

We know that 

- - -
( VxF)Y = VxFY - F Vx Y, 

- - -
( VxF)Y = VxFPY + VxFQY - FVx Y - Fh(X,Y), 

- . ~ 

( VxF)Y = VxFPY+h(X,FPY)-AFQYX+VX FQY-FPVx Y-FQVx Y 

-Bh(X, Y)-Ch(X, Y), 

-
(3.4.13)(A) ( VxF)Y = PVxFPY+QVxFPY+h(X,FPY)-PAFQyX-QAFQYX 

+Vx~FQY-FPVx Y-FQVx Y -Bh(X,Y)-Ch(X,Y). 

From equation (3.4.l2)(B) and (3.4.l3)(B) equating the horizontal, 

vertical and normal components we get the desiredresults. 

A normal vector field N:;t:O is D -parallel normal section ifV'x~N=O, 

for all XeD. 

Submanifold M of para Kenmotsu manif91d M is called totally 

para contact umbilical if there exists a normal vector H on M such that 

(3.4.l4)(A) h(X,Y) = g(FX,FY)H + u(X)h(Y,U) + u(Y)h(X,U) 

for all vector fields X, Y tangent to M. 

IfH = 0 in (3.4.l4)(A), then we have 

(3.4.15)(A) h(X,Y) = u(X)h(Y,U) + u(Y)h(X,U) 

which shows that suJJmanifold M is totally para contact geodesic. 
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3.8 SECTION 4(B): 

ON SEMI-INVARIANT SUBMANIFOLDS OF A PARA 

KENMOTSU MANIFOLDS II 

-
Let M be an differentiable manifold with structure tensors 

(F,U,u,g). 

M is a para Kenmotsu manifold if and only if we have [21] 

-
(3.4.1)(B) (VxF)(Y) = -g(X,FY)U - u(Y)FX, 

from (3.4.l)(B) it follows that 

- -
(3.4.2)(B) VxU = X - u(X)U, for any X,Y tangent to M, 

- -
where V is the Livi Civita connection on M. 

Let M be a Riemannian manifold isometrically immersed in M and 

-
suppose that the structure vector field U of M is tangent to M. We denote 

by TM and Tl.M the tangent and normal bundle to M. Then the 

- -
submanifold M of M is called a semi-invariant submanifold if it is 

endowed with a pair of distributions (D, Dl.) satisfying the conditions: 

(i) TM = DEBDl.<i1{U}, where {U} denotes the distribution spanned by U. 

(ii) The distribution D is invariant by F that is F(Dx) c Dx for each XEM. 

(iii) The distribution Dl. is anti-invariant by F that is F(D/) c T/M, for 

all xEM, 



Now Gauss and Weingarten formula are given respectively by 

(3.4.3)(B) 

(3.4.4)(B) 

-
V'x Y = V'x Y + h(X,Y), 

where V' is the Riemannian connection determined by the induced metric 

g on M, v.L the metric connection in the normal bundle of M and hand 

AN are called the second fundamental form and the fundamental tensor 

with respect to the normal section N, satisfying 

(3.4.5)(B) g(h(X,Y),N) = g(ANX,Y) = g(AN Y,X). 

{U}.L denotes the complimentary orthogonal distribution to {U} in TM. 

For any XETM, we have g(FX,U) = 0, then we put 

(3.4.6)(B) FX = PX + QX 

where PXE {U}.L and QXET.LM. 

Let M be a para Kenmotsu space form of constant F-holomorphic 

- -
sectional curvature tensor C. Then the curvature'tensor R of M(C) is 

given by 

(3.4.7)(B) R(X,Y)Z=Y4(C-3){g(y,Z)X-g(X,Z)Y}+Y4(C+ 1){ u(X)u(Z)Y 

-u(Y)u(Z)X +u(Y)g(X,Z)U 

-u(X)g(Y,Z)U+g(X,FZ)FY 

-g(Y,FZ)FX +2g(X,FY)FZ}, V X,Y,ZET M(C) 
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The Gauss equation given by 

-
g( R(X,Y)Z,W) = g(R(X,Y)Z,W)-g(h(X,W),h(Y,Z)) 

+g(h(Y, W),h(X,Z)), 

g(R(X,Y)Z,W) = g( R(X,Y)Z,W)+g(h(X,W),h(Y,Z)) 

-g(h(Y, W),h(X,Z)) 

Using (3.4.7)(B) in the above equation, we get 

(3.4.8 )(B) g(R(X, Y ,Z), W)=Y4( C-3) {g(Y,Z)g(X, W)-g(X,Z)g(Y, W) } 

+ 1/4(C+ 1 ) {u(X)u(Z)g(Y,W) 

-u(Y)u(Z)g(X, W)+u(Y)g(X,Z)u(W) 

-u(X)g(Y ,Z)u(W)+g(X,FZ)g(FY, W) 

-g(Y,FZ)g(FX, W)+2g(X,FY)g(FZ, W)} 

+g(h(X, W),h(Y ,Z) )-g(h(Y, W),h(X,Z) ),. 

V X,Y,Z,WETM 

and Coddazzi equation is given by 

( R(X,Y)Z)l. = (Vxh)(Y,Z) - (Vyh)(X,Z) 

(3.4.9)(B) (Vxh)(Y,Z) - (Vyh)(X,Z) = V4(C+ 1){g(X,PZ)QY 

- g(Y,PZ)QX + 2g(X,PY)QZ} 

where 

(3.4.10)(B) (Vxh)(Y,Z) = (Vxl.h)(Y,Z) - h{Vx Y,Z) - heY, VxZ), 

VX,Y,ZETM. 
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A semi-invariant submanifold of a para Kenmotsu manifold M is 

said to be (D,DJ.)-geodesic ifh(X,Z) = 0, V XED and Z E DJ.. 

Lemma 3.4.1(B): Let M be a (D,DJ.)-geodesic semi-invariant 

submanifold of a para Kenmotsu manifold M. Then we have 

(i) Every XED and Z E DJ. satisfy 

(3.4.11)(B) P'VxZ = -AQzX + u(Z)PX, 

(3.4.12)(B) Q'VxZ = 'VxJ.QZ, 

(ii) ANX is a section of the orthogonal compliment of DJ.EB{U} in TM 

Proof: For the first part, since PZ = 0, V Z E DJ. and QX = 0, V XED. 

Also g(X,FZ) = 0, V XED and Z E DJ., since FZ E TJ.M. 

Thus from (3.4.1 )(B) we have 

- -
(3.4.13){B) 'VxFZ - F 'VxZ = -u(Z)PX, 

or 'VxQZ - F{'VxZ + h(X,Z)) = -u(Z)PX 

Since Mis {D,DJ.)-geodesic in M, we have from above equation 

(3.4.14)(B) -AQzX + 'Vx J.QZ - P'VxZ - Q'VxZ = -u(Z)PX 

Comparing horizontal and normal components of the above equation we 

get the required results of the first part. 



For the second part, since M is (D, D.L)-geodesic in M and from equation 

(3.4.5)(B) we get 

g(ANX,Z) = 0, V XED and Z E D.L, since N E T.LM. 
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==> ANX ED=> ANX is a section of the orthogonal compliment of 

D.LEB {U} in TM. 

Lemma 3.4.2(B): Let M be a (D,D.L)-geodesic semi-invariant 

submanifold in a para Kenmotsu space form M(C). If D is integrable 

then we have 

(3.4.15)(B) Y2(C+l)g(X,PY)QZ = h(X,VyZ)-h(Y,VxZ), 

V X,Y ED, ZED.L. 

Proof: Let X,Y ED and Z E D.L, and as M is (D,D.L)-geodesic in fYI, from 

(3.4.10)(B) we get 

(3.4.16)(B) (Vxh)(Y,Z) = - h(Vx Y,Z) - h(Y,VxZ), 

Similarly, we have 

(3.4.17)(B) (Vyh)(X,Z) = - h(VyX,Z) - h(X,VyZ). 

Using (3.4.16)(B) and (3.4.17)(B) and integrability ofD, we get 

(3.4.18)(B) (Vxh)(Y,Z) - (Vyh)(X,Z) = h(X,VyZ) - h(Y,VxZ). 

Also from (3.4.9)(B), we get 

(3.4.19)(B) (Vxh)(Y,Z) - (Vyh)(X,Z) = Y2(C+1)g(X,PY)QZ. 



From (3.4. 18)(B) and (3.4.19)(B), we get the result. 

This proves our assertion. 

Remark 3.4.1(B): Using (3.4.S)(B) in (3.4.1S)(B), we get 

Y2(C+ l)g(X,PY)g(QZ,QZ) = g(h(X,V'yZ),QZ) - g(h(Y,V'xZ),QZ) 

(3.4.20)(B) Y:z(C+ 1)g(X,PY)IIQZ,,2=g(AQzX,VyZ)-g(AQZ Y, \7xZ), 

j_ 
\if X,Y ED, ZED. 

Let M be a semi-invariant submanifold of a para Kenmotsu 

manifold M. Then Dj_ is said to be D-parallel if we have. 
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3.9 SECTION 5: 

HYPERSURFACES OF ALMOST HYPERBOLIC HERMITIAN 

MANIFOLDS 

-
Let M be an m dimensional differentiable manifold. An almost 

hyperbolic Hermitian manifold for which 

(3.5.1 ) 

(3.5.2) 

(3.5.3) d'F =0 <=> (D" 'F)(Jl,A)+(Df.t 'F)(V,A)+ (Dv'F)(A,Jl)=O, 

(3.5.4) 

(3.5.5) 

are satisfied, where D is the Riemannian connection, are called 

hyperbolic Kaehlerian, nearl~ hyperbolic Kaehlerian, almost hyperbolic 

Kaehlerian, hyperbolic Hermitian and quasi hyperbolic Kaehlerian 

manifold [20]. 

Let M be a hypersurface of an almost hyperbolic Hermitian 

- -
manifold M with the immersion map b: M ~ M, such that a point pEM 

=> bp E M. Let T and T be the tangent manifolds to M and M at p and 

bp respectively. Let B be the Jacobian map corresponding to the 

immersion map b. 



- -
B: T --)0 T, such that XET at p => BX E Tat bp and BXh = Xhob, 

where h is the Coo function on T. 

Let X,Y,Z E Tat p. Then we can write 

(3.5.6) 

(3.5.7) 

a) FBX = BfX + u(X)N, 

g(BX,BY)ob = h(X,Y), 

b) FN=-BU , 

where N is the unit normal vector to M at p, f is a tensor field of the type 

(1,1), U is a vector field, u is a 1-form on M and h is the induced metric 

tensor on M at p. 

From (1.1.21)a and (3.5.6) a,b, we get [103] 

(3.5.8) 
:J 

f = I + u®U, uof= 0, ill = 0, u(U) =-1. 

Using (3.5.6)a, and (3.5.7) in (1.1.21)b, we obtain 

(3.5.9) a) h(fX,fY) = -h(X,Y) - u(X)u(Y) 

equivalent to 

b) 'f(X,Y) = h(fX,Y). 

A differentiable manifold M on which there are defined a tensor 

field f of type (1,1), a vector field U, a I-form u and a metric tensor field 

h satisfying (3.5.8), (3.5.9)a for arbitrary vector fields X,Y,Z is called an 

almost contact hyperbolic metric manifold. Thus the hypersurface of an 

almost hyperbolic Hermitian manifold is an almost contact hyperbolic 

metric manifold. 
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(3.S.1S) d'F = ° <=? (Dx 'F)(Y,Z) + (Dy'F)(Z,X) + (Dz 'F)(X,Y) = ° 
Thus we call an almost contact hyperbolic metric manifold as a 

quasi hyperbolic Sasakian manifold if(3.S.1S) holds. 

