"QTL MAPPING FOR BACTERIAL LEAF BLIGHT, SHEATH BLIGHT, BLAST AND BROWN SPOT TOLERANCE USING RIL POPULATION OF RICE (*Oryza sativa* L.)."

Ph.D. THESIS

By

LINCOLN MANDAL

DEPARTMENT OF PLANT MOLECULAR BIOLOGY AND BIOTECHNOLOGY COLLEGE OF AGRICULTURE, INDIRA GANDHI KRISHI VISHWAVIDYALAYA, RAIPUR (C.G.)

2013

"QTL MAPPING FOR BACTERIAL LEAF BLIGHT, SHEATH BLIGHT, BLAST AND BROWN SPOT TOLERANCE USING RIL POPULATION OF RICE (*Oryza sativa* L.)."

Thesis

Submitted to the

Indira Gandhi Krishi Vishwavidyalaya, Raipur

By

LINCOLN MANDAL

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

Agriculture

(Plant Molecular Biology and Biotechnology)

Roll No. 13983

ID No. 130110002

OCTOBER, 2013

CERTIFICATE -I

This is to certify that the thesis entitled "QTL mapping for bacterial leaf blight, sheath blight, blast and brown spot tolerance using RIL population of Rice (*Oryza sativa* L.)." submitted in the partial fulfillment of the requirements for the degree of "Doctor of Philosophy in Plant Molecular Biology and Biotechnology" of the Indira Gandhi Krishi Vishwavidyalaya, Raipur is a record of the bonafide research work carried out by Lincoln Mandal under my guidance and supervision. The subject of the thesis has been approved by Student's Advisory Committee and the Director of Instructions.

No part of the thesis has been submitted for any other degree or diploma (certificate awarded etc.) or has been published / published part has been fully acknowledged. All the assistance and help received during the course of the investigations have been duly acknowledged by him.

Date: 01.10.2013

CHAIRMAN ADVISORY COMMITTEE

THESIS APPROVED BY THE STUDENT'S ADVISORY COMMITTEE

 Chairman: Dr. A. S. Kotasthane
 Meddall

 Member: Dr. Girish Chandel
 Muule

 Member: Dr. M. L. Lakhera
 Member

 Member: Dr. K.P. Verma
 Member

 Member: Dr. S. B. Verulkar
 Member

CERTIFICATE -II

This is to certify that the thesis entitled "QTL mapping for bacterial leaf blight, sheath blight, blast and brown spot tolerance using RIL population of Rice (*Oryza sativa* L.)." submitted by Lincoln Mandal to the Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.) in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Plant Molecular Biology and Biotechnology has been approved by the External Examiner and Student's Advisory Committee after oral examination.

Date: 13. 01.2014

Major Advisor

Head of the Department/Section

Dean/ Dean Faculty

Director of Instructions

thach Thast

.....

.....

External Examiner

.....

Acknowledgement

It is a pleasure to thank those who helped me to complete this work. First and foremost, I would like to thank my major advisor, Dr. A. S. Kotasthane, Professor and Head, Department of Plant Pathology, IGKV, Raipur his thoughtful guidance, supervision and consistent support to my studies and research.

I would like to express my cordial appreciation to Dr. S. B. Verulkar, Professor and Head, Department of Plant Molecular Biology and Biotechnology, IGKV, Raipur for his valuable suggestions and providing necessary facilities in completing the research work.

I am extremely thankful to Dr. D. K. Sharma, Dean, College of Agriculture, Bhatapara, IGKV for his enlightening direction and helpful advice made me positive.

I express my deep sense gratitude and sincere thanks to my advisory committee member Dr. Girish Chandel, Professor, Department of Plant Molecular Biology and Biotechnology; Dr. M. L. Lakhera, Professor, Department of Agriculture Statistics and Social Science; Dr. K, P. Verma, Principal scientist, Department of Plant Pathology, College of Agriculture, Raipur for their valuable suggestions critical comments and help rendered as and when needed.

I wish to record my sincere thanks to Dr. S. K. Patil, Hon'ble Vice Chancellor, Dr. O. P. Kashyap, Dean, Dr. S. S. Shaw, Director Research Services and Dr. S. Patel, Director of Instructions, IGKV, Raipur for their help both administrative and technical which facilitated my research work. I extend my immensely grateful thanks to Dr. (Smt.) Zenu Jha, Assistant Professor and other staff of Department of Plant Molecular Biology and Biotechnology for their critical comments, supportive comments and motivational talks during the course of this work.

A number of friends, colleagues, juniors specially Sunil Verma for his support; seniors and well wishers were involved in this work directly or indirectly. I hereby extend my sincere gratitude and appreciation to all of them who made this thesis possible.

My deepest sense of gratitude towards my lab buddies specially Toshy Agrawal madam for their supportive hearts and made it a convivial place to work. I extend my sincere thanks to all helpers in Department specially Ravi kant and Sukeshi for helping me throughout the work.

Words could not extend my deep sense of gratitude to all my family members. I would like to thank my father, mother, brother and sister for their constant inspiration, motivation and prayers. Their sustained encouragement and effort made me to reach here.

Lastly deepest sense to my inspiration Guru "Swami Vivekanda" and his words "All power is within you; you can do anything and everything; Believe in that, do not believe that you are weak, Stand up and express the divinity within you".

LINCOLN MANDAL

Department of Plant Molecular Biology & Biotechnology, College of Agriculture, IGKV, Raipur (C.G.) Date: 01 - 10 - 2013

PAGE CHAPTER **PARTICULARS** NO. I **INTRODUCTION** 1-5 Π 6-39 **REVIEW OF LITERATURE** 2.1 7 Impact of diseases on rice production 2.2 Plant disease resistance 7-8 221 **Ouantitative resistance** 8-9 2.2.2 Marker-assisted selection for quantitative trait loci 10 23 10-14 Bacterial blight of Rice 2.3.1 Genetic variation in pathogen of Bacterial blight 12 2.3.2 Control of disease for Bacterial blight 12 - 13233 Genetic diversity of host plant resistance for Bacterial blight 13 2.3.4 The major genes cloned and sequenced for Bacterial blight 14-15 2.3.5 Major recessive genes-mapped and cloned for Bacterial blight 15 2.3.6 The QTLs for Bacterial blight resistance 16 2.4 Sheath blight of Rice 17-18 2.4.1Epidemiological features of Sheath blight 18-19 2.4.2 Methods used for assessing resistance to Sheath blight of rice 19-20 2.4.3 The sources of resistance to Sheath blight of rice 21 2.4.4 The QTLs for Sheath blight resistance in rice 22-23 The relationship between ShB-QTL and QTLs for other plant traits 2.4.5 24 24-25 2.4.6 The QTL validation and use in marker-assisted selection 2.5 Leaf blast of Rice 25-26 2.5.1 The overview of blast disease resistance in rice 26 2.5.2 29 Isolated and cloned complete resistance genes of blast 2.5.3 The quantitative resistance to *M. grisea* the rice blast fungus 29-30 26 Brown spot of Rice 31 2.6.1 Causal organism of Brown spot disease 31-32 2.6.2 Disease biology and epidemiology of Brown spot disease 32 2.6.3 Management of Brown spot disease 32-33 2.6.4 Sources of Host Plant Resistance (HPR) for Brown spot disease 33 2.6.5 The genes identified for Brown spot disease 33-34 2.6.6 The partial resistance of Brown spot tolerance 34 2.7 The mapping and basic of QTLs 34-35

CONTENTS

CHAPTER	PARTICULARS	PAGE NO.
2.7.1	Genetic markers	35-36
2.7.2	Maps and map construction	36-37
2.7.3	The QTL mapping methods	37
2.7.3.1	Single Marker Analysis (SMA)	37-38
2.7.3.2	Simple Interval Mapping (IM)	38
2.7.3.3	Composite Interval Mapping (CIM)	38
2.7.3.4	Multiple Interval Mapping (MIM)	39
III	MATERIALS AND METHODS	40-58
3.1	Materials	40
3.1.1	Plant materials	40
3.1.2	Isolates	40-41
3.2	Methods	41
3.2.1	The phenotypic observations of mapping population and parents for bacterial leaf blight trait	41
3.2.1.1	Pathogen inoculation and disease scoring of Bacterial leaf blight	41-42
3.2.2	The phenotypic observations of mapping population and parents for trait Sheath blight	42
3.2.2.1	Pathogen inoculation and disease scoring of Sheath blight	42-43
3.2.3	The phenotypic observations of mapping population and parents for leaf Blast disease	43
3.2.4	The phenotypic observations of mapping population and parents for Brown spot	44
3.3	Statistical analysis of phenotypic data	45
3.4	Genotyping of RIL population and construction of linkage map	46
3.4.1	Isolation of genomic DNA	46-47
3.4.2	Quantification and estimation of purity of DNA	47
3.4.3	Dilution of DNA samples	47
3.4.4	PCR amplification using SSR primers	47
3.4.4.1	PCR reaction	47-48
3.5	Polyacrylamide Gel Electrophoresis	50
3.5.1	Assembling and pouring of gel	50
3.5.2	Electrophoresis	51
3.5.3	Visualization of bands	51
3.6	Scoring of banding pattern	52
3.7	QTL mapping	52

CHAPTER	PARTICULARS	PAGE NO.
3.7.1	Single marker analysis	52
3.7.2	Composite interval mapping	53
3.8	QTL cartographer 2.5	53-54
3.9	QTL IciMapping 3.2	54
3.10	In silico analysis of the QTLs region	54
3.11	Reagents and Buffers	55-58
IV	RESULTS	59-87
4.1	The distribution of resistance for Bacterial leaf blight in the RIL population	59
4.2	Genotyping of RIL population and construction of linkage map	60-61
4.3	Single Marker Analysis for BLB resistance	61
4.4	QTLs mapping through Composite Interval Mapping for BLB	62-63
4.5	The loci associated with quantitative resistance for Bacterial leaf blight	64-66
4.6	The loci associated with quantitative resistance for Bacterial blight resistance on $(0-9)$ scale	66-68
4.7	The distribution of resistance for Sheath blight in the RIL population	69-70
4.8	The Single Marker Analysis for Sheath blight resistance	70-71
4.9	The QTL mapping using Composite Interval Mapping for Sheath blight	71
4.10	The loci associated with quantitative resistance for Sheath blight resistance of rice	71-75
4.11	The QTLs analysis for other traits tillers per plant and plant height	75-77
4.12	The distribution of resistance in the RILs populations for the trait leaf blast	78
4.13	Single Marker Analysis for leaf blast	79-80
4.14	The QTL mapping through Composite Interval Mapping for leaf blast	80
4.15	The explanation of loci associated with quantitative resistance for leaf blast	80-81
4.16	The distribution of tolerance for the trait Brown spot in RIL population	81
4.17	The Single Marker Analysis for Brown spot tolerance	82
4.18	The QTL mapping through Composite Interval Mapping for Brown spot tolerance	82-83
4.19	The description of loci associated with quantitative resistance for Brown spot disease tolerance	83-84

CHAPTER	PARTICULARS					
4.20	The dise	The diseases resistance in integrated form for all four diseases				
4.21	The regi	on of chromosomes with multiple diseases resistance	85-86			
4.22	Develop of QTLs leaf blas	ment of High Resolution Molecular Marker Map <i>in silico</i> associated with tolerance to different rice diseases (BLB, t, Sheath blight, Brown spot)	86-87			
V	DISCUS	SSION	88-103			
5.1	Bacteria	l leaf blight resistance	90-92			
5.2	Sheath b	light resistance	93-97			
5.3	Leaf blas	st resistance	97-100			
5.4	Brown s	Brown spot tolerance				
5.5	Chromosomal regions with multiple diseases resistance					
VI	SUMMARY, CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH WORK					
VII	ABSTR	АСТ	110-111			
VIII	BIBLOGRAPHY					
IX	APPEN	DICES	156-175			
	I.	Primers used for developing genotypic data	156-158			
	II.	SSR markers used for parental polymorphism (Danteshwari and Dagad deshi)	159-166			
	III. Mean phenotypic value for diseases resistance in RIL population					

LIST OF TABLES

Table No.	le Particulars	
2.1	Genes conferring resistance to different races of Bacterial blight pathogen	14
2.2	Bacterial blight resistance genes tagged and cloned	15
2.3	The methodologies for Sheath blight (ShB) screening and phenotyping	20
2.4	The important ShB resistance sources reported in the literature	21
2.5	Details of rice ShB-QTLs identified in different mapping population	22-23
2.6	The genes responsible for the rice blast resistance are listed chromosome wise	27-28
2.7	The information on cloned resistance genes of blast	29
2.8	The literature sources used in the meta-analysis of QTL for blast resistance	30
3.1	Characteristic features of parents	40
3.2	Disease scoring and the reactions for Bacterial leaf blight	42
3.3	Disease scoring and the reactions for leaf Blast of rice	44
3.4	Disease scoring and the reactions for Brown spot of rice	45
3.5	PCR mix for one reaction (Volume 20µl)	48
3.6	Temperature profile used for PCR amplification using SSR primers	48
3.7	List of SSR polymorphic markers used for RIL population genotyping	49
3.8	Scoring SSR banding pattern of population	52
4.1	SSR markers used for parental polymorphism (Danteshwari and Dagad deshi)	60
4.2	The markers that were highly associated with trait BLB resistance	62
4.3	QTLs underlying BLB resistance mapped by QTL cartographer 2.5	63
4.4	QTLs underlying BLB resistance mapped by QTL IciMapping 3.2	63
4.5	QTLs underlying Bacterial blight resistance on qualitative (0-9) scale by QTL cartographer 2.5	63
4.6	QTLs underlying Bacterial blight resistance on qualitative (0-9) scale by QTL IciMapping 3.2	63
4.7	QTLs underlying Sheath blight resistance mapped by QTL Cartographer 2.5	72

Table No.	Particulars	Page No.
4.8	QTLs underlying Sheath blight resistance mapped by QTL IciMapping 3.2	72
4.9	QTLs underlying traits tillers per plant and plant height by QTL cartographer 2.5	76
4.10	QTLs underlying traits tillers per plant and plant height by QTL IciMapping 3.2	76
4.11	QTLs underlying blast resistance mapped by QTL cartographer 2.5	80
4.12	Markers that were highly associated with traits for Brown spot tolerance	82
4.13	QTLs underlying Brown spot tolerance mapped by QTL Cartographer 2.5	83
4.14	QTLs underlying Brown spot tolerance mapped by QTL IciMapping 3.2	83
4.15	Categories of lines for different diseases resistance	85

LIST OF FIGURES

Figure	Particulars	Between Pages
2.1	Genomic locations of $Xa4$, $Xa25(t)$, QRL and epistatic loci associated with complete and partial resistance	16-17
2.2	Chromosomal location of quantitative trait loci (QTL) reported for Sheath blight resistance (ShB) and associated traits in rice	23-24
2.3	Physical map of resistance genes and meta-quantitative trait loci (QTL) of resistance to rice blast	30-31
4.1	The frequency distributions of the traits such as mean lesion length and BLB reaction on qualitative (0-9) scale	59-60
4.2	The occurrence of disease reaction on RIL population by artificial inoculation of <i>Xoo</i> isolate	59-60
4.3	The informative SSR markers identified on the basis of parental polymorphism	60
4.4	The linkage map constructed from 162 polymorphic markers	60-61
4.5	The QTLs mapped for mean lesion length trait identified on chromosome 1 for the Bacterial blight resistance using CIM	64
4.6	The common QTL mapped for mean lesion length trait identified on chromosome 12 for the Bacterial blight resistance using CIM	65
4.7	The QTL mapped on chromosome 4 for the Bacterial blight resistance trait using CIM	67
4.8	The QTLs mapped for Bacterial blight resistance trait identified on rice chromosome 12 using CIM	68
4.9	The QTL mapped for Bacterial blight resistance trait identified on rice chromosome 6 using CIM	68
4.10	The frequency distribution of Sheath blight response of 122 F_{14} RIL lines for total and individual lesion	69-70
4.11	The occurrence of Sheath blight disease reaction on RIL population by artificial inoculation	69-70
4.12	The QTL <i>qSBR4-1</i> mapped for the Sheath blight trait identified on rice chromosome 4 using CIM in experiment	73
4.13	The QTLs, <i>qSBR1-1</i> and <i>qSBR1-2</i> mapped for the Sheath blight trait identified on rice chromosome 1 using CIM in experiment	74
4.14	The QTL mapped for the Sheath blight trait identified on rice chromosome 2 and 12 using CIM in experiment	75
4.15	The QTL mapped for the agronomic traits plant height and tiller per plant identified on rice chromosome 1 using CIM	77

Figure	Particulars	Between Pages
4.16	The frequency distribution of RIL for disease Blast resistance reaction	78
4.17	The natural occurrence of disease on RIL population used for screening	79
4.18	The QTL mapped for the Blast resistance trait identified on rice chromosome 10 using CIM in experiment	81
4.19	The frequency distribution of disease Brown spot resistance across 122 RIL lines in the experiment	81-82
4.20	The natural occurrence of disease Brown spot on RIL population	81-82
4.21	The QTL mapped for the Brown spot resistance trait identified on rice chromosome 12 using CIM in experiment	84
4.22.1	Genetic locations and <i>in silico</i> analysis of QTLs for BLB trait mean lesion length and Sheath blight trait individual lesion length cover % of Sheath length on chromosome 1	87-88
4.22.2	Genetic locations of QTLs for Brown spot tolerance, BLB trait mean lesion length and Sheath blight trait individual lesion length cover % of Sheath length on chromosome 1 and <i>in silico</i> analysis	87-88
4.22.3	Genetic location and <i>in silico</i> analysis of Sheath blight QTL for trait individual lesion area on chromosome 2	87-88
4.22.4	Genetic locations and <i>in silico</i> analysis of sheath blight QTL for individual lesion area on chromosome 3	87-88
4.22.5	Genetic location and <i>in silico</i> analysis of QTLs for BLB trait mean lesion length on chromosome 3	87-88
4.22.6	Genetic location and <i>in silico</i> analysis of QTL for BLB trait mean lesion length on chromosome 3	87-88
4.22.7	Genetic locations of QTLs for sheath blight trait total lesion area and BLB trait mean lesion length, reaction qualitative (0-9) scale on chromosome 4 and <i>in silico</i> analysis	87-88
4.22.8	Genetic locations and <i>in silico</i> analysis of QTLs for BLB trait mean lesion length on chromosome 5	87-88
4.22.9	Genetic location and <i>in silico</i> analysis of QTL for BLB reaction based on qualitative (0-9) score on chromosome 6	87-88
4.22.10	Genetic location and <i>in silico</i> analysis of QTLs for BLB trait mean lesion length and sheath blight trait individual lesion area on rice chromosome 9	87-88
4.22.11	Genetic location of QTL for Blast reaction on rice chromosome 10 and <i>in silico</i> analysis	87-88
4.2212	Genetic location and <i>in silico</i> analysis of QTL for BLB trait mean lesion length on chromosome 10	87-88

Figure	Figure Particulars		
4.22.13	Genetic location of QTL for trait Brown spot tolerance on chromosome 11 and <i>in silico</i> analysis	87-88	
4.22.14	Genetic locations and <i>in silico</i> analysis of QTLs for Brown spot tolerance and BLB trait mean lesion length, reaction qualitative (0-9) score and Sheath blight trait individual lesion area on chromosome 12	87-88	

LIST OF ABBREVIATIONS

Abbreviation	Details
ADW	Autoclave distilled water
APS	Ammonium persulphate
ANOVA	Analysis of Variance
BAC	Bacterial Artificial Chromosome
BLB	Bacterial leaf blight
BB	Bacterial blight
CIM	Composite Interval Mapping
CR	Complete resistance
СТАВ	Cetyl trimethylammonium bromide
EDTA	Ethylene diaminetetraacetic acid
EtOH	Ethyl alcohol
HD	Heading date
IM	Interval Mapping
IRRI	International Rice Research Institute
LOD	Logarithm (base 10) of odds
MAS	Marker-Assisted Selection
MIM	Multiple Interval Mapping
NaCl	Sodium chloride
NaOH	Sodium hydroxide
NILs	Near isogenic lines
PAGE	Polyacrylamide Agarose Gel Electophoresis
PCR	Polymerase Chain Reaction
PDA	Potato Dextrose Agar
PR	Partial resistance
PVP	Poly (vinyl phenol)
QDR	Quantitative disease resistance
QRL	Quantitative resistance loci
QTL	Quantitative trait locus
RAPD	Random Amplified Polymorphic DNA
RBD	Randomized Block Design
RCBD	Randomized Complete Block Design

RFLP	Restriction Fragment Length Polymorphism		
RGA	Resistance gene analog		
RGH	Rice grain hull		
RILs	Recombinant inbred lines		
RLH	Relative lesion height		
SD	Standard deviation		
SDS	Sodium dodecyl sulfate		
ShB	Sheath blight resistance		
SMA	Single marker analysis		
SSR	Simple sequence repeat		
STS	Sequence tagged site		
TBE	Tris/Borate/EDTA		
TEMED	N-N-N-Tetramethylethylenediamine		
Хоо	Xanthomonas oryzae pv. Oryzae		
EST	Expressed sequence tags		
DH	Double haploid		
PVE	Phenotypic variation explained		
РН	Plant height		
RGH	Rice grain hull mixture		
DAT	Days after transplanting		
DAS	Days after sowing		
RLH	Relative lesion height		
DAI	Day after inoculation		
SES	Standard Evaluation System		

Introduction

CHAPTER -I

INTRODUCTION

Rice (Oryza sativa L.) is the staple food of half of the world's human population (Khush, 2005). Rice is one of the oldest domesticated crops constitutes a major source of calories for urban and rural inhabitants as well as model monocot plant for genetic and genomic studies. Besides its economic importance, rice has a small genome (430 Mb) size as compared to sorghum (1000 Mb), maize (3000 Mb), barley (5000 Mb), wheat (16000 Mb) (Arumugnathan and Earle, 1991) and it is three times larger than Arabidopsis (Arabidopsis Genome Initiative (AGI), 2000). An international consortium including - Japan, the United States of America, United Kingdom, China and Korea, called the International Rice Genome Sequencing Project (IRGSP) is sequencing the entire rice genome. Recently, two research groups have sequenced more than 90% of the rice genome and estimated around 30,000 to 60,000 genes using computational gene prediction programs (Goff et al., 2002; Yu et al., 2002). More than 90% of the world's rice is produced and consumed in Asia, where 60% of the people live. In India, rice is grown on about 44.5 Mha and provides food for more than 70% of the population and serves as the principal energy source for most of the people. Rice environments in India are extremely diverse.

Bacterial blight caused by the pathogen *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) is one of the most destructive diseases of rice throughout the world. In some areas of Asia, *Xoo* has the potential to reduce yield by more than 50%. In Japan, BB damage there was reported to range from 20 to 30% and as high as 50% (Ou, 1972). Rice and its bacterial blight pathogen, *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) are considered a model system to study interactions between host plants and their pathogens. The presence of complete resistance and partial resistance (PR) to *Xoo* in rice has been

reported. The former is governed by many *R* genes in a gene-for-gene manner and the latter is controlled by numerous quantitative resistance loci (QRL).

The second most economically important disease of rice in the world (Lee and Rush, 1983) is Sheath blight (ShB), caused by Rhizoctonia solani Kuhn. Under conditions favoring disease, up to 50% of grain yield may be lost (Marchetti and Bollich, 1991). Yield losses of 5-10% have been estimated for tropical lowland rice in Asia (Savary et al., 2000a). Breeding for sheath blight resistance has been difficult, mainly because of the lack of identified resistant donors in cultivated varieties (Bonmann et al., 1992). To date, no rice variety has been found to be immune to R. solani, although cultivars with varying levels of resistance have been reported. Rice Sheath blight resistance is generally believed to be a typical quantitative trait controlled by several genes (Li et al., 1995). The identification of genes that affect complexly inherited trait is often difficult and best approached through developing a genetic linkage map to identify quantitative trait loci (QTLs) (Tanksley and McCouch, 1997). Consequently, a great progress has been made in identifying and mapping major quantitative trait locus (QTL) underlying Sheath blight resistance in rice and several major QTLs for resistance had been detected since the 1990s (Zhou et al., 2000). Cloning and characterization of genes controlling quantitative trait is a major research frontier in terms of understanding important agronomic traits including disease resistance in crops (Ishimaru et al., 2004). Once genes present in the region where QTLs are present can be better characterized and exploited.

Rice blast caused by the fungus *Magnaporthe oryzae*, is the most severe disease of rice in many countries. This disease causes about 10 to 20% yield loss in regular seasons and as high as 100% yield loss in years with blast epidemics. To control the diseases, the use of resistant cultivars is an effective measure; thus, rice breeders have been developing resistant cultivars. The wide scale deployment of the

single gene in the rice growing areas has led to their breakdown due to the appearance of new virulent races. In contrast, partial resistance is more stable to different races of the pathogen and it is thought to be nonspecific; therefore it is promising for longterm blast control.

Brown spot disease caused by the fungus *Bipolaris oryzae*, is one of the most prevalent fungal diseases of rice and significantly reduces the yield and milling quality of grain (Datnoff *et al.*, 1992). Brown spot has been reported in all ricegrowing areas in the world. It is especially common in rainfed (Singh and Singh, 2000) and upland areas (Gupta and O'Toole, 1986). It affects the grain yield, both in wet and dry seasons, with heavy natural infection (Bakonyi *et al.*, 1995). The use of resistant varieties would be the most economical means of controlling brown spot. No major genes with resistance to brown spot have yet been identified. However, varieties with partial resistance and three quantitative trait loci (QTL) for disease resistance have been identified (Sato *et al.*, 2008).

Due to high variability and evaluation in pathogenicity of pathogen and short life of resistant cultivars there are need of identification of more resistant genes and QTLs. The concept of quantitative traits is fundamental in genetics and also encountered in many other areas of biological sciences. A modern type of study is to locate genes controlling a quantitative trait, or QTL mapping. The polygenic control underlying quantitative resistance has been presumed to be much more durable than qualitative resistance, because each gene involved has a small effect on host resistance. The accumulation of such small effects may process longer life span in crop production than the resistance conferred by a single R gene. The QTLs are valuable resources for durable and broad-spectrum resistance. DNA markers tightly linked to quantitative resistance loci (QRLs) controlling QDR can be used for markerassisted selection (MAS) to incorporate these valuable traits.

Identification and mapping of QTL is a valuable starting point for positional cloning of genes present in the OTL region of the genomes. The two general goals of QTL mapping in plants are to (a) increase our biological knowledge of the inheritance and genetic architecture of quantitative traits, both within a species and across related species and (b) identify markers that can be used as indirect selection tools in breeding (Bernardo, 2008). During the past two decades, the ability to transfer target genomic regions using molecular markers resulted in extensive QTL mapping experiments in most economically important crops, aiming at the development of molecular markers for marker assisted selection (Xu, 1998; Semagn et al., 2006; Xu, 2010) and QTL cloning (Salvi and Tuberosa, 2005). The studies QTL mapping provides information on (a) the number and chromosomal location of QTLs affecting a trait; (b) the magnitude and direction of effect of each QTL (i.e., whether a phenotypic trait is controlled by many genes or many independent loci of small effect or by a few genes of large effect); (c) the mode of gene action at each QTL (dominant or additive); (d) the parental sources of beneficial QTL alleles and (e) whether there is interaction between different QTLs (epistasis, *i.e.*, interactions between two QTLs that result in an effect on the trait that would not be predicted from the sum of the individual QTL effects) or between genotypes and environment (Bradshaw, 1996).

In recent years, much has been learned about the genes and pathways involved in the plant defense response and many studies have been done to identify chromosomal regions conditioning QDR (quantitative trait loci for disease, or disease QTL). Insights into quantitative disease resistance (QDR) have implications both for understanding host-pathogen interactions and for improving crop production. Cloning

of genes controlling quantitative traits is now a major research frontier trait of agronomic importance in crops defense (Ishimaru et al., 2004). Once genes conditioning QTL are identified for crop plants, natural variation can be better characterized and exploited. Identification of positional candidate genes is a step toward isolation of the genetic factors controlling quantitative traits (Remington and Purugganan, 2003). Much effort has thus been made to identify positional procandidates for a number of traits, including QDR (Ramalingam et al., 2003; Wen et al., 2003). For practical purposes, positional candidates for QDR may be considered as all putative genes underlying a small QTL region, or defense-related genes in a broad QTL region. R genes and defense-associated transcription factors are attractive classes of candidate genes for investigation of QDR. Once the tightly linked markers have been identified, the quantitative trait loci (QTLs) can be selected for in breeding programs using marker-assisted selection (MAS) strategy. The present study entitled as "QTL mapping for bacterial leaf blight, sheath blight, blast and brown spot tolerance using RIL population of Rice (Orvza sativa L.)." was undertaken with the following major objectives:

- 1. Phenotyping of RIL population for bacterial leaf blight, sheath blight, blast and brown spot reactions
- 2. Genotyping of RIL population and construction of linkage map
- 3. Mapping of QTL for bacterial leaf blight, sheath blight, blast and brown spot tolerance
- 4. In silico analysis of the identified QTL

Review of Literature

CHAPTER-II

REVIEW OF LITERATURE

Rice is a worldwide staple as well as a model for cereal biology (Bennetzen and Ma, 2003; Ronald and Leung, 2002; Shimamoto and Kyozuka, 2002). In the developing world as a whole, rice provides 27 percent of dietary energy supply and 20 percent of dietary protein intake. Rice began cultured in Asia and now is cultivated in 113 countries and on all continents except Antarctica. Two of 23 species from the genus Oryza are cultivated: Oryza sativa, which originated in the humid tropics of Asia and Oryza glaberrima from West Africa. The two main strains of O. sativa are japonica and indica. Rice is a model monocot because it has the smallest genome size (390 Mb) among the major cereals, its genome is syntenic with the genomes of the other cereals and it can be transformed easily. The small genome of rice includes a large percentage (ca. 75%) of single-copy DNA (McCouch et al., 1988). Rice has proven to be the most readily transformable cereal crop (Hiei et al., 1994). In the last ten years, two high-density molecular linkage maps of rice containing about 3000 markers have been developed in the US and Japan, making the marker density in the rice genome, on average, one marker per cM (200-300 kb) (Causse et al., 1994; Harushima et al., 1998). Over 300,000 expressed sequence tags (EST) have been deposited in the public database (Sasaki et al., 2005). With the completed sequence available from the International Rice Genome Sequencing Project, it was expected that the genome sequence will facilitate pioneering research in functional and applied genomics.

2.1 Impact of diseases on rice production

Among the biotic stresses, bacterial blight (BB) caused by Xanthomonas orvzae pv. orvzae (Xoo) is an important disease that results in significant yield reduction worldwide. The disease, in its severe form, is known to cause yield losses ranging from 74 to 81% in susceptible cultivars (Srinivasan and Gnanamanickam, 2005). The sheath blight caused by the fungus Rhizoctonia solani Kuhn, the second most important diseases of rice (Oryza sativa L.) causing severe loss in grain yield and quality worldwide (Lee and Rush, 1983). Various estimates of crop losses due to sheath blight have been made; losses generally vary from negligible to 50% depending on the severity of the disease and the stage at which the crop is infected and environmental conditions. According to Lee and Rush (1983) losses occur between 20 to 50% when all the sheaths are infected. Rice blast caused by Pyricularia oryzae Cavara [synonym Pyricularia grisea Sacc. the anamorph of Magnaporthe grisea (Herbert) Yaegashi and Udagawa], is the most destructive and wide spread diseases (Jia et al., 2000). This disease has caused significant yield losses in many rice growing countries e.g. 75% losses of grains in India (Padmanabhan, 1965), 50% loss in Philippines (Awodera and Esuruoso, 1975) and 40% loss in Nigeria (Ou, 1985). The brown spot causes both quantitative and qualitative losses. Surveys show that brown spot causes a 5% yield loss across all lowland rice production situations in South and Southeast Asia (Savary et al., 2000b).

2.2 Plant disease resistance

Plants resist pathogen attacks both with preformed defenses such as antimicrobial compounds and by induced defense responses (Hwang *et al.*, 2005). Disease resistance in plants can be classified into two major categories such as vertical versus horizontal resistance (Van der Plank, 1968), qualitative versus quantitative resistance (Ou et al., 1975) and complete versus partial resistance (Parlevliet, 1979). In most cases, qualitative resistance is modulated by direct or indirect interaction between the products of a major disease resistance (R) gene and an avirulence gene; this type of resistance is specific to pathogen race and is life time limited in a particular cultivar due to the strong selection pressure against and the rapid evolution of the pathogen (McDonald and Linde, 2002). The pathogen proteins, designated effectors proteins are recognized by plant disease resistance (R) proteins in a specific manner first described genetically as the gene-for-gene interaction (Flor, 1971). Physical interactions between R proteins and effectors have been demonstrated only for PTO with AvrPto or AvrPtoB (Kim et al., 2002), Pi-ta with AVR-Pita (Jia et al., 2000) and RPS2 with AvrRpt2 and the noncognate effector AvrB (Leister and Katagiri, 2000). The major class of R genes encodes proteins that contain a nucleotide-binding site plus leucine-rich repeat domains (NBS-LRR proteins) (Hulbert et al., 2001; Howles et al., 2005). These NBS-LRR genes represent a superfamily of R genes in both monocot and dicot species.

2.2.1 Quantitative resistance

Quantitative resistance (QR) is defined as a resistance that varies in a continuous way between the various phenotypes of the host population, from almost imperceptible (only a slight reduction in the growth of the pathogen) to quite strong (little growth of the pathogen). Quantitative resistance, in contrast with qualitative resistance, is generally considered as partial resistance in a particular cultivar (Parlevliet, 1979). Genetic and molecular evidence have suggested that quantitative resistance can be pathogen race-nonspecific and even pathogen species-nonspecific,

that is, broad-spectrum resistance (Kou and Wang, 2010). QDR has been described as host plant resistance that leads to a reduction in disease, rather than the absence of disease (Poland *et al.*, 2008). QDR in plants including partial, complex, polygenic, oligogenic, horizontal, field and durable. This type of resistance can also remain effective in cultivars grown for prolonged periods in environments favourable to the spread of disease (Krattinger *et al.*, 2009). This type of disease resistance is controlled by multiple loci, referred to as QTLs, and does not comply with simple Mendelian inheritance. Thus, selecting for these QTLs is difficult. Mapping quantitative trait loci (QTLs) is a powerful tool for genetic dissection of QDR. DNA markers tightly linked to quantitative resistance loci (QRLs) controlling QDR can be used for markerassisted selection (MAS) to incorporate these valuable traits.

Polygenic resistance involves quantitative trait loci (QTL) and some of them may be race-specific and others race-nonspecific (Fukuoka and Okuno, 2001). An approach for studying complex and polygenic forms of disease resistance is known as QTL mapping, which is based on the use of DNA markers (Tanksley, 1993). Resistance to the bacterial blight pathogen, *Xoo*, has been reported to have both qualitative and quantitative components (Li *et al.*, 2001). QTL mapping and high resolution mapping offers an entry point for the most ambitious goal of all, cloning genes known only by their small effects, in order to elucidate the genetic and molecular basis of quantitative trait variation. Examples include the cloned tomatofruit-weight QTL, *fw2.2* (Frary *et al.*, 2000) and a salt tolerance QTL in rice (Ren *et al.*, 2005). The study included physical mapping of rolled leaf QTLs (Shao *et al.*, 2005) and a grain-weight QTL, *gw3.1* in rice (Li *et al.*, 2004).