An almost contact hyperbolic metric manifold, satisfying 

(3.S.16) (Dx 'F)(Y,Z) - u(Y)g(X,Z) + 2u(Z)g(X,Y) 

= (Dy'F)(Z,X) + u(X)g(Y,Z) 

is called a nearly hyperbolic Sasakian manifold. 

HYPERBOLIC COSYMPLECTIC MANIFOLD AS A BASE: 

Let us put 

(3.S.17) a) 

b) 

1= I(X,Y,Z) = (Dx 'F)(Y,Z) 

0' = I(Y,Z,X), c) 0'2 = I(Z,X,Y) 

Now consider a system consisting of all linear combination of I, 0', 0'2, 

with mUltiplication as defined by table I 

. I 0' (i 

I I 0' 0'2 

0' 0' 0'2 I 

0'2 0'2 I 0' 

Table I 

Then the system is a commutative ring Rl. 

From the table, we have f = I <=? I = 0, 

91 



92 

and cr
3 

= I <=> (l-cr)(I + cr + cr2
) = O. Now I = 0 <=> 

(3.5.18) (Dx 'F)(Y,Z) = O. 

Thus (3.5.18) gives the equation of a manifold and we call it as 

hyperbolic Cosymplectic manifold. 

Let us consider different cases for cr3 = I, 

Case I: IfI=crandI+cr+cr2 :;t:O <=> 

(3.5.19) (Dx 'F)(Y,Z) = (Dy'F)(Z,X) :;t: O. 

The above equation we call as nearly hyperbolic Cosymplectic manifold. 

Case II: If I + cr + cr2 = 0 and 1:;t: cr <=> 

(3.5.20) (Dx 'F)(Y,Z) + (Dy'F)(Z,X) + (Dz 'F)(X,Y) = o. 

This gives us the equation of a manifold and we call it as quasi hyperbolic 

Sasakian manifold. 

Case III: If 1 = cr and I + 0' + cr2 = 0 <=> 1= cr = 0'2 = O. 

This shows that the intersection of a nearly hyperbolic Cosymplectic 

manifold and quasi hyperbolic Sasakian manifold is a hyperbolic 

Cosymplectic manifold. 

. 2 
Case IV: If I :;t: 0 and I + (J + cr :;t: 0 

then the manifold is neither nearly hyperbolic Cosymplectic nor quasi 

hyperbolic Sasakian manifold. 
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It can also be proved that 

(I - aY = ° and (I + a + cr2y =0, 

represents a nearly hyperbolic Cosymplectic and quasI hyperbolic 

Sasakian manifolds respectively for r = ], 2, 3, ... 

Let us put 

(3.5.21) a) II = II(X,Y,Z) = (Dx 'F)(Y,Z) + u(Y)(Dxu)(FZ), 

b) at = II(Y,Z,X) = (Dy'F)(Z,X) + u(Z)(Dyu)(FX), 

c) al
2 = I1(Z,X,Y) = (Dz'F)(X,Y) + u(X)(Dzu)(FY). 

(3.5.22) a) 

Now consider two systems R2 and R3 consisting of all linear 

combinations of It, at, a1
2
, and It, at, ~I, YI, with multiplication as defined 

by table II and table III respectively. 

II al a/ II al ~1 Yl 

II II al al2 II II al ~I YI 

crl al a/ II al al II YI ~I 

a? al 
2 II al ~I ~I YI II al 

Table II YI Yl ~I al II 

Table III 



Then both the systems R2 and R3 are infinite commutative rings. 

Table III holds provided 

(3.5.23) (Du'F) = o. 

From table II, we have 

II = 0, II = CJ!, II + CJI + 0/ = O. 

Now II = 0 <=> (Dx 'F)(Y,Z) + u(Y)(Dxu)(FZ) = o. 

Putting U for Z in the above equation, we get 

(Dxu)(FY) = o. 

Thus I I = 0 is equivalent to the equation of a hyperbolic Cosymplectic 

manifold. 

Now II = CJI <=> 

(Dx 'F)(Y,Z) + u(Y)(Dxu)(FZ) = (Dy'F)(Z,X) + u(Z)(Dyu)(FX). 

Putting U for Z in this equation, we get (Dxu)(FY) = o. Thus II = o"!, 

represents a nearly hyperbolic Cosymplectic manifold with (Dxu)(Y) = o. 

We call this as restricted nearly hyperbolic Cosymplectic manifold. 

Also if II + CJI + 0"/ = 0 <=> 

(3.5.24) (Dx 'F)(Y,Z)+(Dy 'F)(Z,X)+(Dz 'F)(X,Y)+u(Y)(Dxu)(FZ) 

+u(Z)(Dyu)(FX)+u(X)(Dzu)(FY) = o. 

Then we call it as generalized quasi hyperbolic Sasakian manifold of the 

first kind. 
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From table III, we have II = 0, 112 = It 

(3.5.25) (DFX 'F)(FY,Z) = (Dx 'F)(Y,Z) + u(Y)(Dxu)(FZ). 

This we call as the equation of an almost contact hyperbolic normal 

metric manifold. 

Putting U for Z in the above equation, we get 

(3.5.26) a) (Dxu)(FY) = (Drxu)(Y) <=> 

b) (Dx u )(Y)= (Drx u )(FY) 

Now taking 11 + II = 0 <=> 

(3.5.27) (DFX 'F)(FY,Z) + (Dx 'F)(Y,Z) + u(Y)(Dxu)(FZ) = O. 

This is called almost contact hyperbolic pseudo normal metric manifold. 

Putting U for Z in (3.5.27), we get 

(3.5.28) a) (DFX U )(Y) = -(Dx u )(FY) <=> 

b) (Dxu)(Y) = -(DFXU)(FY) 

Now we have 

All represents almost contact hyperbolic normal metric manifold and 

almost contact hyperbolic pseudo normal metric manifold. 



Putting BX for A and BY for Il in (3.5.4), we get 

(DFBXF)FBY = (DBXF)BY 

Using (3.5.6)a in the above equation, we get 

(DBtxF)FBY - (DBXF)BY + u(X)(DNF)FBY = 0 

(3.5.29) (DBfXF)BtY-(DBXF)BY+ U(Y)(DBfXF)N + U(X)(DNF)FBY=O 

-u(X)(~F)FBY=DBfXFBtY -FDBfXBtY -DBXFBY +FDBXBY +U(Y)DBfXFN 

-u(Y)FDBfXN. 

Using (3.5.6)a,b and (3.5. 1 O)a,b in the above equation, we get 

-U(X)(DNF)FBY=DBfXBfY+(fXu(tY))N+u(tY)DBfXN-FBEfXtY 

-F'H(fX,tY)N-DBXBtY-(Xu(Y))N-u(Y)DBXN+FBEx Y 

+F'H(X, Y)N-u(Y)DBfXB U+u(Y)FBHfX 

-U(X)(DNF)FBY -BEfXfY+'H(fX,fY)N+(fXu(tY))N-BfEfXtY 

-u(EtxtY)N+B'H(fX,tY)U-BExtY-'H(X,tY)N-(Xu(Y))N 

+u(Y)BHX +BfEx Y +u(Ex Y)N-B 'H(X, Y)U-u(Y)BEfX U 

-u(Y)u(HfX)N+u(Y)BfHfX +u(Y)u(HfX)N 

-u(X)(DNF)FBY=B«EfXt)tY-(Ext)Y-u(Y)EfXU+u(Y)(fHf+H)X 

+(' H( fX,tY)- 'H(X, Y)) U)+( (EfXU)( tY)-(Exu )(Y) 

-'H(X,tY)+ 'H( fX,fY))N 

(3.5.30) -U(X)(DNF)FBY = B(P(X,Y)+Q(X,Y))+(p(X,Y)+q(X,Y))N 

where 
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(3.5.31) a) P(X,Y) = (Etxf)fY - (Exf)Y - u(Y)EtxU 

b) Q(X,Y) = u(Y)(tHf + H)X + (,H(fX,fY) - 'H(X,Y»U 

(3.5.32) a) p(X,Y) = (Etxu)(fY) - (Exu)(Y) 

b) q(X,Y) = -'H(X,fY) + 'H(fX,fy). 

Putting BX for A and BY for J..l in (3.5.5), we get 

(DFBXF)FBY + (DBXF)BY = 0 

Using (3.5.6)a in the above equation, we get 

(DBfXF)FBY + (DBXF)BY + U(X)(DNF)FBY = 0 

(DBtxF)BfY + (DBXF)BY + U(Y)(DBtxF)N + U(X)(DNF)FBY = 0 

-U(X)(DNF)FBY=DBtxFBfY-FDBtxBfY+DBXFBY-FDl3xBY+u(Y)DBlXFN 

-u(Y)FDBtxN. 

Using (3.5.6)a,b and (3.5.10)a,b in the above equation, we get 

=DBtxBfY+(fXu(fY))N+u(fY)DBtxN-FBEtxfY-F'H(fX,fY)N+DBXBfY 

+(Xu(Y) )N+u(Y)DBXN-FBEx Y -F'H(X, Y)N-u(~)DBtxBU+u(Y)FBHfX 

=BEtxfY+'H(fX,fY)N+(fXu(fY»N-BfEtxfY-u(EtxfY)N+B'H(fX,fY)U 

+BExfY+ 'H(X,fY)N+(Xu(Y»N-u(Y)BHX-BfEx Y-u(Ex Y)N 

+ B 'H(X, Y)U-u(Y)BEtx U-(Y)u(HfX)N+u(Y)BtHfX +u(Y)u(HfX)N 

-u(X)(DNF)FBY=B«Etxf)fY+(Exf)Y-u(Y)EtxU+u(Y)(tHf-H)X 

+(' H( fX,fY)+ 'H(X, Y) U)+( (Etxu)( fY)+(Exu )(Y) 

+ 'H(X,fY)+ 'H(fX,fY»N 
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(3.5.33) -U(Y)(DNF)FBY=B(R(X,Y) +S(X,Y)) + (r(X,Y) + s(X,Y))N 

where 

(3.5.34) a) R(X,Y) = (EDd)fY + (Exf)Y - u(Y)EtxU 

b) S(X,Y) = u(Y)(fHf-H)X + CH(fX,fY) + 'H(X,Y))U 

(3.5.35) a) r(X,Y) = (EtXu)(fY) + (Exu)(Y) 

b) s(X,Y) = 'H(X,fY) + 'H(fX,fy). 
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Chapter 4 RESULTS AND DISCUSSION 

On the basis of analysis carried out in chapter 3 we have been able 

to deduce following results: 

4.1 SECTION I(A): 

CR-SUBMANIFOLDS OF A TRANS PARA SASAKIAN MANIFOLD 

Theorem 4.1.1(A): Let M be a CR-submanifold of a trans para Sasakian 

manifold M. The distribution Dj_ is integrable if and only if 

(4.1.1 )(A) AFyZ - AFZ Y = a(u(Y)Z-u(Z)Y), for all Y,ZEDj_. 

Proof: Suppose the distribution Dj_ is integrable, then (Y,Z] EDj_ for any 

Y,ZE Dl.. This gives P[Y,Z]=O and from (3. 1. 14)(A) we get (4.1.1)(A). 

Conversely suppose (4.1.1)A holds. Then by (3.1.14)(A) we have 

FP[Y,Z] = 0, for any Y, ZEDj_. From this we have P[Y,Z] = 0, which is 

equivalent to [Y,Z] E Dj_ for all Y,ZE Dj_, which implies that Dj_ is 

integrable. This completes the proof of the theorem. 

Theorem 4.1.2(A): Let M be aU-horizontal CR-submanifold of a trans 

para Sasakian manifold M. The distribution D is integrable if and only if 

h(X,FY) = h(Y,FX), for all X,YeD. 



Proof: From (3.1.9)(A) for all X,YED, we have 

(4.1.2)(A) h(X,FY) = FQVxY + Ch(X,Y). 

Similarly, we have 

(4.1.3)(A) h(Y,FX) = FQVyX + Ch(X,Y). 

From (4.1.2)(A) and (4.1.3)(A), we get 

(4.IA)(A) h(X,FY) - h(Y,FX) = FQ[X,Y]. 

As the distribution D is integrable, that is, Q[X, Y] = O. 

Using Q[X,Y] = 0 in equation (4.1.4)(A), we get the result. 

Conversely, we have 

h(X,FY) = h(Y,FX) 

From equation (4.1.4)(A) and above, we get 

FQ[X,Y] = 0 =? Q[X,Y] = 0 

=? D is integrable. This proves our assertion. 
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Remark 4.1.1(A): For a trans Sasakian manifold, we have from 

(3.1.2)(A) 

(4.1.5)(A) VxU + h(X,U) = aFPX + aFQX + B(X - u(X)U). 

From (4.1.5)(A), we get the following two equations 

(4.1.6)(A) VxU = aFPX + B(X - u(X)U), 

(4.1.7)(A) h(X,U) = aFQX. 
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Now from (4.1.6)(A) and (4.L7)(A), we get the following two relations: 

(4.1.8)(A) VxU = ~(X - u(X)U), for XED.L, 

(4.1.9)(A) h(X,U) = 0, for XED. 

Theorem 4.1.3(A): Let M be a D-umbilic U-horizontal CR-submanifold 

of a trans para Sasakian manifold M, then M is D- totally geodesic. 

Proof: Let M be a D-umbilic U-horizontal CR-submanifold, that is 

h(X,Y)=g(X,Y)H, for all X,Y ED. 

Putting Y=U in the above equation, we have 

heX, U) = g(X, U)H 

Using (4.1.9)(A) in the above equation, we get 

H::: ° ~ h(X,Y)::: O.This shows that Mis D-totally geodesic. 
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4.2 SECTION l(B): 

CR-SUBMANIFOLDS OF NEARL Y AND CLOSEL Y PARA 

COSYMPLECTIC MANIFOLDS 

Theorem 4.1.1(B): Let M be a submanifold of a nearly para 

Cosymplectic manifold M. If 

U ETM then "i/ X,Y ETM we get 

(4.1.1)(B) P[X,Y] = -V'xPY - V'yPX+AQyX+AQxY+2PV'xY+ 2th(X,Y). 

(4.1.2)(B) Q[X,Y] = -Vi-QY-Vy.lQX-h(X,PY)-h(PX,Y)+2QVxY 

+2fh(X,Y). 

Proof: By virtue of equation (3.1.8 )(B) and (3.1.19)( B) we get 

(V'xPY -PV'x Y - V'yPX +PVyX - AQYX +AQx Y - 2V'xPY + 2PVx Y 

+ 2AQYX + 2th(X,Y» + (Vx.lQY -QV'x Y - Vy.lQX -QV'yX + h(X,PY)· 

-h(PX,Y) - 2Vx.lQY + 2QVxY -2h(X,PY) + 2fh(X,Y» = 0. 

Now equating tangential and normal parts of the- above equation we get 

equation (4.1.1 )(B) and (4.1.2)(B). 

Theorem 4.1.2(B): Let M be a CR-submanifold of a nearly para 

-
Cosymplectic manifold M. We have 

(a) ifDoEB{U}is autoparallel then 

AQYX +AQx Y + 2th(X,Y) = 0, "i/ X,Y E DOEB{U}, 
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(b) ifD1EB{U}is autoparallel then 

h(X,PY) + h(PX,Y) = 2fh(X,Y) , V X,Y E D1EB{U}. 

Proof: Using equation (3.1.17)(B) and autoparallelness qf DOEB{U} we 

get (a) and using equation (3.1.18)(B) and autoparallelness of D1EB{U} 

we get (b). This completes the proof. 

Theorem 4.1.3(B): Let M be a submanifold of a nearly para 

Cosymplectic manifold M with U ETM. If M is invariant then M is 

-
nearly para Cosymplectic manifold M. Moreover 

(4.1.3)(B) h(X,PY) + h(PX,Y) - 2fh(X,Y) = 0, V X,Y E TM. 

Proof: From D1EB{U}= Ker(Q) and equation (3.1.18)(B) we get equation 

(4.1.3)(B). 

Lemma 4.1.1(B): Let M be a CR-submanifold of a nearly para 

Cosymplectic manifold M, V X,Y E D1EB{U} we get 

(4.1.4)(B) Q[X,Y] = - h(X,PY) - h(PX,Y) +2QV~Y+ 2fh(X,Y) 

or equivalently 

(4.1.5)(B) - h(X,PX) +QV xX + fh(X,X) = 0. 

Proof: Using D1EB{U}= Ker(Q) and equation (4.1.2)(B) we get equation 

(4.1.4)(B) and using X =Y in equation (4.1.4)(B) we get the required 

result. 
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Theorem 4.1.4(B): The distribution D1EB{U} on a CR-submanifold of a 

nearly para Cosymplectic manifold M is integrable if and only if 

(4.1.6)(B) h(X,PY) + h(PX,Y) = 2(QV'xY+ fu(X,Y». 

Proof: From D1EB{U}= Ker(Q) and using equation (4.1.4)(B) we get 

( 4.1.5)(B). 

Theorem 4.1.5(B): Let M be a CR-submanifold of a nearly para 

Co symplectic manifold M. Then the following statements: 

(I) the distribution OlEB{U} is autoparallel, 

(II) h(X,PY) + h(PX,Y) = 2fu(X,Y), X,Y E OlEB{U}, 

(III) h(X,PX) = fh(X,X), X E D1EB{U}, 

(rV) the distribution DIEB{U}is nearly autoparallel, 

are related by (I)=>(II)<=> (III)=:>(IV) .In particular ifOIE9{U}is integrable 

then the above four statements are equivalent. 

Proof: (I)=>(II) follows from theorem (4.1.2)(B)(b). Putting X=Y in (II) 

we get (II)<=>(III). From (4.1.5)(B) we get (III)=>(IV). This completes the 

proof of the theorem. 

Theorem 4.1.6(B): Let M be a CR-submanifold of a nearly para 

Cosymplectic manifold M, such that M is OIEB{U}-totally umbilical, 

then 



(I) the distribution D1EB{U}is nearly autoparallel. 

Consequently, the following two statements becomes equivalent: 

(II) the distribution DIEB{U}is integable, 

(III) the distribution DIEB{U}is autoparallel. 

Proof: From proposition (3.1.4)(B), M is D1EB{U}-totally geodesic that is 

h =0. Thus from (4.1.5)(B) we get V'xX = 0 the statement (I) holds. Hence 

from definition we get (II)¢:>(II1). 

Corollary 4.1.1(B): In a totally umbilical CR-submanifold of a nearly 

para Cosymplectic manifold M, D1EB{U}is autoparallel. 

Proof: Using theorem (4.1.6)(B) we get the result. 
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Theorem 4.1.7(B): Let M be a CR-submanifold of a nearly para 

Cosymplectic manifold M. Then the distribution DOEB{ U} is integrable if 

and only if 

.,-

Proof: From DOEB{U} = Ker(P) and equation (3.1.20)(B), we get the 

result. 

Theorem 4.1.8: Let M be a CR-submanifold of a nearly para 

Cosymplectic manifold M. Then the distribution DO is integrable if and 

only if 

AQxY - AQYX = 0, V X,Y E DO. 
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Proof: By definition of DO and equation (3.1.20)(B), we get the result. 

Theorem 4.1.9(B): Let M be a CR-submanifold of a para Cosymplectic 

manifold M. Then the distribution DO and DOEB{U} are integrable. 

Proof: The result follows from theorem (4.1. 7)(B) and theorem 

( 4.1.8)(B). 

Theorem 4.1.10(B): If M is a totally para contact umbilical CR-

-
submanifold of a closely para Cosymplectic manifold M, then M is 

(Dl,Do)-mixed totally geodesic. 

Proof: Now we have h(X,Y) = g(X,Y) K, for X,Y E {U}J., 

h(U,U) = g(U,U) K, 

0= g(U,U) K, by using Gauss equation 

=> K=O. 

Therefore M IS (Dl,DO)-mixed totally geodesic .This completes our 

assertions. 

Theorem 4.1.11(B): Let M be a totally para contact umbilical 

submanifold of a closely para Co symplectic manifold M, then either DO 

= {O} or Dim(Do) = 1 or the normal vector field K is orthogonal to FDo. 

Proof: If Dim (Do) > 1, for each HE DO, 3 X E DO such that g(X,H) = 0 

and Ilx II = 0, then 

g(K,FH) = g(h(X,X),FH) = g(AFHX,X) = g(AFxH,X) = g(h(X,H),FX)= O. 

This gives desired result. 
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4.3 SECTION 2(A): 

SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY r-

SASAKIAN MANIFOLDS 

Theorem 4.2.1(A): Let M be a semi-invariant submanifold of a nearly r-

-
Sasakian manifold M. Then the distribution DEB{Up}is integrable if the 

following conditions are satisfied: 

(4.2.1 )(A) S(X,Y)EDEB{Up} , 

where S(X,Y) is the torsion tensor in equation (4.2.1)(A) 

(4.2.2)(A) h(X,FY)=h(FX,Y), for any X,Y EDEB{Up}. 

Proof: The torsion tensor S(X, Y) of an almost r-contact structure 

(F,Up,uP,g) is given by S(X,Y)=N(X,Y)+2duP(X,Y)Up, 

where N(X,Y) is Nijenhuis tensor ofF. 

Thus we have 

(4.2.3)(A) S(X,Y)=[FX,FY]-F[F,X,Y]-F[X,FY]+F2[X,Y]+2duP(X,Y)Up, 

for any X, Y E TM. 

Suppose that the distribution DEB {Up} is integrable and for all X,Y 

E DE9{Up}, Q[X,Y]=O and therefore (4.2.3)(A) gives (4.2.1)(A). 

Using (3.2.1)(A) we get 

S(X,Y) EDEB{Up} if and only ifQ(VyF)(X)=O, for any X,Y EDEB{Up}. 

Now taking FZ where ZED instead ofY in the above equation, we get 

FQVFZX + Ch(FX,FZ) + h(X,FZ)=O, for any X,Z ED. 
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Interchanging X and Z and subtracting these relations, we get 

FQ[FX,FZ]+h(Z,FX)-h(X,FZ)=O. 

Thus from the above equation we get the result. 

Theorem 4.2.2(A): Let M be a semi-invariant submanifold of a nearly r

Sasakian manifold M. Then the distribution OL1s integrable if and only if 

(4.2.4)(A) AFyZ-AFZY=O, for any Y, ZE D1.. 

Proof: Suppose the distribution 01. is integrable, then [Y,Z]ED L for any 

Y,ZE D1.. This gives P[Y,Z]=O and from (3.2.33)(A) we get (4.2.4)(1\). 