2.2.2 Marker-assisted selection for quantitative trait loci

MAS has been used extensively for transferring and pyramiding major-effect qualitative genes for traits with high heritability into elite breeding lines or cultivars but less so for QTLs (Bernardo, 2008, Collard and Mackill, 2008; Xu and Crouch, 2008). MAS for quantitative traits controlled by one or a few major-effect QTLs and traits controlled by many minor-effect QTLs require different strategies for trait improvement (Bernardo, 2008; Eathington, *et al.*, 2007). MAS for major-effect QTLs can be similar to MAS for qualitative genes in that the process involves the direct transfer of favourable alleles with a relatively large phenotypic effect to a recurrent parent *via* MAS backcrossing or via MAS-assisted transfer between breeding lines or populations to replace unfavourable alleles with favourable alleles. In contrast, multiple minor-effect QTLs are more appropriately targets for population-based improvement methods such as marker-assisted recurrent selection (MARS), in which the frequency of favourable QTL alleles in the population can be increased through cycles of MAS for multiple QTLs and intermating of the selected individuals in the population in a recurrent selection scheme (Bernardo, 2008).

2.3 Bacterial blight of Rice

28

Bacterial blight (BB) caused by *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) (Ishiyama, 1922; Swing *et al.*, 1990) is one of the most destructive diseases of rice throughout the world (Mew, 1987). The disease was initially observed by farmers in Japan during 1884-85 and it is widespread throughout Asia but has also been reported to occur in Australia, the United States and several rice growing countries of Latin America and Africa. The reduction in yield in case of severe infection could be as high as 50% (Mew *et al.*, 1993) where as 10- 12% yield reduction has been recorded

in case of mild infection (Ou, 1985). Rice yield losses caused by Bacterial blight in some areas of Asia can be as high as 50% (Adhikari *et al.*, 1995). In tropical countries, Bacterial blight is even more destructive. Reports from the Philippines, Indonesia and India estimate that losses due to the kresek syndrome of Bacterial blight, which affects recently transplanted seedlings, have reached 60–75%, depending on weather, location and rice variety (Reddy *et al.*, 1979). In addition to reducing yield, Bacterial blight may also affect grain quality by interfering with maturation (Goto, 1992; Ou, 1985). Agarwal *et al.*, 2005 reported that in the Basmati rice, yield loss can reach up to 100%.

Bacterial blight occurs at all growth stages of rice and is manifested by either leaf blight or "Kresek" symptoms. The causal organism invades plants through water pores and wounds (Mizukami, 1956; Tabei & Mukoo, 1960). Bacteria multiply in the intercellular spaces of the underlying epitheme, then enter and spread into the plant through the xylem (Noda and Kaku, 1999). The *Xanthomonas oryzae* pv. *oryzae* may also gain access to the xylem through wounds or openings caused by emerging roots at the base of the leaf sheath (Ou,1985). Within the xylem, *Xoo* presumably interacts with xylem parenchyma cells (Hilaire *et al.*, 2001). Since the water pores are located at the margins of upper parts of the leaf, the lesion starts from the leaf margins near its tip. As the disease progresses, the tiny water soaked lesions turns yellow, enlarges in size progressively and develop into an elongated irregular lesion with wavy margins. Bacterial ooze, which consists of small, yellowish, spherical masses, may sometimes be seen on the margins or veins of the freshly infected leaf under moist conditions. The disease is also characterized by a systemic infection phase, which is manifested by acute wilting of young plants. This is commonly referred to as "Kresek" phase (Reitsma and Schure, 1950).

2.3.1 Genetic variation in pathogen of Bacterial blight

There were two major pathotypes of the bacterium have been identified in India (Reddy and Reddy, 1992). Each race has specific virulence to varieties with different resistance genes, showing a gene for gene relationship in the host pathogen interaction (Mew, 1987; Veracruz and Mew, 1989). Adhikari *et al.*, 1995 tried to group the pathotypes of Asia. They analyzed 308 strains of *Xoo* from several rice growing regions in Asia using RFLPs and virulence typing and grouped all the pathotypes into five major clusters. Of the five clusters, three consisted of strains from a single country. Finckh and Nelson (1999) reported the presence of eight races of *Xoo* which are widely used to represent the diversity of the pathogen in IRRI, Philippines. Such studies are useful for resistance breeding against the Philippines isolates.

2.3.2 Control of disease for Bacterial blight

The use of resistant cultivars is the most economical and effective method to control this disease (Ogawa, 1993). There are numerous donors for resistances to *Xoo* have been identified (Lin *et al.*, 1996). Breeding and deployment of resistant cultivars carrying major resistance (*R*) genes has been the most effective approach to controlling Bacterial blight. The *R* genes to Bacterial blight have been identified (Table 2.1), mostly from *O. sativa ssp. indica* cultivars but some also from *japonica* varieties and from related wild species including *O. longistaminata*, *O. rufipogon*, *O. minuta* and *O. officinalis* (Brar and Khush, 1997; Lee *et al.*, 2003). In addition, several resistance genes or alleles have been produced by mutating cultivated rice lines e.g. by treatment with N-methyl-N-nitrosourea or thermal neutron irradiation or

by somaclonal mutagenesis (Gao et al., 2001; Lee et al., 2003). Some R genes are effective only in adult plants (e.g. Xa21) whereas most do not seem to be developmentally regulated (e.g. Xa23, Xa26). Curiously, Xa3 is typically effective only in adult plants but against at least one race, it is effective at all stages of growth. Some genes condition resistance to a wide spectrum of Xoo races (e.g. Xa21, Xa23), whereas others are effective against only one or a few races that may be limited to a particular geographical location (e.g. Xal). Most R genes to Bacterial blight are dominant but some are recessive (e.g. xa5, xa13) and some display semidominance (e.g. Xa27). Most R genes to Bacterial blight have been introgressed into the background of the susceptible indica cultivar IR24 to develop a set of near-isogenic lines (NILs) and some have been pyramided, either through classical breeding and marker-assisted selection or through genetic engineering, to develop new plant types and NILs (Narayanan et al., 2002; Sanchez et al., 2000; Singh et al., 2001). Pyramid lines have displayed higher levels and/or wider spectra of resistance to Bacterial blight than the parental NILs with single R genes, suggesting synergism and complementation among R genes (Adhikari et al., 1999; Huang et al., 1997; Narayanan et al., 2002).

2.3.3 Genetic diversity of host plant resistance for Bacterial blight

Rice and its bacterial blight pathogen are considered a model system to study interactions between host plants and their pathogens. Large number of studies conducted in several countries has identified the presence of many major genes conferring resistance to various races of the pathogen. These genes are designated as Xa-1 to Xa-29 (Table 2.1).

Gene	Chr	Source	References		
Xal	4	Kogyoku	(Yoshimura et al., 1998)		
Xa2	4	Tetep	(He et al., 2006; Oryzabase, 2006)		
ХаЗ	11	Wase Aikoku 3	(Kaku and Ogawa, 2000; Ogawa et al., 1986; Qi and Mew, 1985; Sun et al., 2004)		
Xa4	11	TKM6	(Wang et al., 2001)		
xa 5	5	Aus Boro lines (e.g. DZ192)	(Iyer and McCouch, 2004)		
Xa 7	6	DV85	(Lee and Khush, 2000; Porter et al., 2003)		
xa8	7	PI231129	(Sidhu et al., 1978; Singh et al., 2002)		
Xal0	11	Cas 209	(Oryzabase, 2006; Yoshimura et al., 1983)		
Xall		IR8, IR944	(Mew, 1987; Oryzabase, 2006)		
Xal2	4	Kogyoku	(Mew, 1987; Oryzabase, 2006)		
xa13	8	BJ1 (Aus Boro)	(Chu et al., 2006)		
Xal4	4	TN1	(Oryzabase, 2006)		
xa15		M41, a Harebare mutant line	(Gnanamanickam et al., 1999; Nakai et al., 1988)		
Xa16		Tetep	(Oryzabase, 2006)		
Xal7		Asominori	(Oryzabase, 2006)		
Xa18		IR24, Toyonishiki	(Liu et al., 2004; Oryzabase, 2006)		
xa19		XM5	(Lee et al., 2003; Oryzabase, 2006)		
xa20	<i>x</i> 20 XM6		(Lee et al., 2003; Oryzabase, 2006)		
Xa21	11	O. longistaminata	(Song <i>et al.</i> , 1995)		
Xa22	11	Zhachanglong	(Oryzabase, 2006; Sun et al., 2004; Wang et al., 2003)		
Xa23	11	O. rufipogon	(Zhang et al., 1998, 2001)		
xa24		DV86, DV85, Aus 295	(Khush and Angeles, 1999; Lee et al., 2000)		
Xa25(a)	4	HX-3, a somaclonal mutant of Minghui 63	(Gao <i>et al.</i> , 2001, 2005)		
Xa25(b)	12	Minghui 63	(Chen et al., 2002)		
Xa26	11	Minghui 63	(Sun et al., 2004; Yang et al., 2003)		
Xa27*	6	O. minuta	(Gu et al., 2004, 2005; Lee et al., 2003)		
xa28		Lota Sail	(Lee <i>et al.</i> , 2003)		
Xa29(t)	1	O. officinalis	(Tan <i>et al.</i> , 2004)		

Table 2.1 Genes conferring resistance to different races of Bacterial blight

pathogen

*- semidominant.

2.3.4 The major genes cloned and sequenced for Bacterial blight

Only 10 genes cloned out of 29 genes have been tagged and mapped to different chromosomes (Table 2.2). These genes are both dominant and recessive in nature. Majority of genes conferring resistance to *X. oryzae* pv. *oryzae* are dominant in nature. The resistance gene *Xa-1* conferring resistance to the Japanese *Xoo* race I was first reported by Sakaguchi (1967). The *Xa-1* gene was extensively studied and tagged with a RFLP marker XNpb235 and mapped to chromosome 4 (Yoshimura *et al.*, 1996). The broad spectrum bacterial blight resistance gene *Xa-21* was introgressed

from a wild species *O. longistaminata* into *O. sativa* background (Khush *et al.*, 1989). Ronald et al. 1992 tagged the *Xa-21* gene with RAPD marker RAPD 248. Ronald (1997) adopted a map-based cloning strategy for the first time to clone *Xa-21* in rice.

2.3.5 Major recessive genes-mapped and cloned for Bacterial blight

The recessive resistance gene xa-5 was tagged with RFLP markers RG556 and RZ390 and microsatellite markers RM122 and RM390. It was mapped on chromosome 5 based on the segregation data for 207 F₂ individuals of two populations, IR 24 × IRBB5 and Chinsurah BoroII × IR64 (Blair and McCouch, 1997). The xa-13 confers resistance to the Philippines race 6 of *Xoo*. The gene was tagged with the RAPD marker OPAC 05-900 and RFLP marker RG136 and mapped on chromosome 8 using the doubled haploid mapping population of IR64 and Azucena (Zhang *et al.*, 1996a).

S. N.	BB resistance	Donor/cross	Type of marker	References
	gene			
1	Xa-1	IRBB1	RFLP	Yoshimura et al., 1996
		Kogyoku/IR24		
2	Xa-3	IRBB3	RFLP	Yoshimura et al., 1992
		(Chugoku45)/IR24		
3	Xa-4	IRBB4	RFLP	Yoshimura et al.,1995
		(IR1545-339)/IR24		Wang <i>et al.</i> ,2001
4	<i>xa-5</i>	IRBB5/IR24	RFLP	McCouch et al., 1992,
		(Chinsurah Boroll)/IR64	SSR	Blair and McCouch, 1997
5	Xa-7	No information	RFLP	Borines et al., 2000
6	Xa-10	Cas209	RFLP	Yoshimura et al., 1995
7	xa-13	IR66699-55-42/IR24	RAPD	Zhang <i>et al.</i> , 1996a
			RFLP	Sanchez et al., 1999
			RFLP	
8	Xa-14	Japonica/Zhengzhuai	RFLP	Tan <i>et al.,</i> 1999
		(indica)		
9	Xa-21	O. longistaminata/IR24	RFLP	Ronald et al., 1992
			RAPD	Williams <i>et al.</i> , 1996
10	Xa-22(t)	Zhachanglong/	RFLP	Lin et al., 1996
		Zhonchu Ali		

Table 2.2 Bacterial blight resistance genes tagged and cloned

2.3.6 The QTLs for Bacterial blight resistance

The presence of complete resistance and partial resistance to *Xoo* in rice has been reported (Zhang and Mew, 1985; Parlevliet and Zadoks, 1977). Resistance of rice to specific *Xoo* races is governed by both major *R* genes with a qualitative effect that condition complete resistance (CR) and polygenes with a quantitative effect (quantitative trait loci, QTL) that condition partial resistance (PR) (Figure 2.1) (Koch and Parlevliet, 1991b; Li *et al.*, 2006). A recent study of the epistatic effects between *R* genes and QTL for resistance in rice revealed a complex genetic network in which the interactions between alleles at the rice *R* locus and alleles at the corresponding avirulence loci in *Xoo* lead to complete resistance and interactions between rice QTL for resistance and corresponding aggressiveness loci in *Xoo* lead to partial resistance. The race specificity of the QTLs during partial resistance and strong genetic overlap between complete resistance and partial resistance suggested that PR is essentially a 'weaker' CR (Li *et al.*, 2006).

The distinction between complete resistance and partial resistance may be masked by the fact that some QTLs for Bacterial blight may in fact be 'defeated' dominant *R* genes, or, in a sense, *R* genes that have lost their qualitative nature and adopted new, intermediate phenotypes (Koch and Parlevliet, 1991a; Li *et al.*, 1999). An example is Xa4, a single dominant gene for resistance to bacterial blight widely used in Asian rice breeding programmes. The gene Xa4 conferred durable resistance in cultivars IR20 and IR64, among others developed at IRRI, before being overcome by the emergence of two new Chinese races in the early 1970s (Mew *et al.*, 1992). The breakdown of Xa4 mediated resistance was manifested by significant changes in the qualitative action of Xa4 (i.e. loss of dominance) and by a quantitative reduction of 50% in the magnitude of the effect of the Xa4 gene (Li *et al.*, 1999). However, the defeated Xa4 can still act as a recessive QTL and show quantitative complementation when pyramided with other resistance genes in elite cultivar breeding.

Major genes, main-effect QRL and epistatic loci affecting lesion lengths caused by three Chinese Xoo races (8)

Figure 2.1 Genomic locations of *Xa4*, *Xa25(t)*, QRL (in red italics), and epistatic loci (triangles) associated with complete and partial resistance to 10 Philippine and 3 Chinese *Xoo* races detected in the Lemont × Teqing RILs (RI) and IR64 × Azucena DHLs (DH) population

2.4 Sheath blight of Rice

Sheath blight, caused by the fungus *Rhizoctonia solani* Kuhn, is one of the major foliar diseases of rice worldwide that severely impairs both grain yield and quality (Ou, 1985; Savary *et al.*, 2006). The disease was first reported in Japan in 1910 and subsequently reported to be widespread (Rush *et al.*, 1992). The *Rhizoctonia solani* is a semisaprophytic fungus with a broad host range, affecting many crops including rice, maize (*Zea mays* L.), wheat (*Triticum aestivum* L.), sorghum [*Sorghum bicolor* (L.) Moench], common bean (*Phaseolus* spp.), and soybean [*Glycine max* (L.) Merr.] (Zhao *et al.*, 2006). The yield losses of 5–10% have been estimated for tropical
lowland rice in Asia (Savary *et al.*, 2000a). At the late tillering or early internode elongation growth stage, a disease lesion often is observed in the leaf sheath near the water line from germinating sclerotia, the primary source of inoculum in the field (Ou, 1985). Disease lesions may coalesce to form bigger lesions and the disease can spread to adjacent plants in the field.

Resistance to rice ShB is a complex, quantitative trait controlled by polygenes (Sha and Zhu 1990; Li *et al.*, 1995; Pinson *et al.*, 2005). On the other hand, a few studies (Xie *et al.*, 1992) proposed that ShB in some rice varieties are controlled by a few major genes. Breeding for ShB has been difficult, mainly because of the lack of identified resistant donors in cultivated varieties (Bonmann *et al.*, 1992). The identification of genes that affect complexly inherited trait is often difficult and best approached through developing a genetic linkage map to identify quantitative trait loci (QTLs) (Tanksley and McCouch, 1997). The accurate measurement of ShB under field conditions (Yuen and Forbes, 2009) depends on a range of environmental factors (Ou 1985; Castilla *et al.*, 1996; Eizenga *et al.*, 2002) and plant morphological traits, such as plant height (Li *et al.*, 1995; Zou *et al.*, 2000; Pinson *et al.*, 2005) which interacts, resulting in the observed variation in resistant (susceptible) phenotypes. There were many sheath blight QTL have been reported to be associated with plant morphological traits and heading date (HD).

2.4.1 Epidemiological features of Sheath blight

The source of the inoculum is mainly soil-borne sclerotia (Roy 1986; Kim and Kim 1987; Mgonja *et al.*, 1987; Damicone *et al.*, 1993; Fan *et al.*, 1993) or infected plant debris (Kobayashi *et al.*, 2006). Another aspect of the disease is that its secondary spread depends almost exclusively on running hyphae that progress out from the initial lesions, from the lower part of the crop canopy towards its upper part

37

along tillers and leaves and across adjacent plant units (individual plants or hills). This has been commonly referred to as the 'vertical' and 'horizontal' spread process (Hashiba *et al.*, 1982). The main spread mechanism of the disease explains why sheath blight is an extremely aggregated disease when compared to other plant diseases (Madden *et al.*, 2007). This aggregation of sheath blight is a central feature of rice sheath blight epidemics (Gou *et al.*, 1983; Savary *et al.*, 1997, Gong and Zhang, 2002; Tan and Wang, 2002) and a critical element to assess resistance (Zadoks and Schein, 1979).

2.4.2 Methods used for assessing resistance to Sheath blight of rice

Methodology choices also have major consequences on the accuracy, precision, repeatability and ultimately usefulness of the results (Madden et al., 2007; Yuen and Forbes, 2009). These methodological components are described in (Table 2.3). The bulk of screening for resistance to sheath blight within O. sativa species has been conducted at the plot scale. One of the more common inoculation method is that of inserting a rice grain hull (RGH) mixture colonized by the fungus among the tillers at the base of the hill (IRRI, 1992). Inoculation is mostly performed on all plants or hills (IRRI, 1992), but sometimes by spreading inoculum between rows (Marchetti and Bollich, 1991; Li et al., 1995). The relative lesion height (RLH) which is the height of the highest Sheath blight lesion divided by PH (Hashiba, 1984; Ahn et al., 1986) or related variables (Marchetti and Bollich, 1991; Savary and Mew, 1996) are standard measurements used to reflect disease intensity. A scale based on RLH, ranging from highly resistant to highly susceptible genotypes, has been developed (IRRI, 1987). Inoculation of potted plants in the greenhouse, by placing a rice grain hull mixture at the base of plants when they are at the maximum tillering stage, has been used to screen accessions of Oryza spp. (IRRI, 1987, 1992, 1993). One inoculation method recently used is the inoculation of young potted plants with infected PDA disks, followed by incubation in plastic bottles ('micro-chambers') (Jia *et al.*, 2007). This method has also been used to screen wild rice species (Prasad and Eizenga, 2008) and assess recombinant inbred lines (RILs) (Liu *et al.*, 2009).

Biological hierarchy level	Inoculation method	Incubation conditions	Assessment method	References
Plant	Colonized RGH, at maximum tillering	Greenhouse	7 DAI: lesion height; RLH	IRRI (1992) IRRI (1993)
	Colonized PDA block, on 35-day- old seedlings	Greenhouse, plants under plastic bottles	7—10 DAI: index of lesion length	Prasad and Eizenga (2008)
	Colonized PDA block, on 21-day- old seedlings		8—10 DAI: index of lesion length	Liu et al., 2009
	Colonized PDA plug, at 50 DAS	Greenhouse, high humidity environment	15 DAI: severity index scale	Liu <i>et al.</i> , 2009
Tiller	Colonized toothpick in leaf sheath, at heading	Controlled Conditions	7 DAI: severity on leaf; lesion length	Eizenga <i>et. al.</i> , 2002; Prasad and
	heading		7-10 DAI: 0-9 scale	Eizenga (2008) Eizenga <i>et al.</i> ,
	Colonized toothpick	Field	30 days after	2009
	in leaf sheath, at		heading: 0—9	Zou <i>et al.</i> , 2000
	stem elongation		scale	Zuo <i>et al.</i> , 2008 Vin <i>et al.</i> 2009
	Sclerotia placed		10 DAI: lesion length on the	Chnnamallikaju
	beneath the sheath		sheath	na <i>et al.</i> , 2010
	Injection of		28 DAI: severity on the	Sato et al., 2004
	third leaf sheath		sheath of the second leaf	
	from leaf flag		3 DAI: lesion length	IRRI, 1987 Pasad and
Leaf	Colonized PDA disc	Controlled	3 DAI: severity on leaf; lesion	Eizenga, 2008
		conuntions	longui	

Table 2.3 The methodologies for Sheath blight (ShB) screening and phenotyping

RGH = rice grain hull mixture, DAT= days after transplanting, DAS = days after sowing, PDA= potato dextrose agar, RLH = relative lesion height, DAI = day after inoculation, SES= Standard Evaluation System for rice

^a = SS *Oryza sativa* germplasm screening, P = phenotyping, WS = rice wild relative (*Oryza spp.*) screen

2.4.3 The sources of resistance to Sheath blight of rice

Several groups have attempted to identify sources of Sheath blight resistance by screening local accessions, cultivars, landraces and advanced breeding lines. The most promising genotypes are shown in (Table 2.4). These studies resulted in the identification of genotypes with moderate to high levels of resistance (Ram and Ansari, 1990; Borah *et al.*, 1994; Biswas, 2001; Hua *et al.*, 2000; Meena *et al.*, 2000; Singha and Borah, 2000; Mohanta *et al.*, 2002; Goel and Lore, 2004; Mew *et al.*, 2004; Mosaddeque *et al.*, 2008).

S.N.	References	Promising genotypes		
1	Das (1970)	NC 678, Dudsor, Bhasamanik		
2	Wu (1971)	Chin-kou-tsan, Zenith, CO.17, Dinominga, Puang Nahk 16, Baok, Toma-112, R.T.S.31, Kele Kala		
3	Roy (1977)	Lalsatkara		
4	Bhaktavatsalam <i>et al.,</i> 1978	ARC15762, ARC 18119, ARC 18275, ARC 18545		
5	Rajan and Nair (1979)	IR24, IR26, IR29, Jaya, Jaganath, Mashoori, Pankaj, Rajeshwari, Supriya, Sabari, TKM6		
6	Manian and Rao (1979)	Nizersail, Rajasail, Tabend, Ta-poo-cho-z, Kattachambha, DA 29, ARC 5925, ARC 5943, ARC 14529, ARC 10572, ARC 10618, ARC 10836		
7	Crill et al., 1982	Tapoochoz, Bahagia, Laka		
8	Borthakur and Addy (1988)	Taraboli 1, Dholamula, Supkheru, Chidon		
9	Gokulapulan and Nair (1983)	Bharati, Rohini		
10	Ansari et al., 1989	Bog II, Aduthurni, Chinese galendopuram, Arkavati, Saket-4, Neela, MTU-3, MTU-7, MTU- 13, MTU-3642, BPT-6		
11	Sha and Zhu (1990)	Tetep, Tapoo-cho-z, Guyanal		
12	Xie et al., 1992	LSBR-5, LSBR-33		
13	Marchetti et al., 1995	RU8703196, B82-761		
14	Singh and Dodan (1995)	KK2, Dodan, IR40 and Camor		
15	Singha and Borah (2000)	Chingdar, As 93-1, Mairan, N–22, Panjasali, Up- 52, Upland-2		
16	Pinson et al., 2008	TIL:455, TIL:514, TIL:642		

Table 2.4 The important ShB resistance sources reported in the literature

2.4.4 The QTLs for Sheath blight resistance in rice

Srinivasachary et al., 2011 reviewed sheath blight resistance QTL (ShB-QTL) that have been published in different articles. Among 12 ShB-QTL studies reviewed, 11 studies were conducted with indica rice cultivars and only one study was carried out with a tropical japonica cultivar (Sharma et al., 2009). A detailed list of mapping populations, detected QTL is given in (Table 2.5). A total of 33 ShB-QTL were identified; these were located in all 12 rice chromosomes. Most of these individual QTL only explained about 10-15% of phenotypic variance. Of these 33 QTL, only 16 (on chromosomes 1, 2, 3, 4, 7, 8, 9, and 11, respectively) were consistent. They used the rice genetic map published by (Temnykh et al., 2001). The maps presented here were drawn using MapChart (Voorrips, 2002). In most cases, SSR markers were used as anchor points to indicate ShB-QTL. A total of six PH-QTL (chromosomes 1, 2, 3, 7, 8, and 9) from different studies were mapped on the same regions as ShB-QTL (Table 2.5 and Figure 2.2). In many cases, the peak LOD score (a logarithmic index of statistical significance) of PH-OTL co-localized with the peak LOD for ShB-OTL. Similarly, seven of the HD-QTL, one each on chromosomes 1, 3, 6, 7, 8, 9, and 12, co-localized with ShB-QTL.

S.N.	QTL name	Peak marker	Genetic material	References
		locus		
1	<i>qSB-2</i>	RG654-RZ260	255 F ₄	Li et al.,1995
	qSB-3	R0348-RG944		
	qSB-4	RG143-RG214		
	qSB-8	RG2O-RG1034		
	qSB-9	RG9IOb-RZ777		
	<i>qSB-12</i>	RG214a-RZ397		
2	<i>qSB-2</i>	G243-RM29	F ₂ clonal families	Pan et al., 1999
	qSB-3	R250-C746		
	<i>qSB-7</i>	RG30-RG447		
3	qSB-2	RM29	128 F ₂ clonal	Zou et al., 2000
	qSB-3	R250-C746	families	
	<i>qSB-7</i>	RG3O-RG477		

Table 2.5 Details of rice ShB-QTLs identified in different mapping population

	aSB-9-1	C397-G103		
	aSB-9-2	RG570-C356		
	$qSB \neq 2$	G44-RG118		
	<i>q5D-11</i>	044-10110		
4	qSBR-2	RG171-G243A	DH, 127	Kunihiro et al., 2002
	qSBR-3	G249-G164		
	qSBR-7	RG511-TCT122		
	qSBR-11	СТ224-СТ44		
5		C(24 D) (2(DH = 240 1/m = =	Ham (1 2002
2	qSB-3	C624-RM26	RILS 240 lines	Han <i>et al.</i> , 2002
	<i>qSB-9</i>	RM242-C472		
6	Rsb 1	RM173	1032 F ₂	Che et al.,2003
7	qSB-3	RM13856	$60 \text{ BC}_1\text{F}_1$	Sato et al., 2004
	qSB-12	RM1880		
8	aSB_0	RM205-RM201	115 Fe clonal	Tan <i>et al</i> 2005
0	qSD-9	RM167-V529	nonulation	1 an <i>ei ui.</i> , 2005
0	qSD-11	R(1107-152)		D: 1 2005
9	qSB-1	RG532x	300 RILS	Pinson <i>et al.</i> , 2005
	qSB-2	C624x	Γ_{10} and Γ_{11}	
	qSB-3-1	RG348x		
	<i>qSB-3-2</i>	RZ474		
	qSB-4-1	RGIO94e		
	qSB-4-2	RZ59Ox		
	qSB-5	Y1049		
	qSB-6-1	С		
	qSB-6-2	RZ508		
	aSB-7	C285		
	aSB-8-1	G104		
	aSB-8-2	R662		
	aSB-9	R7404		
	qSB = 10	RG561		
	qSB-10	G1106		
	<i>q5D-12</i>	01100		
10		RM1339	279 F _{2:3}	Sharma et al., 2009
		RM3685		
		RM7072		
		RIVI3823		
11	qSB-1	RM104	250 F ₅ RILs	Liu et al., 2009
	qSB-2-1	RM341		
	qSB-2-2	RM250		
	qSB-3-1	RM5626/RM426		
	qSB-3-3	RM85		
	qSB-5	RM13		
	aSB-6	RM190		
	aSB-9-1	RM434		
	aSB-9-2	RM245		
12			127 DH	Channamallil-arity of
12	qSBKI-1	ПV 55К1-68	12 / KIL (F2.10)	Channamaiiikarjuna et
	qSBR3-1	KM251	(12.10)	<i>u</i> ., 2010
	qSBR7-1	KM336/IRM3691		
	qSBR8-1	RM210		
	qSBR9-1	RM257		
	qSBR3-11-1	RM224		
	qSBR3-1 1-2	RM209		
	qSBR3-11-3	RM202		

Vertical bars denoted R1–R12 represent rice chromosomes 1–12. Linkage map has been adapted from (Temnykh *et al.*, 2001)

Figure 2.2 Chromosomal location of quantitative trait loci (QTL) reported for

Sheath blight resistance (ShB) and associated traits in rice

2.4.5 The relationship between ShB-QTL and QTLs for other plant traits

In addition to ShB resistance, eight mapping studies also accounted for other morpho-developmental traits, including PH (PH-QTL) and HD (HD-QTL). Many of these studies found a strong association between resistance to ShB and tall or latematurity. This association was indicated by the co-localization of QTL and by a partial to high correlation between these morpho-developmental traits and ShB resistance.

A total of six PH-QTL (chromosomes 1, 2, 3, 7, 8 and 9) from different studies were mapped on the same regions as ShB-QTL. In many cases, the peak LOD score (a logarithmic index of statistical significance) of PH-QTL co-localized with the peak LOD for ShB-QTL. Similarly, seven of the HD-QTL, one each on chromosomes 1, 3, 6, 7, 8, 9, and 12, co-localized with ShB-QTL (Figure 2.2). Thus, about 34.5% of the total QTL reported for ShB resistance co-localized with either PH-QTL or HD-QTL, possibly indicating pleiotropic effects or tight linkages between the genes controlling morpho-developmental and ShB resistance traits. In a Teqing/Lemont F_4 population, Li *et al.*, 1995 reported that a large proportion of the phenotypic variation in ShB resistance was explained by the morpho-developmental traits (mainly HD, 42%, and PH, 4%). Similarly, PH and HD explained 43% of the ShB reaction in a mapping population derived from Pecos, a tropical *japonica* reported to be ShB resistant (Sharma *et al.*, 2009).

2.4.6 The QTL validation and use in marker-assisted selection

In rice variety Tetep, identified and mapped the QTL *qSBR11-1* on chromosome 11, in the genomic region spanning RM1233 to RM224 (Channamallikarjuna *et al.*, 2010). A dominant ShB-QTL, *qSB-9TQ* has been well characterized from an indica cultivar, Teqing (Pinson *et al.*, 2005; Tan *et al.*, 2005;

Yin *et al.*, 2009). Pinson *et al.*, 2008 using the markers tightly linked to ShB-QTL, performed marker-assisted selection to introgress resistant alleles from Teqing (PI 536047) into three rice germplasm lines that have been released as varieties in the USA.

2.5 Leaf blast of Rice

Blast disease of rice caused by the filamentous fungus *Magnaporthe oryzae* has been one of the most damaging diseases of rice and remains one of the most difficult crop diseases to manage (Khush and Jena, 2007). The fungus *Magnaporthe grisea* is a haploid filamentous *Ascomycete* with a relatively small genome of ~40 Mb divided into seven chromosomes (Dean *et al.*, 2005). The *M. grisea* is becoming an excellent model organism for studying fungal phytopathogenicity and host-parasite interactions. *M. grisea* is one of the most devastating threats to food security worldwide. Conservatively, each year enough rice is destroyed by rice blast disease to feed 60 million people (Zeigler *et al.*, 1994). The blast pathosystem consists of two major interrelated phases: leaf blast and panicle blast, with the former providing inoculum for the later (Ou, 1985). Blast resistance in rice has been generally classified into two types: complete (qualitative) or true and partial (quantitative) or Wild resistance (Ezuka, 1972). The deployment of resistant cultivars is the most effective and economical way of controlling blast disease, so breeding for resistant cultivars continues to be a priority in rice improvement (Ikehashi & Khush, 1979).

Rice blast is a well-studied disease and several recent reviews focused on the biology of the fungal infection (Caracuel-Rios and Talbot, 2007; Ebbole, 2007; Veneault-Fourrey and Talbot, 2005) and rice resistance (Dai *et al.*, 2007). Moreover, with the completion of the rice (Goff *et al.*, 2002) and *M. oryzae* (Dean *et al.*, 2005) genome sequences, rice blast disease has strength its position as a model for plant–

pathogen interactions in monocotyledons (Ribot *et al.*, 2007; Valent 1990; Veneault-Fourrey and Talbot, 2005).

Despite the relatively long history of genetic studies on rice resistance to blast, examples of cultivars with durable resistance are very few (Ou, 1985) and resistance breakdown shortly after cultivation of newly released cultivars is the rule. This phenomenon is due, in part, to pathogen evolution toward virulence. Reviewing breeding for resistance to blast, Ou (1985) concludes: "Some cultivars show breakdown in resistance after a few years and others become susceptible in other geographic areas. The problem arises because of the variability in pathogenicity of the fungus, a factor which in the past has been underestimated by workers in this field". Different strategies to breed durable resistance have been proposed to counter blast evolution. Some strategies, such as pyramiding (Bonman *et al.*, 1992), lineage exclusion (Zeigler *et al.*, 1994), multilines (Abe, 2004) and mixtures (Zhu *et al.*, 2000) are based on the use of complete and specific resistance genes. Others are based on the accumulation of partial resistance (Bonman *et al.*, 1992), a strategy thought to be more durable because it is assumed to be more general.

2.5.1 The overview of blast disease resistance in rice

Most of the qualitative genes are dominant. The first report of the inheritance of host resistance to rice blast (Sasaki, 1923). The first *Pi* gene in rice was named by Kiyosawa, 1966. Many reports mention that the genes affecting blast resistance are colocalized on chromosomes 6, 11 and 12 (Wu, *et al.*, 2005). Ballini *et al.*, 2008 also reported that 80% of the complete resistance genes for rice blast colocalize with nucleotide-binding site leucine-rich repeat (NBS-LRR) candidates.

Gene	Chromosome	references
Pit	1	Háyashi et al., 2006
Pi27(t)	1	Zhu et al., 2004
Pi24(t)	1	Sallaud et al., 2003
Pitp(t)	1	Barman et al., 2004
Pi35(t)	1	Nguyen et al., 2006
Pi37	1	Lin et al., 2007
Pish	1	Fukuta et al., 2004
Pidl(t)	2	Chen et al., 2004
Pig(t)	2	Zhou et al., 2004
Pitq5	2	Tabien <i>et al.</i> , 2000
Piyl(t)	2	Lei et al., 2005
Piy2(t)	2	Lei et al., 2005
Pib	2	Fjellstrom et al., 2004
Pi25(t)	2	Sallaud et al., 2003
Pil4(t)	2	Pan et al., 1996
pi21	4	Fukuoka and Okuno, 2001
Pikurl	4	Goto, 1988
Pi39(t)	4	Terashima et al., 2008
Pi(l)	4	Causse et al., 1994
Pi26(t)	5	Sallaud et al., 2003
<i>Pi23(t)</i>	5	Naqbi et al., 1995
Pil0	5	Naqbi and Chatto, 1996
Pi26(t)	6	Wu et al., 2005
Pi27(t)	6	Sallaud et al., 2003
Pi40(t)	6	Jeung et al., 2007
Piz-5	6	Zhou et al., 2006
Piz	6	Goto, 1976; Hashimoto et al., 1998; Hayashi et al., 2006
Piz-t	6	Zhou et al., 2006
Pi9	6	Qu et al., 2006
Pi25(t)	6	Wu et al., 2005
Pid2	6	Chen et al., 2006
Pitq1	6	Tâbien <i>et al.</i> , 2000
Pi8	6	Pan et al., 1995; Pan et al., 1996
<i>Pi13(t)</i>	6	Pan et al., 1996
Pil3	6	Ballini et al., 2008
Pil7(t)	7	Pan et.al., 1995, Iwata, 1996
Pi36	8	Liu et al., 2007b
Pizh	8	Causse et al., 1994
Pi29(t)	8	Sállaud et al., 2003
PiGD-1(t)	8	Liu et al., 2004
Pii2(t)	9	Kinoshita and Kiyosawa, 1997

Table 2.6 The genes responsible for the rice blast resistance are listed chromosome wise

Pi5(t)	9	Jeon et al., 2003
Pi3(t)	9	Inükai et al., 1996
Pi15	9	Pan et al., 1996
Pii	9	Ise, 1991
PI28(t)	10	Sallaud et al., 2003
PiGD2(t)	10	Liu et al., 2004.
Pia	11	Goto et.al., 1981
PiCO39(t)	11	Chauhan et al., 2002
Pilm2	11	Tabien et.al., 2000
Pi30(t)	11	Sallaud et al., 2003
Pi7(t)	11	Wang et al., 1994
Pi34	11	Zenbayashi et al., 2002
Pi38	11	Gowda et al., 2006
PBR	11	Fujii et al., 1995
Pbl	11	Fujii et al., 2000
Pi44(t)	11	Chen et al., 1999
Pik-h	11	Sharma et al., 2005
Pil	11	Hittalmani et al., 2000
Pik-m	11	Kaji and Ogawa,1996
Pik	11	Hayashi et al., 2006
Pik-p	11	Hayashi et al., 2006
Pik-s	11	Fjellstrom et al., 2004
Pik-g	11	Pan et al., 1996
Pisel	11	Goto, 1970
Pif	11	Shinoda et al., 1971
Mpiz	11	Goto, 1976
Pikur2	11	Goto, 1988
Piisi	11	Goto, 1970
Pi24(t)	12	Koizumi, 2007
Pi62(t)	12	Wu et al., 1996
Pitq6	12	Tabien et al., 2000
Pi6(t)	12	McCouch et al., 1994
pi31 (t)	12	Sallaud et al., 2003
pi31 (t)	12	Sallaud et al., 2003
Ipi(t)	12	Causse et al., 1994
Ipi3(t)	12	Causse et al., 1994
Pil57	12	Naqvi and Chattoo, 1996
Pita	12	Bryan et al., 2000
Pita-2	12	Nakamura et al., 1997, Hayashi et al., 2006
Pi19(t)	12	Hayashi et al., 1996, Iwata, 1997
Pi39(t)	12	Liu <i>et al.</i> , 2007a
Pi20(t)	12	Li et al., 2008
PiGD-3(t)	12	Liu <i>et al.</i> , 2005

2.5.2 Isolated and cloned complete resistance genes of blast

As of 2013, eight complete resistance genes to *Pib* (Wang *et al.*, 1999), *Pita* (Bryan *et al.*, 2000), *Pikh* (Sharma *et al.*, 2005), *Pi9* (Qu *et al.*, 2006), *Pi2/Piz*t (Zhou *et al.*, 2006), *Pid2* (Chen *et al.*, 2006), *Pi36* (Liu *et al.*, 2007b) and *Pi37* (Lin *et al.*, 2007) have been isolated and cloned using map-based cloning strategies are summarized in (Table 2.7).

S.N.	Gene symbol	Chr.	Locus	References
			structure	
1	Pib	2	2 genes	Wang et al., 1999
2	Pita	12	2 genes	Bryan <i>et al.</i> , 2000
3	Pikh	11	6 genes	Sharma et al., 2005
4	Pi9	6	9 genes	Qu et al., 2006
5	Pi2/Pizt	6	9 genes	Zhou <i>et al.</i> , 2006
6	Pid2	6	simple	Chen <i>et al.</i> , 2006
7	Pi36	8	simple	Liu et al., 2007b
8	<i>Pi37</i>	1	4 genes	Lin et al., 2007

Table 2.7 The information on cloned resistance genes of blast

2.5.3 The quantitative resistance to *M. grisea* the rice blast fungus

The quantitative resistance system that has been especially well characterized in rice is resistance to the blast fungus (Wang *et al.*, 1994; Sallaud *et al.*, 2003; Talukder *et al.*, 2005). In rice blast QTL study, Wang et al. 1994 was analyzed a durable source of resistance known as Moroberekan for both R genes and quantitative (partial) resistance loci. In the QTL mapping study by Sallaud *et al.*, 2003, five new blast resistance loci named *Pi-24*(t) to *Pi-28*(t) were identified using a QTL mapping approach. Another study tested the specificity of QTL for partial resistance to blast disease by using isolates for which no major R gene segregated in a mapping population (Talukder *et al.*, 2004). Since the first publication of a QTL analysis of rice resistance to blast (Wang *et al.*, 1994), many such studies have been published in (Table 2.8). The meta-analysis allowed detection of 165 metaQTL, thus reducing significantly the initial dataset of 347 QTL. A graphical overview of the position of these metaQTL is presented in (Figure 2.2). The average size of a metaQTL is 3.3 Mbp. In all, 11% of the metaQTL are finely mapped (<500 kb) and 5% are large (>12 Mbp).

Table 2.8 The literature sources used in the meta-analysis of QTL for blast resistance

References	Population	Environment	Mapping	Partial resistance	Total no. of QTL detected
Sirithunya <i>et al.</i> , 2002	CT9993-5-10-1- m × KDML105	G and F	Yes	Nd	6
Bagali et al., 2000	$IR64 \times Azucena$	G and F	Yes	No	13
Fukuoka and Okuno, 2001	Nipponbare × Owarihatamochi	F	Yes	No	4
Miyamoto <i>et al.</i> , 2001, 2003	Kahei × Koshihikari	F	Yes	No	2
Sallaud et al., 2003	$IR64 \times Azucena$	G	Yes	No	9
Chen <i>et al.</i> , 2003	Zhenshan 97 × Minghui 63	G	Yes	No	12
Huang et al., 2004	Tainung 69 × Koshihikari	G and F	Yes	No	2
Xu et al., 2004	$ZYQ8 \times JX17$	G	Yes	No	77
Sato <i>et al.</i> , 2006	URN12 × Koshihikari	F	No	No	2
Wang <i>et al.</i> , 1994	Moroberekan × Co39	G and F	Yes	Yes	22
Tabien <i>et al.</i> , 2002	Lemont × Teqing	G and F	Yes	No	11
Zenbayashi et al., 2002.	Norin29 × Chubu32	F	No	Yes	1
Loan <i>et al.</i> , 2003	Lemont × Teqing	G	Yes	Yes	14
Talukder <i>et al.</i> , 2004, 2005.	Bala × Azucena	G	No	Yes	41
Wu et al., 2005	Zhong 156 × Gumei 2	G and F	Yes	Yes	21
Lopez-Gerena, 2006	Oryzica Llanos 5 × Fanny	G	Yes	Yes	21

G = greenhouse and F = field, Nd=type of resistance not determined

Chromosome size is shown by the scale on the left (in million base pairs) based on Gramene. The positions and names of markers are indicated by labelled bars on the chromosomes. The positions and names of resistance genes are indicated to the right of each chromosome. MetaQTL are symbolized by filled (partial-resistance metaQTL) or open (other resistance metaQTL) bars. Field QTL and greenhouse QTL are analyzed separately: the letters F, G, and P in QTL names represent field, greenhouse and partial respectively.

Figure 2.3 Physical maps of resistance genes and meta-quantitative trait loci (QTL) of resistance to rice blast

2.6 Brown spot of Rice

Brown spot, caused by the fungus *Bipolaries oryza* is one of the prevalent fungal diseases of rice and significantly reduces the yield and milling quality of grain (Datnoff *et al.*, 1992). The great Bengal Famine, which contributed to the famine of south Asia in 1942 (Padmanabhan, 1973), is testimony to this. Brown spot was reported for the first time in Iran at 1957 (Behdad, 1982). Brown spot has been reported in all rice-growing areas in the world. It is especially common in rainfed (Singh and Singh, 2000) and upland areas (Gupta and O'Toole, 1986). Yet, the fact that brown spot is the "poor farmer's" disease (Zadoks, 2002) anywhere the crop encounters drought, macro-nutrient deficiency (Ou, 1985) or both actually tells much more of the importance of the disease. Surveys show that brown spot causes a 5% yield loss across all lowland rice production situations in South and Southeast Asia (Savary *et al.*, 2000b). In Japan, the disease is not considered destructive. In the United States also, the disease is not a serious one but in the rice- growing pockets, the annual loss since 1965 was no less than 0.5% of the total production.

2.6.1 Causal organism of Brown spot disease

At first the causal agent of Brown spot disease was named by Breda de Haan *Helminthosporium oryzae* (Gangopadhyay and Padmanabhan, 1987). The asexual stage is *Bipolaris oryzae* (Breda de Haan) Shoemaker (Dela Paz *et al.*, 2006). The sexual stage is *Cochliobolus miyabeanus* (S. Ito & Kurib.) Drechsler ex Dastur. The disease can occur at all crop development stages. The pathogen infects the coleoptile, leaves, leaf sheath, panicle branches, glumes and spikelets. The disease causes seedling blight, with small, circular, yellow brown or brown lesions that may girdle the coleoptile and distort primary and secondary leaves (Webster and Gunnell, 1992). Nowadays the graminicolous *Helminthosporium* species are divided into three genera

based on colony, conidiophores and conidial morphology, type of conidial germination and the type of hilum structure: *Bipolaris, Drechslera and Exserohilum*. Their telemorphs were from ascomycetes and consist of: *Cochliobolus, Pyrenophora and Setosphaeria*, respectively (Sivanesan, 1987).

2.6.2 Disease biology and epidemiology of Brown spot disease

The pathogen infects the coleoptile, leaves, leaf sheath, panicle branches, glumes, and spikelets. The disease causes seedling blight, with small, circular, yellow brown or brown lesions that may girdle the coleoptile and distort primary and secondary leaves (Webster and Gunnell, 1992). Typical classical brown spot symptoms are observed at tillering stage and beyond: small and circular foliar lesions that are initially dark brown to purple-brown. Lesions are often surrounded by a brown or yellow-brown halo, which is a toxin produced by the pathogen (Vidyasekaran et al., 1986). Lesions on susceptible varieties are 5 to 14 mm long (Webster and Gunnell, 1992), causing leaf wilting. Rice plants growing in nutrientdeficient and poorly drained soil are predisposed to brown spot infection. Brown spot is usually found in fields where farmers cannot afford to buy inputs. Plants that grow in sandy soil were also reported to be susceptible to brown spot (Ou, 1985). Brown spot is also favored by reduced water supply, particularly when the rice crop is directseeded (Savary et al., 2005). This may be because rice plants in direct-seeded rice have a shallow root system (Castillo, 1962) and consequently may become more sensitive to water stress.

2.6.3 Management of Brown spot disease

54

Brown spot can be managed by improving soil fertility through regular monitoring of nutrients in the soil and the application of required fertilizers. The application of calcium silicate slag before crop establishment has been recommended for soils that are low in silicon (Datnoff *et al.*, 1992). These fertilizers, unfortunately, are often costly and always take many cropping seasons before becoming effective. The use of resistant varieties would be the most economical means of controlling brown spot. Several studies have been made on genotypic variability in rice for brown spot resistance (Yoshii and Matsumoto, 1951; Oohata and Kubo, 1974; Deren *et al.*, 1994). In those studies, some rice varieties e.g., Tadukan and Tetep offered sufficient quantitative resistance to brown spot and are agriculturally useful (Oohata and Kubo, 1974). No major genes with resistance to brown spot have yet been identified. However, varieties with partial resistance and three quantitative trait loci (QTL) for disease resistance have been identified (Sato *et al.*, 2008).

2.6.4 Sources of Host Plant Resistance (HPR) for Brown spot disease

The search for sources of resistance to brown spot is a long-standing effort (Nagai and Hara, 1930; Chakrabarti, 2001) which still continues today. For instance, working on *Oryza sativa* species Satija *et al.*, 2005 was identified 15 entries out of 124 which were classified as resistant (less than 5% severity). Conversely, Hossain *et al.*, 2004 identified one resistant variety out of 29 entries. It however is felt that the sources of resistance amongst *Oryza sativa* entries are few and recent research (Goel *et al.*, 2006) has been exploring other pools, especially, *O. nivara*.

2.6.5 The genes identified for Brown spot disease

Early studies showed that resistance or susceptibility could be associated with a limited number of genes. For instance, Balal *et al.*, 1979 found that two dominant genes were associated with resistance, while one gene was associated with susceptibility. Despite these findings, Adair (1941) suggested that resistance was recessive, involving several genes. At the Central Rice Research Institute, Cuttack (India), after screening of 1000 varieties for 9 years against *B. oryzae*, varieties CH13, CH45, CH20, T141, T498-2A, T988, T2114, T2118, T960, Bam10, IET 13238, CR10-4025, CR84-30, JBS83, JBS21, JBS218, JBS238, JBS568, JBS781, JBS1510, JBS1199 etc. were found resistant. Padmanabhan (1973) confirmed that resistance in CH 13 is governed by three pairs of recessive genes indicating its horizontal nature. Inheritance of field resistance was studied at the seedling, adult plant and kernel stages in six crosses including two resistant (*Pi1* and YNA282) and 2 susceptible varieties (Giza 171 and Sakha 1) by (Balal *et al.*, 1979). Seedling and adult plant leaf reactions were similar and governed by three genes (*Her*₁, *Her*₂ and *Hes*₁). The first two were dominant for resistance and the third for susceptibility. Kernel resistance was dominant over susceptibility and controlled by two genes (*Hekr*₁ and *Hekr*₂) carried by *Pi1* and *YNA* 282 respectively.

2.6.6 The partial resistance of Brown spot tolerance

Goel *et al.*, 2006 analysing the inheritance of resistance of brown spot resistance from crosses involving *O. nivara* germplasm, hypothesized that additive, dominant, as well as epistatic gene interactions were involved. Three quantitative trait loci (QTLs) were detected in Tadukan (*qBS2, qBS9* and *qBS11*), located on chromosomes 2, 9 and 11, respectively (Sato *et al.*, 2008). The *qBS11* being considered a major effect on brown spot resistance. However, Katara *et al.*, 2010 identified 10 QTLs, some of which may be common to the results by Sato *et al.*, 2008.

2.7 The mapping and basic of QTLs

A Mendelian trait is determined by a single gene (or few genes), following classical Mendelian inheritance patterns, such as 3:1 for a phenotypic ratio from a trait controlled by a single dominant gene in an F_2 family. In contrast, multiple genes could determine a quantitative trait and its value is continuous, such as plant height and human weight. Quantitative traits are very common and are important both in applied

and theoretical studies. In simple terms, QTL analysis is based on the principle of detecting an association between phenotype and the genotype of markers. Markers are used to partition the mapping population into different genotypic groups based on the presence or absence of a particular marker locus and to determine whether significant differences exist between groups with respect to the trait being measured (Tanksley, 1993; Young, 1996). A significant difference between phenotypic means of the groups, depending on the marker system and type of population, indicates that the marker locus being used to partition the mapping population is linked to a QTL controlling the trait. The QTL and marker will be usually be inherited together in the progeny and the mean of the group with the tightly-linked marker will be significantly different (P < 0.05) to the mean of the group without the marker.

The QTL studies are to locate QTL along chromosomes; this process is generally called QTL mapping. The detection and location of QTL have applications in many aspects of biological studies. By locating and characterizing the effects of individual QTL; the genetic architecture for a trait and its related biological function can be refined. The theory of QTL mapping was first described by Sax (1923), who noted that seed size in bean, a complex trait, was associated with seed coat color, a simple, monogenetically-controlled trait.

2.7.1 Genetic markers

In a broad sense, a genetic marker refers to any heritable character that can be used to distinguish one individual from another in a population. In current QTL mapping practice, variation at the DNA level is typically used because it is the most abundant and easily scored type of variation due the rapid development of genome technology. Among markers, RFLP, SSR and SNP are commonly used for mapping QTL. The term microsatellite refers to DNA sequences with repeating units of 1-6 nucleotides. For example $(GA)_n$ and $(CTG)_n$ are microsatellites, where n is the number of repeating units. They are often multiallelic, are usually locus specific and are evenly distributed along chromosomes and randomly distributed throughout the genome (Roder *et al.*, 1998, McCouch *et al.*, 2002). McCouch *et al.*, 2002 reported that in a new set of 2240 rice SSR the largest proportion of SSR showed to poly(GA) motifs (36%), followed by poly(AT) (15%) and poly(CCG) (8%) motifs. AT-rich microsatellites had the longest average repeat tracts, while GC-rich motifs were the shortest. There is approximately one SSR every 157 kb in the rice genome. Microsatellites show high levels of polymorphism compared to other marker systems in rice.

2.7.2 Maps and map construction

A genetic map describes orders and positions of identifiable landmarks on DNA. These landmarks might be genes or genetic markers. Two types of map are commonly used in practice, genetic and physical maps. For QTL studies both are extensively used for fine mapping and physical characterization of QTL. A genetic map and a physical map provide similar information on marker or gene order along the chromosomes. Availability of the complete sequence makes it possible to determine directly the order and spacing of the genes, which is a type of physical map (Weeks and Lange, 1987). Software has also been developed to construct genetic maps; a popular one is MAPMAKER (Lander *et al.*, 1987). Molecular marker technologies permit plant geneticists to construct high-density genetic maps for any species amenable to genetics and use them for detecting, mapping and estimating the effects of QTL. The analysis involves testing DNA markers throughout a genome for the likelihood they are linked with a QTL. Individuals in an appropriate mapping population (F_2 , backcross, recombinant inbred) are analyzed for DNA marker

genotypes and the phenotype of interest (Young, 1996). For each DNA marker, the individuals are split into classes according to marker genotype. Mean and variance parameters are calculated and compared among the classes. A significant difference between means suggests that there is a relationship between the DNA marker and the trait of interest. In other words, the DNA marker is probably linked to a QTL. QTL mapping, like any genetic study, is only as good as its phenotypic scoring method. There are powerful computer software programs are now available to analyze QTL mapping results (Nelson, 1997; Manly *et al.*, 2001; Broman *et al.*, 2003; Wang *et al.*, 2005) and better DNA marker systems have been developed to simplify the technique and increase marker density.

2.7.3 The QTL mapping methods

There are various statistical methods have been developed for QTL mapping. The most commonly used methods for QTL mapping are based on the maximumlikelihood method.

2.7.3.1 Single- Marker Analysis (SMA)

Single-marker analysis (also single-point analyses) is the simplest method for detecting QTLs associated with single markers. Single marker analysis tests the association between marker genotypes and trait values. The statistical methods used for single-marker analysis include *t*-tests, analysis of variance (ANOVA) and linear regression. Linear regression is most commonly used because the coefficient of determination (R^2) from the marker explains the phenotypic variation arising from the QTL linked to the marker. This method does not require a complete linkage map and can be performed with basic statistical software programs. SMA often fails to give reliable estimates of numbers and positions of QTLs and the magnitude of their effects (McMillan and Robertson, 1974, Lander and Botstein, 1989).

2.7.3.2 Simple Interval Mapping (IM)

The simple interval mapping (SIM) method makes use of linkage maps and analyses intervals between adjacent pairs of linked markers along chromosomes simultaneously, instead of analyzing single markers (Lander & Botstein, 1989). Interval mapping uses two observable flanking markers to construct an interval within which to search for QTL along the chromosomes. The use of linked markers for analysis compensates for recombination between the markers and the QTL and is considered statistically more powerful compared to single-point analysis (Lander & Botstein, 1989; Liu, 1998). When a peak has exceeded a threshold LOD value, there is evidence that a QTL has been found at that location (Zeng, 1994). Many researchers have used MapMaker/QTL (Lincoln *et al.*, 1993) and QGene (Nelson, 1997) to conduct SIM.

2.7.3.3 Composite Interval Mapping (CIM)

More recently, composite interval mapping (CIM) has become popular for mapping QTLs. This method combines interval mapping with linear regression and includes additional genetic markers in the statistical model in addition to an adjacent pair of linked markers for interval mapping (Jansen, 1993; Jansen & Stam, 1994; Zeng, 1994). The main advantage of CIM is that it is more precise and effective at mapping QTLs compared to single-point analysis and interval mapping, especially when linked QTLs are involved. Many researchers have used QTL Cartographer (Basten *et al.*, 1994), MapManager QTX (Manly *et al.*, 2001) and PLABQTL (Utz & Melchinger, 1996) to perform CIM.

2.7.3.4 Multiple Interval Mapping (MIM)

Multiple interval mapping uses multiple marker intervals simultaneously to fit various putative QTL directly into the model for mapping QTL. Kao and Zeng, 1999 developed MIM. MIM tends to be more powerful than SMA and CIM. Multiple interval mapping leads to more accurate QTL position and QTL effect estimates (Mayer, 2005). MIM is appropriate for the identification and estimation of genetic architecture parameters, including the number, genomic positions, effects and interactions of significant QTL and their contribution to the genetic variance.

Materials and Methods

CHAPTER - III

MATERIALS AND METHODS

The present study entitled "QTL mapping for bacterial leaf blight, sheath blight, blast and brown spot tolerance using RIL population of Rice (*Oryza sativa* L.)." was carried out in the Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalaya, Raipur (C.G.). The details of experiment are explained below.

3.1 Materials

3.1.1 Plant materials

The plant materials used in present study was recombinant inbred line (RIL) mapping population derived from the parent Danteshwari × Dagad deshi. The mapping population were provided by Dr S. B. Verulkar, Professor and Head, Department of Plant Molecular Biology and Biotechnology, College of Agriculture, IGKV, Raipur. The parent Danteshwari is a highly susceptible *indica* rice cultivar and Dagad deshi, an *indica* rice cultivar that has moderate resistance properties for diseases. The salient features of parents were summarized in (Table 3.1).

S.N.	Parent	Pedigree	Reaction to diseases	Salient Features
1	Danteshwari	Shamridhi ×	Resistant to BLB and	High yielding,
		IR 8608-298	moderate resistant to	resistance to gall
			Brown spot,	midge, long slender
			Susceptible to ShB and	grain.
			leaf Blast	
2	Dagad deshi	Land race	Susceptible to BLB and	Strong culm, broad
			Brown spot,	leaves, bold seeded.
			Resistant to ShB and	
			leaf Blast	

Table 3.1	Characteristic	features of	parents

3.1.2 Isolates

The causal organism of Bacterial blight *Xanthomonas oryza* pv. *oryzae* and *Rhizoctonia solani* cause sheath blight used in present study isolated by Dr. Toshy

Agrawal and Dr. A.S. Kotasthane, Professor, Department of Plant Molecular Biology and Biotechnology, College of Agriculture, IGKV, Raipur from district Dhamtari and Raipur of Chhattisgarh.

3.2 Methods

122 RILs population derived from Danteshwari × Dagad deshi of F_{14} generation were evaluated for different diseases during *Kharif*-2013. The mapping populations along with their parents were evaluated for disease resistance, under field condition using Randomized Block Design (RBD) with three replications. The nursery of rice seedlings was prepared before 30 days of transplantation. The labeled field prepared as clean weeds, well plough, paddled and given basal dose of fertilizers for requirement of Nitrogen, Phosphorus and Potash etc. The plant-to-plant and row-to-row space has taken as 15 ×15cm and 20 × 20cm respectively. The normal package of practices was followed.

3.2.1. The phenotypic observations of mapping population and parents for bacterial leaf blight trait

3.2.1.1. Pathogen inoculation and disease scoring of Bacterial leaf blight

The local isolate of Bacterial blight *Xanthomonas oryzae* pv. *Oryzae* was inoculated at maximum tillering stage. The *Xoo* isolates were revived from the stock culture maintained at 4 ^oC. The culture was grown on Wakimoto's Medium for 3 days at 30^oC. The inoculum was prepared by suspending the bacterial mass with sterilized distilled water to a concentration of about 10⁹ cells/ml and was immediately used for inoculations with the help of scissor. Disease score was evaluated 21 days after inoculation. The mean lesion length and base on SES qualitative (0-9) scale, score data were recorded as in Table 3.2 (IRRI, 2002).

Score	Percentage of infected leaf area (%)	Reaction
0	0	Highly Resistant (HR)
1	1-5	Resistant (R)
3	6 – 12	Moderately Resistant (MR)
5	13 – 25	Moderately Susceptible (MS)
7	26 - 50	Susceptible (S)
9	75	Highly Susceptible (HS)

Table 3.2 Disease scoring and the reactions for Bacterial leaf blight

The entire inoculation experiment was replicated three times for population of the isolates. The *Xanthomonas* inoculation was carried out as described by clip inoculation technique (Kauffman *et al.*, 1973). The inoculated plant grown in natural field condition. The component length of disease lesion was estimated and was considered for the traits. The diseased lesion of fifteen plants from each line was used for estimating of disease.

3.2.2. The phenotypic observations of mapping population and parents for Sheath blight

3.2.2.1. Pathogen inoculation and disease scoring of Sheath blight

The local isolate of *Rhizoctonia solani* isolated from ground soil of Raipur was used for screening. The fungus was maintained on oat meal agar medium for the production of sclerotia. The pure culture of *R. solani* was maintained in Petri dishes on Potato Dextrose Agar medium and transfer in rice bran for mass multification. The RIL lines screened by inoculation of fungus *Rhizoctonia solani* isolate at 30 days after transplanting during the month August. The observations on diseased lesion were recorded by measuring lesion size in centimeter (cm) after 10th day of inoculation from randomly selected six plants and affected tillers per plant of each RIL line from three replication. Grayish-green lesions may enlarge and coalesce with other lesions,

mostly on lower leaf sheaths. The disease lesion length and width were measured with the scale from one end to another end covering whole infected region of the sheath tissues. The length and width of the biggest lesion also taken for analysis. The length of sheath, plant height and total tiller per plant were also recorded to work out percentage length lesion to the sheath (Channamallikarjuna *et al.*, 2010).

3.2.3. The phenotypic observations of mapping population and parents for leaf Blast disease

The experiment was carried out under field conditions plant disease screening section at Ambikapur between June and July, 2013. Evaluation of partial resistance to leaf blast in the 122 Danteshwari × Dagad deshi crossed RILs population along with parent was conducted at College of Agriculture, Ambikapur, Indira Gandhi Krishi Vishwavidyalaya in 2013. About 50 seeds of each line and the parental cultivars were sown in a 150 cm-length row with 10 cm spacing on July, 2013. A complete randomized block design was used with two replications. As Swarna is highly susceptible to Blast, to induce leaf blast development, the rice cultivar Swarna was used as a spreader by planting this cultivar after every ten lines and surrounded by one row around whole population. The population was allowed to grow for natural occurrence of the disease. The disease severity of leaf blast in each of the population and the parental cultivars was evaluated on 13.08.2013 based on 0-9 score as in Table 3.3 (IRRI, 2002). The scores ranged from 0 (no lesion) to 9 (highly affected).

Score	Predominant lesion type
0	No lesions observed
1	Small brown specks of pin-point size or larger brown specks without sporulating center
2	Small roundish to slightly elongated, necrotic gray spots, about 1-2 mm in diameter, with a distinct brown margin
3	Lesion type is the same as in scale 2, but a significant number of lesions are on the upper leaves
4	Typical susceptible blast lesions 3 mm or longer, infecting less than 4% of the leaf area
5	Typical blast lesions infecting 4-10% of the leaf area
6	Typical blast lesions infection 11-25% of the leaf area
7	Typical blast lesions infection 26-50% of the leaf area
8	Typical blast lesions infection 51-75% of the leaf area and many leaves are dead
9	More than 75% leaf area affected

Table 3.3 Disease scoring and the reactions for leaf Blast of rice

3.2.4 The phenotypic observations of mapping population and parents for Brown spot

The 122 F_{14} RIL population and their parent Danteshwari and Dagad deshi grown in field as a randomized complete block design with three replicates for each treatment with spacing taken as 15×15 cm plant to plant and 20×20 cm row to row respectively. The plants were allowed to grow for 60 to 90 days in a field condition upto heading stage. Natural occurrence of the disease severity was assessed visually as percentage of leaf area with brown spot symptoms. Typical leaf spots are small, oval or circular and dark brown. The percentage of spots cover area were recorded and further categorized based on 0-9 score as in Table 3.4 (IRRI, 2002).

Score	Affected leaf area (%)
1	No incidence
2	Less than 1
3	1-3
4	4-5
5	11-15
6	16-25
7	26-50
8	51-75
9	76-100

Table 3.4 Disease scoring and the reactions for Brown spot of rice

3.3 Statistical analysis of phenotypic data

The data recorded on all the traits related to disease resistance in both the seasons were statistically analyzed. Major statistical procedures followed were:

A. Mean: Mean is the average value of observation of population. It represents the standard average value over fluctuation in the environment.

Mean was calculated by the following formula:

 $X = \sum Xi / n$

Where, $\sum Xi =$ Summation of all the observations

n = Total number of observations

B. Correlation coefficient

The correlation coefficients were worked out to determine the degree of association among different traits. Correlation coefficient (r) was calculated for disease resistance contributing characters by using

$$r_{(x,y)} = \frac{\text{Cov.}(x, y)}{\sqrt{\text{Var}(x) .\text{Var}(y)}}$$

Where,

 $r_{(x,y)}$ = Correlation coefficient between character x and y

Var(x) = Variance of x character

Var(y) = Variance of y character

3.4 Genotyping of RIL population and construction of linkage map

The genotyping work was done in the following heading-

3.4.1 Isolation of genomic DNA

The Genomic DNA isolated from leaf of young succulent single plant of parents (Danteshwari and Dagad deshi) and 122 RILs population using modified CTAB protocol (Keb-Llanes *et al.*, 2002). The tender leaves of single plant of parents and RILs were collected from field, extracted DNA and stored for feature uses. Genomic DNA isolation Protocol leaf of young succulent single rice plant:

- 1. Weigh around 5-6g of plant tissue.
- Leaves were cut into small pieces and crushed into Tissue lyzer (*Mo Bio Laboratories ltd*). Leaf powder (approximately 1.5ml) transferred immediately into 50 ml centrifuge tube.
- Once the sample was prepared then adds 5 ml EBA, 15 ml EBB, and 2 ml of 20% SDS.
- 4. Vortex the sample and incubated at 65°C for 10 min.
- 5. Then added 15 ml of chloroform: isoamyl alcohol (24:1) and gently shake the mixture by inversion for 15 min.
- 6. Centrifuge at 3000 rpm for 20 min to separate the phase and transferred the upper phase to new tube.
- 7. Repeated the chloroform extraction (step 5) one more time.
- 8. Then added 2/3 volume of pre-chilled isopropanol and incubated at room temperature for 30 min or longer until DNA was precipitated.
- 9. Centrifuge for 10 min at 3000 rpm and collected DNA pellet.
- 10. Washed the DNA pellet with 70% EtOH and air dried for 10 min.
- 11. Resuspended DNA pellet in 5 ml of TE buffer and the pellet was dissolved.
- 12. Then added 15 μ l of RNase (10 mg/ml) and incubated at 37^oC for 30 min.

- 13. Then added 1/10 volume of 3M sodium acetate and 2 volume of pre-chilled absolute ethanol mixed gently and incubated at room temperature for 30 min.
- 14. Centrifuge the DNA pellet for 8-10 min at 3000 rpm.
- 15. Then added 1ml of 70%EtOH and washed the DNA pellet.
- 16. Centrifuge for 3 min at 3000 rpm and discarded the 70% alcohol and placed the tube upside down on paper towel to get rid of excess of ethanol.
- 17. Then pellet was resuspended in 500 μ l of TE buffer and incubated overnight. Centrifuge at 3000 rpm for 5 min. and supernatant was transferred to new 1.5 ml micro centrifuge tube. DNA stored at -20⁰C until used.

3.4.2 Quantification and estimation of purity of DNA

The DNA was quantified using Nanodrop spectrophotomer (ND1000). Two micro liter of isolated DNA was placed over tip of Nanodrop. The absorbance ratio (A_{260}/A_{280}) was recorded for each sample to find out the purity of DNA. The Pure DNA and RNA has a ratio of approximately 1.8 and 2.0, respectively. If there is contamination with protein or phenol the ratio will be significantly less than this value (< 1.8). A ratio greater than 2.0 indicates a high proportion of RNA in the DNA sample.

3.4.3 Dilution of DNA samples

After quantification, the DNA was diluted with TE such that the final 3 of DNA was approximately $40\eta g/\mu l$. The diluted DNA was subsequently used for PCR amplification.

3.4.4 PCR amplification using SSR primers

3.4.4.1 PCR reaction

The optimized PCR protocol was used for identify the informative SSR markers on the basis of parental polymorphism. There were 254 SSR RM markers

surveyed for parent Danteshwari and Dagad deshi (Appendix II). The list of polymorphic SSR markers used for RIL population genotyping given in (Table 3.7).

Three μ l of diluted DNA of parent was dispensed at the bottom of PCR tube. Cocktail was prepared separately in an eppendoff tube as described in Table 3.5 and 17 μ l of cocktail was added to each tube. Amplification was carried out in Thermal Cycler of MJ Research Pvt. Ltd., USA for 35 cycles. The details of PCR thermal profile for amplification are summarized in table 3.6. 20 μ l of PCR amplified and SSR product was mixed with 7 μ l of 6X loading dye and 5 μ l of this was loaded on 5% PAGE gel along with 100 bp ladder. Electrophoresis was done for 1 hour at 180 volts. Gels were stained using EtBr solution then visualized and photographed by using Gel Doc Unit, detailed below.