Conversely suppose (4.2.4)(A) holds. Then in view of (3.2.33)(A) 

we have FP[Y,Z]=O, for any Y,ZE D1.. Since rank F=2n, therefore we 

have P[Y,Z]=O, which is equivalent to [Y,Z] E 01. for all Y,ZE D1., which 

shows that Dj_ is integrable. 

Theorem 4.2.3(A) Any proper totally r-contact umbilical semi-invariant 

submanifold of a nearly'r-Sasakian manifold is totally r-contact geodesic. 

Proof: We know that 

- - 2 -
( vrxF)(FX)= vrxF X-F vrxFY. 

Using (1.1.17) in the above equation, we have 

( VxF)(FX)=- VxX+( VxuP(X»Up+uP(X) VxUp-F VxFX, 

=- VxX+( VxuP)(X)Up+uP( VxX)Up+uP(X) VxUp-F VxFX, 

= F2 VxX+( VxuP) (X)Up+ uP(X) VxUp -F VxFX, 



for any XET M. 

From equation (3.2.1)(A) and (3.2.3)(A), we have 

( VxF)(X) = uP(X)X-g(X,X)Up 

and 

From equation (4.2.5)(A) and the above equation, we get 

Now let XED and from (4.2.6)(A), we have 

g« vxF)(FX),H)=O, 

- 2 -
g( vxF X,H)-g(F( VxFX),H)=O, 

- -
g( VxFX,FH)-g( VxX,H)=O, 

- -
g( vxH,X)-g( VxFH,FX)=O, 

g(AFHX,FX)-g(AHX,X)=O. 

Using (3.2.S)(A) in the above equation, we have .... 

(4.2.7)(A) g(h(X,FX),FH)-g(h(X,X),H)=O. 

Using (3.2.34)(A) in (4.2.7)(A), we get 

g(g(FX,F2X)H,FH)-g(g(FX,FX)H,H)=O, 

-g(FX,X)g(H,FH)-g(FX,FX)g(H,H)=O, 

g(X,X)g(H,H)=O. 

Consequently, H=O which completes the proof. 
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4.4 SECTION 2(B): 

SEMI-INVARIANT SUBMANIFOLDS OF r-KENMOTSU MANIFOLDS 

Theorem 4.2.1(B): Let M be a semi-invariant submanifold of a r-

Kenmotsu manifold M. If M is Up-horizontal, then the distribution D is 

integrable if and only if, 

(4.2.1)(B) h(X,FY)=h(Y,FX), for all X,YeD, 

and if M is Up-vertical, then the distribution DJ.. is integrable if and only 

if, 

(4.2.2)(B) Apx Y - ApyX = uP(X)FY - uP(Y)FX + 2g(FX,Y)Up. 
, 

Proof: Let M be Up-horizontal then equation (3.2.11 )(B) reduces to 

h(X,FY) = FQVxY + Ch(X,Y), 

Similarly, we have 

h(Y,FX) = FQVyX + Ch(X,Y). 

From these two equations, we have 

(4.2.3)(B) h(X,FY) - h(Y,FX) = FQ[X,y]. 

Thus ifM is Up-horizontal then [X,Y] eD, that is, Q[X,Y] = o. 

Using this in equation (4.2.3)(B), we get the result. 

Conversely, using (4.2.1)(B) in (4.2.3)(B), we get 

FQ[X,Y] = 0 => Q[X,Y] = 0 => [X,Y] ED=> D is integrable. 
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This proves the first part. 

Let M be Up-vertical then (3.2.11)(B) reduces to 

(4.2.4)(B) 'V/-FY = FQ'Vx Y + Ch(X,Y), for all X,Y EO.L. 

We know that 

- - -
\7xFY = ( \7xF)Y + F \7x Y 

-AFyX+'Vx.lFY=g(FX,Y)Up-uP(Y)FX+FP'VxY+FQ'VxY+Bh(X,Y) 

+Ch(X,Y) 

(4.2.5)(B) 'Vx.lFY=g(FX,Y)Up-uP(Y)FX+FP'Vx Y+FQ'Vx Y+Bh(X,Y) 

+Ch(X,Y)+ApyX 

From (4.2.4)(B) and (4.2.5)(B), we have 

FP'Vx Y = uP(Y)FX - g(FX,Y)Up - Bh(X,Y) - ApyX 

Similarly we have 

FP'VyX = uP(X)FY - g(FY,X)Up - Bh(X, Y) - AFX Y 

From the above two equations we have 

(4.2.6)(B) FP[X,Y] =uP(Y)FX - uP(X)FY - 2g(FX,Y)Up + AFXY - AFyX 

Thus ifM is Up-vertical then [X,Y] ED.l that is P[X,Y] = o. 

Using this in (4.2.6)(B), we get (4.2.2)(B). 

Conversely, using (4.2.2)(B) in (4.2.6)(B), we get 

FP[X,Y] = 0 =:> P[X,Y] = 0 =:> [X,Y] E D.l =:> D.l is integrable. 

This proves the second part. 
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Theorem 4.2.2(B): If M is totally r-contact umbilical semi-invariant 

submanifold of a r-Kenmotsu manifold with parallel horizontal 

distributions, then M is totally r-contact geodesic. 

Proof: Using (3.2.9)(B) and (3.2.1 O)(B), we have 

g(VxFPY+VyFPX-AFQyX-AFQX Y,Z)=g(FPVx Y+FPVyX +2Bh(X, Y),Z) 

+g(FX, Y)uP(Z)-g(FX,Z)uP( Y). 

Since M is totally r-contact umbilical, we have 

g(VxFPY,Z)+g(VyFPX,Z)-g(h(X,Z),FQY)-g(h(Y,Z),FQX) 

=g(FPVx Y,Z)+g(FPVyX,Z)+2g(X,Y)g(BH,Z)-2uP(X)uP(Y)g(BH,Z) 

-2uP(X)g(h(Y,Up),FZ)-2uP(Y)g(h(X,Up),FZ)+uP(Z)g(FX,Y) 

-uP(Y)g(FX,Z) 

Again using (3.2.14)(B) in the above equation and replacing Y by BH 

and Z by X we get 

(4.2.7)(B) g(VBHFPX,X)-g(X,X)g(H,FBH)-g(BH,X)g(H,FQX) 

=g(FPVxBH,X)+g(FPVBHX,X)+2g(X,BH)g(BH,X) 

-2uP(X)uP(BH)g(BH,X)-2uP(X)g(h(B H, U p),FX) 

-2uP(BH)g(h(X,Up),FX)+uP(X)g(FX,BH) 

-uP(BH)g(FX,X) 

Also for each XED, we have 

g(X,BH) = g(FX,BH) = O. 
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Now differentiating above equation with respect to X, we get 

g(Y'xFX,BH) + g(FX, Y'xBH) = O. 

Since the horizontal distribution D is parallel, we have 

(4.2.8)(B) g(FX,VxBH) = O. 

Using the above facts in (4.2.7)(B) and taking XeD as unit vector, we get 

g(Y'BHFPX,X) - g(H,FBH) = g(FPY'imX,X) 

(4.2.9)(B) g((Y'BHFP)X,X) = -g(FH,BH) = -g(BH,BH). 

Using Gauss formula we have 

-
( Y'BHFP)(X) = (Y'BHFP)(X) 

Again fi'om Gauss formula, we have 

g((Y'BHFP)X,X) = o. 

Hence from (4.2.9)(B) and above equation, we get g(BH,BH)=O=>BH= O. 

Since FHED\ we have CH = 0, hence FH = 0 => H = O. Which gives us 

that M is totally r-contact geodesic. 

This completes the proof of the theorem. 

Remark 4.2.1(B): For r-Kenmotsu manifold we have from equation 

(3.2.2)(B), (3.2.3)(B) and (3.2.6)(B) 

(4.2.10)(B) VxUp = VxUp + h(X,Up) = PX + QX - uP(X)PUp• 

Equating the tangential and normal components of the above equation, 

we have 



(4.2.11)(B) VxUp = PX - uP(X)PUp. 

(4.2.12)(B) h(X,Up) = QX 

From (4.2.11)(B) and (4.2.12)(B) we have 

(4.2.13)(B) v\Up = 0, V XED.L and 

(4.2.l4)(B) h(X,Up) = 0, V XED. 

Note that, for XED we have, g(ANUp,X) = g(h(X,Up),N) = ° 
And so we have ANUpED.L. 

Theorem 4.2.3(B): Let M be D-umbilic (resp. r).L-umbilic) semI

invariant submanifold of a r-Kenmotsu manifold. If M is Up-horizontal 

(resp.Up-vertical) then M is D totally geodesic (resp.D.L-totally geodesic). 

Proof: Let M is D-umbilical and Up-horizontal then heX. Y) = g(X, Y)H. 

Putting Y = Up in the above equation, we obtain 

heX, Up) = g(X, Up)H 

Again using (4.2.14)(B) in the above equation, we "get 

H = ° ~ heX, Y) = 0. 

Hence M is D-totally geodesic. 

Similarly if M is D.L-umbilical, Up-vertical semi-invariant submanifold 

then M is D.L-totally geodesic. 
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4.5 SECTION 3(A): 

CR-SUBMANIFOLDS OF A TRANS HYPERBOLIC SASAKIAN 

MANIFOLD I 

Theorem 4.3.1(A): Let M be a CR-submanifold of a trans hyperbolic 

Sasakian manifold M. The distribution D_]_ is integrable if and only if 

(4.3.1)(A) AFyZ- AFZY = a(u(Y)Z-u(Z)Y), for all Y,ZEDj_. 

Proof: Suppose the distribution D_]_ is integrable, then [Y,Z] ED_]_ for any 

Y,ZE D_]_. This gives P[Y,Z]=O and from (3.3.1S)(A) we get (4.3.1)(A). 

Conversely suppose (4.3.l)(A) holds. Then by (3.3.1S)(A) we have 

FP[Y,Z] = 0, for any Y,ZED_]_. From this we have P[Y,Z]=O, which is 

equivalent to [Y,Z]ED_]_ for all Y,ZE Dj_ and D_]_ is integrable. This 

completes the proof of the theorem. 

Theorem 4.3.2(A): Let M be aU-horizontal CR-submanifold of a trans 

hyperbolic Sasakian manifold M. The distribution D is integrable if and 

only if 

h(X,FY) = h(Y,FX), for all X,Y ED. 

Proof: Let the disribution D is integrable. Now from (3.3.10)(A) for all 

X,Y ED, we have 

(4.3.2)(A) h(X,FY) = FQVxY+Ch(X,Y). 



Similarly, we have 

(4.3.3)(A) h(Y,FX) = FQVyX+Ch(X,Y). 

From (4.3.2)(A) and (4.3.3)(A), we get 

(4.3.4)(A) h(X,FY)-h(Y,FX) = FQ[X,Y]. 

As the distribution D is integrable Q[X,Y] = O. 

Using Q[X,Y] = 0 in (4.3.4)(A),we get the result. 

Conversely, using h(X,FY) = h(Y,FX) in (4.3.4)(A), we get 

FQ[X,Y] = 0 ~ Q[X,Y] = 0 ~[X,Y] E D ~D is integrable. 

Remark: Now from (3.3.3)(A), we have 

(4.3.5)(A) VxU+h(X,U) = -aFPX-aFQX-p(X+u(X)U). 

From (4.3.5)(A), we get the following equations 

(4.3.6)(A) VxU = -aFPX-p(X+u(X)U), 

(4.3.7)(A) h(X,U) = -aFQX. 