S.No	Component	Stock concentration	Volume/reaction
1	DNA	40 µg/ml	3.0 µl
2	ADW		11.5 µl
3	10X Buffer	10X	2 µl
4	dNTP	1 mM	2 µl
5	Primer (Forward+ reverse)	5 μΜ	1 µl
6	Taq polymerase	1 U/µl	0.5 μl

Table 3.5 PCR mix for one reaction (Volume 20µl)

Table 3.6 Te	emperature p	profile used	for PCR	amplification	using SSR	primers
--------------	--------------	--------------	---------	---------------	-----------	---------

Steps	Steps Temperature	Duration	Cycles	Activity
	(°C)	(min.)		
1	94°C	4	1	Initial Denaturation
2	94°C	1	30	Denaturation
3	55-68°C	1	30	Annealing
4	72°C	1	30	Extension
5	72°C	5	1	Final Extension
6	4°C	8	1	Storage

S.N.	Marker	S.N.	Marker	S.N.	Marker	S.N.	Marker
1	RM-499	42	HvSSR3-56	83	HvSSR6-44	124	RM-108
2	HvSSR1-24	43	HvSSR3-71	84	HvSSR6-56	125	RM-242
3	HvSSR1-33	44	HvSSR3-85	85	RM-225	126	RM-288
4	HvSSR1-34	45	RM-517	86	HvSSR6-65	127	RM-553
5	HvSSR1-49	46	RM-7	87	RM-217	128	RM-278
6	RM-428	47	RM-232	88	RM-136	129	RM-201
7	HvSSR1-55	48	RM-411	89	RM-340	130	RM-245
8	RM-84	49	RM-135	90	RM-400	131	HvSSR10-1
9	RM-1	50	RM-55	91	RM-481	132	HvSSR10-5
10	HvSSR1-80	51	RM-85	92	HvSSR7-40	133	HvSSR10-17
11	HvSSR1-87	52	RM-307	93	HvSSR7-43	134	RM-222
12	HvSSR1-89	53	HvSSR4-26	94	HvSSR7-46	135	HvSSR10-34
13	RM-259	54	HvSSR4-35	95	RM-125	136	RM-171
14	RM-243	55	HvSSR4-38	96	HvSSR7-53	137	RM-228
15	RM-572	56	HvSSR4-39	97	RM-2	138	RM-484
16	RM-24	57	HvSSR4-42	98	RM-11	139	HvSSR11-1
17	RM-449	58	RM-564	99	RM-234	140	HvSSR11-2
18	RM-5	59	RM-273	100	RM-248	141	HvSSR11-3
19	RM-212	60	RM-348	101	RM-337	142	HvSSR11-13
20	RM-3825	61	RM-317	102	RM-152	143	RM-202
21	RM-302*	62	RM-559	103	HvSSR8-29	144	RM-229
22	RM-486	63	HvSSR5-13	104	RM-310	145	RM-21
23	RM-14	64	HvSSR5-23	105	RM-44	146	RM-26334
24	RM-109	65	HvSSR5-31	106	RM-483	147	RM-206
25	RM-485	66	HvSSR5-39	107	RM-72	148	RM-254
26	HvSSR2-1	67	HvSSR5-48	108	RM-515	149	RM-224
27	HvSSR2-12	68	HvSSR5-51	109	RM-256	150	RM-20
28	HvSSR2-23	69	HvSSR5-52	110	RM-230	151	HvSSR12-35
29	HvSSR2-27	70	HvSSR5-56	111	RM-433	152	HvSSR12-36
30	HvSSR2-78	71	HvSSR5-65	112	RM-281	153	HvSSR12-40
31	RM-174	72	HvSSR5-66	113	HvSSR9-5	154	HvSSR12-48
32	RM-492	73	RM-163	114	RM-444	155	HvSSR12-51
33	RM-475	74	RM-440	115	HvSSR9-7	156	RM-277
34	RM-341	75	RM-459	116	HvSSR9-19	157	RM-511
35	RM-221	76	RM-188	117	HvSSR9-25	158	RM-260
36	HvSSR3-6	77	RM-421	118	HvSSR9-27	159	RM-519
37	HvSSR3-9	78	RM-178	119	HvSSR9-37	160	RM-28305
38	HvSSR3-35	79	RM-26	120	HvSSR9-57	161	RM-270
39	HvSSR3-40	80	RM-274	121	RM-296	162	RM-17
40	HvSSR3-41	81	RM-87	122	RM-434		
41	RM-231	82	HvSSR6-35	123	RM-410	1	

Table 3.7 List of polymorphic SSR markers used for RIL population genotyping

Note: Hv= highly variable
3.5 Polyacrylamide Gel Electrophoresis

For better separation and visualization of PCR amplified microsatellite products, 5% polyacrylamide gels (vertical) were used, since polyacrylamide gels have better resolution. *CBS-SCIENTIFIC* electrophoresis unit used for casting gel. Glass plates were prepared before making the gel solution. Both glass plates (outer and inner notched glass plates) were cleaned thoroughly with warm water, detergent and then with deionised water.

3.5.1 Assembling and pouring of gel

- Gasket was fixed to the three sides of the outer plate (without notches). Spacers of 1.5mm thickness were placed along the sides by just attaching the gasket of outer plate.
- Later, notch plate was kept on the outer plate so that spacers were between the two plates. Clamps were put on the three sides of plates leaving notch side of unit. It was checked with water to found any leakages.
- For casting gel was prepared just prior to pouring. For preparation take 65 ml of 5% PAGE solution then added 700 μl of ammonium per sulphate 10 % (APS) and 70 μl of TEMED (N-N-N-Tetramethylethylenediamine) to initiate the polymerization process.
- The contents were mixed gently by swirling, but bubbles were avoided. Before pouring, assembly was kept on the bench top so that it made 45 degree angle with bench top.
- Then gel solution was poured from notch side with maximum care to avoid air bubbles. Comb of 1.5 mm thickness (60 wells) was inserted with tooth side in the gel.
- Later assembly was kept for polymerization for 20-30 min.

73

3.5.2 Electrophoresis

- After polymerization process, gasket was removed and assembly was kept in the electrophoresis unit with electrophoresis unit clamps so that notch side facing inner side of the unit and facing other plate without notch to outer side.
- TBE (1 X) was poured in upper tank in the unit and the rest was poured in bottom chamber.
- Comb was removed with care so that it cannot disturb the wells formed.
- \blacktriangleright At last, 7µl loading dye (6 X) was added to PCR products.
- Finally, 5µl of each sample were loaded into the wells for facilitating the sizing of the various alleles. Ladder (100bp) was loaded in the first well.
- \blacktriangleright Gel was run at 180 volts till the dye reached bottom of the gel.

3.5.3 Visualization of bands

After electrophoresis, clamps were removed and glass plates were separated without damaging the gel.

- Gel was taken out from plate into staining box with care by flipping the gel with help of spatula and by pouring little amount of water for easy removal.
- Ethidium bromide solution (prepared by adding 10µl to 200 ml double distilled water was poured into the staining box to stain the gel.
- It was agitated for about five minutes to stain the gel.
- Gel stained with Ethidium Bromide was washed two times with double distilled water to have clear images.
- The gels were scanned with the help of *BIO-RAD* gel doc XR⁺.

3.6 Scoring of banding pattern

The banding pattern of population developed by each set of SSR scored as in Table 3.8.

S. No.	Code	Type of band			
1.	А	Danteshwari like allele			
2.	В	Dagad deshi like allele			
3.	Н	Both alleles			
4.	0	Other type			

Table 3.8 Scoring SSR banding pattern of population

3.7 QTL mapping

The position of QTLs on Chromosomes was identified with the help of Single marker analysis (SMA) and composite interval mapping (CIM) were performed by QTL cartographer software (version 2.5) (Wang *et al.* 2007). The phenotypic and genotypic data was analyzed using QTL cartographer-2.5 with a threshold value of 3.0 LOD and linkage map was subsequently constructed.

3.7.1 Single marker analysis

Single maker analysis considered one locus at a time and fits the following regression model:

y = b0 + b1x + e,

Where,

y = Phenotypic value of a line

b0 = Population mean

b1 = Additive effect of the locus on the trait

e = Residual error

x = Genotypic code at the locus being tested for the line considered

3.7.2 Composite interval mapping

The composite interval analysis was performed using Mixed linear model, scanning the genetic map and estimating the likelihood of a QTL. Background markers were selected by forward and backward stepwise regression. Default cutoff LOD score of 3 were used for QTL identification.

A method of composite interval mapping based on mixed linear model was applied to detect QTLs. The model being tested with CIM is:

$$y = b0 + b1x1 + b2x2 + ... + bnxn + bixi + e$$

where,

x1, x2, ..., xn = Coefficients for the *n* cofactors (the -1 or +1 genotypic scores at those loci indicating whether a line has parent 1 or parent 2 genotype at the marker locus)

bi = Additive effect of the interval position being tested

b1, b2, ..., bn = Additive effects of the *n* cofactors

xi = Coefficient for the interval position being tested, based on the twolocus genotypes of the flanking marker loci and the position inside the interval being tested

3.8 QTL cartographer 2.5

QTL Cartographer 2.5 (Wang *et al.* 2007) is a suite of programs for DOS, UNIX, MacOS or Windows. A freely available program to map quantitative traits using a map of molecular markers. QTL Cartographer is distinguished by its menudriven interface, its more detailed documentation, and its resampling methods. Windows QTL Cartographer (WinQTLCart) maps QTLs in cross populations from inbred lines. WinQTLCart includes a graphic tool for presenting mapping results and can import and export data in a variety of formats. This program implements the following statistical methods: single-marker analysis, interval mapping, composite interval mapping, Bayesian interval mapping, multiple interval mapping, multiple trait analysis and multiple trait MIM analysis.

3.9 QTL IciMapping 3.2

ICIM (QTL IciMapping) is software which constructs genetic linkage maps and maps QTL by simple interval mapping and inclusive composite interval mapping. It can also map segregation distorsion loci, analyse QTL by environment interaction in biparental populations and map QTL in Nested Association Mapping populations. New features and improvements in Version 3.2 include:

- Dominant/recessive markers are considered in recombination frequency estimation, map construction and QTL mapping.
- A new functionality called IMP is implemented, which used to build the integrated map from multiple genetic linkage maps sharing common markers.
- A new tool called 2 point REC is implemented, which used to estimate the pair-wise recombination frequency in bi-parental population.
- Figures of linkage maps are improved. The presence of a putative QTL was declared if the LOD threshold was larger than 2.5 using QTL IciMapping 3.2.

3.10 In silico analysis of the QTLs region

The DNA sequence of the QTLs region from the genome database GRAMENE of Oryza sativa subsp. japonica cv. Nipponbare was used for in silico analysis (www.gramene.org).

3.11 Reagents and Buffers

1. Extraction Buffer A:

Chemicals	Stock concentration	Working concentration	Volume required per 1000 ml		
СТАВ	-	2%	20 g		
Tris-HCl (pH 8.0)	1M	100 mM	100 ml		
EDTA (pH 8.0)	0.5M	20 mM	10 ml		
NaCl	5 M	1.4M	280 ml		
PVP	-	4%	40 g		
After adding required volumes of all the stock chemicals the final volume was made up to 1000 ml with autoclaved distilled water. Before using the solution added 700 μ l					

 β mercaptoethanol.

2. Extraction Buffer B:

Chemicals	Stock concentration	Working concentration	Volume required per 1000 ml		
Tris-HCl (pH 8.0)	1M	100 mM	100 ml		
EDTA (pH 8.0)	0.5M	50 mM	25 ml		
NaCl	5 M	100 mM	20 ml		
After adding required volumes of all the stock chemicals volume was made up to 1000 ml with autoclayed distilled water. Before using the solution added 700 ul 8					

1000 ml with autoclaved distilled water. Before using the solution added 700 μ l β mercaptoethanol.

3. TE buffer:

Chemicals	Stock concentration	Working concentration	Volume required per 1000 ml		
Tris-HCl (pH 8.0)	1M	10 mM	10 ml		
EDTA (pH 8.0)	0.5M	1 mM	2 ml		
After adding required volumes of all the stock chemicals adjusted the final volume					
was made upto 1000 ml with autoclaved distilled water.					

4. RNase solution (10 mg/ml):

Dissolved 10 mg of RNase powder in 1 ml of TE buffer by boiling. Allowed

to cool at room temperature and stored in freezer.

5. 3M Sodium acetate (pH 5.2):

3M sodium acetate was prepared by dissolving 24.61 g of anhydrous sodium acetate in 30 ml autoclaved distilled water. After adjusted the pH to 5.2 with glacial acetic acid the final volume was made up to 100 ml with autoclaved distilled water.

6. 1M Tris-HCl solution (pH 8.0):

Dissolved 121.14 g of Tris base in 800 ml distilled water and adjusted the pH to 8.0 with Conc. HCl. and final volume was made up to 1000 ml with distilled water and sterilized by autoclaving.

7. 0.5 M EDTA solution (pH 8.0):

Dissolved 186.1 g of disodium EDTA in 800 ml distilled water along with 17g NaOH pellets and adjusted the pH to 8.0 with NaOH pellets itself. Final volume was make up to 1000 ml with distilled water. Sterilized by autoclaving.

8.20 % SDS:

Dissolved 20 g SDS in 100 ml autoclaved distilled water.

9.5 M NaCl:

Dissolved 73.05 g NaCl in 200 ml DW and make up the final volume to 250 ml with DW.

10. Chloroform: Isoamyl alcohol: prepared freshly as 24:1 v/v.

11. Ice-cold Isopropanol

12. Absolute Ethanol

13. Ethanol (70%) Preparation of solution for PAGE

14. 40% PAGE gel solution (100 ml)

Stock	For100 ml
Acrylamide	38 g
Bisacrylamide	2 g

Autoclave double distilled water was used to make up volume to 100 ml. For 5% PAGE gel were prepared by using 12.5 ml of 40% stock solution make up in 100 ml in 1X TBE buffer.

15. Ammonium persulphate (APS): 10% APS was prepared by mixing following

components

Stock	For 10 ml
Ammonium persulphate	1 g
Distilled water	10 ml

16. Gel contains:

Contain	ml/ μL
5% PAGE solution	65ml
APS	700 μL
TEMED	70 µL

17.10 X TBE buffer

Components	Requirement per 1000 ml		
Trizma base	108 gm		
Boric Acid	52 gm		
0.5 M EDTA (pH 8.0)	40 ml		

18.1 X TBE: Diluted 100 ml of 10 X TBE to 900 ml with distilled water.

19. 0.5 M EDTA solution (pH 8.0):

Dissolved 186.1 g of disodium EDTA in 800 ml distilled water along with 17g NaOH pellets and adjusted the pH to 8.0 with NaOH pellets itself. Final volume was make up to 1000 ml with distilled water. Then, sterilized by autoclaving.

20. Formamide dye: Formamide dye was prepared by mixing following components

Stock	For 10 ml		
Formamide	9.8 ml		
0.5 M EDTA	200 µl		
Xylene cyanol	0.0025 g		
Bromophenol blue	0.0025 g		

21. Ethidium Bromide stock solution (10 mg/ml): 1g Ethidium bromide was dissolved in 100 ml distilled water by stirring for several hours and stored it in a dark bottle at room temperature.

S.N.	component	Amount	
1	Peeled potato	300 gm	
2.	Sucrose	20 gm	
3.	Peptone(Bacteriological)	5 gm	
4.	Ca(NO ₃)2 4H ₂ O	0.5 gm	
5.	Na ₂ HPO ₄ 12H ₂ O	1.87gm	
6.	Agar	15 gm	
7.	Distilled water make upto	1000 ml	
The pH was adjusted to 6.8-7.0 prior to sterilization			

22. Composition of Wakimoto's Medium:

23. Composition of PDA:

S.N.	component	Amount		
1	Potato	250 gm		
2	Dextrose	20 gm		
3	Agar	20 gm		
Boil and makeup with distilled water upto to 1000 ml				

Results

CHAPTER- IV RESULTS

Rice is one of the most important staple foods for the increasing world population, especially in Asia. The diseases are among the most important limiting factors that affect rice production, causing annual yield loss conservatively. The resistant cultivars and application of pesticides have been used for disease control. Due to the breakdown of the resistance in the face of high pathogenic variability of the pathogen population need to develop strategies providing durable resistance, giving protection for a long time and over a broad geographic area. The polygenic quantitative resistance much more durable than qualitative resistance, because each gene involved has a small effect on host resistance. The accumulation of such small effects may process longer life span in crop production than the resistance conferred by a single R gene.

Two potential *indica* genotypes, Danteshwari: a high yielding popular rice cultivar but resistance to few diseases and Dagad deshi: a tall deep rooted, poor yielder and resistance to few diseases. The parents along with their derived F_{14} RILs were used for the phenotypic evaluation of four diseases such as Bacterial leaf blight, Sheath blight, leaf Blast and Brown spot traits. The genotyping of the RILs population further help us to detect QTLs for above diseases resistance.

4.1 The distribution of resistance for Bacterial leaf blight in the RILs population

The frequency distribution of disease reaction of 122 RILs population derived from Danteshwari \times Dagad deshi was examined to determine if its normality for local *Xoo* isolate used in the experiment. The analysis indicated that nearly normal distribution was followed for RILs population (Figure 4.1). A higher percentage of lines showed scores of 1, 3, 5 and 7 qualitatively (0-9 SES scale; IRRI, 2002) to *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) local isolate used in the experiment. On the basis of mean lesion length, higher percentage of lines showed range (2 to 8cm) on frequency distribution graph. The phenotypic screening result for Bacterial blight resistance of many RILs showed resistance toward local *Xoo* isolate used in the experiment. There were few lines such as line number 71, 83, 88, 94, 107, 109 and 115 which showed high resistance to the *Xoo* isolate used, indicating that a combination of several genes was required to achieve different level of resistance.

The parental lines Danteshwari and Dagad deshi showed significant differences in their resistance level in the experiment. The mean lesion length of 2.28cm for Danteshwari and 11.34cm for Dagad deshi were obtained. The parent Danteshwari showed high resistance reaction toward Bacterial blight *Xoo* isolate and the parent Dagad deshi showed highly susceptible (Fig. 4.2).

Figure 4.1 The frequency distributions of the traits such as mean lesion length and BLB reaction on qualitative (0-9) scale

a) Local Xanthomonas oryzae pv. oryzae (Xoo) isolate used for inaculation

b) Resistant line

Highly succeptable line

b) Parents Danteshwari (P₁) and Dagad deshi (P₂)

Figure 4.2 The occurrence of disease reaction on RIL population by artificial inoculation of *Xoo* isolate

4.2 Genotyping of RIL population and construction of linkage map

The polymorphism survey was conducted between the parents Danteshwari and Dagad deshi by using 254 SSR RM markers randomly distributed on all 12 rice chromosomes (www.gramene.org; Orjuela *et al.*, 2009). Among 254 markers, 58 markers found parental polymorphic (Table 4.1 and Fig. 4.3).

Serial	SSR marker	16	RM13541	30	RM6467	45	RM26643	
CH# 1		17	RM7485	31	RM3765	46	RM26652	
1	RM3252	CH#	3	CH#	£ 8	47	RM26998	
2	RM3746	18	RM5474	32	RM23251	48	RM27318	
3	RM8071	19	RM3392	CH#	£ 9	49	RM27326	
4	RM129	20	RM5626	33	RM23736	50	RM3577	
5	RM8139	21	RM16147	34	34 RM257		CH# 12	
6	RM3341	22	RM7389	35	RM24718	51	RM3323	
7	RM7405	CH#	4	CH# 10		52	RM5927	
8	RM11307	23	RM7585	37	RM25149	53	RM27542	
9	RM1095	24	RM16368	38	RM1126	54	RM27877	
10	RM5794	25	RM16559	39	RM1375	55	RM28607	
CH# 2	,	26	RM5979	40	RM6673	56	RM1159	
11	RM6842	27	RM17303	41	RM4771	57	RM6411	
12	RM12368	28	RM17388	CH#	± 11	58	RM1227	
13	RM4355	CH#	5	42	RM26063			
14	RM6375	29	RM3381	43	RM26105			
15	RM6509	CH#	6	44	RM332			

Table 4.1 SSR markers used for parental polymorphism (Danteshwari and
Dagad deshi)

Figure 4.3 The informative SSR markers identified on the basis of parental polymorphism

Figure 4.4 The linkage map constructed from 162 polymorphic markers

A linkage map of 162 SSR polymorphic markers (RM and HvSSR) was constructed by using QTL cartographer 2.5. A total of 162 well distributed polymorphic SSR (RM and HvSSR) (McCouch *et al.*, 2002) markers between Danteshwari and Dagad deshi were used to construct a linkage map (Verma, 2013; Thesis). All of 162 clearly polymorphic markers were used in segregation analysis of 122 RILs population. The genotypes at markers were scored for each line based on the banding patterns. Based on these data, the genetic linkage map was constructed as shown (Figure 4.4). The map covered 335.8 cM for all 12 chromosomes with an average interval of 29.65 cM between the adjacent markers. The order of the markers in each chromosome was consistent with the order of the Nipponbare map (www.gramene.org). The genotypic data of 162 polymorphic SSR (RM and HvSSR) markers were further used for QTL mapping in the experiment.

4.3 Single Marker Analysis for BLB resistance

The Single Marker Analysis tests the association between marker genotypes and trait values using F-test in QTL cartographer 2.5. This analysis fits the data to the simple linear regression model y = b0 + b1 x + e. The results given estimate of b0, b1 and the F statistic for each marker. It was interested in whether the marker is linked to a QTL. This was determining if b1 is significantly different from zero. The F statistic compares the hypothesis H0: b1 = 0 to an alternative H1: b1 not 0. The pr(F) a measure of how much support there is for H0. A smaller pr(F) indicates less support for H0 and thus more support for H1. Significance at the 5%, 1%, 0.1% and 0.01% levels are indicated by *, **, *** and **** respectively. The following markers were highly associated with mean lesion length and reaction qualitative SES (0-9) scale for Bacterial leaf blight resistance (Table 4.2).

Chr.	Markers significance at 0.01% level (****)	Traits					
1	RM499, RM449, HvSSR1-80, RM486,						
1	RM3825, HvSSR1-87, HvSSR1-89	TT1 1 .					
9	RM288, RM242, RM108	I he mean lesion					
11	RM224	length					
12	RM260, RM519, HvSSR12-35, RM28305						
1	RM499, RM3825						
3	HvSSR3-6, RM232, HvSSR3-40, HvSSR3-41						
4	HvSSR4-26, HvSSR4-38, HvSSR4-39, RM348	The reaction					
8	RM230, RM433, RM281	qualitative (0-9) scale					
11	HvSSR11-1, RM224	quantative (0 3) seare					
12	RM260, RM519, HvSSR12-35, RM28305,						
12	HvSSR12-40						

 Table 4.2 The markers that were highly associated BLB resistance

4.4 QTLs mapping through Composite Interval Mapping for BLB

The genotypic data and phenotypic data of field condition of Bacterial blight were analyzed using QTL cartographer 2.5 and QTL IciMapping 3.2 softwares. The presence of a putative QTL declared if the LOD threshold was larger than 3 for the traits using QTL cartographer 2.5 while 2.5 using QTL IciMapping 3.2 software.

A total of 10 and 3 QTLs were identified for Bacterial blight resistance under different conditions such as mean lesion length and on the basis of BLB reaction qualitative (0-9) scale (IRRI, 2002), respectively using QTL cartographer 2.5 while 3 and 1 QTLs were identified using QTL IciMapping 3.2, out of which 1 QTL was found common within both the software. These loci were associated with LOD scores above the threshold value determine by permutation test for these traits of the experiment. The resistance loci mapped to 8 chromosomes out of 12 rice chromosome. The LOD score for QTLs found range from 3.03 to 8.83 for mapping with QTL cartographer 2.5 and 2.53 to 10.66 using QTL IciMapping 3.2 for Bacterial blight resistance. These QTLs were found to be present on chromosome #1, 3, 4, 5, 6, 9, 10 and 12. The QTLs along with their LOD score and R^2 value worked out through composite interval mapping (Table 4.3, 4.4, 4.5 and 4.6) respectively.

Trait	Putative QTL	Chr.	Position	Left marker	Right marker	LOD	Additive	R ² %
	qBbrla	1	1.00	RM499	RM1	7.86	-1.37	13.53
	qBbr1b	1	39.20	HvSSR1-87	HvSSR1-89	5.33	-3.06	27.61
	qBbr3a	3	16.9	HvSSR3-40	RM411	4.39	-0.06	0.36
	qBbr3b	3	26.00	HvSSR3-56	HvSSR3-71	4.19	0.001	1.02
Mean	qBbr4a	4	7.80	RM564	HvSSR4-35	4.56	-0.61	3.45
length	qBbr5a	5	6.90	HvSSR5-23	HvSSR5-31	3.14	-0.11	0.11
Tengu	qBbr5b	5	15.8	HvSSR5-39	HvSSR5-48	3.03	0.01	0.02
	qBbr9a	9	5.60	HvSSR9-7	RM444	3.37	-0.75	1.20
	qBbr10a	10	16.20	HvSSR10-34	RM171	3.58	-0.46	0.37
	qBbr12a	12	19.00	RM511	RM519	4.22	-1.75	10.9

Table 4.3 QTLs underlying BLB resistance mapped by QTL cartographer 2.5

Table 4.4 QTLs underlying BLB resistance mapped by QTL IciMapping 3.2

Trait Name	Putative QTL	Chr.	Position	Left marker	Right marker	LOD	Add	PVE (%)
Mean lesion length	qBbrlc	1	40.38	HvSSR1-89	RM14	4.43	-1.81	12.46
	qBbr9b	9	18.28	RM410	RM288	2.53	-1.14	6.03
	qBbr12b	12	19.96	RM28305	HvSSR12-36	4.17	-1.50	11.26

Table 4.5 QTLs underlying Bacterial blight resistance on qualitative (0-9)scale by QTL cartographer 2.5

Trait	Putative	Chr.	Position	Left	Right	LOD	Additive	R ² %
	QTL			marker	marker			
BLB reaction	qBbr4b	4	7.40	HvSSR4-26	RM564	5.00	-1.12	15.31
Qualitative (0-	qBbr6a	6	22.90	HvSSR6-44	HvSSR6-56	3.95	0.79	9.22
9) scale	qBbr12c	12	8.00	RM20	RM511	6.47	-1.91	52.81
	qBbr12a	12	18.40	RM511	RM260	8.83	-1.33	22.73

Table	4.6	QTLs	underlying	Bacterial	blight	resistance	on	Qualitative	(0-9)
		scale k	oy QTL IciN	1apping 3.	2				

Trait Name	Putative	Chr.	Position	Left	Right marker	LOD	Add	PVE
	QTL			marker	-			(%)
BLB reaction	qBbr4c	4	25.15	HvSSR4-38	HvSSR4-39	3.68	-0.88	9.43
Qualitative	qBbr12a	12	18.97	RM511	RM260	10.6	-1.46	34.02
(0-9) scale	^							

4.5 The loci associated with quantitative resistance for Bacterial leaf blight

There were two QTLs, *qBbr1a* and *qBbr1b* identified on chromosome 1 affected resistance to local isolate shown in (Figure 4.5). The highly significance QTL was identified between markers RM499 and RM1 with LOD value 7.86; explained 13.53% of phenotypic variation. This was the large effect estimated QTL for the trait mean lesion length. The second QTL, *qBbr1b* mapped between markers HvSSR1-87 and HvSSR1-89 with LOD score 5.33 and explained 27.61% of phenotypic variation. This was also a major effect QTL estimated. The negative value additive effect of both the QTLs showed that alleles from susceptible parent Dagad deshi. The third QTL, *qBbr1c* mapped between markers HvSSR1-89 and RM14 by QTL IciMapping 3.2 for Bacterial blight resistance with LOD value of 4.43 and also explain 12.46% of PVE. The alleles come from susceptible parent Dagad deshi.

Figure 4.5 The QTLs mapped for mean lesion length trait identified on chromosome 1 for the Bacterial blight resistance using CIM. The bars indicate the most likely positions of the QTLs. The small graphic (bottom) showed the additive effect (-) value = both alleles from the susceptible parent Dagad deshi.

The one common significant QTL, *qBbr12a* was mapped on chromosome

12 for mean lesion length between markers RM511 and RM519 with LOD score

91

4.22, which explained 10.9% of phenotypic variation by QTL cartographer 2.5(Figure 4.6). The same QTL on the basis of BLB reaction qualitative (0-9) scale explained 14.17% phenotypic variation with high LOD score 8.83 by QTL cartographer 2.5 and with very high LOD score 10.66, explained 26.07% of PVE by QTL IciMapping 3.2. The QTL with major effect resistance to local *Xoo* isolate used in the experiment. The both qualitative scale and quantatively analysis result showed that this QTL was consistence in all type of analysis. The negative value of additive effect showed that alleles from susceptible parent Dagad deshi. Similarly, another QTL, *qBbr12b* specially identified by QTL IciMapping 3.2 on chromosome 12 between markers RM28305 and HvSSR12-36 with LOD value of 4.17. The phenotypic variance explained by the QTL was 11.26%. This allele also from susceptible parent Dagad deshi.

Figure 4.6 The common QTL mapped for mean lesion length trait identified on chromosome 12 for the Bacterial blight resistance using CIM. The small graphic (bottom) show the additive effect where (+) values = allele from the resistance parent and (-) values = alleles from the susceptible parent.

There were two minor effect QTLs, *qBbr3a* and *qBbr3b* mapped between markers HvSSR3-40 and RM411 with LOD value 4.39 and between markers HvSSR3-56 and HvSSR3-71 of LOD score 4.19 respectively. The positive value of

92

additive effect of qBbr3a showed that allele from resistant parent Danteshwari. Similarly, other minor significant QTLs, qBbr5a and qBbr5b mapped on chromosome 5. The allele for qBbr5b also from resistant parent Dentashwari. The allele from the resistance parent Danteshwari acted to decrease the measured trait bacterial blight resistance for mean lesion length. The two small effect QTLs, qBbr9a and qBbr9b mapped on chromosome 9 by QTL cartographer 2.5 and QTL IciMapping 3.2 respectively. The QTLs mapped between markers HvSSR9-7 to RM444 and RM410 to RM288 with very low R² values. The both QTLs showed negative additive effect mean both carry from susceptible parent Dagad deshi. The qBbr10a also a minor QTL showed on chromosome 10.

4.6 The loci associated with quantitative resistance for Bacterial blight resistance on (0-9) scale

One QTL, *qBbr4b* was mapped on chromosome 4 affect resistance to local *Xoo* isolate shown in (Figure 4.7). The *qBbr4b* locus was identified between markers HvSSR4-26 and RM564 specially reported by QTL cartographer 2.5 with LOD value 5.00. The QTL accounted 15.31% of phenotypic variation for Bacterial blight resistance on the basis of qualitative SES, IRRI (0-9) scale. It was relatively large effect QTL for local *Xoo* isolate used in this experiment. The negative value of additive effect showed that allele from susceptible parent Dagad deshi. Another minor QTL, *qBbr4c* positioned on chromosome 4 on the basis of BLB reaction qualitative (0-9) scale between markers HvSSR4-38 to HvSSR4-39 with LOD score 3.68 and explained 9.43% of the phenotypic variation by QTL IciMapping 3.2. The negative value of additive effect showed that the allele also from susceptible parent Dagad deshi. The *qBbr4c* also a minor effect for mean lesion length identified on chromosome 4.

Figure 4.7 The QTL mapped on chromosome 4 for the Bacterial blight resistance trait using CIM. The bars indicate the most likely positions of the QTL.

A major significant QTL, *qBbr12c* affect resistance to local isolate was identified on chromosome 12 shown in (Figure 4.8). The QTL was mapped in the region between markers RM20 and RM511 with high LOD score 6.47 by QTL cartographer 2.5 under heavy infection condition. The phenotypic variance explained by the QTL was very high that was 52.8%. The very large effect QTL affect resistance to local *Xoo* isolate used in this experiment. The negative value of additive effect showed that allele from susceptible parent Dagad deshi. Similarly *qBbr6a* mapped between markers HvSSR6-44 and HvSSR6-56 with a LOD score of 3.95 and 9.22% phenotypic variance. The QTL showed positive additive effect mean carry from resistance parent Danteshwari.

Figure 4.8 The QTLs mapped for Bacterial blight resistance trait identified on rice chromosome 12 using CIM. The bars indicate the most likely positions of the QTL. The horizontal dashed lines represent the minimum LOD i.e. 3 required for significance. The small graphic (bottom) show the additive effect where (+) values = allele from the resistance parent and (-) values = alleles from the susceptible parent

Figure 4.9 The QTL mapped for Bacterial blight resistance trait identified on rice chromosome 6 using CIM. The bar indicates the most likely positions of the QTL. The horizontal dashed lines represent the minimum LOD i.e. 3 required for significance. The small graphic (bottom) show the additive effect where (+) values = allele from the resistance parent and (-) values = alleles from the susceptible parent

4.7 The distribution of resistance for Sheath blight in the RIL population

The Danteshwari × Dagad deshi derived mapping population 122 F_{14} RIL lines and parents were screened for Sheath blight resistance. The F_{14} RILs population exhibited significant phenotypic variance for traits to support QTL mapping. The frequency distribution of score obtained in the experiment was examined to determine if its normality. The Sheath blight disease index of RILs was continuously distributed, as expected for a quantitative trait shown in (Fig. 4.10). The resistance segregation in this experiment varied continuously. The parents Danteshwari and Dagad deshi showed significant differences in their resistance level in the experiment. The average individual disease lesion size of 1.62 cm² for Danteshwari and 1.05 cm² for Dagad deshi was obtained. Similarly, the percentage of lesion length of sheath length was 13.72 for Danteshwari and 7.82 for Dagad deshi. The parent Dagad deshi showed very much resistance for sheath blight and Danteshwari was highly susceptible in field condition shown in (Fig. 4.11).

A higher percentage of lines were Sheath blight resistance scored middle range of the distribution toward local isolate of *Rhizoctonia solani* used in this experiment. On the basis of average disease lesion size and lesion length many lines showed resistance toward *Rhizoctonia solani* local isolate used in the experiment.

A) Total lesion area

B) Individual lesion area

Figure 4.10 The frequency distribution of Sheath blight response of 122 F_{14} RIL lines for total and individual lesion

A) Experiment on field

B) The Rhizoctonia solani local isolate

C) Highly resistant lines for Rhizoctonia solani

D) Very susceptible lines toward Rhizoctonia solani

Figure 4.11 The occurrence of Sheath blight disease reaction on RIL population by artificial inoculation

The Danteshwari × Dagad deshi derived mapping population provides a good basis to study and to analyze genetically complex and polygenic forms of disease resistance known as "Quantitative trait loci" (QTL) for Sheath blight of rice. Thus, the present investigation was carried out with the observations on the response of RILs population to Sheath blight resistance and the identification of putative QTLs (associated with Sheath blight resistance) with the molecular marker was carried out by QTL cartographer 2.5 and QTL IciMapping 3.2 softwares.

4.8 The Single Marker Analysis for Sheath blight resistance

The single marker analysis tests the association between marker genotypes and trait values using F-tests in QTL cartographer 2.5. This analysis fits the data to the simple linear regression model y = b0 + b1 x + e. The results gave the estimates for b0, b1 and the F statistic for each marker. This was interested in whether the marker is linked to a QTL. The pr(F) values showed significance at the 5%, 1%, 0.1% and 0.01% levels respectively. There were 20 markers associated with Sheath blight for total lesion area. Out of 20 markers, HvSSR4-35 and HvSSR4-38 on chromosome 4 and RM-459 on chromosome 5 were showed significant at 1% level. The only marker RM273 on chromosome 4 was found significant at 0.1% level for the trait total lesion area of Sheath blight resistance.

The markers for individual lesion area were not highly associated. The only marker HvSSR7-43 showed significance at 1% level out of 12 associated markers. There were 17 putative markers were indicated to be associated with the sheath blight resistance for trait individual lesion length cover % of sheath length. Out of 17, 2 markers such as HvSSR1-18 on chromosome 1 and RM222 on chromosome

10 showed significant at 1% level. Similarly, marker RM3825 and HvSSR1-87 were found significance at 0.1% and 0.01% respectively.

4.9 The QTL mapping through Composite Interval Mapping for Sheath blight

The genotypic data and phenotypic data of field condition for Sheath blight disease resistance was analyzed using QTL cartographer 2.5 and QTL IciMapping 3.2 softwares. The QTL analysis results are presented in (Table 4.7 and 4.8). The presence of a putative QTL was declared if the LOD threshold was larger than 3 for the trait using QTL cartographer 2.5 while 2.5 using QTL IciMapping 3.2.

A total of 7 QTLs were identified for Sheath blight disease resistance using QTL cartographer 2.5 using composite interval mapping while 2 QTLs were identified using QTL IciMapping 3.2, out of which 2 QTLs were common with both the softwares. These loci were associated with LOD score above the threshold values determine by permutation test for the trait of the experiment. The QTLs were found to be present on chromosomes 1, 2, 3, 4, 9 and 12. The LOD score for QTLs ranged from 0.02 to 7.3 for mapping with QTL cartographer 2.5 and 3.03 to 4.6 using QTL IciMapping 3.2. The QTLs along with their LOD score and R^2 value worked out through composite interval mapping (Table 4.7 and 4.8).

4.10 The loci associated with quantitative resistance for Sheath blight resistance of rice

One major significant common QTL, *qSBR4-1* was identified on chromosome 4 (Figure 4.12) for total lesion area for Sheath blight resistance between markers HvSSR4-35 and HvSSR4-38 with LOD score of 3.49 with a QTL peaking at RM273, explained 12.1% of the phenotypic variation in QTL cartographer 2.5 and the same QTL mapped between markers RM 273 and HvSSR4-38 with LOD score of 3.04, explained 12.94% of the phenotypic variation

100

in QTL IciMapping 3.2 under heavy infection condition. The QTL showed negative additive effect in both the software (Table 4.7 and 4.8). This means that the allele transferred from the susceptible parent Danteshwari.

Table 4.7 QTLs underlying Sheath blight resistance mapped by QTLCartographer 2.5

Trait	Putative QTL	Chr.	Position	Left marker	Right marker	LOD	Additive	R ² %
Total lesion area	qSBR4-1	4	10.9	HvSSR4-35	HvSSR4-38	3.49	-1.9589	12.1
	qSBR2-1	2	7.2	RM174	RM492	0.02	0.0392	0.07
Individual	qSBR3-1	3	5.7	RM517	RM232	3.97	-0.0708	2.21
lesion area	qSBR9-1	9	3.6	HvSSR9-7	RM444	3.06	-0.1280	5.24
	qSBR12-1	12	17.4	RM511	RM260	5.30	-0.0476	0.11
Individual lesion length cover % of Sheath length	qSBR1-2	1	2.2	RM499	RM1	3.19	0.3641	3.62
	qSBR1-1	1	38.1	RM3825	HvSSR1-87	7.30	1.3597	26.64

IciMapping 3.2

Trait	Putative QTL	Chr.	Position	Left marker	Right marker	LOD	Add	PVE (%)
Total Lesion area	qSBR4-1	4	24.14	RM273	HvSSR4-38	3.04	-1.94	12.95
Individual lesion length cover % of Sheath Length	qSBR1-1	1	38.38	RM3825	HvSSR1-87	4.6	1.19	19.18

The major significant common QTL, qSBR1-1 was identified for individual

lesion length cover percentage of sheath length on chromosome 1 between markers RM3825 and HvSSR1-87 with LOD score of 7.3 with a QTL peaking at HvSSR1-87, explained 26.64% of the phenotypic variation in QTL cartographer 2.5 (Figure 4.13). The same QTL with LOD score 4.64, explained 19.17% of the PVE by QTL IciMapping 3.2. The QTL was a large effect for Sheath blight disease resistance. The QTL showed positive additive effect. The allele from the resistance parent Dagad deshi acted to decrease the measured trait to increase Sheath blight resistance.

Another significant QTL, *qSBR1-2* for trait individual lesion length cover percentage of sheath length associated with Sheath blight resistance was detected on chromosome 1(Figure 4.13). The QTL was mapped in the region between markers RM499 and RM1 with LOD score 3.19 and a QTL peak at marker RM428 by QTL cartographer 2.5 under heavy infection condition. The percentage of

phenotypic variance explained by the QTL was 3.62%. The QTL also showed positive additive effect means that the allele from the resistance parent Dagad deshi acted to decrease Sheath blight susceptibility.

Figure 4.13 The QTLs, *qSBR1-1* and *qSBR1-2* mapped for the Sheath blight trait identified on rice chromosome 1 using CIM in experiment. The bars indicate the most likely positions of the QTLs. The horizontal dashed lines represent the minimum LOD i.e. 3 required for significance. The small graphic (bottom) show the additive effect where (+) values = allele from the resistance parent and (-) values = alleles from the susceptible parent.

There were four small effect QTLs such as *qSBR2-1*, *qSBR3-1*, *qSBR9-1* and *qSBR12-1* mapped for individual lesion area on chromosome 2, 3, 9 and 12 respectively (Fig. 4.14). The very small effect *qSBR2-1* mapped between markers RM174 and RM492 showed positive additive effect mean carried from resistant parent Dagad deshi. The *qSBR9-1* mapped between HvSSR9-7 and RM444 with moderate phenotypic variance. The QTL, *qSBR12-1* for the trait detected on chromosome 12 between markers RM511 and RM260 with high LOD score 5.3. The small percentage of phenotypic variance explained by each QTLs were 0.07, 2.21, 5.24 and 0.11 percentage respectively. These were significant small effect

Figure 4.14 The QTL mapped for the Sheath blight trait identified on rice chromosome 2 and 12 using CIM in experiment. The bars indicate the most likely positions of the QTL.

4.11 The QTLs analysis for other traits tillers per plant and plant height

A total of two QTLs were identified for tillers per plant and one QTL for plant height under same conditions using QTL cartographer 2.5 using composite interval mapping (Table 4.9 and 4.10). These loci were associated with LOD score

104

above the threshold values i.e. 3 determine by permutation test for the trait of the experiment. The resistance loci mapped to 2 chromosomes out of 12 rice chromosome. The QTLs were found to be present on chromosomes 1 and 3. The LOD score for QTLs ranged from 4.00 to 5.30 for tillers per plant and for plant height was 12.19. The QTLs along with their LOD score and R^2 value worked out through composite interval mapping shown in (Table 4.9 and 4.10).

Table 4.9 QTLs underlying traits tillers per plant and plant height by QTL cartographer 2.5

Trait	Putative	Chr.	Position	Left	Right	LOD	Additive	R²%
	QTL			marker	marker			
Tillers/ Plant	qTN1.1	1	36.10	RM486	RM3825	4.00	0.61	11.91
	qTN3.1	3	0.00	RM231	HvSSR3-6	5.30	0.83	16.53
Plant height	qPH1.1	1	37.10	RM3825	HvSSR1-87	12.19	-11.86	47.0

Table 4.10 QTLs underlying traits tillers per plant and plant height by QTL IciMapping 3.2

Trait Name	Putative	Chr.	Position	Left	Right	LOD	Add	PVE
	QIL			тагкег	тагкег			(70)
Tillers/ Plant	qTN1.1	1	36.38	RM486	RM3825	2.78	0.52	8.99
Thicis/ Flant	qTN3.1	3	2.45	RM231	HvSSR3-6	4.21	0.77	15.28
Plant height	qPH1.1	1	37.38	RM3825	HvSSR1-87	8.32	-11.66	35.55
The	significant	majo	r QTL,	<i>qPH1.1</i>	for plant l	neight	mappe	ed on

chromosomes 1 with LOD value 12.19; with a QTL peak marker RM3825 and explained very high phenotypic variance of 47%. The same QTL explain 35.55% phenotypic variance by QTL IciMapping 3.2. The height of parent Dagad deshi was very high and Danteshwari showed very low.

A QTL, qTN1.1 for tiller number was mapped on chromosomes 1 with LOD values 4.00 and explained 11.19% of phenotypic variance. Another QTL such as qTN3.1 for tiller number mapped on chromosome 3. The qTN3.1 mapped between markers RM231 and HvSSR3-6 with LOD value 5.3, explained 16.53% of phenotypic variation on chromosome 3. There were many number of tiller showed by parent Danteshwari and small number by Dagad deshi. The QTLs, *qTN1.1* and *qTN3.1* showed positive additive effect. This means that the alleles from the parent Danteshwari acted to increase the measured trait (i.e. tiller number) (Figure 4.15 A and B). The QTL for tillers and plant height found side by side on chromosome 1 and QTL, *qSBR1-1* for individual lesion length cover % of sheath length coincided with plant height QTL.

B) Plant height

Figure 4.15 The QTL mapped for the agronomic traits plant height and tiller per plant identified on rice chromosome 1 using CIM. The bars indicate the most likely positions of the QTL. The horizontal dashed lines represent the minimum LOD i.e. 3 required for significance.

106

4.12 The distribution of resistance in the RILs population for the trait leaf blast

The frequency distribution of score obtained in the experiment with natural disease occurrence was examined to determine if its normality. The phenotypically screened the structural population RIL derived from Danteshwari \times Dagad deshi for blast resistance. Analysis indicated that approximately normal distribution was followed for the trait Blast resistance of RILs (Fig. 4.16).

Maximum number of RILs shown blast resistance scores of 2, 4, 6 or 8 on SES (0-9) scale (IRRI, 2002) reaction caused by the filamentous fungus *Magnaporthe oryzae* naturally. The resistance segregation in the experiment varied dramatically. There were many lines showed resistance toward natural leaf Blast disease. The parent Dagad deshi showed very resistance toward Blast disease reaction and Danteshwari found highly susceptible. The check Swarna used in this experiment was highly susceptible to Blast disease scored such as 9 on SES (0-9) scale shown in (Fig. 4.17). Interestingly, among lines few lines showed highly resistance to the disease occurrence, indicating that a combination of many genes was required to achieve different level of resistance.

Figure 4.16 The frequency distribution of RIL for disease Blast reaction

C) Highly resistant lines

D) Highly susceptible check rice variety Swarna Figure 4.17 The natural occurrence of disease on RIL population used for screening (yellow arrow indicating susceptible lines)

4.13 Single Marker Analysis for leaf blast

The single marker analysis tests the association between marker genotypes and trait values using F-tests in QTL cartographer 2.5. There were 13 putative markers indicated to be associated with the leaf Blast resistance. Among, them markers such as HvSSR2-12 on chromosome 2; RM410, RM242 and RM553 on
chromosome 9; RM277 and HvSSR12-51 on chromosome 12 were significance at the 1% level.

4.14 The QTL mapping through Composite Interval Mapping for leaf blast

The genotypic data and phenotypic data of field condition of blast disease were analyzed using QTL cartographer 2.5 and QTL IciMapping 3.2 softwares. The QTL analysis results are presented in (Table 4.11). The presence of a putative QTL was declared if the LOD threshold was larger than 3 for the trait using QTL cartographer 2.5 while 2.5 using QTL IciMapping 3.2.

A single QTL was identified for Blast resistance using RILs population by QTL cartographer 2.5 while no QTLs were identified using software QTL IciMapping 3.2. The locus was associated with LOD score above the threshold value determines by permutation test for the trait of the experiment. The resistance loci mapped to only 1 chromosome out of 12 rice chromosomes. The QTL was found to be present on chromosome 10. The LOD score for QTL found 3.65, mapping with QTL cartographer 2.5. The QTL along with their LOD score and R^2 value worked out through composite interval mapping (Table 4.11).

Table 4.11 QTLs underlying Blast resistance mapped by QTL cartographer2.5

Trait	Putative QTL	Chr.	Position	Left marker	Right marker	LOD	Additive	R ² %
Blast reaction	qLB10.1	10	9.5	HvSSR 10-17	HvSSR 10- 34	3.65	-0.9116	16.57

4.15 The explanation of loci associated with quantitative resistance for leaf Blast

The only major effect significant QTL, *qLB-10.1* on chromosome 10 was identified in the interval markers HvSSR10-17 and HvSSR10-34 (Figure 4.18). The LOD score of the QTL was 3.65 and explained 16.57% of the phenotypic

variation in QTL cartographer 2.5 under heavy infection condition. The QTL showed additive effect of value -0.91. The negative value of the additive effect showed that allele was inherited from susceptible parent Danteshwari.

Figure 4.18 The QTL mapped for the Blast resistance trait identified on rice chromosome 10 using CIM in experiment. The bar indicates the most likely positions of the QTL. The horizontal dashed lines represent the minimum LOD i.e. 3 required for significance.

4.16 The distribution of tolerance for the trait Brown spot in RIL population

The parents along with RILs exhibited marked variation for the reaction to Brown spot. The parent Danteshwari showed slightly resistance on the basis of score for Brown spot comparatively Dagad deshi. The frequency distribution indicated that nearly normal distribution was followed for the trait Brown spot tolerance (Fig. 4.19). The resistance segregation in the experiment varied. The RILs exhibited abnormal segregation, which indicated that neither parent contained all the alleles for resistance or susceptibility. Maximum number of RIL lines in the experiment showed Brown spot tolerance scores of (0-9 scale of SES; IRRI, 2002) from 2 to 8. The Danteshwari × Dagad deshi derived 122 F_{14} generations RIL population was screened for Brown spot tolerance. The natural occurrence of disease was accounted for score shown in (Fig.4.20). Among 122 lines, many lines were shown tolerance toward Brown spot. No line showed very high resistance for

Brown spot tolerance.

Figure 4.19 The frequency distribution of disease Brown spot resistance across 122 RIL lines in the experiment

B) Succeptable line C) Resistant line Figure 4.20 The natural occurrence of disease Brown spot on RIL population

4.17 The Single Marker Analysis for Brown spot tolerance

The single marker analysis tests the association between marker genotypes and trait values using F-tests in QTL cartographer 2.5. The markers significance at the 5%, 1%, 0.1% and 0.01% levels respectively. There were 35 putative markers were indicated to be associated with the brown spot tolerance. The highly associated markers for Brown spot tolerance was HvSSR1-55 on chromosome 1 significance at 0.1% level. The other markers significant at 1% level (Table 4.12).

 Table 4.12 Markers that were highly associated with traits for Brown spot tolerance

Chr.	Markers significance at 1% level (**)
1	HvSSR1-87
2	HvSSR2-78
3	RM232, HvSSR3-40, HvSSR3-41
7	RM125
11	RM254
12	RM260, RM519, HvSSR12-35, RM28305, RM17

4.18 The QTL mapping through Composite Interval Mapping for Brown spot tolerance

The genotypic data and phenotypic data of field condition of Brown spot disease were analyzed using QTL cartographer 2.5 and QTL IciMapping 3.2 softwares. The presence of a putative QTL was declared if the LOD threshold was larger than 3 for the trait Brown spot using QTL cartographer 2.5 while 2.5 using QTL IciMapping 3.2.

One QTL was identified for Brown spot tolerance using QTL cartographer 2.5 while two QTLs were identified using QTL IciMapping 3.2 under heavy infection condition. These loci were associated with LOD scores above the threshold value determine by permutation test for the Brown spot tolerance trait of the experiment. QTLs for brown spot were found to be present on chromosome 1, 11 and 12. The LOD score 3.17 of QTL for mapping with QTL cartographer 2.5

and found range 2.71-3.14 using QTL IciMapping 3.2. Two resistant alleles identified from parent Danteshwari. The QTLs along with their LOD score and R^2 value worked out through composite interval mapping are shown in (Table 4.13 and 4.14).

Table 4.13 QTLs underlying Brown spot tolerance mapped by QTLCartographer 2.5

Trait	Putative QTL	Chr.	Position	Left marker	Right marker	LOD	Additive	$\mathbf{R}^2 \%$
Brown spot tolerance	<i>qBS12</i>	12	16.40	RM20	RM511	3.17	0.5024	3.54

Table 4.14 QTLs underlying Brown spot tolerance mapped by QTL IciMapping 3.2

Trait Name	Putative	Chr.	Position	Left	Right	LOD	Add	PVE
	QTL			marker	marker			(%)
Brown spot	qBS1	1	21.38	HvSSR1-	RM-5	3.149	-0.8198	14.3593
tolerance				55				
	qBS11	11	25.05	RM254	RM224	2.718	-0.7860	13.9974

4.19 The description of loci associated with quantitative resistance for Brown spot disease tolerance

A minor effect significant QTL, *qBS12* locus was identified on chromosome 12 between markers RM20 and RM511, a QTL peak on marker RM511 with LOD value 3.17 and explained very low 3.54% of phenotypic variance (Figure 4.21). It had relatively small effect for disease resistance in experiment. The positive value (0.5024) of the additive effect showed that allele transferred from resistance parent Danteshwari. This means that the allele from the resistance parent Danteshwari acted to decrease the measured trait (i.e. disease reaction) or to decrease brown spot susceptibility.

Figure 4.21 The QTL mapped for the Brown spot resistance trait identified on rice chromosome 12 using CIM in experiment. The small graphic (bottom) show the additive effect where (+) values = allele from resistance parent Dantehwari and (-) values = allele from susceptible parent Dagad deshi.

One significant QTL, *qBS1* was identified on chromosome 1 between markers HvSSR1-55 and RM5 with LOD score of 3.14 and explained 14.35% of PVE in QTL IciMapping 3.2 under heavy infection condition. This can be considered as a major effect QTL related to brown spot which significantly affect Brown spot resistance. The negative value of the additive effect showed that allele transferred from susceptible parent Dagad deshi. Similarly, the QTL, *qBS11* was mapped on chromosome 11 between markers RM254 and RM224, with LOD value 2.71 and explained 13.99% of phenotypic variance. The negative value of the additive effect showed that allele from susceptible parent Dagad deshi.

4.20 The diseases resistance in integrated form for all four diseases

Among all 122 F_{14} RIL lines used for screening of four diseases, the line number "71" and "77" found resistance for all four diseases e.g. Bacterial leaf

blight, Sheath blight, leaf Blast and Brown spot tolerance. The categorization of resistance toward various diseases given below (Table 4.15).

Table 4.15 Categories of lines for different diseases resistance

1	Lines with resistance against one disease
	Blast:- line #7, 9, 29, 39, 42, 45, 48, 60
	BLB:- line #2, 16, 31, 53, 62, 83, 99, 107, 109, 115, 117, 120
	Brown spot: - line # 12, 15, 61, 81, 85, 86, 114
	Sheath:- line #8, 10, 20, 23, 24, 26, 27, 30, 51, 55, 59, 72, 76, 79, 84, 87, 91, 92,
	95, 96, 97, 98, 100, 101, 104, 105, 112, 113
2	Lines with resistance against two diseases
	BLB & Brown Spot:- line #34, 35, 37, 40, 82
	Brown Spot & Sheath blight: - line #93
	BLB & Brown Spot:- line #P1 (Parent Danteshwari)
	Blast & Sheath blight: - line #11, 14, 22, 25, 47, 74, 75, 118, P ₂ (Dagad deshi)
	Blast & Brown Spot: - line #21, 65, 68
3	Lines with resistance against three diseases
	Blast, Brown Spot & Sheath blight: - line #46
	Blast, BLB & Brown Spot: - line #70, 88
	Blast, BLB & Sheath blight: - line #18, 73, 78
	BLB, Brown Spot & Sheath blight: - line # 28, 94
4	Lines with resistance four diseases
	Blast, BLB, Brown Spot & Sheath blight: - line #71, 77

4.21 The region of chromosomes with multiple diseases resistance

There were region of chromosomes 1, 9 and 12 which showed multiple disease resistance in this experiment. The region of chromosome 1 between markers RM499 to RM1 found common for both diseases BLB and Sheath blight resistance (Fig. 4.22.1). Similarly, the region of chromosome 12 between markers RM20 and RM511 found common for both the diseases *i.e.* Brown spot tolerance and Bacterial leaf blight resistance. Another region of this chromosome between

markers RM511 and RM260 coincided for BLB and Sheath blight. The QTLs of both diseases overlapped in this region shown in (Fig. 4.22.14). In this study also found a region on chromosome 9 between markers HvSSR9-7 and RM444 common for Sheath blight and BLB resistance (Fig. 4.22.10).

4.22 Development of High Resolution Molecular Marker Map *in silico* of QTLs identified associated with tolerance to different rice diseases (BLB, leaf blast, Sheath blight, Brown spot)

The ability to quickly and reliably select desirable material and to eliminate individuals that contain deleterious alleles is critical to the success of a plant breeding program. The use of genetic markers to facilitate the identification of favorable (or deleterious) alleles in a collection of diverse genotypes is referred to as marker assisted selection (MAS) (Dubcovsky, 2004). When markers are closely linked to a trait of interest, they can be used to indirectly select for the trait, saving time, money and labour. Additional advantages to MAS include the ability to select for multiple alleles underlying a polygenic trait, the ability to select for traits that are difficult or very costly to score phenotypically, are expressed late in the life of the plant or that require progeny testing due to their recessive nature or a lack of heritability (Koebner and Summers, 2003). Indirect selection can be inefficient if recombination occurs between the gene/trait of interest and the marker, if the marker must first be mapped in a new population or if additional unwanted alleles show linkage to the marker in particular germplasm accessions (Varshney *et al.*, 2005). In general, if a genetic marker is separated from the target gene by more than 1-2 cM, recombination will occur at unacceptable frequencies. Genes can be phenotypically selected in backcross breeding programs, combining several genes at once requires screening with the appropriate bacterial strains to differentiate the overlapping phenotypic effects of these genes (Mew et al., 1993). Some of the BLB resistance genes, including xa-5, xa-8, xa-9 and xa-13, are recessive and progeny testing is required to detect them in the heterozygous state. QTLs

associated with tolerance to different rice diseases (BLB, leaf blast, Sheath blight, Brown spot) were mapped to different genomic location between molecular marker intervals (**CH #1**:- RM499 to RM1, HvSSR 1-55 to RM5, RM3825 to HvSSR1-87, HvSSR1-89 to RM14; **CH #2**:- RM174 to RM492; **CH #3**:- RM517 to RM232, HvSSR 3-40 to RM411, HvSSR 3-56 to HvSSR 3-71; **CH #4**:- HvSSR4-26 to RM564, HvSSR4-38 to HvSSR4-39, HvSSR4-35 to HvSSR4-38; **CH #5**:- HvSSR 5-23 to HvSSR5-31, HvSSR5-39 to HvSSR5-48; **CH #6**:- HvSSR6-44 to HvSSR6-56; **CH #9**:- HvSSR9-7 to RM444, RM410 to RM288; **CH #10**:-HvSSR10-17 to HvSSR10-34, HvSSR10-34 to RM171; **CH # 11**:- RM254 to RM224; **CH #12**:- RM20 to RM511, RM511 to RM260, RM 28305 to HvSSR 12-36).

By way of these co-mapped markers, the map in this study is tied to the physical and sequence map developed by the International Rice Genome Sequencing Project (http://rgp. dna.affrc. go.jp/; http:// www. usricegenome. org/; http://genome.arizona.edu/fpc/rice/; http://www.gramene.org/) and the principal mapping populations used by the rice scientific community. Identification of map position was accomplished by identifying physical positions on the rice chromosome that simultaneously contained a hit from the two molecular markers flanking identified QTLs and therefore formed the basis for development of high resolution molecular marker map in silico of genomic location encompassing QTLs associated with tolerance to different diseases of rice (Fig.4.22.1-14). Following blast analysis and simultaneously that contained a hit with the identified molecular markers intervals (flanking molecular marker of the QTL) physical positions on the rice chromosome for the molecular marker was assigned. Physical region between the anchored molecular markers were searched for recently released IRGSP 1.0 SSR markers that generated a high resolution physical map of the region.

Fig. 4.22.1 Genetic locations and *in silico* analysis of QTLs for BLB trait mean lesion length and Sheath blight trait individual lesion length cover % of Sheath length on chromosome 1

Fig. 4.22.2 Genetic locations of QTLs for Brown spot tolerance, BLB trait mean lesion length and Sheath blight trait individual lesion length cover % of Sheath length on chromosome 1 and *in silico* analysis

Figure 4.22.3 Genetic location and *in silico* analysis of Sheath blight QTL for trait individual lesion area on chromosome 2

Figure 4.22.4 Genetic locations and *in silico* analysis of Sheath blight QTL for individual lesion area on chromosome 3

Figure 4.22.5 Genetic location and *in silico* analysis of QTLs for BLB trait mean lesion length on chromosome 3

Figure 4.22.6 Genetic location and *in silico* analysis of QTL for BLB trait mean lesion length on chromosome 3

Figure 4.22.7 Genetic locations of QTLs for sheath blight trait total lesion area and BLB trait mean lesion length, reaction qualitative (0-9) scale on chromosome 4 and *in silico* analysis

Figure 4.22.8 Genetic locations and *in silico* analysis of QTLs for BLB trait mean lesion length on chromosome 5

Fig. 4.22.9 Genetic location and *in silico* analysis of QTL for BLB reaction based on qualitative (0-9) score on chromosome 6

Fig. 4.22.10 Genetic location and *in silico* analysis of QTLs for BLB trait mean lesion length and sheath blight trait individual lesion area on rice chromosome 9

Fig.4.22.11 Genetic location of QTL for Blast reaction on rice chromosome 10 and *in silico* analysis

Figure 4.22.12 Genetic location and *in silico* analysis of QTL for BLB trait mean lesion length on chromosome 10

Figure 4.22.13 Genetic location of QTL for trait Brown spot tolerance on chromosome 11 and *in silico* analysis

Figure 4.22.14 Genetic locations and *in silico* analysis of QTLs for Brown spot tolerance and BLB trait mean lesion length, reaction qualitative (0-9) score and Sheath blight trait individual lesion area on chromosome 12

Discussion

CHAPTER- V DISCUSSION

Oryza sativa is a model tractable species among the members of the grass family. Much research has been devoted to understanding the biology of plantpathogen interactions. The extensive genetic analysis of disease resistance in rice, coupled with the sequenced genome and genomic resources, provides the opportunity to seek convergent evidence implicating specific chromosomal segments and genes in the control of resistance. The molecular marker technique has proved valuable in identifying the loci involved in quantitative disease resistance and has provided insight into its complex relationship with associated factors. The efficiency of markeraided selection in breeding programs depends on the strength of linkage between molecular markers and the target trait. Traditionally, anonymous molecular markers are used to establish linkage with a phenotype. However, even for tightly linked markers, the effectiveness of marker-aided selection is greatly diminished by the occasional uncoupling of the marker from the trait during many cycles of meiosis in a breeding program. Identification of QTLs and a close correspondence in both genomic locations for resistance against different diseases in other populations has been reported (Li et al., 1995; Causse, et al. 1994). In rice, doubled haploid (DH) population (IR64 /Azucena), provides a useful reference population for mapping candidate genes (Guiderdoni et al., 1992) and has been used for mapping disease (Albar et al., 1998; Prashanth et al., 1998; Wang et al., 2001) and insect resistance (Alam and Cohen, 1998) and tolerance to drought (Courtois et al., 2000). The positions of QTL for rice blast and sheath blight on this DH population were previously reported (Prashanth et al., 1998; Wang et al., 1994; Zou et al., 2000). Map positions of quantitative trait loci (QTL) have been reported by different workers for blast (Prashanth *et al.*, 1998; Wang *et al.*, 1994) and sheath blight (Zou *et al.*, 2000), brown plant-hopper (BPH) (Alam and Cohen, 1998). A close correspondence was observed between the genomic locations conferring resistance to different diseases and pests of rice to that of the QTLs identified for brown spot (Hulbert *et al.*, 2001), which is unlikely to be due to chance and reflect functional differences in member genes within the cluster of resistance gene families (Wang *et al.*, 2001; Zou *et al.*, 2000).

The development of molecular markers diagnostic for the selection of resistance genes is a goal of many rice breeding programs. Several of the major resistance genes to the bacterial leaf blight (BLB) pathogen, Xanthomonas oryzae pv. oryzae, have been tagged with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) markers (McCouch et al., 1992; Ronald et al., 1992; Yoshimura et al., 1992; Yoshimura et al., 1995). However, both of these types of markers have limited application in a breeding program. Although RFLP markers are widely available for rice (Causse *et al.*, 1994; Kurata *et al.*, 1994), they have proven too technically cumbersome to be used for selection with large numbers of plants. Since RAPD markers are normally dominant, detect multiple loci and can have technical problems, they are less useful for selection. Therefore, new types of co-dominant, single-copy and polymerase chain reaction (PCR)-based markers are desirable. Recently, many RFLP markers have been converted into PCRamplifiable sequence-tagged sites (STS) for specific locations in the rice genome (Inoue et al., 1994; Williams et al., 1991) and a group of microsatellite markers spread randomly throughout the rice genome has been developed (Wu and Tanksley, 1993; Panaud et al., 1996). PCR-based markers closely linked to BLB resistance genes would be very useful for efficient marker-assisted selection.

High-resolution mapping has been crucial to the success of map-based cloning projects in rice (Yoshimura *et al.*, 1998; Ashikari *et al.*, 1999; Yano *et al.*, 2000; Monna *et al.*, 2002). High-resolution maps are useful for the precise placement of a gene of interest and the analysis of regional and sub-regional rates of recombination (Rybka *et al.*, 1997). They can also be used to select appropriate combinations of markers for marker assisted selection in plant-breeding programs.

The genetic and molecular evidence have suggested that quantitative resistance can be pathogen race-nonspecific and even pathogen species-nonspecific, that is, broad-spectrum resistance (Kou and Wang, 2010). Mapping quantitative trait loci (QTLs) is a powerful tool for genetic dissection of QDR. The segregation data for all of the markers could be very useful for analysis of the phenotypic variations observed in many traits owned by the RI lines. In this study, using the segregation data for data for all mapped markers and rice diseases incidence, such as Bacterial leaf blight, Sheath blight, leaf Blast and Brown spot, it was able to identify a many QTLs conferring above diseases resistance.

5.1 Bacterial leaf blight resistance

The resistance of rice to specific *Xoo* race is governed by both major *R* genes with a qualitative effect that condition complete resistance (CR) and polygenes with a quantitative effect (quantitative trait loci, QTL) that condition partial resistance (PR) (Koch and Parlevliet, 1991b; Li *et al.*, 2006). The F_{14} RIL population derived from the cross Danteshwari with Dagad showed nearly normal distribution as continuous variation for BLB (Fig. 4.1) and variation in the RIL for lesion length as in quantitative trait. In similar study, the lesion length on the RIL caused by CR4 and CXO8 showed a bimodal distribution, suggested involvement of major resistance gene(s). On infection with CR6, lesion length of the RILs exhibited continuous variation and transgressive segregation was present in both directions, showed typical polygenic inheritance (Li *et al.*, 1999).

The RILs showed two types of segregation in lesion length (LL), when against avirulent Xoo races 1 and 5; the RILs exhibited a bimodal distribution, suggesting involvement of a major R gene(s). When against virulent races 2, 3, 4 and 6, the RILs exhibited an approximately normal distribution with transgressive segregation toward both directions. For virulent races 2, 3, 4 and 6, the genotype \times race interaction was more pronounced (R2=28.4%), indicating that the PR of rice to Xoo is race-specific. Similarly, the DHLs exhibited a bimodal distribution against avirulent Xoo races 1, 5, 7, 8, 9 and 10 and an approximately normal distribution against virulent races 2, 3, 4 and 6 again; the race-specificity of PR to virulent races (Li et al., 2006). In other study, the distribution of lesion length after inoculation with Xoo strain JL691 in a sample containing 500 randomly individuals from a F_2 population developed from a cross between Zhenshan 97 and Minghui 63. The distribution of the lesion length in the 500 plants was found bimodal (Yang et al., 2003). A segregation ratio of 1:4:6:4:1 with respect to resistance, moderate resistance, moderate susceptibility, susceptibility and high susceptibility was noticed when the F₂ plants derived from the crosses Ajaya/TN1 and Ajaya/BPT 5204 were screened for BB resistance (Sujatha et al., 2011).

In this study, large numbers of QTLs detected by using single local *Xoo* isolate. There were 13 QTLs mapped for mean lesion length on chromosomes such as 1, 3, 4, 5, 9, 10 and 12 using RILs derived from Danteshwari and Dagad deshi. Li *et al.*, 2006 was mapped 22 QRL to 12 rice chromosomes in the RILs derived from Teqing × Lemont. In the DHLs, 26 QRL were mapped to 12 rice chromosomes. The IR64 alleles at 10 QRL were associated with resistance, whereas the Azucena alleles

at 6 QRL resulted in resistance. Resistance at the remaining 10 QRL was associated with the IR64 or Azucena alleles, depending on the *Xoo* races. This confirmed the presence of QTLs.

The two QTLs, *qBbr1a* and *qBbr1b* were identified on chromosome 1 between markers RM499 and RM1 with LOD value 7.86 explained 13.53% of phenotypic variation and between markers HvSSR1-87 and HvSSR1-89 with LOD score 5.33 and explained 27.61% of phenotypic variation affected resistance to local isolate. In the previous study, Li *et al.*, 2006 also reported spread of quantitative resistance for bacterial blight on this chromosome. The *qBbr1a* mapped us found similar position of previously identified *QBbr1d* on chromosome 1(Li *et al.*, 2006). The QTL, *qBbr1c* mapped in our work found a different position that is in the telomeric region of same chromosome.

The *qBbr12a* was mapped for mean lesion length between markers RM511 and RM519 with LOD score 4.22, which explained 10.9% of phenotypic variation. The *qBbr12b* identified between markers RM28305 and HvSSR12-36 with LOD value of 4.17 and PVE 11.26%. The *qBbr12c* also identified between markers RM20 and RM511 with high LOD score 6.47 mapped in our work in different region on chromosome 12 as analysis in both RIL and DH population (Li *et al.*, 2006). The *Xa25(t)* may be nearby region of *qBbr12c* of this study.

The *qBbr4a* mapped between markers RM564 and HvSSR4-35, *qBbr4b* between markers HvSSR4-26 to RM564 and *qBbr4c* positioned between markers HvSSR4-38 to HvSSR4-39 on chromosome 4 in our work but only the position of *qBbr4c* found nearly similar position. Similarly, *qBbr9a* and *qBbr9b* identified on chromosome 9. The position of *qBbr9b* nearly similar as worked out previously (Li *et al.*, 2006). The *qBbr5a* and *qBbr5b* were found similar position on chromosome 5.

Ten putative QTLs were identified using both the whole data set and two data subsets. These QTLs fell on eight of the 12 rice chromosomes such as 2, 3, 4, 8, 9, 10, 11 and 12 and collectively explained more than 65% of the residual variation in mean fitness (LL) unexplained by *Xa4*. The resistance alleles at seven of the QTLs were from Teqing and three were from Lemont (Li *et al.*, 1999). Similarly, QTLs on chromosomes 2, 3, 4, 9, 10 and 12 for bacterial blight resistance were also worked out in this study.