Now from (4.3.6)(A) and (4.3.7)(A), we get the following relations: 

(4.3.8)(A) VxU = -P(X+u(X)U), for XEDJ., 

(4.3.9)(A) h(X,U) = 0, for XED. 
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Theorem 4.3.3(A): Let M be a D-umbilic U-horizontal CR-submanifold 

of· a trans hyperbolic Sasakian manifold M, then M is D- totally 

geodesic. 
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Proof: Let M be a D-umblic U-horizontal CR-submanifold of a trans 

-
hyperbolic Sasakian manifold M, then we have 

h(X,Y) = g(X,Y)H, for all X,Y ED. 

Putting Y=U in the above equation, we get 

heX, U) = g(X, U)H. 

Using (4.3.9)(A) in the above equation, we get 

=> H = 0 => h(X,Y) = o. 

This shows that M is D-totally geodesic. 
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4.6 SECTION 3(B): 

CR-SUBMANIFOLDS OF A TRANS HYPERBOLIC SASAKIAN 

MANIFOLD II 

Theorem 4.3.1(B): Let M be a CR-submanifold of a trans hyperbolic 

-
Sasakian manifold M. If M is U-horizontal, then the distribution D is 

integrable if and only if, 

(4.3.l)(B) h(X,FY)=h(Y,FX), for all X,Y ED, 

and ifM is U-vertical then the distribution D..L is integrable if and only if, 

( 4.3.2 )(B) A FX Y -AFY X = 1 12n[ (u(X) Y -u(Y)X)8F(U) 

-(u(X)FY-u(Y)FX-2g(X,FY)U)8u] 

Proof: For the first part, let M be U-horizontal then (3.3.l1)(B) reduces 

to 

h(X,FY) = FQVx Y + Ch(X,Y), for all X,Y ED. 

Similarly, we have 

h(Y,FX) = FQVyX + Ch(X,Y). 

From the above two equations, we have 

(4.3.3)(B) h(X,FY) - h(Y,FX) = FQ[X,Y]. 

If M is U-horizontal it means [X,Y]ED => Q[X,Y] = O. Now from 

equation (4.3.3)(B), we get 
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h(X,FY) = h(Y,FX). 

Conversely, using (4.3.1 )(B) in (4.3.3)(B), we get 

FQ[X,Y] = 0 => Q[X,Y] = 0 => [X,Y] ED=> D is integrable. 

This proves the first part. 

For the second part, let M be U-vertical, then (3.3.11 )(B) reduces to 

(4.3.4)(B) V/-FY = FQvx Y + Ch(X,Y), for all X,Y ED..L. 

We know that 

- - -
VxFY = ( VxF)Y + F VxY 

-AFyX+Vx..LFY=1/2n[(g(X,Y)U- u(Y)X)8F{U)+(g(X,FY)U + u(Y)FX)8u] 

+ FPVxY + FQVxY + Bh(X,Y) + Ch(X,Y) 

(4.3.5)(B) Vx..LFY = 1/2n[(g(X,Y)U - u(Y)X)8F(U) + (g(X,FY)U 

+u(Y)FX)8u]+FPVx Y+FQvx Y+Bh(X,Y)+Ch(X~Y) 

From (4.3.4)(B) and (4.3.5)(B), we have 

FPVxY=-1I2n[(g(X,Y)U - u(Y)X)8F(U)+(g(X,FY)U + u(Y)FX)8u] 

- Bh(X, Y) - AFy X 

Similarly we have 

FPVyX = -1/2n[(g(X,Y)U - u(X)Y)8F(U) + (g(Y,FX)U + u(X)FY)8u] 

- Bh(X,Y) - AFX Y 



Now from above two equations, we have 

(4.3.6)(B) FP[X,Y]=-1/2n[(u(X)Y -u(Y)X)oF(U)+(u(Y)FX-u(X)FY 

+2g(X,FY)U)ou]+ AFX Y - AFyX. 
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Thus ifM is U-vertical, it means [X,Y] E D.L => P[X,Y] = O. Using this in 

the above equation, we get 

Arx Y - AFyX = 1/2n[(u(X)Y - u(Y)X)oF(U) + (u(Y)FX - u(X)FY 

+ 2g(X,FY)U)ou]. 

Conversely, using (4.3.2)(B) in (4.3.6)(B), we get 

FP[X,Y] = 0 => P[X,Y] = 0 => [X,Y] E D.L => D.L is integrable. 

This proves the second part. 

This completes the proof of the theorem. 

Theorem 4.3.2(B): If M is totally hyperbolic contact umbilical CR

submanifold of a trans hyperbolic Sasakian manifold with parallel 

horizontal distribution, then M is totally hyperbolic contact geodesic. 

Proof: From (3.3.9)(B) and (3.3.10){B), we have 

g(Y'xFPY+Y'yFPX-AFQyX-AFQX Y,Z)=g(FPY'x Y+FPY'yX +2Bh(X,Y),Z) 

+ 1/2n[ (g(X, Y)u(Z)-g(X,Z)u(Y) )oF (U) 

+(g(X,FY)u(Z)-g(X,FZ)u(Y))ou]. 

Since M is totally hyperbolic contact umbilical, we have 
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g(VxFPY,Z)+g(VyFPX,Z)-g(X,Z)g(FQY,H)-g(Y,Z)g(FQX,H) 

= g(FPVx Y,Z)+g(FPVyX,Z)+2g(X,Y)g(BH,Z)+2u(X)u(Y)g(BH,Z) 

-2u(X)g(h(Y,U),FZ)-2u(Y)g(h(X,U),FZ)+ 1/2n[(g(X,Y)u(Z) 

-g(X,Z)u(Y) )oF(U)+(g(X,FY)u( Z)-g(X,FZ)u(Y)ou ]. 

Putting BH for Y and X for Z in the above equation, we get 

( 4.3. 7)(B) g(V BHFPX,X)-g(X,X)g(H,FBH)-g(BH,X)g(H,FQX) 

=g(FPVxBH,X)+g(FPVBHX,X)+2g(X,BH)g(BH,X) 

+ 2u(X)u(BH)g(BH,X)-2u(X)g(h(B H, U),FX) 

-2u(BH)g(h(X, U),FX)+ 1 12n[ (g(X,BH)u(X) 

-g(X,X)u(BH) )oF(U)+(g(X,FBH)u(X) 

-g(X,FX)u(BH)ou] . 

Suppose XED be a unit vector so we have 

g(X,BH) = g(FX,BH) = O. 

Taking covariant differentiation of the above with respect to X, we have 

g(VxFX,BH) + g(FX, VxBH) = O. 

Since D is parallel, we have 

(4.3.8)(B) g(FX,VxBH) = O. 

Using above facts in (4.3.7)(B) and taking XED as unit vector, we get 

g(VBHFPX,X) - g(H,FBH) = g(FPVBHX,X) 

(4.3.9)(B) g«VBHFP)X,X) = -g(FH,BH) = -g(BH,BH). 
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Also from Gauss formula, we have 

-
( VBI-IFP)(X) = (VI3HFP)(X) 

Again from Gauss formula, we have 

g((V'U11FP)X,X) = O. 

Hence from (4.3.9)(B) and above equation, we get g(BH,BH)=O => 

BH=O. 

Since FHED·\ therefore CH = 0, that is FH = ° => H = 0. Hence M is 

totally hyperbolic contact geodesic. 

Remark 4.3.1 (B): For a trans hyperbolic Sasakian manifold, we have 

-
VxU = 1I2n[(X + u(X)U)8u - FX8F(U)] 

Equating the tangential and normal components of the above equation, 

we get 

VxU = 1/2n[(PX + u(X)PU)8u - FPX8F(U)] 

h(X,U) = 1/2n[(QX + u(X)QU)8u - FQX8F(U)] 

From above two equations, we have 

(4.3.10)(B) VxU = 0, V XEDj_ 

(4.3.11)(B) h(X,U) = 0, V XED. 

Theorem 4.3.3(B): Let M be D-umbilic (resp. Dj_-umbilic) CR-

submanifold of a trans hyperbolic Sasakian manifold. If M is U-
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horizontal (resp.U-vertical) then M is D-totally geodesic (resp.D_!_-totally 

geodesic ). 

Proof: If M is U-horizontal D-umbilical CR-submariifold of a trans 

hyperbolic Sasakian manifold then we have h(X,Y) = g(X,Y)H. 

Putting Y = U in the above equation, we have 

heX, U) = g(X, U)H. 

Using (4.3.l1)(B) in the above equation, we get 

H = 0 => h(X,Y) = O. 

Hence M is D-totally geodesic. 

Similarly we can easily prove that if M is D_l-umbilicaI CR

submanifold with U-vertical then M is n_l-totally geodesic. 
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4.7 SECTION 4(A): 

SEMI-INVARIANT SUBMANIFOLDS OF PARA KENMOTSU 

MANIFOLDS I 

Theorem 4.4.1(A): Let M be a semi-invariant submanifold of a para 

Kenmotsu manifold M. If M is U-horizontal, then the distribution D is 

integrable if and only if, 

(4.4.l)(A) h(X,FY) h(Y,FX), for all X,YeD, 

and if M is U-vertical then the distribution D.L is integrable if and only if, 

(4.4.2)(A) AFX Y - AFyX = u(X)FY - u(Y)FX, for all X,Y ED.L. 

Proof: For the first part, let M be U-horizontal then equation (3.4.11 )(A) 

reduces to 

h(X,FY) = FQVx Y + Ch(X,Y), 

Similarly, we have 

h(Y,FX) = FQVyX + Ch(X,Y). 

From above two equations, we have 

(4.4.3)(A) h(X,FY) - h(Y,FX) = FQ[X,Y]. 

If [X,Y] eD, then Q[X,Y] = O. Thus from above equation, we get 

(4.4.1 )(A). 

Conversely, using (4.4.1 )(A) in (4.4.3)(A), we get 
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FQ[X,Y] = 0 => Q[X,Y] = 0 => [X,Y] ED=> D is integrable. 

This proves the first part. 

For the second part, let M be U-vertical then (3.4.11)(A) reduces to 

(4.4.4)(A) V /-PY = FQvx Y + Ch(X,Y), for all X,Y EDj_. 

We know that 

- - -
\7xFY = ( VxF)Y + F \7x Y, 

-AFyX+VXj_PY=-g(X,FY)U-u(Y)FX+FPVxY+FQVxY+Bh(X,Y) 

+Ch(X,Y), 

(4.4.5)(A) V'x j_FY=-g(X,FY)U-u(Y)FX +FPV'x Y +FQV'x Y +Bh(X, Y) 

+Ch(X, Y)+ AFy X. 

From (4.4.4)(A) and (4.4.5)(A), we have 

FPVx Y = u(Y)FX + g(X,FY)U - Bh(X,Y) - AFyX. 

Similarly we have 

FPV'yX = u(X)FY + g(Y,FX)U - Bh(X,Y) - AFX Y. 

From above two equations we have 

(4.4.6)(A) FP[X,Y] = u(Y)FX - u(X)FY + AFXY - AFyX 

If [X,Y] EDj_ then is P[X,Y] = o. Now from (4.4.6)(A) and P[X,Y] = 0, 

we get (4.4.2)(A). 

Conversely, using (4.4.2)(A) in « 4.4.6)(A), we get 

FP[X,Y] = 0 => P[X,Y] = 0 => [X,Y] E Dj_ => Dj_ is integrable. 
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This proves the second part. 

Theorem 4.4.2(A): If M is totally para contact umbilical semi-invariant 

submanifold of a para Kenmotsu manifold with parallel horizontal 

distributions, then M is totally para contact geodesic. 