5.2 Sheath blight resistance

No gene conferring true resistance to sheath blight has yet been identified, as rice researchers working (Li *et al.*, 1995). However, few resistant varities and lines such as Tetep, Jasmin 85, Teqing and Minghui 63 offer sufficient partial resistant to pathogen in field condition to be agriculturally useful (Pan *et al.*, 1999; Li *et al.*, 1995, Zou *et al.*, 2000; Kunihiro *et al.*, 2002). The genetic nature of sheath blight has been found to be complex and controversial issue in the earlier studies (Loan *et al.*, 2005). On the contrary, genetics studies on the quantitative resistance to *R. solani* in rice have shown both polygenes and major gene inheritance (Sha and Zhu, 1989; Li *et al.*, 1995; Zou *et al.*, 2000).

In the present study, the disease index of the RILs population derived from Danteshwari × Dagad deshi for sheath blight response found continuously distributed as expected for a quantitative trait (Fig. 4.10). Thus, QTLs might be involved in resistance to Sheath blight. Similar, the Sheath blight response of 127 RIL population derived by single seed descent method from a cross between HP2216 (susceptible to *R. solani*) and Tetep (having a high degree of resistance to *R. solani*) also reported continuously distributed (Channamallikarjuna *et al.*, 2010). The mean ShB severity on a subset of 256 F₅ RILs from Lemont/Jasmine 85 (LJRILs) in the microchamber and

mist-chamber assays were distributed normally, with the resistant and susceptible parents at the extreme ends (Liu *et al.*, 2009). The frequency distributions of Sheath blight response ratings of 300 recombinant inbred lines (RILs) from the cross 'Lemont' \times 'Teqing' in a 2-year replicated field experiment exhibited continuous variation for SBR with skewing toward resistance both years (Pinson *et al.*, 2005).

In the other study, the $F_{2:3}$ progeny population exhibited significant phenotypic variance for Sheath blight disease scores were continuously distributed, as expected for a quantitative trait (Sharma et al., 2009). Phenotypic distribution of bacterial panicle blight (BPB) ratings averaged after removal of apparent "escapes" in the mapping population comprised of 300 RILs derived from a cross between Lemont (PI 475833) and Teqing (PI 536047) found normal in distribution with no clear cases of transgressive segregation (Pinson et al., 2010). The frequency distributions of lesion height (LH), actual lesion length (ALL) and disease ratings by inoculation with Rhizoctonia solani were continuous, typical of quantitative traits from 266 Teging Near Isogenic Introgression Lines (NIILs) were developed by using Teqing as recurrent parent and Lemont as introgression parent (Loan et al., 2004). The disease ratings in the F₂ clonal population were continuously distributed from total of 128 F₂ clonal families and their parents were used for genetic analysis of disease resistance (Zou et al., 2000). The identification of genes that affect complexly inherited traits often difficult and the best approached through developing a genetic linkage map to identify quantitative trait loci (QTLs) (Tanksley and McCouch, 1997).

A major effect highly significant QTL, *qSBR1-1* was identified on chromosome 1 in the region between markers RM3825 and HvSSR1-87 with LOD score 7.3 and with a QTL peaking at HvSSR1-87, explained 26.64% of the phenotypic variation for Sheath blight resistance, the presence of QTLs on this

chromosome previously also reported (Pinson *et al.*, 2005; Sharma *et al.*, 2009; Liu *et al.*, 2009 and Channamallikarjuna *et al.*, 2010). Previously, Pinson *et al.*, 2005 identified *qSB-1* on chromosome 1 with LOD value of 3.80 and 8.0% of PVE and found associated with morphological character heading date. Similarly, a QTL, *qSB-1* with a peak marker RM104, with LOD value 3-3.2 and 3.4-3.6 % PVE mapped on chromosome 1(Liu *et al.*, 2009). Channamallikarjuna *et al.*, 2010 was identified *qSBR1-1* on chromosome 1 a peak marker HvSSR1-68 with LOD value 2.9-3 and 8.1-15.0 % of PVE. All these study, confirmed its presence on the chromosome 1.

The significant QTL, *qSBR1-2* for trait individual lesion length cover percentage of sheath length associated with Sheath blight resistance was detected on chromosome 1. The QTL was mapped in the region between markers RM499 and RM1 with LOD score 3.19 and a QTL peak at marker RM428 by QTL cartographer 2.5 under heavy infection condition. The percentage of phenotypic variance explained by the QTL was 3.62% respectively. This was a minor effect QTL first time reported in this work.

One major significant common QTL, *qSBR4-1* was identified on chromosome 4 for total lesion area for Sheath blight resistance between markers HvSSR4-35 and HvSSR4-38 with LOD score of 3.49 and explained 12.1% of the phenotypic variation. Li *et al.*, 1995 reported a QTL, *qSB-4* on chromosome 4 with a peak marker locus RG14-RG214 with LOD value 2.8 and 5% PVE. Similarly, two QTLs, *qSB-4-1* and *qSB-4-2* reported on chromosome 4 with LOD value 3 of 5% PVE and 4.6 of 7% PVE respectively.

There are two QTLs namely *qSBR2-1* and *qSBR3-1* were identified on chromosomes 2 and 3 respectively using composite interval mapping were also previously reported about the presence of QTLs for Sheath blight resistance on these

chromosomes. However, the genomic location of these QTLs varies in different populations (Li *et al.*, 1995; Pan *et al.*, 1999; Zou *et al.*, 2000; Kunihiro *et al.*, 2002; Pinson *et al.*, 2005; Sharma *et al.*, 2009 and Liu *et al.*, 2009). These differences of genomic location could be due to the use of different sources of resistance to Sheath blight in different studies, varying methodologies of assessing Sheath blight resistance or the use of different marker densities.

Two other QTLs, *qSBR9-1* and *qSBR12-1* also identified on chromosomes 9 and 12 on the basis of individual lesion area for Sheath blight resistance have been reported at similar chromosome in previous studies (Li *et al.*, 1995; Zou *et al.*, 2000; Han *et al.*, 2002; Sato *et al.*, 2004; Tan *et al.*, 2005; Pinson *et al.*, 2005; Sharma *et al.*, 2009; Liu *et al.*, 2009 and Channamallikarjuna *et al.*, 2010).

In other studies, six QTLs on chromosomes 2, 3, 4, 8, 9 and 12 were reported using 255 F_4 bulk population of Lemont 9 and Teqing (Li *et al.*, 1995). Zou *et al.*, 2000 also identified six QTLs on chromosomes 2, 3, 7, 9 and 11 in 128 F_2 clonal populations of Jasmine 9 and Lemont. Two QTLs on chromosomes 9 and 11 were identified in F_2 clonal population of Teqing and Lemont 9 (Tan *et al.*, 2005). Two QTLs have been identified for Sheath blight resistance on chromosome 5 and 9 in rice 240 RILs which was derived from Minghui 63 and Zhenshan 97 (Han *et al.*, 2002). Two QTLs have been identified for Sheath blight resistance on chromosome 3 and 12 in rice line WSS2 which was derived from Tetep (Sato *et al.*, 2004).

Many investigations have been conducted to know the nature of QTLs for correlated traits. There are many examples of phenotypic correlation between agronomic traits in rice. In order to explain the true relationship between Sheath blight resistance and other agronomic traits, here QTLs for plant height and tiller per plant was also mapped in the same population. By comparing the location of different QTLs on chromosome 1, it was found that QTL for agronomic traits such as plant height and tiller per plant located side by side and plant height QTL shared with Sheath blight resistance QTL.

The QTL, qSBR1-1 was mapped on the chromosome 1 between markers RM3825 and HvSSR1-87 with LOD score 7.3 and accounted 26.64% of phenotypic variation for the trait individual lesion length cover percentage of sheath length. On the other hand QTL, qPH1.1 for plant height was also mapped between markers RM3825 to HvSSR1-87. The same region of chromosome 1 shared by two traits. There was no relation worked out with tiller number per plant. In a Teqing/Lemont F₄ population, Li *et al.*, 1995 reported that a large proportion of the phenotypic variation in ShB resistance was explained by the morpho-developmental traits (mainly HD, 42%, and PH, 4%). They were identified three QTLs for heading date and four QTLs for plant height in the resistance loci interval and thus suggested that the QTLs for sheath blight resistance were closely associated with the QTLs for heading date or plant height. Similarly, PH and HD explained 43% of the ShB reaction in a mapping population derived from Pecos, a tropical japonica reported to be ShB resistant (Sharma *et al.*, 2009).

5.3 Leaf blast resistance

The Blast resistance in the cultivar Dagad deshi was found to have very complex inheritance. Blast resistance in rice is generally classified into two types, complete and partial resistances (Bonman and Mackill, 1988). The partial resistance reduces the extent of pathogen reproduction in the compatible interaction (Jonson, 1983).

In this experiment, compatible interaction between pathogen and resistant lines were worked out as marked by very small lesions or absence of lesion in

97

resistant lines (Fig. 4.17) and the normal distribution in graph (Fig. 4.16) suggested that the resistance in these lines might be a partial resistance. The differences in the frequency distributions of resistance were observed in RILs for blast disease. Among 122 RILs, the scores for disease severity in the blast test ranged from 0 to 9 SES scale of IRRI, 2002. Some lines had a higher or nearly equal resistance to Dagad deshi and few lines were more susceptible than Danteshwari. This suggests multi-genic inheritance of QTLs for resistance to natural local races in the field.

In similar study, the distributions of the degree of incidence in four out of nine races screened by inoculation method in 190 RILs population of two parents Suweon365 and Chucheong. The degree of incidence of race KI-197 showed normal distribution. The RIL population exhibited transgressive segregations in both directions for all traits and the population showed approximately normal distributions at all stages (Li *et al.*, 2008). In the other study, the frequency distribution of resistance levels of 112 $F_{2:3}$ segregating progenies exhibited continuous distribution, which indicated that blast resistance in IR71033-121-15 against two isolates (KI307 and KI209) was controlled by QTLs(Rahman *et al.*, 2011). The frequency distribution for the phenotypic traits in 261 BC₂F₃ and 31 BC₂F₅ families shown normal curve for disease lesion against pathotype P7.2 and P5.0 (Rahim *et al.*, 2012). Most of partial resistance is non-race specific, quantitative and polygenic (Maruyama *et al.*, 1983; Higashi, 1978).

In the present study, a major effect high significant QTL, qLB-10.1 was mapped on chromosome 10 in the region between markers HvSSR10-17 and HvSSR10-34. The QTL worked out through QTL Cartographer 2.5 with a high LOD value 3.65 and 16.57% of phenotypic variance. The presence of this QTL was confirmed by presence of similar qBL10.1 on chromosome 10 near the marker

RM228 with 2% trait variance (Rahim *et al.*, 2012). A QTL, *qLS10* position near the marker RG241B identified on chromosome 10 with 6.4% phenotypic variance, using 304 recombinant inbred lines of indica rice cross Zhong 156/Gumei 2 (Wu *et al.*, 2005). All these study, confirmed its presence on chromosome 10. Similarly, on chromosome 10, *Pi28*(t) a *R* gene in one of QTL identified through double haploid (DH) population derived from an IR64 by Azucena cross (Sallaud *et al.*, 2003). Liu *et al.*, 2004 also identified a QTL contain a *R* gene, *PiGD-2*(t) on chromosome 10 from original donor Sanhuangzhan 2.

In other studies, nine QTLs were also identified in a double haploid (DH) population derived from an IR64 by Azucena cross (Sallaud et al., 2003). Eighteen main effect QTLs were detected on chromosomes 1, 4, 5, 6, 7, 8 and 12 for blast resistance through RIL derived from a Bala \times Azucena cross (Talukder *et al.*, 2004). The Quantitative trait loci (QTLs) for broad resistance spectrum (BRS) to leaf blast were located on chromosomes 7 and 9. In particular, the *QTLch9* was mapped near the Pi5(t) locus. Two neck-blast QTLs were mapped on chromosomes 5 and 6 (Sirithunya et al., 2002). Fourteen QTLs were identified and mapped on three chromosomes 1, 11 and 12 for resistance against leaf and neck blast (Noenplab et al., 2006). There were four QTLs (qBL5.1, qBL5.2, qBL5.3 and qBL5.4) were identified on Chromosomes 5, two (qBL8.1, qBL8.2) were identified on Chromosomes 8 and three QTLs (*qBL6.1*, *qBL7.1* and *qBL10.1*) were identified on Chromosomes 6, 7 and 10 using of advanced backcross families BC_2F_3 derived from Oryza sativa cv MR219/O. rufipogon IRGC105491(Rahim et al., 2012). By using 148 Sequence Tagged Site (STS) and Single Sequence Repeat (SSR) markers, five QTLs on chromosomes 6, 7, 9 and 11 and seven epistatic QTLs were identified against two blast isolates (KI307 and KI209) (Rahman et al., 2011).

Two QTLs were detected on Chromosome 4 and one each on Chromosome 9 and 12. The phenotypic variation explained by each QTL ranged from 7.9 to 45.7% and the 4 QTLs explained 66.3% of the total phenotypic variation (Fukuoka and Okuno, 2001). Ten putative OTLs for blast resistance on 12 rice Chromosomes have been mapped (McCouch et al., 1994). Two QTLs have been mapped on Chromosome 2 and 6 and one each on Chromosome 3, 5, 7, 8, 11 and 12. Furthermore, 9 QTLs have been mapped using RFLP markers on Chromosome 1-4, 6, 7 and 9 with 2 loci on Chromosome 12 (Tabien et al., 2002). Two QTLs on Chromosome 3 and 11 (qBFR3 and qBFR11) were identified from an F₃ population derived from URN12 (resistant) and Koshihikari (susceptible) (Sato et al., 2006). Five QTLs relating to leaf blast resistance have been detected on Chromosomes 4, 6, 8, 11 and 12 from the BC₂F₂ population derived from the backcross of Koshihikari/O. rufipogon (Hirabayasi et al., 2005). The QTL on Chromosome 4 was found to be most effective and considered a complete resistance gene. Two main-effect quantitative trait loci (r11a and r11b mapped both on chromosome 11 within the two regions RG103-CDO534 and RM229-RM209 (Li et al., 2008).

5.4 Brown spot tolerance

Little is known about the mechanisms responsible for partial resistance to Brown spot. Conventional genetic studies have provided little information on the inheritance of genes controlling the resistance. No major genes with resistance to Brown spot have yet been identified. However, varieties with partial resistance and three quantitative trait loci (QTL) for disease resistance have been identified. The use of resistant varieties would be the most economical means of controlling Brown spot. The varieties Tadukan and Tetep, offered sufficient quantitative resistance to Brown spot and are agriculturally useful (Oohata and Kubo, 1974).
The Danteshwari × Dagad deshi derived 122 RILs population were screened for Brown spot tolerance. The frequency distribution could not be classified into discrete classes of resistance and susceptibility that indicated neither parent contained all the alleles for resistance or susceptibility, nearly normal distribution was followed, the trait Brown spot tolerance be a quantitative as resistance lines showed only few small spots (Fig. 4.19 and 4.20). The frequency distribution of disease score of 110 F₅ lines derived by crossing Tadukan and Hinohikari and their parents for Brown spot shown continuous variation (Sato *et al.*, 2008). A certain number of lines showed segregate transgressively over their parent indicating disease score is a typical quantitative trait. The DH lines exhibited transgressive segregation in both directions, which indicated that neither parent contained all the alleles for resistance or susceptibility. Reaction of DH lines, for brown spot, could not be classified into discrete classes of resistance and susceptibility as they showed continuous variation and skewed distribution that suggested the inheritance is quantitative (Dudhare *et al.*, 2008).

In the present study, the QTL*s*, *qSB1*, *qSB11* and *qSB12* were identified at the different positions and chromosome by using 122 RIL population derived from a cross Danteshwari × Dagad deshi for Brown spot tolerance on chromosomes 1, 11 and 12 respectively. The QTL, *qBS1* between markers HvSSR1-55 to RM5 with LOD score of 3.14 explained 14.35% of the phenotypic variation was considered a major QTL related to Brown spot tolerance. The other *qSB11* with LOD score of 2.71 and 13.99% of the phenotypic variation identified by QTL IciMapping 3.2 under heavy infection condition. Previously, the *qSB11* with a LOD equal to 5.11 was considered a major QTL related to brown spot tolerance also mapped on chromosome 11 with a different position (Sato *et al.*, 2008) confirmed its presence on that chromosome. The

naval major effect QTL, *qBS1* identified on chromosome 1 for brown spot tolerance which was not reported earlier.

The QTL, *qBS12* also first time mapped on chromosome 12 between markers RM20 and RM511 with LOD score 3.17. The three QTLs, *qBS2*, *qBS9* and *qBS11* for Brown spot resistance were detected on chromosome 2, 9 and 11, respectively by using 110 F_5 RIL population derived from a cross Tadukan × Hinohikari for Brown spot tolerance (Sato *et al.*, 2008). In other study, in drought conditions, three QTLs were identified one each on chromosome *#* 4, 6 and 8 between molecular markers EMP2_2-ME10_11, R2171-R2123 and G187-ME2_11, explained 15.5, 9.5 and 12.2% of total phenotypic variation, with LOD score of 4.84, 3.33 and 4.33 respectively (Dudhare *et al.*, 2008).

5.5 Chromosomal regions with multiple diseases resistance

The rice cultivars Moroberekan, Teqing, Lemont and Minghui 63 of several chromosomal segments were associated with quantitative resistance to two or three diseases. Integrating the QTLs data onto a single map-based format allowed us to tell chromosomal segments contain colocalizing QTLs for multiple diseases resistance. The quantitative resistance is putatively race non-specific, as indicated by evidence that resistance QTLs for different rice diseases caused by various pathogens are frequently mapped to the same or overlapping loci (Xiong *et al.*, 2002; Ramalingam *et al.*, 2003; Wen *et al.*, 2003; Chu *et al.*, 2004; Zhang *et al.*, 2005 and Li *et al.*, 2006).

In the present study, the region of chromosome between markers RM499 to RM1 found common on chromosome 1 for both the disease such as Sheath blight and Bacterial leaf blight diseases resistance. The chromosomal segments also contain colocalizing QTLs for multiple diseases. The region of chromosome 12 between markers RM20 and RM511 found common for both the disease *i.e.* Brown spot and

bacterial blight. The QTLs of both diseases overlapped in this region. Similarly, previously reported on chromosome 12 a interval (40.2–64.4 cM) found QTLs for disease resistance to Bacterial blight, rice Blast, RYMV, Rice yellow mottle virus and Sheath blight. Colocalization of multiple resistance QTLs has been observed (Wisser *et al.*, 2005). The results of the study are preliminary and need to be confirmed. These flanking markers are useful for developing of multiple diseases resistance in cultivars through molecular marker-assisted selection and similar studies done by many researchers.

The rice cultivar 'Improved Pusa Basmati 1' developed with inbuilt resistance to BB, blast and ShB through molecular marker-assisted selection using flanking markers. The Basmati cultivar (carrying the BB resistance genes xa13 and Xa21) was used as the recurrent parent and cultivar 'Tetep' (carrying the blast resistance gene *Pi54* and ShB resistance quantitative trait loci (QTL), *qSBR11-1*) was the donor (Singh *et al.*, 2012). Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance genes that confer broad-spectrum bacterial blight resistance three resistance genes (Xa4 + xa5 + Xa21) were transferred from an indica donor (IRBB57), using a marker-assisted backcrossing (MAB) breeding strategy(Suh *et al.*, 2013).

Summary, Conclusion and Suggestions for Future Research Work

CHAPTER - VI

SUMMARY, CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH WORK

Rice (Oryza sativa L.) feeds more than half of the world's population and genetic improvement of this food crop can serve as a major component of sustainable food production. It serves as a model monocot crop for plant genome analysis due to the availability of whole genome sequence information, high throughput molecular biological tools and large number of targeted mutant collections. Diseases are among the most important limiting factors that affect rice production, causing annual yield loss conservatively. Resistant cultivars and application of pesticides have been used for disease control. However, the useful life-span of many resistant cultivars is only a few years, due to the breakdown of the resistance in the face of high pathogenic variability of the pathogen population. The identification of genes that affect complexly inherited traits is often difficult so, the best approached through developing a genetic linkage map to identify quantitative trait loci (QTLs). Identification and mapping of QTL is a valuable starting point for positional cloning of genes present in the QTL region of the genomes. Once the tightly linked markers have been identified, the quantitative trait loci (QTLs) can be selected for breeding programs using markerassisted selection (MAS) strategy.

Summary

The phenotypic evaluation of F₁₄ RILs population for diseases

The analysis indicated that the Sheath blight and Blast disease index of RILs were continuously distributed as expected for a quantitative trait. The trait Bacterial blight resistance and Brown spot tolerance for RILs population showed nearly continuous variation with normal distribution as in quantitative trait.

- Among all 122 F₁₄ RIL lines used for screening of four diseases, the line number such as "71" and "77" found resistance for all four diseases e.g. Bacterial leaf blight, Sheath blight, leaf Blast and Brown spot. There were 8 lines which showed resistance to three disease such as line number 46 for Sheath blight, leaf Blast and Brown spot; line number 70 and 88 for BLB, leaf Blast and Brown spot; line number 18, 73 and 78 for BLB, Sheath blight and leaf Blast and lastly 28 and 94 line for BLB, Sheath blight and Brown spot. At least 17 lines found for two disease resistance and rest for single disease resistance.
- There were many RM and HvSSR markers found significance at 0.01% level with BLB traits on chromosomes 1, 3, 4, 8, 9, 11 and 12. The markers HvSSR4-35 and HvSSR4-38 on chromosome 4 and RM-459 on chromosome 5 were showed significant at 1% level and the only marker RM273 on chromosome 4 was found significant at 0.1% level for the trait total lesion area for Sheath blight resistance. Similarly, markers RM3825 and HvSSR1-87 were found significance at 0.1% and 0.01% respectively for trait individual lesion length cover % of sheath length. The markers such as HvSSR2-12 on chromosome 2; RM410, RM242 and RM553 on chromosome 9; RM277 and HvSSR12-51 on chromosome 12 were significance at the 1% level with the trait leaf Blast. Similarly, the highly associated marker for Brown spot tolerance was HvSSR1-55 on chromosome 1 significance at 0.1% level.

QTL mapping through Composite Interval Mapping

- A total of 10 and 3 QTLs were identified for Bacterial blight resistance under different conditions such as mean lesion length and BLB reaction qualitative (0-9) scale (SES IRRI, 2002) using QTL cartographer 2.5 while 3 and 1 QTLs were identified using QTL IciMapping 3.2 respectively. These QTLs were found to be present on chromosome #1, 3, 4, 5, 6, 9, 10 and 12.
- Three significant major QTLs, *qBbr1a*, *qBbr1b* and *qBbr1c* were mapped on chromosome 1 for mean lesion length; another 3 significant major effect QTLs, *qBbr12a*, *qBbr12b* and *qBbr12c* were identified on chromosome 12 by QTL cartographer 2.5 and QTL IciMapping 3.2 and others 9 minor QTLs showed on 3, 4, 5, 6, 9 and 10 chromosomes.
- A total of 7 QTLs were identified for Sheath blight disease resistance using QTL cartographer 2.5 using composite interval mapping while 2 QTLs were identified using QTL IciMapping 3.2, out of which 2 QTLs were common with both the software. The QTLs were found to be present on chromosomes 1, 2, 3, 4, 9 & 12.
- One major significant QTL, qSBR4-1 for total lesion area for Sheath blight identified on chromosome 4; one major significant QTL, qSBR1-1 and one minor QTL, qSBR1-2 mapped on chromosome 1 for individual lesion length cover % of sheath length respectively. There were four small effect QTLs also found on chromosomes 2, 3, 9 and 12.
- The QTL, *qSBR1-1* was mapped on the chromosome 1 between markers RM3825 and HvSSR1-87 with LOD score 7.3 and accounted 26.64% of phenotypic variation for the trait individual lesion length cover percentage of sheath length. The same region of chromosome 1 shared one QTL such as

qPH1.1 for plant height. This major effect QTL, *qSBR1-1* found share QTL of plant height.

- A QTL, *qLB10.1* was identified for Blast resistance using RILs population using QTL cartographer 2.5 while no QTLs were identified using QTL IciMapping 3.2. The QTL was found to be present region between markers HvSSR-10-17 and HvSSR10-34 on chromosomes 10. The LOD score of the QTL was 3.65 and explained 16.57% of the phenotypic variation.
- In the present study, a total of one QTL, *qBS12* was identified for Brown spot tolerance using QTL cartographer 2.5 on chromosome 12 while 2 QTLs were identified such as *qBS1* and *qBS11* on chromosome 1 and 11 respectively using QTL IciMapping 3.2.
- The three chromosomes which showed multiple disease resistance area in this experiment. The region of chromosome 1 between markers RM499 to RM1 found common for both diseases BLB and Sheath blight resistance. Similarly, the region of chromosome 12 between markers RM20 and RM511 found common for both the disease i.e. Brown spot and Bacterial leaf blight resistance. Another region of this chromosome between markers RM511 and RM260 coincided for BLB and Sheath blight. On chromosome 9 between markers HvSSR9-7 and RM444 common for Sheath blight and BLB resistance.

Conclusion

 The parent Dagad deshi found resistance toward Sheath blight and leaf Blast. Similarly Danteshwari toward Bacterial leaf blight resistance and slightly Brown spot tolerance. The phenotypic variation of RILs for these diseases found continuous variation as quantitative trait.

- In conclusion, small effect QTLs were found prevalence in this experiment for BLB. Few major effect QTLs worked out in this experiment such as *qBbr1a*, *qBbr1b* and *qBbr12a*, *qBbr12b* on chromosome 1 and 12 respectively of similar chromosomes of previously mapped QTLs. This lending credibility to their existence in parents. The QTLs, *qBbr12a* and *qBbr12b* high LOD and PVE% may be useful for crop improvement programmes.
- The large numbers of QTLs identified conferring Sheath blight disease resistance demonstrate the durability of Dagad deshi is due to many genes with small effects. The 7 QTLs were identified for Sheath blight under heavy infection condition in this experiment corresponded to similar chromosomes of previously mapped QTLs, lending credibility to their existence in parents.
- Identification of two QTLs for Sheath blight resistance is valuable finding for rice geneticists, breeders and pathologists. The ShB resistance QTLs, *qSBR4-1* for total lesion area on chromosome 4 and *qSBR1-2* on chromosome 1 appear to be independent of such associations with other trait, explaining 12.1 and 3.62% of phenotypic variation for Sheath blight resistance, respectively offer as a breeding target for partial resistance in Indian rice cultivars and a starting point for gene isolation. The QTL, *qSBR9-1* that has been mapped to region between markers HvSSR9-7 and RM444 may be useful for crop improvement by marker-assisted transfer. The major effect QTLs, *qSBR1-1* and *qPH1.1* of plant height found on same position may not be useful.
- The QTL, *qLB10.1* mapped between markers HvSSR-10-17 and HvSSR10-34 on chromosomes 10 with high LOD value 3.65 and 16.57% of phenotypic variance found experiment specific QTL may be useful for crop improvement by marker-assisted transfer as *Pi28*(t) a *R* gene and *PiGD-2*(t) a *R* gene were previously reported on this chromosome.

- The QTL for Brown spot tolerance *qSB11* with LOD score of 2.71 and 13.99% of the phenotypic variation identified previously mapped QTL; *qSB11* with a LOD equal to 5.11 was on chromosome 11 with a different position lending credibility to their existence in parent. The major effect QTL, *qBS1* identified on chromosome 1 for brown spot tolerance which was not reported earlier.
- The multiple disease resistance regions of chromosomes 1, 9 and 12 can be use as resistance source for non-race specific.

Suggestions for Future Research Work

- To carry out map-based cloning of each QTL to elucidate the resistant mechanisms.
- In future could use the SSR markers that were tightly linked to the QTLs to promote breeding process of rice disease resistance.
- Validation of more number of SSR markers can provide better genome coverage and greater arsenal of tools for QTL mapping and marker assisted selection.
- The QTLs very often exhibits high QTL × E interaction, the detected QTLs need to be cross validated across the different environment and crosses along with the cross validation of linked molecular markers.
- R genes and defense-associated transcription factors are attractive classes of candidate genes for investigation of QTLs need to identify.
- Once genes conditioning QTL are identified for crop plants, natural variation can be better characterized and exploited.
- Identification of positional candidate genes is a step toward isolation of the genetic factors controlling quantitative traits.

Abstract

"QTL MAPPING FOR BACTERIAL LEAF BLIGHT, SHEATH BLIGHT, BLAST AND BROWN SPOT TOLERANCE USING RIL POPULATION OF RICE (*Oryza sativa* L.)."

By

LINCOLN MANDAL

ABSTRACT

Rice (*Oryza sativa* L.) is a high economic and staple food of more than half of the world's human population. Diseases are among the most important limiting factors that affect rice production, causing annual yield loss conservatively. Due to the breakdown of resistant cultivars, in the face of high pathogenic variability of the pathogen population, identified quantitative trait loci (QTLs) can be use for disease control. Identification and mapping of QTL is a valuable starting point for positional cloning of genes present in the QTL region of the genome. Once the tightly linked markers have been identified, the quantitative trait loci (QTLs) can be selected for breeding programs using marker-assisted selection (MAS) strategy.

Two potential *indica* genotypes, Danteshwari: a high yielding popular rice cultivar but resistance to few diseases and Dagad deshi: a tall deep rooted poor yielder and susceptible to few diseases, along with their derived F_{14} RILs were used for the phenotypic evaluation of four diseases such as Bacterial leaf blight, Sheath blight, leaf Blast and Brown spot tolerance. The analysis indicated that the Sheath blight and Blast disease index of RILs were continuously distributed as expected for a quantitative trait but Bacterial blight resistance and Brown spot tolerance for RIL population showed continuous variation with nearly normal distribution. Among all 122 lines used for screening of four diseases, the line numbers "71" and "77" were found to be resistant for all four diseases such as BLB, Sheath blight, leaf Blast and Brown spot. Only eight lines showed resistance against all three diseases.

The Single Marker Analysis tests the association between marker genotypes and trait values using F-test in QTL cartographer 2.5. There were many RM and HvSSR markers found significance at 0.01% level with BLB trait on chromosomes 1, 3, 4, 8, 9, 11 and 12. The only marker RM273 on chromosome 4 was found significant at 0.1% for total lesion area for Sheath blight resistance. Similarly, markers RM3825 and HvSSR1-87 were found significant at 0.1% and 0.01% respectively for individual lesion length cover % of sheath length. HvSSR2-12 on chromosome 2; RM410, RM242 and RM553 on chromosome 9; RM277 and HvSSR12-51 on chromosome 12 were significant at the 1% level with leaf Blast. Similarly, the highly associated marker for Brown spot tolerance was HvSSR1-55 on chromosome 1 significance at 0.1%.

A total of 162 well distributed rice SSR (RM and HvSSR) markers polymorphic between Danteshwari and Dagad deshi were used to construct a linkage map. The genotypic data and phenotypic data of field condition of diseases reaction were analyzed using QTL cartographer 2.5 and QTL IciMapping 3.2. A total of 10 and 3 QTLs were identified for Bacterial blight resistance under different conditions 2002), respectively using QTL cartographer 2.5 while 3 and 1 QTLs were identified using QTL IciMapping 3.2. These QTLs were found to be present on chromosome #1, 3, 4, 5, 6, 9, 10 & 12. Three significant major QTLs, *QBbr1a*, *QBbr1b* and *QBbr1c* on chromosome 1 and *QBbr12a*, *QBbr12b* and *QBbr12c* on chromosome 12 identified for mean lesion length similar chromosomes of previously mapped QTLs, lending credibility to their existence in parents.

A total of 7 QTLs were identified for Sheath blight disease resistance present on chromosomes 1, 2, 3, 4, 9 and 12. One major significant QTL, qSBR4-1 for total lesion area for sheath blight identified on chromosome 4; one major significant QTL qSBR1-1 and one minor QTL, qSBR1-2 mapped on chromosome 1 for individual lesion length cover % of sheath length respectively. The major effect QTL qSBR1-1found share QTL of plant height.

A QTL qLB10.1 was identified for Blast resistance found to be present region between markers HvSSR10-17and HvSSR10-34 on chromosomes 10. The QTL qLB10.1 with high LOD value 3.65 and 16.57% of phenotypic variance found experiment specific QTL may be useful for crop improvement as Pi28(t) a R gene and PiGD-2(t) a R gene were previously reported on this chromosome.

In the present study, a total of 3 QTLs such as qBS1, qBS11 and qBS12 on chromosome 1, 11 and 12 respectively were identified for Brown spot resistance. The QTL for Brown spot qSB11 with LOD score of 2.71 and 13.99% of the phenotypic variation identified as previously mapped QTL qSB11 with a LOD equal to 5.11 was on chromosome 11 with a different position lending credibility to their existence.

The three chromosomes which showed multiple disease resistance area in this experiment. The region of chromosome 1 between markers RM499 to RM1 found common for both diseases BLB and Sheath blight toward resistance. Similarly, the region of chromosome 12 between markers RM20 and RM511 found common for both the disease i.e. Brown spot and Bacterial leaf blight resistance. Another region of this chromosome between marker RM511 and RM260 coincided for BLB and Sheath blight. On chromosome 9 between marker HvSSR9-7 and RM444 common for sheath blight and BLB resistance.

Date: 01-10.2013 Department of Plant Pathology, COA, Raipur

(Dr. A. S. Kotasthane) Major Advisor

Bibliography

BIBLIOGRAPHY

- Abe, S. 2004. Breeding of a blast resistant multiline variety of rice, Sasanishiki BL. *Jpn. Agric. Res. Q.*, 38:149-154.
- Adair, C.R. 1941. Inheritance in rice of reaction to *Helminthosporium oryzae* and *Cercospora oryzae*. Technical Bulletin, United States Department of Agriculture, No. 772.18 pp.
- Adhikari, T.B., Basnyat, R.C. and Mew, T.W. 1999. Virulence of *Xanthomonas oryzae* pv. *oryzae* on rice lines containing single resistance genes and gene combinations. *Plant Dis.*, 83:46-50.
- Adhikari, T.B., Cruz, C.M.V., Zhang, Q., Nelson, R.J., Skinner, D.Z., Mew, T.W. and Leach, J.E. 1995. Genetic diversity of *Xanthomonas oryzae* pv. *oryzae* in Asia. *Appl. Environ. Microbiol.*, 61:966-971.
- Agarwal, P.K., Sidu, G.S. and Gosal, S.S. 2005. Induction of Bacterial blight Resistance in Elite Indian Rice (*Oryza sativa* L.) Cultivars using Gamma Irradiation and Ethyl Methane Sulfonate. *Mutat. Breed. Newsl. Rev.*, 1:17-18.
- Ahn, S.N., Kim, Y.K., Han, S.S., Choi, H.C., Moon, H.P. and McCouch, S.R. 1996. Molecular mapping of a gene for resistance to a Korean isolate of rice blast. *Rice Genet. Newsl.*, 13:74-75.
- Ahn, S.W., de la Pena, R., Candole, B.L. and Mew, T.W. 1986. A new scale for rice Sheath blight (ShB) assessment. *Int. Rice. Res. Newsl.*, 11(6):17.
- Alam, S.N. and Cohen, M.B. 1998: Detection and analysis of QTLs for resistance to the brown plant hopper, *Nilaparvata lugens*, in a doubled-haploid rice population. *Theor. Appl. Genet.*, 97:1370-1379.
- Albar, L., Lorieux, M., Ahmadi, N., Rimbault, I., Pinel, A., Sy, A., Fargette, D. and Ghesquière, A. 1998. Genetic basis and mapping of the resistance to rice

yellow mottle virus I. QTLs identification and relationship between resistance and plant morphology. *Theoretical and Applied Genetics*, 97:1145-1154.