Proof: From (3.4.9)(A) and (3.4.l0)(A), we have 

g(Y'xFPY +Y'yFPX-AFQyX-AFQX Y,Z)=g(FPY'x Y +FPY'yX +2Bh(X,Y),Z) 

-g(X,FY)u(Z)-g(FX,Z)u(Y). 

Since M is totally para contact umbilical, we have 

g(Y' xFPY ,Z)+g(Y' y FPX,Z)-g(h(X,Z),FQY)-g(h(Y,Z),FQX) 

= g(FPY'x Y,Z)+g(FPY'yX,Z)+2g(X,Y)g(BH,Z)-2u(X)u(Y)g(BH,Z) 

+2u(X)g(h(Y,U),FZ)+2u(Y)g(h{X,U),FZ)-u(Z)g(FX,Y) 

-u(Y)g(FX,Z). 

Using (3.4.l4)(A) in the above equation and replacing Y by BH and Z by 

X we get 

(4.4.7)(A) g(Y'sHFPX,X)-g(X,X)g(H,FBH)-g(BH,X)g(H,FQX) 

=g(FPY'xBH,X)+g(FPY'SHX,X)+ 2g(X,BH)g(BH,X) 

-2u(X)u(BH)g(BH,X)+2u(X)g(h(BH, U),FX) 

+ 2u(BH)g(h(X, U),FX)-u(X)g(FX,BH)-u(BH)g(FX,X). 

If XED is a unit vector then we have 

g(X,BH) = g(FX,BH) = O. 
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Taking differentiation of the above with respect to X, we obtain 

g(VxFX,BH) + g(FX, VxBH) = O. 

Since D is parallel, we have 

(4.4.8)(A) g(FX, VxBH) = O. 

Using above facts in (4.4. 7)(A) and taking XED as unit vector, we get 

g(VBHFPX,X) - g(H,FBH) = g(FPVBHX,X), 

(4.4.9)(A) g«VBHFP)X,X) = -g(FH,BH) = -g(BH,BH). 

Now in view of Gauss formula, we have 

-
( VBHFP)(X) = (VBHFP)(X). 

Again using Gauss formula, we get 

g«VBHFP)X,X) = O. 

Hence from (4.4.9)(A) and above equation, we get g(BH,BH)=O => 

BH=O. 

Since FHED-L, we have CH = 0, hence FH = 0 =?.H = O. Which shows 

that M is totally para contact geodesic. 

Remark 4.4.1(A): For a U-horizontal semi-invariant submanifold of a 

para Kenmotsu manifold, from equation (3.4.2)(A), (3.4.3)(A) and 

(3.4.5)(A), we have for any XE TM 

(4.4.10)(A) VxU = VxU + h(X,U) = PX + QX - u(X)PU. 



129 

Equating the tangential and normal components of the above equation, 

we get 

(4.4.l1)(A) V'xU = PX + QX - u(X)PU 

and 

(4.4.12)(A) h(X,U) = 0 

Note that, for XED we have, g(ANU,X) = g(h(X,U),N) = 0 and hence that 

ANUEDj_. 

Theorem 4.4.3(A): Let M be O-umbilic (resp. OJ_-umbilic) seml

invariant submanifold of a para Kenmotsu manifold. If M is U-horizontal 

(resp.U-vertical) then M is D totally geodesic (resp.Dj_-total1y geodesic). 

Proof: Since M is D-umbilical semi-invariant submanifold of a para 

Kenmotsu manifold, we have that h(X,Y) = g(X,Y)H for any X,Y ED. 

Since M is U-horizontal we may put Y = U in the above equation and, 

using (4.4. 1 2)(A), we get 

H =0 => h(X,Y) = O. 

Hence M is D-totally geodesic. 

Similarly we can prove that if M is Dj_ -umbilical semi-invariant 

submanifold with U-vertical then M is Dj_-totally geodesic. 
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4.8 SECTION 4(B): 

SEMI-INVARIANT SUBMANIFOLDS OF PARA KENMOTSU 

MANIFOLDS II 

Theorem 4.4.1(B): Let M be a (D,Dl.)-geodesic semi-invariant 

submanifold of a para Kenmotsu space form M(C) and D is an integrable 

distribution then for all XED, ZEDl. with u(X) = 0, we have 

(4.4.1)(B) ~(C+l)IIXlf IIQZI12 = 0, V XED, Z E Dl.. 

Proof: From second part of the Lemma 3.4.1(B), we get 

(4.4.2)(B) AQzX E D, V XED, Z E Dl., 

and using (1.1.20), (3.4.3)(B), (3.4.4)(B), (3.4.6)(B) and (4.4.2)(B), we 

have 

-
g(AQzY,V'xZ) = g(AQzY, V'xZ) 

-
= g(AQzY, F V'xFZ) 

=g(FAQzY, V'xFZ) 

(4.4.3)(B) = -g(FAQzY, AQzX), V X,Y E D, Z E Dl.. 

From (3.4.S)(B) and (4.4.2)(B), we have 

(4.4.4)(B) AQzFX = FAQzX, 'v' XED, Z E Dl.. 

From (4.4.3)(B) and (4.4.4)(B), we get 

(4.4.S)(B) g(AQzY,V'xZ) = -g(AQzFY, AQzX), V X,Y E D, Z E Dl.. 
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Similarly, we have 

(4.4.6)(B) g(AQzX,VyZ) = -g(AQzFX, AQzY), V X,Y E D, Z E D.L. 

Substituting (4.4.S)(B), (4.4.6)(B) in (3.4.20)(B) and then taking into 

account Y = FX and using (1.1.20), (4.4.4)(B), we get 

'i2(C+ 1 )g(X,X) IIQZI12 
= -g(AQzFX,AQzPX) + g(AQZp2X,AQzX) 

= - g(P AQzX,P AQzX) + g(AQzX,AQzX) 

= - g(AQzX,AQzX) + g(AQzX,AQzX) 

=0 

This completes the proof of the theorem. 

Theorem 4.4.2(B): Let M be a (D,D.l)-geodesic submanifold of a para 

. -
Kenmotsu manifold M and suppose D is an integrable distribution. If C =t. 

-
-1, then we have either M is an anti-invariant submanifold of M or M is 

an invariant submanifold of M. If M is proper semi-invariant 

submanifold, then we have C = -1. 

Proof: Now suppose that C =t. -1, then it follows that M must be non-

proper. This fact can be seen as follows: 

IfX=t.O, then (4.4.1)(B) implies that IIQZII=O hence QZ=O and so we 

have Z=O, thus M is an invariant submanifold of M. If Z*O then IIQZII =t. 
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o and hence from (4.4.1)(B) it follows that IIXII = 0 and so X = O. Thus M 

is an anti-invariant submanifold of M. 

Now if M is a proper semi-invariant submanifold of M, then there 

exist non-zero vector XED and Z E D-l. Thus from (4.4.1)(B) it follows 

that C =-1. 

This completes the proof of the theorem. 
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4.9 SECTION 5: 

HYPERSURFACES OF ALMOST HYPERBOLIC HERMITIAN 

MANIFOLDS 

Theorem 4.5.1: The hypersurface of a hyperbolic Kaehlerian manifold is 

an almost contact hyperbolic metric manifold on which 

(4.5.1) 

(4.5.2) 

a) (Exf)Y = u(Y)HX - 'H(X,Y)U, 

. b) (Exu)(Y) = - 'H(X,fY), 

ExU = fHX, are satisfied. 

Proof: Putting BX for A and BY for J..L in (3.5.1), we get 

DBXFBY = FDBXBY 

Using (3.5.6)a in the above equation, we get 

DBxBfY + (Xu(Y))N + U(Y)DBXN = FDBXBY. 

Using (3.5.6)a,b and (3.5.10)a,b in the above equation, we get 

BExfY + 'H(X,fY)N+ Xu(Y)N-u(Y)BHX 

= FBEx Y + F'H(X,Y)N 

= BfEx Y+u(Ex Y)N-BU'H(X,Y). 

Now equating tangential and normal parts of the above equation, 

we get (4.5.l)a and (4.5.1)b. 

Similarly putting BX for A and N for J..L in (3.5.1), we get 

DBXFN = FDBXN. 
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Using (3.5.6)a,b and (3.5.l0)a,b in the above equation, we get 

BExU + 'H(X,U)N = BfHX + u(HX)N 

Now equating tangential parts of the above equation, we get (4.5.2). 

Theorem 4.5.2: The hypersurface of a hyperbolic Kaehlerian manifold is 

given by 

f(Exf)fY = 0 or (Exf)fY = (Exu)(Y)U, 

where ExU = fHX. 

Proof: Premultiplying equation (4.5.1)a by f and putting fY for Y, we get 

f(Exf)fY = O. 

Now putting fY for Yin (4.5.1)a, we get 

(Exf)fY = - 'H(X,fY)U. 

Using (4.5.1)b in the above equation, we get 

(Exf)fY = (Exu)(Y)U. 

This completes the proof of the theorem. 

Theorem 4.5.3: The totally geodesic hypersurface or the hypersurface on 

which 

(4.5.3) a) fH = Hf = 0 ¢::> b) H = u(HU)u®U 

holds, for a hyperbolic Kaehlerian manifold, is a hyperbolic 

Cosymplectic manifold. 
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Proof: In equation (4.5.1)a,b or (4.5.2) the right hand side contains H is 

not an element of the almost contact hyperbolic metric structure. The 

right hand side of(4.5.1)a,b and (4.5.2) vanishes when 

tH=Hf=O 

fHU=O 

(I + u@U)HU = 0 

<=> Hu(U) + (u@U)u(HU) = 0 

<=> -H + u(HU) u@U= 0 

H=u(HU)u@U 

The above equation is satisfied if, in particular H = 0, that is, the 

hypersurface is totally geodesic. 

Putting the right hand side of the equation (4.5.1)a equal to zero, we get 

(Ext)(y) = O .. 

This completes the proof of the theorem. 

Theorem 4.5.4: The totally umbilic hypersurface of a hyperbolic 

Kaehlerian manifold is a hyperbolic Sasakian manifold. 

Proof: Let the hypersurface of the hyperbolic Kaehlerian manifold be 

totally umbilic, that is, 

(4.5.4) a) 'H=h<=> b) H=I 

Using this in equation (4.5.1)a, we get 
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(Exf)Y = u(Y)X - h(X,Y)U. 

This shows that the totally umbilic hypersurface of a hyperbolic 

Kaehlerian manifold is a hyperbolic Sasakian manifold. 

This proves our assertion. 

Theorem 4.5.5: The necessary and sufficient condition that the 

hyperbolic Kaehlerian manifold be K-contact hyperbolic Riemannian 

manifold is that 

(4.5.5) a) fHX= fX or b) HX = X + u(HX - X)U. 

Proof: Let the hypersuface of the hyperbolic Kaehlerian manifold be K

contact hyperbolic Remannian manifold. Then 

ExU=fX. 

Comparing the above equation with (4.5.2), we get 

fHX= fX , 

fHX= fx, 

HX + u(HX)U = X + u(X)U, 

HX = X + u(X-HX)U. 

Conversely, pre multiplying equation (4.5.5)b by f, we get 

fHX= fX. 

Comparing the above equation with (4.5.2), we get 

ExU= fX. 
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This shows that the hypersuface of the hyperbolic Kaehlerian manifold be 

K -contact hyperbolic Riemannian manifold. 

Corollary 4.5.1: Let the hypersurface of a hyperbolic Kaehlerian 

manifold be K-contact hyperbolic Riemannian manifold. Then it is a 

hyperbolic Sasakian manifold. 