- Ansari, M.M., Sharma, A. and Thangal, M.H. 1989. Evaluation of rice cultures against sheath blight. *J. Andaman Sci. Assoc.*, 5:89-90.
- Arumugnathan, K. and Earle, E.D. 1991. Nuclear DNA content of some important plant species. *Plant Mol. Biol. Rep.*, 3:208-218.
- Awodera, V.A. and Esuruoso, O.F. 1975. Reduction in grain yield of two rice varieties infected by rice blast disease in Nigeria. *Nigerian Agric. J.*, 11:170-173.
- Bagali, P.G., Hittalmani, S., Shashidhar, S.Y. and Shashidhar, H.E. 2000. Identification of DNA markers linked to partial resistance for blast disease in rice across locations. *Advances in Rice Blast Research.*, 15:34-42.
- Bakonyi, J., Pomazi, A., Fischl, G. and Hornok, L. 1995. Comparison of selected species of *Bipolaris*, *Drechslera* and *Exserohilum* by random amplification of polymorphic DNA. *Acta. Microbiol. Immunol. Hungarica*, 42:355-366.
- Balal, M.S., Omar, R.A., EI-Khadem, M.M. and Aidy, I.R. 1979. Inheritance of resistance to the brown spot disease of rice, *Cochliobolus miyabeanus*. Agric. *Res. Rev.*, 57:119-133.
- Ballini, E., Morel, J.B., Droc, G., Price, A., Courtois, B., Notteghem, J.L. and Tharreau, D. 2008. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. *Mol. Plant Microbe In.*, 21(7):859-868.
- Barman, S.R., Gowda, M., Venu, R.C. and Chattoo, B.B. 2004. Identification of a major blast resistance gene in the rice cultivar 'Tetep'. *Plant Breed.*, 123:300-302.
- Basten, C.J., Weir, B.S. and Zeng, Z.-B. 1994. Zmap-a QTL cartographer. In: J.S.G.C. Smith, B.J. Benkel, W.F. Chesnais, J.P. Gibson, B.W. Kennedy &

E.B. Burnside (Eds.), Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, Guelph, Ontario, Canada. Published by the Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production.

Behdad, E. 1982. Diseases of field crops in Iran, p: 442. Neshat Isfahan Press.

- Bennetzen, J.L. and Ma, J. 2003. The genetic colinearity of rice and other cereals on the basis of genomic sequence analysis. *Curr. Opin. Plant Biol.*, 6:128-133.
- Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: learning from the last 20 years. *Crop Sci.*, 48(5):1649-1664.
- Bhaktavatsalam, G., Satyanarayana, K., Reddy, A.P.K. and John, V.T. 1978. Evaluation of sheath blight resistance in rice. *Int. Rice Res. Newsl.*, 3:9-10.
- Biswas, A. 2001. Reaction of hybrid rice varieties to sheath blight (ShB) disease in West Bengal, *In. J. Mycol. Plant Pathol.*, 31:360–361.
- Blair, M.W. and McCouch, S.R. 1997. Microsatellite and sequence tagged site markers diagnostic for the rice bacterial leaf blight resistance gene Xa-5. *Theor. Appl. Genet.*, 252:597-607.
- Bonman, J.M. and Mackill, D.J. 1988. Durable resistance to rice blast disease. *Oryza*, 25:103-110.
- Bonmann, J.M., Kush, G.S. and Nelson, R.J. 1992. Breeding for resistance to pests. *Annu. Rev. Phytopathol.*, 30:507-523.
- Borah, P., Baruah, D.K., Ali, M.S., Kalita, U.C. and Hazarika, M.H. 1994. Evaluation of indigenous Ahu rice germplasm for resistance to leaf blast, bacterial blight and sheath blight diseases. *J. Agric. Sci. Soc. North East India*, 7:111-113.
- Borines, L.M., Veracruz, C.M., Redona, E.D., Hernandez, J.F., Natural, M.P., Raymundo, A.D. and Leung, H. 2000. Marker aided pyramiding of bacterial

blight resistance genes in maintainer lines for hybrid rice production. *IRRI*, *Conf. Abstr.*, 4(2):162.

- Borthakur, B.K. and Addy, S.K. 1988. Screening of rice (*Oryza sativa*) germplasm for resistance to sheath blight (*Rhizoctonia solani*). *Indian J. Agric. Sci.*, 58(7): 537-538.
- Bradshaw, H.D. 1996. Molecular genetics of populus. In: Stettler, R.F.; Bradshaw, H.D.; Heilman, P.E. and Hinckley, T.M. eds. Biology of populus and its implications for management and conservation, Part 1. Ottawa, NRC Research Press, p. 183-199.
- Brar, D.S. and Khush, G.S. 1997. Alien introgression in rice. *Plant Mol. Biol.*, 35:35-47.
- Broman, K.W., Wu, H., Sen, S. and Churchill, G.A. 2003. R/qtl: QTL mapping in experimental crosses. *Bioinformatic*, 19:889-890.
- Bryan, G.T., Wu, K.-S., Farrall, L., Jia, Y., Hershey, H.P., McAdams, S.A., Faulk, K.N., Donaldson, G.K., Tarchini, R. and Valent, B. 2000. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. *Plant Cell*, 12(11):2033-2045.
- Caracuel-Rios, Z. and Talbot, N. J. 2007. Cellular differentiation and host invasion by the rice blast fungus *Magnaporthe grisea*. *Curr. Opin. Microbiol.*, 10:339-345.
- Castilla, N.P., Leano, R.M., Elazegui, F.A., Teng, P.S. and Savary, S. 1996. Effects of plant contact, inoculation pattern, leaf wetness regime and nitrogen supply on inoculum efficiency in rice sheath blight. *J. Phytopathol.*, 144:187-192.
- Castillo, P.S. 1962. A comparative study of directly-seeded and transplanted crops of rice. *Philipp. Agric.*, 45:560-566.
- Causse, M.A., Fulton, T.M., Cho, Y.G., Ahn, S.N., Chunwongse, J., Wu, K., Xiao, J., Yu, Z., Ronald, P.C., Harrington, S.E., Second, G., McCouch, S.R.

and Tanksley, S.D. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. *Genet.*, 138(4):1251-1274.

- Chakrabarti, N.K. 2001. Epidemiology and disease management of brown spot of rice in India. In: Major Fungal Disease of Rice: Recent Advances. *Kluwer Academic Publishers*. pp. 293-306.
- Channamallikarjuna, V., Sonah, H., Prasad, M., Rao, G.J.N., Chand, S., Upreti, H.C., Singh, N.K. and Sharma, T.R. 2010. Identification of major quantitative trait loci *qSBR11-1* for sheath blight resistance in rice. *Mol. Breed.*, 25:155-166.
- Chauhan, R.S., Farman, M.L., Zhang, H.B. and Leong, S.A. 2002. Genetic and physical mapping of a rice blast resistance locus, *Pi-CO39(t)* that corresponds to the avirulence gene *AVR1-CO39* of *Magnaporthe grisea*. *Mol. Genet. Genomics*, 267:603-612.
- Che, K.P., Zhan, Q.C., Xing, Q.H., Wang, Z.P., Jin, D.M., He, D.J. and Wang, B. 2003. Tagging and mapping of rice sheath blight resistant gene. *Theor. Appl. Genet.*, 106:293-297.
- Chen, H., Wang, S. and Zhang, Q. 2002. New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line. *Phytopathology*, 92:750-754.
- Chen, H., Wang, S., Xing, Y., Xu, C., Hayes, P.M. and Zhang, Q. 2003. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to *Pyricularia grisea* in rice and barley. *Proc. Natl. Acad. Sci.* U.S.A, 100:2544-2549.
- Chen, D.-H., de la Vina, M., Inukai, T., Mackill, D. J. Ronald, P.C. and Nelson R.J.
 1999. Molecular mapping of the blast resistance gene, *Pi44(t)*, in a line erived from a durably resistant rice cultivar. *Theor. Appl. Genet.*, 98(6-7): 1046-1053.

- Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Xu, J., Ling, Z., Cao, G., Ma, B., Wang, Y., Zhao, X., Li, S. and Zhu, L. 2006. A B-lectin receptor kinase gene conferring rice blast resistance. *Plant J.*, 46(5):794–804.
- Chen, X.W., Li, S.G., Xu, J.C., Zhai, W.X., Ling, Z.Z., Ma, B.T., Wang, Y.P., Wang, W.M., Cao, G., Ma, Y.Q., Shang, J.J., Zhao, X.F., Zhou, K.D. and Zhu, L.H. 2004. Identification of two blast resistance genes in a rice variety, Digu. *J. Phytopathol.*, 152(2):77–85.
- Chu, Z., Ouyang, Y., Zhang, J., Yang, H. and Wang, S. 2004. Genome- wide analysis of defense-responsive genes in bacterial blight resistance of rice mediated by the recessive *R* gene *xa13*. *Mol. Genet. Genomics.*, 271:111-120.
- Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C., Li, X., Fu, B., Li, Z., Bennetzen, J.L., Zhang, Q. and Wang, S. 2006. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. *Genes. Dev.*, 20:1250-1255.
- Collard, B.C.Y. and Mackill, D. J. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. *Phil. Trans. R. Soc. Ser. B.*, 363:557-72.
- Courtois, B., McLaren, G., Sinha, P.K., Prasad, K., Yadav, R. and Shen, L. 2000.
 Mapping QTLs associated with drought avoidance in upland rice. *Mol. Breed.*, 6:55-66.
- Crill, P., Nuque, F.L., Estrada, B.A. and Bandong, J.M. 1982. The role of varietal resistance in disease management. In: IRRI (ed) Evolution of gene rotation concept for rice blast control. International Rice Research Institute, Los Banos, pp 103-121.

- Dai, L., Liu, X., Xiao, Y. and Wang, G. 2007. Recent advances in cloning and characterization of disease resistance genes in rice. J. Integr. Plant Biol. 49:112-119.
- Damicone, J.P., Patel, M.V. and Moore, W.F. 1993. Density of sclerotia of *Rhizoctonia solani* and incidence of sheath blight in rice fields in Mississippi. *Plant Dis.*, 77:257-260.
- Das, N.P. 1970. Resistance of some improved varieties of rice (*Oryza sativa* L.) to sheath blight caused by *Rhizoctonia solani* Kuhn. *Indian J. Agric. Sci.*, 40:566-568.
- Datnoff, L.E., Snyder, G.H. and Deren, C.W. 1992. Influence of silicon fertilizer grades on blast and brown spot development and on rice yields. *Plant Dis.*, 76:1011-1013.
- Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H., Read, N.D., Lee, Y.H., Carbone, I., Brown, D., Oh, Y.Y., Donofrio, N., Jeong, J.S., Soanes, D.M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, M.H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L.J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J.E. and Birren, B.W. 2005. The genome sequence of the rice blast fungus *Magnaporthe grisea*. *Nature*, 434:980-986.
- Dela Paz, M.A.G., Goodwin, P.H., Raymundo, A. K., Ardales, E.Y. and Vera Cruz, C.M. 2006. Phylogenetic analysis based on ITS sequences and conditions affecting the type of conidial germination of *Bipolaris oryzae*. *Plant Pathol.*, 55:756-765.
- Deng, Y., Zhu, X., Shen, Y. and He, Z. 2006. Genetic characterization and fine mapping of the blast resistance locus *Pigm(t)* tightly linked to *Pi2* and *Pi9* in a

broad-spectrum resistant Chinese variety. *Theor. Appl. Genet.*, 113(4):705–713.

- Deren, C.W., Datnoff, L.E., Snyder, G.H. and Martin, F.G. 1994. Silicon concentration, disease response and Yield components of rice genotypes grown on flooded organic Histosol. *Crop Sci.*, 34:733-737.
- Dubcovsky, J. 2004. Marker-Assisted Selection in Public Breeding Programs: The Wheat Experience. *Crop Science*, 44:1895-1898.
- Dudhare, M.S., Jadhav, P.V. and Mishra, S.K. 2008. Molecular mapping of QTLs for resistance to Brown spot disease in rice. *J. Pl. Dis. Sci.*, 3(1):21-23.
- Eathington, S.R., Crosbie, T.M., Edwards, M.D., Reiter, R.S. and Bull, J.K. 2007. Molecular markers in a commercial breeding program. *Crop sci.*, 47(S3):S154-S163.
- Ebbole, D.J. 2007. *Magnaporthe* as a model for understanding host-pathogen interactions. *Annu. Rev. Phytopathol.*, 45:437-56.
- Eizenga, G.C., Agrama, H.A., Lee, F.N. and Jia, Y. 2009. Exploring genetic diversity and potential novel disease resistance genes in a collection of rice (*Oryza spp.*) wild relatives. *Genet. Resour. Crop Evol.*, 56:65-76.
- Eizenga, G.C., Lee, F.N. and Rutger, J.N. 2002. Screening of *Oryza* species plants for rice sheath blight. *Plant Dis.*, 68:808-812.
- Ezuka, A.1972. Field resistance of rice varieties to rice blast disease. *Rev. Plant Prot. Res.*, 5:1-21.
- Fan, K.C., Kang, X.W., Peng, S.Q., Zou, H.X., Yang, X.Y. and Wan, G.A. 1993. The comprehensive effect of nitrogen, irrigation and sclerotium number on the epidemics of rice sheath blight. *Acta. Phytophyl. Sin.*, 20:97-103.

- Finckh, M.R. and Nelson, R.J. 1999. Phylogenetic and pathotypic analysis of rice bacterial blight race 3. *Eur. J. Plant Pathol.*, 105:743-51.
- Fjellstrom, R., Conaway-Bormans, C.A., McClung, A.M., Marchetti, M.A., Shank, A.R. and Park, W.D. 2004. Development of DNA markers suitable for marker assisted selection of three *Pi* genes conferring resistance to multiple *Pyricularia grisea* pathotypes. *Crop Sci.*, 44(5):1790-1798.
- Flor, H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathology, 9:275-296.
- Frary, A., Nesbitt, T.C., Grandillo, S., Knaap, E., Cong, B., Liu, J., Meller, J., Elber,R., Alpert, K.B. and Tanksley, S.D. 2000. *fw2.2*: a quantitative trait locus key to the evolution of tomato fruit size. *Science*, 289:85-88.
- Fujii, K., Hayano-Saito, Y., Shumiya, A. and Inoue, M. 1995. Genetical mapping based on the RFLP analysis for the panicle blast resistance derived from a rice parental line St. No. 1. *Breed Sci.*, 45(1):209.
- Fujii, K., Hayano-Saito, Y., Saito, K., Sugiura, N., Hayashi, N., Tsuji, T., Izawa, T. and Iwasaki, M. 2000. Identification of a RFLP marker tightly linked to the panicle blast resistance gene, *Pb1*, in rice. *Breed. Sci.*, 50(3):183-188.
- Fukuoka, S. and Okuno, K. 2001. QTL analysis and mapping of *pi21* a recessive gene for field resistance to rice blast in Japanese upland rice. *Theor. Appl. Genet.*, 103:185-190.
- Fukuta, Y., Yanoria, M.J.T., Mercado-Escueta, D. and Ebron, L.A., Fujita, Y., Araki, E. and Khush, G.S. 2004. Quantitative trait loci (QTL) reactions to rice blast isolates from Japan and the Philippines. *In* Rice blast: Interaction with rice and control, ed. Kawasaki, S., *Kluwer Academic Pub.*, 113-121.

- Gangopadhyay, S. and Padmanabhan, S.Y. 1987. Breeding for disease resistance in rice. Oxford & IHB Publishing Co. Calcatta. p. 340.
- Gao, D., Liu, A., Zhou, Y., Cheng, Y., Xiang, Y., Sun, L. and Zhai, W. 2005.
 Molecular mapping of a bacterial blight resistance gene *Xa-25* in rice. *Yi Chuan Xue Bao.*, 32:183-188.
- Gao, D.Y., Xu, Z.G., Chen, Z.Y., Sun, L.H., Sun, Q.M., Lu, F., Hu, B.S., Liu, Y.F. and Tang, L.H. 2001. Identification of a new gene for resistance to bacterial blight in a somaclonal mutant HX-3 (indica). *Rice Genet. Newsl.*, 18:66.
- Gnanamanickam, S., Brindha Priyadarisini, V., Narayanan, N., Vasudevan, P. and Kavitha, S. 1999. An overview of bacterial blight disease of rice and strategies for its management. *Curr. Sci.*, 77:1435-1443.
- Goel, R.K. and Lore, J.S. 2004. Some sources of multiple disease resistance in rice in the irrigated agroecosystem in northwestern India. *Plant Dis. Res.*, 19:167-168.
- Goel, R.K., Bala, R. and Singh, K. 2006. Genetic characterization of resistance to brown leaf spot caused by *Drechslera oryzae* in some wild rice (*Oryza sativa* L.) lines. *Ind. J. Agri. Sci.*, 76(11):705-707.
- Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M. and Tusneem, N. 2002. A draft sequence of the rice genome (*Oryza sativa* L. ssp. *japonica*). Sci., 296(5565):92-100.
- Gokulapulan, C. and Nair, M.C. 1983. Field screening of sheath blight and rice root nematode. *Int. Rice Res. Newsl.*, 8(6):4.
- Gong, G.S. and Zhang, S.R. 2002. Fractal analysis of lesion patterns of plant diseases. *Plant Prot.*, 28:9-13.

- Goto, I. 1970. Genetic studies on the resistance of rice plant to the blast fungus I.
 Inheritance of resistance in crosses Sensho x H-79 and Imochishirazu x H-79.
 Ann. Phytopath. Soc. Japan, 36:304-312.
- Goto, I. 1976. Genetic studies on resistance of rice plant to blast fungus II. Difference in resistance to the blast disease between Fukunishiki and its parental cultivar, Zenith. Ann. Phytopath. Soc. Japan, 42:253-260.
- Goto, I. 1988. Genetic studies on resistance of rice plant to blast fungus (VII). Blast resistance genes of Kuroka. *Ann. Phytopath. Soc. Japan*, 54:460-465.
- Goto, I., Jaw, Y.L. and Baluch, A. A. 1981. Genetic studies on resistance of rice plant to blast fungus IV. Linkage analysis of four genes, *Pi-a, Pi-k, Pi-z* and *Pi-i*. *Ann. Phytopath. Soc. Japan*, 47:252-254.
- Goto, M. 1992. Fundamentals of Bacterial Plant Pathology. San Diego: Academic Press.
- Gou, F.S., Li, X.Q. and Xu, C.L. 1983. Study on the spatial distribution patterns of the rice sheath blight plant in rice field and its practical applications. *Acta. Phytopathol. Sin.*, 13:27-34.
- Gowda, M., Roy-Barman, S. and Chattoo, B.B. 2006. Molecular mapping of a novel blast resistance gene *Pi38* in rice using SSLP and AFLP markers. *Plant Breed.*, 125:596-599.
- Gu, K., Tian, D., Yang, F., Wu, L., Sreekala, C., Wang, D., Wang, G.-L. and Yin, Z.
 2004. High-resolution genetic mapping of *Xa27(t)*, a new bacterial blight resistance gene in rice, *Oryza sativa* L. *Theor. Appl. Genet.*, 108:800-807.
- Gu, K.-Y., Yang, B., Tian, D.-S., Wu, L.-F., Wang, D.-J., Sreekala, C., Yang, F., Chu, Z.-Q., Wang, G.-L., White, F.F. and Yin, Z.-C. 2005. *R* gene expression

induced by a type-III effector triggers disease resistance in rice. *Nature*, 435:1122-1125.

- Guiderdoni, E., Galinato, E., Luistro, J. and Vergara, G. 1992: Anther culture of tropical japonica x indica hybrids of rice (*Oryza sativa* L.). *Euphytica*, 62:219-225.
- Gupta, P.C. and O'Toole, J.C. 1986. Upland rice: a global perspective. International Rice Research Institute, Los Baños, Philippines. 360 p.
- Han, P.Y., Xing, Z.Y., Chen, X.Z., Gu, L.S., Pan, B.X., Chen, L.X. and Zhang, F.Q.
 2002. Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63. *Acta. Genet. Sin.*, 29(4):622-626.
- Harushima, Y., Yano, M., Shomura, A., Sato, M., Shimano, T., Kuboki, Y.,
 Yamamoto, T., Lin, S.Y., Antonio, B.A., Parco, A., Kajiya, H., Huang, N.,
 Yamamoto, K., Nagamura, Y., Kurata, N., Khush, G.S. and Sasaki, T. 1998. A
 high-density rice genetic linkage map with 2275 markers using a single F₂
 population. *Genet.*, 148:479-494.
- Hashiba, T. 1984. Forecasting model and estimation of yield loss by sheath blight disease. *Jpn. Agric. Res. Q.*, 18:92-98.
- Hashiba, T., Koike, K., Yuno, I. and Yamada, M. 1982. Model of vertical development of sheath blight lesions on rice plants caused by *Rhizoctonia solani* Kuhn. *Ann. Phytopathol. Soc. Jpn.*, 48:499-505.
- Hashimoto, N., Higuchi, K., Koiwa, M., Yasuda, K. and Daigen, M. 1998. Selection of individual having *Pi-z*, the rice blast true resistance gene, using RFLP markers in resistance sensitive cross progeny. *Breed Sci.*, 48(2):109.
- Hayashi, K., Yoshida, H. and Ashikawa, I. 2006. Development of PCR-based allele specific and InDel marker sets for nine rice blast resistance genes. *Theor. Appl. Genet.*, 113:251-260.

- Hayashi, N., Ando, I. and Naito, H. 1996. Gene analysis of a new blast resistance in the paddy rice variety, Aichi Asahi. *Breed. Sci.*, 46 (Suppl. 2):168.
- He, Q., Li, D.-B., Zhu, Y.-S., Tan, M.-P., Zhang, D.-P. and Lin, X.-H. 2006. Fine mapping of *Xa2*, a bacterial blight resistance gene in rice. *Mol. Breed.*, 17:1-6.
- Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (*Oryza sativa* L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. *Plant J.*, 6:271-282.
- Higashi, T. and Kushibuchi, K. 1978. Genetic analysis of field resistance to leaf blast (*Pyricularia oryzae*) in Japan. *Japanese Journal of Breeding*, 28:277-286.
- Hilaire, E., Young, S.A., Willard, L.H., McGee, J.D., Sweat, T., Chittoor, J.M., Guikema, J.A. and Leach, J.E. 2001. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. *Mol. Plant–Microbe Interact.*, 14:1411-1419.
- Hirabayasi, H., Sato, H., Takeuchi, Y. and Ando. I. 2005. QTL Analysis of Blast Resistance in *Oryza rifipogon* (IRGC-Acc104814). Proceedings of the 5th International Rice Genetic Symposium, Manila, 141.
- Hittalmani, S., Parco, A., Mew, T.V., Zeigler, R.S. and Huang, N. 2000. Fine mapping and DNA marker assisted pyramiding of the three major genes for blast resistance in rice. *Theor. Appl. Genet.*, 100(7):1121-1128.
- Hossain, M., Khalequzzaman, K.M., Mollah, M.R.A., Hussain, M.A. and Rahim, M.A. 2004. Reaction of breeding lines/cultivars of rice against brown spot and blast under field condition. *Asian J. Plant Sci.*, 3(5):614-617.
- Howles, P., Lawrence, G., Finnegan, J., McFadden, H., Ayliffe, M., Dodds, P. and Ellis, J. 2005. Autoactive alleles of the flax L6 rust resistance gene induce

non-race-specific rust resistance associated with the hypersensitive response. *Mol. Plant Microbe Interact.*, 18:570-582.

- Hua, L., Cheng Yan, S., Wan Biao, C. and Gui Ling, W. 2000. Evaluation and screening of resistance in keng rice varieties to sheath blight. *Plant Prot.*, 26:19-21.
- Huang, H.J., Tseng, C.S. and Lai, M.H. 2004. Identification and mapping of the QTL controlling resistance to blast (*Magnaporthe grisea*) disease in rice. J. Genet. Mol. Biol., 15:96-107.
- Huang, N., Angeles, E.R., Domingo, J., Magpantay, G., Singh, S., Zhang, G.,
 Kumaravadivel, N., Bennett, J. and Khush, G.S. 1997. Pyramiding of bacterial
 blight resistance genes in rice: marker-assisted selection using RFLP and PCR. *Theor. Appl. Genet.*, 95:313-320.
- Hulbert, S., Webb, C.A., Smith, S.M. and Sun, Q. 2001. Resistance gene complexes: Evolution and utilization. *Annual Review of Phytopathology*, 39:285-312.
- Hwang, M.S., Morgan, R.L., Sarkar, S.F., Wang, P.W. and Guttman, D.S. 2005. Phylogenetic characterization of virulence and resistance phenotypes of *Pseudomonas syringae*. Appl. Environ. Microbiol., 71:5182-5191.
- Ikehashi, H. and Khush, G.S. 1979. Methodology of assessing appearance of the rice grain, including chalkiness and whiteness. Pages 224-229 in Chemical aspects of rice grain quality. International Rice Research Institute, P.O. Box 933, Manila.
- Inoue, Y., Igarashi, Y. and Watanabe, T. 1994. Inversion polymorphism of Japanese Drosophila melanogaster populations in 1970's and 1980's. *D. I. S.*, 75:49-51.
- Inukai, T., Nelson, R.J., Zeigler, R.S., Sarkarung, S., Mackill, D.J., Bonman, J.M., Takamure, I. and Kinoshita, T. 1996. Genetic analysis of blast resistance

in tropical rice cultivars using near-isogenic lines. *In:* Rice genetics III, Proceeding of the third international rice genetics symposium, ed. Khush, G. S., International Rice Research Institute, Manila (Philippines), 447-455.

- IRRI. 1987. Annual report for 1987. International Rice Resarch Institute, Los Banos, Philippines.
- IRRI. 1992. Annual report for 1992. International Rice Resarch Institute, Los Banos, Philippines.
- IRRI. 1993. Annual report for 1993. International Rice Resarch Institute, Los Banos, Philippines.
- IRRI. 2002. Standard evaluation system for rice. International Rice Research Institute, Los Banos, Philippines.
- Ise, K. 1991. Linkage analysis of some blast resistance gene in rice, *Oryza sativa* L. *Jpn. J. Breed.*, 42 (Suppl. 2):388-389.
- Ishimaru, K., Ono, K. and Kashiwagi, T. 2004. Identification of a new gene controlling plant height in rice using the candidate-gene strategy. *Planta*, 218:388-395.
- Ishiyama, S. 1922. Studies on bacterial blight of rice. In: *Report of Agric. Exp. Station*, Tokyo, 45:233-261.
- Iwata, N. 1996. Registration of new gene symbols. Rice Genet. Newsl., 13:12-18.
- Iwata, N. 1997. Registration of new gene symbols. Rice Genet. Newsl., 14:9-11.
- Iyer, A.S. and McCouch, S.R. 2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. *Mol. Plant–Microbe Interact.*, 17:1348-1354.
- Jansen, R. 1993. Interval mapping of multiple quantitative trait loci. *Genetics*, 135:205-211.

- Jansen, R. and Stam, P. 1994. High resolution of quantitative traits into multiple loci via interval mapping. *Genet.*, 136:1447-1455.
- Jeon, J.S., Chen, D., Yi, G.-H., Wang, G.L. and Ronald, P.C. 2003. Genetic and physical mapping of *Pi5(t)*, a locus associated with broad-spectrum resistance to rice blast. *Mol. Genet. Genomics*, 269:280-289.
- Jeung, J.U., Kim, B.R., Cho, Y.C., Han, S.S., Moon, H.P., Lee, Y.T. and Jena, K.K. 2007. A novel gene, *Pi40(t)*, linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. *Theor. Appl. Genet.*, 115:1163-1177.
- Jia, Y., Correa-Victoria, F., McClung, A., Zhu, L., Liu, G., Wamishe, Y., Xie, J., Marchetti, M.A., Pinson, S.R.M., Rutger, J.N. and Correll, J.C. 2007. Rapid determination of rice cultivar responses to the sheath blight pathogen *Rhizoctonia solani* using a micro-chamber screening method. *Plant Dis.*, 91:485-489.
- Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P. and Valent, B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. *EMBO J.*, 19:4004-4014.
- Jonson, R. 1983. Genetic background of durable resistance. p. 5-26. *In* F. Lamberti, J.M. Waller and N.A. van der Graff (Eds.). Durable Resistance in Crop. Plenum Press, New York, USA.
- Julie, O., Andrea, G., Mathieu, B., Arbelaez J. D., Moreno L., Kimball J., Wilson G., Rami J.F., McCouch, S.R. and Mathias, L. 2010. A universal core genetic map for rice. *Theor. Appl. Genet.*, 120(3):563-572.
- Kaji, R. and Ogawa, T. 1996. RFLP mapping of a blast resistance gene, *Pi-km*, in rice. *Breed. Sci.*, 46 (Suppl. 1):70.

- Kaku, H. and Ogawa, T. 2000. The relationship between browning reaction and bacterial blight resistance gene *Xa3* in rice. *Rice Genet. Newsl.*, 17:76-78.
- Kao, C.H., Zeng, Z.B. and Teasdale, R.D. 1999. Multiple interval mapping for quantitative trait loci. *Genet.*, 152:1203-1216.
- Katara, J.L., Sonah, H., Deshmukh, R.K., Chaurasia, R. and Kotasthane, A.S. 2010.
 Molecular analysis of QTLs associated with resistance to brown spot in rice (*Oryza sativa* L.) *Ind. J. Genet.*, 70(1):17-21.
- Kauffman, H.E., Reddy, A.P.K., Hsieh, S.P.Y. and Merca, S.D. 1973. An improved technique for evaluating resistance of rice varieties to *Xanthomonas oryzae*. *Plant Disease Reporter*, 57:537-541.
- Keb-Llanes, M., Gonzalez, G., Chimanzanero, B. and Infante, D. 2002. A rapid and simple method for small-scale DNA extraction in *Agavaceae* and other tropical plants. *Plant Mol. Biol. Reporter*, 20(3):299-299.
- Khush, G.S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. *Plant Mol. Biol.*, 59:1-6.
- Khush, G.S. and Angeles, E.R. 1999. A new gene for resistance to race 6 of bacterial blight in rice, *Oryza sativa* L. *Rice Genet. Newslett.*, 16:92-93.
- Khush, G.S. and Jena, K.K. 2007. Current status and future prospects of research on blast disease in rice (*Oryza sativa*). p.1. *In:* Proceedings of the 4th International Rice Blast Conference, Changsa, Hunan, China.
- Kim, C.H.K. and Kim, C. 1987. Density and viability of sclerotia of rice sheath blight pathogen over wintering in field. *Korean J. Plant Prot.*, 26:99-106.
- Kim, Y.J., Lin, N.C. and Martin, G.B. 2002. Two distinct *Pseudomonas* effector proteins interact with the *Pto* kinase and activate plant immunity. *Cell*, 109:589-598.

- Kinoshita, T. and Kiyosawa, S. 1997. Some considerations on linkage relationships between *Pii* and *Piz* in the blast resistance of rice. *Rice Genet. Newsl.*, 14:57-59.
- Kiyosawa, S. 1966. Studies on inheritance of resistance of rice varieties to blast, Inheritance of resistance of a rice variety Pi No. I to the blast fungus. *Jpn. J. Breed*, 16:243-250.
- Kobayashi, T., Ishiguro, K., Nakajima, T., Kim, H.Y., Okada, M. and Kobayashi, K. 2006. Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. *Ann. Phytopathol. Soc. Jpn.*, 63:324-327.
- Koch, M. and Parlevliet, J.E. 1991a. Residual effects of the Xa-4 resistance gene in three rice cultivars when exposed to a virulent isolate of Xanthomonas campestris pv. oryzae. Euphytica, 55:187-193.
- Koch, M.F. and Parlevliet, J.E. 1991b. Genetic analysis of, and selection for, factors affecting quantitative resistance to *Xanthomonas campestris* pv. *oryzae* in rice. *Euphytica*, 53:235-245.
- Koebner, R.M.D. and Summers, R.W. 2003. 21st century wheat breeding: plot selection or plate detection? *Trends Biotech.*, 21:59-63.
- Koizumi, S. 2007. Durability of resistance to rice blast disease. *In* JIRCAS working report no. 53, eds. Fukuta, Y., Vera Cruz, C. M. & Kobayashi, N., *JIRCAS*:1-10.
- Kou, Y. and Wang, S. 2010. Broad-spectrum and durability: understanding of quantitative disease resistance. *Current Opinion in Plant Biology*, 13:1-5.
- Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P. and Huerta, E. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. *Science*, 323:1360-63.
- Kunihiro, Y., Qian, Q., Sato, H., Teng, S., Zeng, D.L., Fujimoto, K. and Zhu, L.H.
 2002. QTL analysis of sheath blight resistance in rice (*Oryza sativa* L.). *Acta. Genet. Sin.*, 29:5.

- Kurata, N., Nagamura, Y., Yamamoto, K., Harushima, Y. and Sue, N. 1994. A 300 kilobase interval genetic map of rice including 883 expressed sequences. *Nature Genet.*, 8:365-372.
- Lander, E.S. and Botstein, D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. *Genet.*, 121:185-199.
- Lander, E.S., Green, P., Abrahhamson, J., Barlow, A. and Daly, M.J. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. *Genomics*, 1:174-181.
- Lee, F.N. and Rush, M.C. 1983. Rice sheath blight: a major rice disease. *Plant Dis.*, 67:829-832.
- Lee, K.S. and Khush, G.S. 2000. Genetic analysis of resistance to bacterial blight, *Xanthomonas oryzae* pv. *oryzae*, Rice. *Rice Genet. Newslett.*, 17:72.
- Lee, K.S., Angeles, E.R. and Khush, G.S. 2000. Inheritance of resistance to race 6 of bacterial blight in rice. *Rice Genet. Newslett.*, 17:73.
- Lee, K.S., Rasabandith, S., Angeles, E.R. and Khush, G.S. 2003. Inheritance of resistance to bacterial blight in 21 cultivars of rice. *Phytopathology*, 93:147-152.
- Lei, C.L., Huang, D.Y., Li, W., Wang, J.L., Liu, Z.L., Wang, X.T. and Wan, J.M. 2005. Molecular mapping of a blast resistance gene in an indica rice cultivar Yanxian No. 1. *Rice Genet Newsl*, 22:76-77.
- Leister, R.T. and Katagiri, F. 2000. A resistance gene product of the nucleotide binding site-leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo. *Plant J.*, 22:345-354.
- Li, J., Thomson, M. and McCouch, S.R. 2004. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. *Genet.*, 168:2187-2195.