Proof: The equation (4.5.5)a, b are satisfied by HX = X, which is the 

necessary and sufficient condition for the hypersurface to be totally 

umbilic. 

Now from theorem 4.5.4, we get the result. 

Theorem 4.5.6: The hypersurface of a nearly hyperbolic Kaehlerian 

manifold is an almost contact hyperbolic metric manifold satisfying 

(4.5.6) 

(4.5.7) 

(4.5.8) 

a) (Exf)Y + (Eyf)X = u(X)HY + u(Y)HX - 2'H(X,Y)U 

=-u(X)tHY -u(Y)tHX + {'H(X,tY) 

+'H(tX,y)}U 

b) (Exu)(Y) + (Eyu)(X) = -'H(X,fY) - 'H(fX,Y) 

(DNF)BX = B(ExU - fHX) 

(Eu 'f)(Y,Z)-u(Y)u(HZ)+u(Z)u(HY)= -(Eyu)(fZ) - 'H(Y,tZ) 

=(Ezu)(fY)+ 'H(ty,Z). 

Proof: Putting BX for A, and BY for ~ in (3.5.2), we get 

DsxFBY + DByFBX = FDsxBY + FDByBX. 



Using (3.5.6)a in the above equation, we get 

DBXBfY+(Xu(Y»N+u(Y)DBXN+DByBfX+(Yu(X»N+u(X)DByN 

= FDBXBY +FDByBX 

1.38 

Again using (3.5.6)a,b and (3.5.10)a,b in the above equation, we get 

BExfY+ 'H(X,fY)N+ Xu(Y)N-u(Y)BHX +BEyfX + 'H(Y,fX)N+ Yu(X)N 

-u(X)BHY = FBEx Y + F'H(X,Y)N+FBEyX + F'H(Y,X)N, 

=BfEx Y +u(Ex Y)N-BU' H(X, Y)+BfEyX +u(EyX)N 

-BU'H(Y,X) 

Now equating tangential and normal parts, we get (4.5.6)a and (4.5.6)b. 

Similarly putting BX for A and N for J.t in (3.5.2), we get 

DBXFN + (DNF)BX = FDBXN 

Using (3.5.6)a,b and (3.5.10)a,b in the above equation, we get 

(DNF)BX = BExU + 'H(X,U)N - BfHX - u(HX)N 

Now equating tangential parts, we get (4.5.7). 

Now from (4.5.6)a, we get 

Ex' fey ,Z)-u(Y)' H(X,Z)+u(Z)' H(X, Y) 

=(Ey' f)(Z,X)-u(Z)' H(X, Y)+u(X) 'H(Y ,Z). 

Putting U for X in the above equation, we get (4.5.8). 

This completes the proof of the theorem. 
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Theorem 4.5.7: The hypersurface of a nearly hyperbolic Kaehlerian 

manifold is an almost contact hyperbolic metric manifold satisfying 

f(Exf)fY + f(Eyf)fX = O. 

Proof: Pre multiplying equation (4.5.6)a by f, we get the result. 

Theorem 4.5.8: The necessary and sufficient condition that for the 

hypersurface of a nearly hyperbolic Kaehlerian manifold, U be Killing, is 

(4.5.9) a) . 'H(X,N) + 'H(fX,Y) = 0 ¢:> b) Hf= fH = 0 ¢:> 

c) 'H(fX,fY) = -'H(X,Y) + u(X)u(Y)u(HU) ¢:> 

d) fBf - H = -u(HU)u®U. 

Proof: Let on the hypersurface of a nearly hyperbolic Kaehlerian 

manifold U is Killing, that is, 

(Exu)(Y) + (Eyu)(X) = O. 

From (4.5.6)b, we have 

'H(X,fY) + 'H(fX,Y) = 0 

h(HfX,Y) - h(fHX,Y) = 0 

Hf=fH 

'H(fX,N) + 'H(f2X,Y) = 0 

'H(fX,fY)U + h(HX + Hu(X)U,Y) = 0 

'H(fX,fY) + 'H(X,Y) - u(X)u(Y)u(HU) = 0 

'H(fX,fY) = -'H(X,Y) + u(X)u(Y)u(HU) 



Now from the above equation, we get 

<=> -h(fHfX,Y) = -h(HX,Y) + h(u(HU)X,(u®U)Y) 

fHf - H = -u(HU)u®U. 

Conversely, from (4.5.9)a and (4.5.6)b, we get 

(Exu)(Y) + (Eyu)(X) = O. 

This shows that U is Killing. 

Hence we get the required result. 

l~O 

Theorem 4.5.9: The totally umbilical hypersurface of a nearly hyperbolic 

Sasakian manifold is a nearly hyperbolic Sasakian manifold. Also for this 

hypersurface, we have 

(4.5.10) (DNF)BX = B(Ex U - fX) 

Proof: Hypersurface is totally umbilical means H = 1. 

Now from equation (4.5.6)a and the above facts, we get 

(4.5.11) (Exf)Y + (Eyf)X = u(X)Y + u(Y)X -r}h(X,Y)U 

This shows that the totally umbilical hypersurface of a nearly hyperbolic 

Kaehlerian manifold is a nearly hyperbolic Sasakian manifold. 

Using H = I in (4.5.7), we get (4.5.10). 

Theorem 4.5.10: The hypersurface of an almost hyperbolic Kaehlerian 

manifold is a quasi hyperbolic Sasakian manifold. The following equation 

also holds good for this hypersurface 
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( 4.5.12) (DN 'F)(BX,BY)ob = -du(X,Y) - 'H(X,fY) + 'H(fX,Y). 

Proof: We know that 

(DBXF)BY = DBXFBY - FDBXBY 

Using (3.5.6)a,b and (3.5.10)a,b in the above equation, we obtain 

(DBXF)BY = DBxBfY+(Xu(Y))N+u(Y)DBxN-FBEx Y -F'H(X,Y)N 

(DBxF)BY=BExfY + 'H(X,fY)N+(Xu(Y))N-u(Y)BHX-BfEx Y -u(Ex Y)N 

+B'H(X,Y)U 

( 4.5.13) (DBXF)B Y =B( (Ext) Y -u(Y)HX +' H(X, Y) U) 

+( (Ex u )(Y)+ 'H(X,fY))N. 

Consequently 

g(DBXF)BY,BZ)ob = (Ex't)(Y,Z) - u(Y)'H(X,Z) + u(Z)'H(X,Y) 

(4.5.14) (DB X 'F)(BY,BZ)ob=(Ex 't)(Y,Z)-u(Y)'H(X,Z)+ u(Z)'H(X, Y). 

Similarly, we have 

(DBy'F)(BZ,BX)ob = (Ey't)(Z,X) - u(Z)'H(Y,X) + u(X),H(Y,Z), 

(DBZ'F)(BX,BY)ob = (Ez't)(X,Y) - u(X)'H(Z,Y) + u(Y)'H(Z,X). 

Adding above three equations and using (3.5.3), we get 

(4.5.15) (Ex't)(Y,Z) + (Ey'f)(Z,X) + (Ez'f)(X,Y) =0 <=> d'f=O. 

This shows that the hypersurface of an almost hyperbolic Kaehlerian 

manifold is a quasi hyperbolic Sasakian manifold. 

Now from (4.5.13), we have 



(4.5.16) (DBX 'F)(BY,N)ob = (Exu)(Y) + 'H(X,fY). 

Putting N, BX, BY for A,Jl,V in (3.5.3), we get 

(DN 'f)(BX,BY) + (DBX 'F)(BY,N) + (DBy'F)(N,BX) = 0 

Using (4.5.16) in the above equation, we get 

(DN 'F)(BX,BY)ob + (Exu)(Y) + 'H(X,fY) - (Eyu)(X)-' H(Y,lX)= 0 

(DN 'F)(BX,BY)ob = -(Exu)(Y) + (Eyu)(X) - '1-I(X,tY) + 'H(fX,Y) 

(ON 'F)(BX,BY)ob = -du(X,Y)- 'H(X,tY) + 'I-I(fX,Y). 

This completes the proof of the theorem. 

Theorem 4.5.11: The necessary and sufficient condition that the 

hypersurface of an almost hyperbolic Kaehlerian manifold be an almost 

hyperbolic Cosymplectic manifold is that 

(4.5.17) (DN 'F)(BX,BY)ob = 'H(fX,Y) - 'H(X.fY) 

Proof: We know that an almost contact hyperbolic metric manifold 

satisfying 

d' f = 0 <=> (Ex' f)(Y,Z) + (Ey' f)(Z,X) + (Ez' f)(X, Y) = 0 

(4.5.18) du = 0 <=> (Exu)(Y) = (Eyu)(X) 

is called an almost hyperbolic Cosymplectic manifold. 

Using (4.5.18) in (4.5.12), we get (4.5.17). 

Conversely using (4.5.17) in (4.5.12), we get du = O. 
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This shows that hypersurface of an almost hyperbolic Kaehlerian 

manifold be an almost hyperbolic Cosymplectic manifold. 

Corollary 4.5.2: Let 

(4.5.19) a) (DN 'F)(BX,BY) = 0 and 

b) Hf+ fH = 0 <=? 'H(fX,Y) = 'H(X,fY). 

Then the hypersurface of an almost hyperbolic Kaehlerian manifold is an 

almost hyperbolic Cosymplectic manifold. 

Proof: Using (4.5.19) a,b in (4.5.12), we get 

du(X,Y) = 0 

This shows that the hypersurface of an almost hyperbolic Kaehlerian 

manifold is an almost hyperbolic Cosymplectic manifold. 

Theorem 4.5.12: The hypersurface of a hyperbolic Hermitian manifold is 

an almost contact hyperbolic metric manifold for which the following 

relations hold 

(4.5.20) 

(4.5.21 ) 

a) (EfXf)Y -(El xf)fY +u(y)El x U-u(Y)( fH:f+:fHf)X 

-CH(f2X,fY)- 'H(fX,:fY»U=O 

b) (EfXu)(Y)-(Ef\u)(fY)+ 'H(fX,fY)-'H(f2X,:fY) = 0 

a) (EfX f)fY -(El x f) Y -U(Y)EfX U+u(Y)( fHf+:fH:f)X 

+CH(fX,ty)-'H(:fX,fy»u=o 



b) (Etxu)( fY)-(E/ xU )(Y)-'H( tx,fY)+' H( fX,tY) = 0 

Proof: Premultiplying X by fin equation (3.5.30), we get 

B(P(fX,Y) + Q(fX,Y)) + (p(fX,Y) + q(fX,Y))N = O. 

Now equating tangential and normal parts, we get 

(4.5.22) a) P(fX,Y) + Q(fX,Y) = 0, 

b) p(fX,Y) + q(fX,Y) = O. 
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From (3.5.31 )a,b and (4.5.22)a, we get (4.5.20)a and from (3.5.32)a,b and 

(4.5.22)b, we get (4.5.20)b. 

Now putting U for X in (3.5.30), we get 

(4.5.23) (DNF)FBY = B(P(U,Y) + Q(U.Y))+(p(U,Y) + q(U,Y))N. 

Using (4.5.23) in (3.5.30) and then equating tangential and normal parts, 

we obtain 

-u(X){P(U,Y) + Q(U,Y)} = P(X,Y) + Q(X,Y) ~ 

(4.5.24) a) P(tx,Y) + Q(tx,Y) = 0, and 

-u(X){p(U,Y) + q(U,Y)} = p(X,Y) + q(X,Y) ~ 

b) p(tx,Y) + q(tx,Y) = O. 

From (3.5.31) a,b and (4.5.24)a, we get (4.5.21)a and from (3.5.32)a,b 

and (4.5.24)b, we get (4.5.21)b. 

This completes the proof of the theorem. 
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Theorem 4.5.13: Let the hypersurface of a hyperbolic Hermitian 

manifold be an almost contact hyperbolic metric normal manifold. Then 

we have 

(4.5.25) a) fHf + fHf = 0 ¢:> a') 'H(fX,fY) = 'H(fX,fy) Q 

b) fHf + fHf= 0 Q b') 'H(fX,fY)='H(fX,fy). 

Proof: We know that almost contact hyperbolic metric manifold is said to 

be normal is that 

(Et)d)fY - (Exf)Y - u(Y)EfXU = 0 

Using the above equation in (3.5.31 )a, we get P(X, Y)=O. Which gives 

also 

(4.5.26) a) P(U,Y) = 0 Q a') Euf= 0 => EuU = O. 

From (4.5.20)a and (4.5.21)a, we get 

u(Y)(fHf + fHf)X + {,H(fX,fY) - 'H(fX,fy)}U = 0, and 

u(Y)(fHf+ f2Hf2)X + {'H(fX,fY) - 'H(fX,fY)}U = 0 

if and only if 

fHf+ fHf = 0 Q 'H(fX,fY) = 'H(fx,f2y) 

fHf + fHf= 0 ¢:> 'H(fx,tY) = 'H(fX,fy). 

This proves our assertion. 

Theorem 4.5.14:The necessary and sufficient condition that for the 

hypersurface of a hyperbolic Hermitian manifold (4.5.25) holds is that 
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(4.5.27) a) (EtXu)(fY) = (E/xu)(Y), 

b) (EtXu)(Y) = (E/xu)(fY). 

Proof: Using (4.5.25) in (4.5.20)b and (4.5.21)b, we get (4.5.27)a,b. 

Conversely, using (4.5.27)a in (4.5.21)b, we get (4.5.25)b and using 

(4.5.27)b in (4.5.20) b, we get (4.5.25)a. 

This proves our assertion. 

Theorem 4.5.15: A K-contact hyperbolic Remannian manifold on which 

(4.5.26) holds, is a hyperbolic Sasakian manifold. 

Proof: Let the hypersurface be K-contact hyperbolic Riemannian 

manifold. Then (4.5.20)b and (4.5.21)b gives (4.5.25). If in addition 

(4.5.26) holds, then K-contact hyperbolic Riemannian manifold is called 

K-contact hyperbolic Riemannian normal manifold. But a K-contact 

hyperbolic Riemannian normal manifold is a hyperbolic Sasakian 

manifold. 

Hence we get the desired result. 

Theorem 4.5.16: The hypersurface of a quasi hyperbolic Kaehlerian 

manifold is given by 

(4.5.28) a) (EtXf)Y+(Elxf)fY-u(Y)Elxu+u(Y)(fHt-tHf)X 

+('H(tX,fY)+ 'H(fX,tY))U=O 

b) (EtXu)(Y) + (Elxu)(fY) + 'H(fX,fY) + 'H(tX,tY) = 0 
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(4.5.29) a) (EIXf)fY+(Elxt)Y-u(Y)Ef)(U+u(Y)(fHf-f2Hf)X 

+CH(fX,fY) + 'H(f2X,fy»u=0 

b) (Ef)(u)(fY) + (E(xu)(Y) + 'H(fX,fY) + 'H(fX,fy) = 0 

Proof: Premultiplying X by f in equation (4.5.25), we get 

B(R(fX,Y) + S(fX,Y» + (r(fX,Y) + s(fX,Y»N = O. 

Now equating tangential and normal parts, we get 

(4.5.30) a) R(fX,Y) + S(fX,Y) = 0, 

b) r(fX,Y) + s(fX,Y) = O. 

From (3.5.34)a,b and (4.5.30)a, we get (4.5.28)a and from (3.5.35)a,b and 

(4.5.30)b, we get (4.5.28)b. 

Now putting U for X in (3.5.33), we get 

(4.5.31) (DNF)FBY = B(R(U,Y) + S(U.Y»+(r(U,Y) + s(U,Y»N 

Using (4.5.31) in (3.5.33) and collecting tangentia!.and normal parts, we 

obtain 

-u(X){R(U,Y) + S(U,Y)} = R(X,Y) + S(X,Y) <=> 

(4.5.32) a) R(fX,Y) + S(fX,Y) = 0, and 

-u(X) { r(U, Y) + s(U, Y)} = reX, Y) + sex, Y) <=> 

b) r(fX,Y) + s(fX,Y) = O. 
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From (3.5.34) a,b and (4.5.32)a, we get (4.5.29)a and from (3.5.35)a,b 

and (4.5.32)b, we get (4.5.29)b. 

This completes the proof of the theorem. 

Theorem 4.5.17: Let the hypersurface of a quasi hyperbolic Kaehlerian 

manifold be an almost contact hyperbolic metric pseudo normal manifold. 

Then we have 

(4.5.33) a) ffif - fHf= 0 q a') 'H(fX,fY)+'H(fX,fV)=o 

Proof: We know that equation of an almost contact hyperbolic metric 

pseudo normal manifold is given by 

(EfXf)fY + (Exf)Y - u(Y)EfXU = 0 

Using this in (3.5.34)a, we get R(X,Y) = O. Which gives also 

(4.5.34) a) R(U.Y) = 0 q a') Euf - .. .0 => EuU = O. 

Now from (4.5.28)a and (4.5.29)a, we have 

u(Y)(ffif - fHf)X + {,H(fX,fY) + 'H(fX,fy)}U = 0, and 

u(Y)(ffif - f2Hf)X + {'H(fX,fY) + 'H(fX,fy)}U = 0 

if and only if 

fHf - fHf= 0 q 'H(fX,fY) + 'H(fX,fy) = 0, 

ffif - fHf = 0 q 'H(fX,fY) + 'H(fX,fy) = o. 



149 

This completes the proof of the theorem. 

Theorem 4.5.18:The necessary and sufficient conditions that for the 

hypersurface of a quasi hyperbolic Kaehlerian manifold equation (4.4.33) 

holds is that 

( 4.5.35) a) (Etxu)(fY) + (El xu)(Y) = 0, 

b) (Etxu)(Y) + (E/xu)(fY) = 0. 

Proof: Using (4.5.33) in (4.5.28)b and (4.5.29)b, we get (4.5.35)a,b. 

Conversely using (4.5.35)a in (4.5.29)b, we get (4.5.33)a and (4.5.35)b in 

(4.5.28)b, we get (4.5,33)b. 

This proves our assertion. 
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Chapter 5 SUMMARY AND CONCLUSION 

Yano and Kon studied CR -submanifold of an almost contact metric 

manifold. Semi-invariant submanifold of an almost contact metric 

manifold defined and studied by Bejancu and Papaghuic. Dube studied 

almost hyperbolic Hermitian manifolds and Pal and Mishra studied 

hypersurface of almost hyperbolic Hermit manifolds. 

This work consists of 5 sections. Section 1 is divided into two 

subsections leA) and I(B). In section leA) we studied CR-submanifolds 

of a trans para Sasakian manifold and find some results. In theorem 

4.1.3(A) we have shown D-umbilic U-horizontal CR-submanifold of a 

trans para Sasakian manifold to be D-totally geodesic. We have also 

studied integrability conditions of distributions D and Dl.. 

Section 1 (B) is devoted to the study of CR-submanifolds of a 

nearly and closely para Cosymplectic manifolds. We gave integrability, 

autoparallelness, nearly autoparallelness of the distribution DiEB{U} on 

submanifold and integrability of distribution DO, DOEB{U}. Totally 

umbilical, totally geodesic, totally para contact umbilical and totally para 

contact geodesic submanifolds are also studied. In Corollary 4.1.1(B) we 

have shown a totally umbilical CR-submanifold of a nearly para 
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Cosymplectic manifold DiEB{U} is autoparallel. In theorem 4.1.10(B) we 

have shown a totally para contact umbilical CR-submanifold of a closely 

para Cosymplectic manifold is (Di ,Do)-mixed totally geodesic. 

Section 2 is divided into two subsections 2(A) and 2(B). In section 

2(A) we have studied semi-invariant submanifold of a nearly r-Sasakian 

manifold and obtained some important results. In theorem 4.2.3(A) we 

have shown that any proper totally r-contact umbilical semi-invariant 

submanifold of a nearly r-Sasakian manifold is totally r-contact geodesic. 

In section 2(B) we have studied semi-invariant submanifolds of r-

Kenmotsu manifolds. In theorem 4.2.2(B) we have shown that totally [-

contact umbilical semi-invariant submanifold of r-Kenmotsu manifold 

with parallel horizontal distribution is totally r-contact geodesic and in 

theorem 4.2.3(B) we have shown that D-umbilical Up-horizontal (resp. 

D..L-umbilical, Up-vertical) semi-invariant submanifold of a r-Kenmotsu 

manifold is D-totally geodesic (resp. D..L-totally geodesic). 

Section 3 is divided into two subsections 3(A) and 3(B). In section 

3(A) and 3(B) we have studied CR-submanifolds of a trans hyperbolic 

Sasakian manifold. In theorem 4.3.3(A) we have shown that a D-

umbilical U-horizontal CR-submanifold of a trans hyperbolic Sasakian 

manifold is D-totally geodesic. In theorem 4.3.2(B) we have shown that 
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totally contact hyperbolic umbilical CR-submanifold of a trans hyperbolic 

Sasakian manifold with parallel horizontal distribution is totally contact 

hyperbolic geodesic and in theorem 4.3.3(B) we have shown that D

Umbilical, U-horizontal (resp. DJ.-Umbilical, U-vertical) CR-submanifold 

of a trans hyperbolic Sasakian manifold is D-totally geodesic (resp. DJ._ 

totally geodesic). 

Section 4 is divided into two subsections 4(A) and 4(B). Section 

4(A) and 4(B) deals with semi-invariant submanifolds of para Kenmotsu 

manifolds. In theorem 4.4.2(A) we have shown that totally para contact 

umbilical semi-invariant submanifold of a para Kenmotsu manifold with 

parallel horizontal distributions is totally para contact geodesic and in 

theorem 4.4.3(A) we have shown that D-Umbilical, U-horizontal (resp. 

DJ.-Umbilical, U-vertical) semi-invariant submanifold of a para 

Kenmotsu manifold is D-totally geodesic (resp. _pJ.-totally geodesic). In 

theorem 4.4.2(B) we have shown that for C ¢ -1, a (D, DJ.)-geodesic 

submanifold of a para Kenmotsu manifold is either an anti-invariant 

submanifold or an invariant submanifold of para Kenmotsu manifold and 

for C = -1, it is proper semi-invariant submanifold. 

Section 5 is devoted to . the study of hypersurfaces of almost 

hyperbolic Hermitian manifolds. We defined hyperbolic Cosymplectic 
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manifold, nearly Cosymplectic manifold, quasi hyperbolic Sasakian 

manifold, almost contact hyperbolic normal metric manifold and almost 

contact hyperbolic pseudo normal metric manifold. In theorem 4.5.4 we 

have shown that totally umbilical hypersurface of a hyperbolic 

Kaehlerian manifold is a hyperbolic Sasakian manifold. In corollary 4.5.1 

we have shown that if the hypersurface of a hyperbolic Kaehlerian 

manifold be K-contact hyperbolic Riemannian manifold then it is a 

hyperbolic Sasakian manifold. 
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