- Li, Y., Wu, C., Xing, Y., Chen, H. and He, Y. 2008. Dynamic QTL analysis for rice blast resistance under natural infection conditions. *Australian Journal of Crop Science*, 2(2):73-82.
- Li, Z.K., Arif, M., Zhong, D.B., Fu, B.Y., Xu, J.L., Domingo-Rey, J., Ali, Vijayakumar, J., C.H.M., Yu, S.B. and Khush, G.S. 2006. Complex genetic networks underlying the defensive system of rice (*Oryza sativa* L.) to *Xanthomonas oryzae* pv. *oryzae*. *Proc. Natl. Acad. Sci.* USA, 103(21):7994-7999.
- Li, Z.K., Luo, L.J., Mei, H.W., Paterson, A.H., Zhong, D.B., Wang, Y.P., Yu, X.Q. and Zhu, L. 1999. A 'defeated' rice resistance gene acts as a QTL against a virulent strain of *Xanthomonas oryzae* pv. *oryzae*. *Mol. Gen. Genet.*, 261:58-63.
- Li, Z.K., Pinson, S.R.M., Marchetti, M.A., Stansel, J.W. and Park, W.D. 1995. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field-resistance to sheath blight (*Rhizoctonia solani*). *Theor. Appl. Genet.*, 91:382-388.
- Li, Z.K., Sanchez, A., Angeles, E., Singh, S., Domingo, J., Huang, N. and Khush, G.S. 2001. Are the dominant and recessive plant disease resistance genes similar? A case study of rice *R* genes and *Xanthomonas oryzae* pv. *oryzae* races. *Genet.*, 159:757-765.
- Li, W., Lei, C., Cheng, Z., Jia, Y., Huang, D., Wang, J., Wang, J., Zhang, X., Su, N., Guo, X., Zhai, H. and Wan, J. 2008. Identification of SSR markers for a broad-spectrum blast resistance gene *Pi20(t)* for marker assisted breeding. *Mol. Breed.*, 22:141-149.
- Lin, F., Chen, S., Que, Z., Wang, L., Liu, X. and Pan, Q. 2007. The blast resistance gene *Pi37* encodes a nucleotide binding site–leucine-rich repeat protein and is

a member of a resistance gene cluster on rice chromosome 1. *Genet.*, 177:1871-1880.

- Lin, H.X., Qian, H.R., Zhuang, J.Y., Lu, J., Min, S.K., Xiong, Z.M., Huang, N. and Zheng, K.L. 1996. RFLP mapping QTLs for yield and related characters in rice (*Oryza sativa* L.). *Plant Mol. Biol. Rep.*, 14:156-69.
- Lin, X.H., Zhang, D.P., Xie, Y.F., Gao, H.P. and Zhang, Q.F. 1996. Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP marker. *Phytopathology*, 86:1156-1159.
- Lincoln, S., Daly, M. and Lander, E., 1993. Mapping genes controlling quantitative traits using MAPMAKER/QTL. Version 1.1. Whitehead Institute for Biomedical Research Technical Report, 2nd Edn.
- Liu, B. 1998. Statistical Genomics: Linkage, Mapping and QTL Analysis CRC Press, Boca Raton.
- Liu, B., Zhang, S., Zhu, X., Yang, Q., Wu, S., Mei, M., Mauleon, R., Leach, J., Mew,
 T. and Leung, H. 2004. Candidate defense genes as predictors of quantitative
 blast resistance in rice. *Mol. Plant Microbe In.*, 17(7):1146-1152.
- Liu, G., Jia, Y., Correa-Victoria, F.J., Prado, G.A., Yeater, K.M., McClung, A. and Correll, J.C. 2009. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. *Phytopathology*, 99:1078-1084.
- Liu, H.-X., Liu, F.-Q., Hu, B.-S., Yang, W.-F., Chen, Z.-Y. and Xu, Z.-G. 2004. Virulence of *Xanthomonas oryzae* pv. *oryzae* on rice near-isogenic lines with single resistance gene and pyramiding lines in China. *Agric. Sci. China*, 3:764-769.
- Liu, X., Lin, F., Wang, L. and Pan, Q. 2007b. The *in silico* map-based cloning of *Pi36*, a rice coiled-coil–nucleotide-binding site–leucinerich repeat gene that confers race-specific resistance to the blast fungus. *Genet.*, 176:2541-2549.

- Liu, X., Yang, Q., Lin, F., Hua, L., Wang, C., Wang, L. and Pan, Q. 2007a. Identification and fine mapping of *Pi39*(t), a major gene conferring the broad-spectrum resistance to *Magnaporthe oryzae*. *Mol. Genet. Genomics*, 278:403-410.
- Liu, X.Q., Wang, L., Chen, S., Lin, F. and Pan, Q.H. 2005. Genetic and physical mapping of *Pi36(t)*, a novel rice blast resistance gene located on rice chromosome 8. *Mol. Genet. Genomics*, 68:1-8.
- Loan, L.C., Du, P.V. and Li, Z. 2004. Molecular dissection of quantitative resistance of Sheath blight in rice (*Oryza sativa* L.). *Omonrice*, 12:1-12.
- Loan, L.C., Du, P.V. and Li, Z. 2005. Molecular dissection of quantitative resistance of sheath blight in rice (*Oryza sativa* L). Cuu long Delta Rice research inst (www.clriorg/en/ pub/omnorice 12/12-1htm).
- Loan, L.C., Du, P.V. and Li, Z.K. 2003. Identification of genes conferring resistance to some Philippine and Vietnamese races of blast. *Omonrice*, 11:49-62.
- Lopez-Gerena, J. 2006. Mapping QTL controlling durable resistance to rice blast in the cultivar Oryzica Llanos 5. Ph.D. thesis, Universidad del Valle, Plant Pathology College of Agriculture, Cali, Colombia and Kansas State University, Manhatten, KS, U.S.A.
- Madden, L.V., Hughes, G. and Van den Bosch, F. 2007. The study of plant disease epidemics. The American Phytopathology Press, St Paul.
- Manian, S. and Rao, K.M. 1979. Resistance to sheath blight disease in India. *Int. Rice Res. Newsl.*, 4:5-6.
- Manly, K.F., Cudmore Robert, Jr.H. and Meer, J.M. 2001. Map Manager QTX, crossplatform software for genetic mapping. *Mamm. Genome*, 12:930-932.
- Marchetti, M.A. and Bollich, C.N. 1991. Quantification of the relationship between sheath blight severity and yield loss in rice. *Plant Dis.*, 75:773-774.
- Marchetti, M.A., Bollich, C.N., McClung, A.M., Scott, J.E. and Webb, B.D. 1995. Registration of RU8703196 disease-resistant rice germplasm. *Crop Sci.*, 35(2):601.
- Maruyama, K., Kikuchi, F. and Yokoo, M. 1983. Gene analysis of field resistance to rice blast (*Pyricularia oryzae*) in Rikuto Norin Mochi 4 and its use for breeding. *Bulletin of National Agricultural Science*, 35:1-31.
- Mayer, M. 2005. A comparison of regression interval mapping and multiple interval mapping for linked QTL. *Heredity*, 94:599-605.
- McCouch, S. 1998. Toward a plant genomics initiative: thoughts on the value of cross-species and cross-genera comparisons in the grasses. *Proc. Natl. Acad. Sci.*, US A, 95:1983-1985.
- McCouch, S.R., Abenes, M.L., Angels, E.R., Khush, G.S. and Tanksley, S.D. 1992.
 Molecular tagging of a recessive gene, *Xa-5* conferring resistance to bacterial blight of rice. *Rice Genet. Newsl.*, 8:143-5.
- McCouch, S.R., Nelson, R.J., Tohme, J. and Zeiglar, R.S. 1994. Mapping of blast resistance genes in rice. *In* Rice blast disease, eds. Zeigler, R.S., Leong, S.A. & Teng, P.S., C.A.B. International, Wallingford, UK, 167-186.
- McCouch, S.R., Teytelman, L., Xu, Y., Lobes, K.B., Clare, K., Walton, M., Fu, B., Maghirang, R., Li, Z., Xing, Y., Zhang, Q., Kono, I., Yano, M., Fjellstrom, R., DeClerck, G., Schneider, D., Cartinhour, S., Ware, D. and Stein, L. 2002. Development and mapping of 2240 new SSR markers for rice (*Oryza sativa* L.). *DNA Res.*, 9:199-207.
- McDonald, B.A. and Linde, C. 2002. The population genetics of plant pathogens and breeding strategies for durable resistance. *Euphytica*, 124:163-80.

- McMillan, I. and Robertson, A. 1974. The power of methods for the detection of major genes affecting quantitative characters. *Heredity*, 32:349-356.
- Meena, B., Ramamoorthy, V., Banu, V., Thangavelu, J.G. and Muthusamy, M. 2000. Screening of rice genotypes against sheath blight disease. *J. Ecobiol.*, 12:103-109.
- Mew, T.W. 1987. Current status of future prospects of research on bacterial blight of rice. Annual Review of Phytopathology, 25:359-382.
- Mew, T.W., Alvarez, A.M., Leach, J.E. and Swings, J. 1993. Focus on bacterial blight of rice. *Plant Dis.*, 77:5-12.
- Mew, T.W., Leung, H., Savary, S., Vera Cruz, C.M. and Leach, J.E. 2004. Looking ahead in rice disease research and management. *CRC Crit. Rev. Plant Sci.*, 23:103-127.
- Mew, T.W., Vera Cruz, C.M. and Medalla, E.S. 1992. Changes in race frequency of *Xanthomonas oryzae* pv. *oryzae* in response to rice cultivars planted in the Philippines. *Plant Dis.*, 76:1029-1032.
- Mgonja, A.P., Lee, F.N. and Courtney, M. 1987. Sclerotia distribution of *Rhizoctonia solani* and its relation to sheath blight (ShB) in Arkansas rice fields. *Int. Rice Res. Newsl.*, 11:20-21.
- Miyamoto, M. and Hirasawa, H. 2003. Relationship between RFLP loci with different alleles on chromosome 4 and the levels of blast field resistance in Japanese upland rice varieties. *Breed. Sci.*, 53:1-5.
- Miyamoto, M., Yano, M. and Hirasawa, H. 2001. Mapping of quantitative trait loci conferring blast field resistance in the Japanese upland rice variety Kahei. *Breed. Sci.*, 51:257-261.
- Mizukami, T. 1956. Studies on bacterial blight of rice plant on the entrance and multiplying portion of pathogen upon the rice plant leaves (preliminary report). *Agric. Bull. Saga Uni.*, 4:169-175.

- Mohanta, B.K., Alam, M.R., Anam, M.K., Habib, M.A. and Alam, M.M. 2002. Reaction of some hybrid germplasms to three minor diseases of rice. *Pak. J. Plant Pathol.*, 1:36-39.
- Monna, L., Lin, H.X., Kojima, S., Sasaki, T. and Yano, M. 2002. Genetic dissection of a genomic region for quantitative trait locus, *Hd3*, into two loci, *Hd3a* and *Hd3b*, controlling heading date in rice. *Theor. Appl. Genet.*, 104:772-778.
- Mosaddeque, H.Q.M., Talukder, M.I., Islam, M.M., Amin, A.K.M. and Alam, M.A. 2008. Screening of some restorer and maintainer hybrid rice lines against sheath blight (*Rhizoctoni solani*). J. Soil Nat., 2:23-29.
- Nagai, I. and Hara, S. 1930. On the inheritance of variegation disease in a strain of rice plant. *Japanese J. Genet.*, 5:140-144.
- Nakai, H., Nakamura, K., Kuwahara, S. and Saito, M. 1988. Genetic studies of an induced rice mutant resistant to multiple races of bacterial leaf blight. *Rice Genet. Newsl.*, 5:101-103.
- Nakamura, S. 1997. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene *Pi-ta2* using a highly representive rice BAC library. *Mol. Gen. Genet.*, 254:611-620.
- Naqvi, N.I., Bonman, J.M., Mackill, D.J., Nelson, R.J. and Chattoo, B.B. 1995. Identification of RAPD markers linked to a major blast resistance gene in rice. *Mol. Breed.*, 1:341-348.
- Naqvi, N.I. and Chattoo, B.B. 1996. Development of a sequence characterized amplified region (SCAR) based indirect selection method for a dominant blast-resistance gene in rice. *Genome*, 39:26-30.
- Narayanan, N.N., Baisakh, N., Vera-Cruz, C.M., Gnanamanickam, S.S., Datta, K. and Datta, S.K. 2002. Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. *Crop Sci.*, 42:2072-2079.

- Nelson, J.C. 1997. Qgene—software for marker-based genomic analysis and breeding. *Mol. Breed.*, 3:239-245.
- Nguyen, T.T.T., Koizumi, S., La, T.N., Zenbayashi, K.S., Ashizawa, T., Yasuda, N., Imazaki, I. and Miyasaka, A. 2006. *Pi35*(t), a new gene conferring partial resistance to leaf blast in the rice cultivar Hokkai 188. *Theor. Appl. Genet.*, 113(4):697-704.
- Noda, T. and Kaku, H. 1999. Growth of *Xanthomonas oryzae* pv. *Oryzae* in planta and in guttation fluid of rice. *Ann. Phytopathol. Soc. Japan*, 65:9-14.
- Noenplaba, A., Vanavichitb, A., Toojindac, T., Sirithunyad, P., Tragoonrunge, S., Sriprakhonc, S. and Vongsaprome, C. 2006. QTL Mapping for Leaf and Neck Blast Resistance in Khao Dawk Mali105 and Jao Hom Nin Recombinant Inbred Lines. *Sci. Asia*, 32:133-142.
- Ogawa, T. 1993. Methods and strategy for monitoring race distribution and identification of resistance genes to bacterial leaf blight (*Xanthomonas campestris* pv. *oryzae*) in rice. *JARQ*, 27:71-80.
- Ogawa, T., Yamamoto, T., Khush, G.S. and Mew, T.W. 1986. The *Xa-3* gene for resistance to Philippine races of bacterial blight of rice. *Rice Genet. Newsl.*, 3: 77.
- Omar, R.A., Balal, M.S., EI-Kazzaz, M.K. and Aidy, I.R. 1979. "Reaction of Rice varieties to Brown Spot –Disease of Rice *Cochliobolus miyabeanus* at different stages of growth" *Agric. Res. Rev.*, 57:103.
- Oohata, K. and Kubo, C. 1974. Studies on the mechanism of disease resistance of rice varities to *Cochiobolus miyabeanus*. *Bull. Shikoku Agric. Exp. Stn.* 28:17-57.
- Oryzabase. 2006. Integrated Rice Science Database. <u>http://www.shigen.nig.ac.jp/</u> <u>rice/oryzabase/</u>.
- Ou, S.H. 1972. Rice Diseases. Kew, Surrey: Commonwealth Mycological Institute.

137

184

Ou, S.H. 1985. Rice diseases. 2nd ed. Commonwealth Mycological Inst., Kew, UK.

- Ou, S.H., Nuque, F.L. and Bandong, J.M. 1975. Relationship between qualitative and quantitative resistance in rice blast. *Phytopathology*, 65:1315-1316.
- Padmanabhan, S.Y. 1965. Estimating losses from rice blast in India. In the rice blast disease: Johan Hopkins Press, Baltinoie, Maryland. 203-221.
- Padmanabhan, S.Y. 1973. The great Bengal famine. *Annu. Rev. Phytopathol.*, 11:11-26.
- Pan, Q.H., Tanisaka, T. and Ikehashi, H. 1995. Studies on the genetics and breeding of blast resistance in rice IV. Gene analysis for the blast resistance of a indica variety Kasalath. *Breed. Sci.*, 45 (Suppl. 2):170.
- Pan, Q.H., Wang, I., Ikehashi, H., Yamagata, H. and Tanisaka, T. 1996. Studies on the genetics and breeding of blast resistance in rice V. Identification of two blast resistance genes in a Yunnan native variety, Maowangu. *Breed. Sci.*, 46 (1):79.
- Pan, X.B., Zou, J.H., Chen, Z.X., Lu, J.F., Yu, H.X., Li, H.T., Wang, Z.B., Pan, X.Y., Rush, M.C. and Zhu, L.H. 1999. Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85. *Chin. Sci. Bull.*, 44:1783-1789.
- Panaud, O., Chen, X. and McCouch, S.R. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (*Oryza sativa* L.). *Mol. Gen. Genet.*, 252:597-607.
- Parlevliet, J.E. and Zadoks, J.C. 1977. Integrated concept of disease resistance-new view including horizontal and vertical resistance in plants. *Euphytica*, 26:5-21.
- Parlevliet, J.E. 1979. Components of resistance that reduce the rate of epidemic development. *Ann. Rev. Phytopathol.*, 17:203-222.

- Pinson, S.R.M., Shahjahan, A.K.M., Rush, M.C. and Donald, E. 2010. Groth Bacterial Panicle Blight Resistance QTLs in Rice and Their Association with Other Disease Resistance Loci and Heading Date. *Crop Sci.*, 50:1287-1297.
- Pinson, S.R.M., Capdevielle, F.M. and Oard, J.H. 2005. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. *Crop Sci.*, 45:503-510.
- Pinson, S.R.M., Oard, J.H., Groth, D., Miller, R., Marchetti, M.A., Shank, A.R., Jia, M.H., Jia, Y., Fjellstrom, R.G. and Li, Z. 2008. Registration of TIL: 455, TIL: 514, and TIL: 642, Three rice germplasm lines containing introgressed sheath blight resistance alleles. *J. Plant Regist.*, 2(3):251-254.
- Poland, J.A., Balint-Kurti, P.J., Wisser, R.J., Pratt, R.C. and Nelson, R.J. 2008. Shades of gray: the world of quantitative disease resistance. *Trends Plant Sci.*, 14:21-29.
- Porter, B.W., Chittoor, J.M., Yano, M., Sasaki, T. and White, F.F. 2003. Development and mapping of markers linked to the rice bacterial blight resistance gene *Xa7*. *Crop Sci.*, 43:1484-1492.
- Prasad, B. and Eizenga, G.C. 2008. Rice sheath blight disease resistance identified in *Oryza spp.* accessions. *Plant Dis.*, 92:1503-1509.
- Prashanth, G.B., Hittalmani, S., Srinivasachary, K., Shadakshari, H. and Shashidhar, H.E. 1998. Genetic markers associated with field resistance to leaf and neck blast across locations in rice (*Oryzae sativa* L.). *Rice Genet. Newsl.*, 15:128-131.
- Qi, Z. and Mew, T. 1985. Adult-plant resistance of rice cultivars to bacterial blight. *Plant Dis.*, 69:896-898.
- Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L., Han, B. and Wang, G.-L. 2006. The broad-spectrum blast resistance gene *Pi9* encodes a nucleotide-

binding site–leucine-rich repeat protein and is a member of a multigene family in rice. *Genet.*, 172(3):1901-1914.

- Rahim, H.A., Bhuiyan, M.A.R., Lim, L.S., Sabu, K.K., Saad, A., Azhar M. and Wickneswari, R. 2012. Identification of quantitative trait loci for blast resistance in BC₂F₃ and BC₂F₅ advanced backcross families of rice. *Genet. Mol. Res.*, 11 (3):3277-3289.
- Rahman, L., Khanam, S., Roh, J.-H. and Koh, H.-J. 2011. Mapping of QTLs involved in Resistance to Rice Blast (*Magnaporthe grisea*) using *Oryza minuta* introgression lines. *Czech J. Genet. Plant Breed.*, 47(3):85-94.
- Rajan, K.M. and Nair, P.V. 1979. Reaction of certain rice varieties to sheath blight and sheath rot diseases. *Agric. Res. J. Kerala*, 17:259-260.
- Ram, T. and Ansari, M.M. 1990. Preliminary screening of rice cultures against major diseases. J. Andaman Sci. Assoc., 15:112-114.
- Ramalingam, J., Vera Cruz, C.M., Kukreja, K., Chittoor, J.M. and Wu, J.L. 2003. Candidate defence genes from rice, barley and maize and their association with qualitative and quantitative resistance in rice. *Mol. Plant-Microbe Interact.*, 16:14-24.
- Reddy, A.P.K., Mackenzie, D.R., Rouse, D.I. and Rao, A.V. 1979. Relationship of bacterial leaf blight *Xanthomonas oryzae* severity to grain yield of rice *Oryza sativa*. *Phytopathology*, 69:967-969.
- Reddy, M.T.S. and Reddy, A.P.K. 1992. Occurrence of pathotypes of *X. campestris* pv. oryzae in India. Indian J. Mycol. Plant Pathol., 22:205-6.
- Reitsma, J. and Schure, P.S.J. 1950. "Kresek", a bacterial blight disease of rice. *Contribution, General Agric. Res. Station, Bogor*, 117:1-17.

- Remington, D.L. and Purugganan, M.D. 2003. Candidate genes, quantitative trait loci and functional trait evolution in plants. *Int. J. Plant Sci.*, 164:7-20.
- Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y., Zhu, M.Z., Wang, Z.Y., Luan, S. and Lin, H.X. 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. *Nat. Genet.*, 37(10):1141-6.
- Ribot, C., Hirsch, J., Balzergue, S., Tharreau, D., Nottéghem, J.L., Lebrun, M.H., and Morel, J.B. 2007. Susceptibility of rice to the blast fungus, *Magnaporthe* grisea. J. Plant Physiol., 165:114-124.
- Roder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P. and Ganal, M.W. 1998. A microsatellite map of wheat. *Genet.*, 149:2007-2023.
- Ronald, P. and Leung, H. 2002. THE RICE GENOME. The most precious things are not jade pearls. *Sci.*, 296:58-59.
- Ronald, P.C. 1997. Molecular basis of disease resistance. Plant Mol. Biol., 35:179-86.
- Ronald, P.C., Albano, B., Tabien, R., Abenes, L., Wu, K., McCouch, S.R. and Tanksley S.D. 1992. Genetic and physical analysis of the bacterial blight disease resistance locus, *Xa-21. Mol. Gen. Genet.*, 236:113-20.
- Roy, A.K. 1977. Screening of rice cultures against sheath blight. *Ind. J. Agric. Sci.*, 47(5):259-260.
- Roy, A.K. 1986. Survival of sclerotia of *Rhizoctonia solani sp. sasakii* in relation to moisture regime of soil. *Ind. Phytopathol.*, 39:125-130.
- Rush, M.C. and Lee, F.N. 1992. Sheath blight. Pages 22-23 in: Compendium of Rice Diseases. R.K. Webster and P.S. Gunnell, eds. *American Phytopathological Society*, St. Paul, MN.
- Rybka, K., Miyamoto, M., Ando, I., Saito, A. and Kawasaki, S. 1997. High resolution mapping of the *indica*-derived rice blast resistance genes. II. *Pi-ta2* and *Pi-ta* and a consideration of their origin. *Mol. Plant-Microbe Interact.*, 10:517-524.

- Sakaguchi, S. 1967. Linkage studies on resistance to bacterial leaf blight, *Xanthomonas oryzae* (Uyeda et Ishiyama) Dowson, in rice. *Bull. Natl. Inst. Agric. Sci. Ser.*, 16:1-18.
- Sallaud, C., Lorieux, M., Roumen, E., Tharreau, D., Berruyer, R., Svestasrani, P., Garsmeur, O., Ghesquiere, A. and Notteghem, J.L. 2003. Identification of five new blast resistance genes in the highly blast-resistant rice variety IR64 using a QTL mapping strategy. *Theor. Appl. Genet.*, 106:794-803.
- Salvi, S. and Tuberosa, R. 2005. To clone or not to clone plant QTLs: present and future challenges. *Trends Plant Sci.*, 10(6):297-304.
- Sanchez, A.C., Brar, D.S., Huang, N., Li, Z. and Khush, G.S. 2000. Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. *Crop Sci.*, 40:792-797.
- Sanchez, A.C., Hog, L.L., Yang, D., Brar, D.S., Ausubel, F., Khush, G.S., Yano, M., Sasaki, T. and Huang, N. 1999. Genetic and physical mapping of *Xa-13*, a recessive bacterial blight resistance gene in rice. *Theor. Appl. Genet.*, 98:621-32.
- Sasaki, R. 1923. Existence of strains in rice blast fungus II. J. Plant Pro., 10:1-10.
- Sasaki, T., Matsumoto, T., Antonio, B.A. and Nagamura, Y. 2005. From mapping to sequencing, post-sequencing and beyond. *Plant Cell Physiol.*, 46:3-13.
- Satija, A., Chahal, S.S. and Pannu, P.P.S. 2005. Evaluation of rice genotypes against brown leaf spot disease. *Plant Disease Res.* (Ludhiana), 20(2):163-164.
- Sato, H., Ando, I., Hirabayashi, H., Takeuchi, Y., Arase, S., Kihara, J., Kato, H., Imbe, T. and Nemoto, H. 2008. QTL analysis of brown spot resistance in rice (*Oryza sativa* L.). *Breed. Sci.*, 58:93-96.
- Sato, H., Ideta, O., Ando, I., Kunihiro, Y., Hirabayashi, H., Iwano, M., Miyasaka, A., Nemoto, H. and Imbe, T. 2004. Mapping QTLs for sheath blight resistance in the rice line WSS2. *Breed Sci.*, 54:265-271.

- Sato, H., Takeuchi, Y., Hirabayashi, H., Nemoto, H., Hirayama, M., Kato, H., Imbe,T. and Ando, I. 2006. Mapping QTLs for field resistance to rice blast in theJapanese upland rice variety Norin 12. *Breed. Sci.*, 56:415-418.
- Savary, S. and Mew, T.W. 1996. Analyzing crop losses due to *Rhizoctonia solani*: rice sheath blight, a case study. In: Sneh B., Jabaji-Hare S., Neate S., Dijst G. (eds) *Rhizoctonia species*: taxonomy, molecular biology, ecology, pathology and disease control. Kluwer, Dordrecht, pp 237-244.
- Savary, S., Castilla, N., Elazegui, F.A. and Teng, P.S. 2005. Multiple effects of two drivers of agricultural change, labour shortage and water scarcity, on rice pest profiles in tropical Asia. *Field Crops Res.*, 91:263-271.
- Savary, S., Teng, P.S., Willocquet, L. and Nutter, F.W. Jr. 2006. Quantification and modeling of crop losses: a review of purposes. *Annu. Rev. Phytopathol.*, 44:89-112.
- Savary, S., Willocquet, L. and Teng, P.S. 1997. Modelling sheath blight epidemics on rice tillers. *Agric. Syst.*, 55:359-384.
- Savary, S., Willocquet, L., Elazegui, F.A., Csatilla, N. and Teng, P.S. 2000a. Rice pest constraints in tropical Asia: quantification and yield loss due to rice pests in a range of production situations. *Plant Dis.*, 84:357-369.
- Savary, S., Willocquet, L., Elazegui, F.A., Teng, P.S., Du, P.V., Zhu, D., Tang, Q., Huang, S., Lin, X., Singh, H.M. and Srivastava, R.K. 2000b. Rice pest constraints in tropical Asia: characterization of injury profiles in relation to production situations. *Plant Dis.*, 84:341-356.
- Sax, K. 1923. The association of size differences with seed-coat pattern and pigmentation in *Phaseolus vulgaris*. *Genet.*, 8:552-560.

- Semagn, K., Bjørnstad, A., Skinnes, H., Marøy, A. G., Tarkegne, Y. and William, M. 2006. Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a double haploid hexaploid wheat population. *Genome*, 49(5):545-555.
- Sha, X.Y. and Zhu, L.H. 1989. Resistance of some rice varieties to sheath blight (ShB). *Int Rice Res. Newsl.*, 15:7-8.
- Sha, X.Y. and Zhu, L.H. 1990. Resistance of some rice varieties to sheath blight (ShB). *Int. Rice Res. Newsl.*, 15:7-8.
- Shao, Y.J., Chen, Z.X., Zhang, Y.F., Chen, E.H., Qi, D.C., Miao, J. and Pan, X.B. 2005. One major QTL mapping and physical map construction for rolled leaf in rice. *Yi. Chuan Xue Bao.*, 32:501-506.
- Sharma, A., McClung, A.M., Pinson, S.R.M., Kepiro, J.L., Shank, A.R., Tabien, R.E. and Fjellstrom, R. 2009. Genetic mapping of sheath blight resistance QTL within tropical japonica rice cultivars. *Crop Sci.*, 49:256-264.
- Sharma, T.R., Madhav, M.S., Singh, B.K., Shanker, P., Jana, T.K., Dalal, V.,
 Pandit, A., Singh, A., Gaikwad, K., Upreti, H.C. and Singh, N.K. 2005.
 High-resolution mapping, cloning and molecular characterization of the *Pi-kh* gene of rice, which confers resistance to *Magnaporthe grisea*. *Mol. Genet. Genomics*, 274: 569-578.
- Shimamoto, K. and Kyozuka, J. 2002. Rice as a model for comparative genomics of plants. *Annu. Rev. Plant Biol.*, 53:399-419.
- Shinoda, H., Toriyama, K., Yunoki, T., Ezuka, A. and Sakurai, Y. 1971. Studies on the varietal resistance of rice to blast 6. Linkage relationship of blast resistance genes. *Bull. Chugoku Agric. Exp. St. Ser. A.*, 20:1-25.

- Sidhu, G.S., Khush, G.S. and Mew, T.W. 1978. Genetic analysis of bacterial blight resistance in seventy-four cultivars of rice, *Oryza sativa* L. *Theor. Appl. Genet.*, 53:105-111.
- Singh, A., Singh, V.K., Singh, S.P., Pandian, R.T.P., Ellur, R.K., Singh, D., Bhowmick, P.K., Krishnan, S.G., Nagarajan, M., Vinod, K.K., Singh, U.D., Prabhu, K.V., Sharma, T.R., Mohapatra, T. and Singh, A.K. 2012. Molecular breeding for the development of multiple disease resistance in Basmati rice. *AoB Plants*, pls 029; doi:10.1093/aobpla/pls029.
- Singh, K., Vikal, Y., Singh, S., Leung, H., Dhaliwal, H.S. and Khush, G.S. 2002. Mapping of bacterial blight resistance gene xa8 using microsatellite markers. *Rice Genet. Newsl.*, 19:94-97.
- Singh, R. and Dodan, D.S. 1995. Reactions of rice genotypes to bacterial leaf blight, stem rot, and sheath blight in Haryana. *Ind. J. Mycol. Plant Pathol.*, 25:224-227.
- Singh, S., Sidhu, J.S., Huang, N., Vikal, Y., Li, Z., Brar, D.S., Dhaliwal, H.S. and Khush, G.S. 2001. Pyramiding three bacterial blight resistance genes (*xa5*, *xa13* and *Xa21*) using marker-assisted selection into indica rice cultivar PR106. *Theor. Appl. Genet.*, 102:1011-1015.
- Singh, V.P. and Singh, R.K. 2000. Rainfed rice: a source book of best practices and strategies in eastern India. International Rice Research Institute, Los Baños, Philippines. 292 p.
- Singha, K.D. and Borah, P. 2000. Screening of local upland cultivars of Assam against sheath blight. *Ann. Biol.*, 16:161-162.
- Sirithunya, P., Tragoonrung, S., Vanavichit, A., Pa-In N., Vongsaprom, C. and Toojinda, T. 2002. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice. *DNA Res.*, 9:79-88.

- Sivanesan, A. 1987. Graminicolous species of *Bipolaris*, *Curvularia*, *Drechslera*, *Exserohilum* and their telemorphs. *CAB International Mycological Institute*. p. 261.
- Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C. and Ronald, P. 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, *Xa21. Sci.*, 270:1804-1806.
- Srinivasachary, L., Willocquet, L. and Savary, S. 2011. Resistance to rice sheath blight (*Rhizoctonia solani* Kuhn) [teleomorph: *Thanatephorus cucumeris* (A B Frank) Donk] disease: current status and perspectives. *Euphytica*, 178:1-22.
- Srinivasan, B. and Gnanamanickam, S. 2005. Identification of a new source of resistance in wild rice, *Oryza rufipogon* to bacterial blight of rice caused by Indian strains of *Xanthomonas oryzae* pv. *oryzae*. *Curr. Sci.*, 88:1229-1231.
- Suh, J.P., Jeung, J.U., Noh, T.H., Cho, Y.C., Park, S.H., Park, H.S., Shin, M.S., Kim, C.K., and Jena, K.K. 2013. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. *Rice*, 6(1): 1-11.
- Sujatha, K., Natarajkumar, P., Laha, G.S., Mishra, B., Rao, K.S., Viraktamath, B.C., Kirti, P.B., Hari, Y., Balachandran, S.M., Rajendrakumar, P., Ram, T., Hajira, S.K., Madhav. M.S., Neeraja, C.N. and Sundaram. R.M. 2011. Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance. *Genet. Res., Camb.*, 93:397-408.
- Sujatha, K., Natarajkumar, P., Laha, G.S., Mishra, B., Rao, K.S., Viraktamath, B.C., Kirti, P.B., Hari, Y., Balachandran, S.M., Rajendrakumar, P., Ram, T., Hajira,

S.K., Madhav, M.S., Neeraja, C.N. and Sundaram, R.M. 2011. Inheritance of bacterial blight resistance in the rice cultivar Ajaya and high-resolution mapping of a major QTL associated with resistance. *Genet. Res. Camb*, 93:397-408.

- Sun, X., Cao, Y., Yang, Z., Xu, C., Li, X., Wang, S. and Zhang, Q. 2004. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. Oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J., 37:517-527.
- Swings, J., Van Den Mooter, M., Vauterin, L., Hoste, B., Gillis, M., Mew, T.W. and Kersters, K. 1990. Reclassification of the causal agents of bacterial blight *Xanthomonas campestris* pv. oryzae and bacterial leaf streak *Xanthomonas* campestris pathovar oryzicola of rice as pathovars of *Xanthomonas oryzae* new species Ex Ishiyama 1922 Revived Name. Int. J. Syst. Bacteriol., 40:309-311.
- Tabie, H. and Mukoo, H. 1960. Anatomical studies of rice plant leaves affected with bacterial leaf blight, in particular reference to the structure of water exudation system. *Bull. National Instit. Agric. Sci.*, 11:37-43.
- Tabien, R.E., Li, Z., Paterson, A.H., Marchetti, M.A., Stansel, J.W. and Pinson, S.R.M. 2002. Mapping QTLs for field resistance to the rice blast pathogen and evaluating their individual and combined utility in improved varieties. *Theor. Appl. Genet.*, 105:313-324.
- Tabien, R.E., Li, Z., Paterson, A.H., Marchetti, M.A., Stansel, J.W., Pinson, S.R.M. and Park, W.D. 2000. Mapping of four major rice blast resistance genes from 'Lemont' and 'Teqing' and evaluation of their combinatorial effect for field resistance. *Theor. Appl. Genet.*, 101:1215-1225.
- Talukder, Z.I., McDonald, A.J. and Price, A.H. 2005. Loci controlling partial resistance to rice blast do not show marked QTL x environment interaction when plant nitrogen status alters disease severity. *New Phytol.*, 168:455-464.

- Talukder, Z.I., Tharreau, D. and Price, A.H. 2004. Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race–specific interactions. *New Phytologist.*, 162:197-209.
- Tan, C.X., Ji, X.M., Yang, Y., Pan, X.Y., Zuo, S.M., Zhang, Y.F., Zou, J.H., Chen, Z.X., Zhu, L.H. and Pan, X.B. 2005. Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. *Acta. Genet. Sin.*, 32:6.
- Tan, G.J. and Wang, Z.Y. 2002. Temporal and spatial niches of rice sheath blight. *Chin. J. Rice Sci.*, 16:182-184.
- Tan, G.-X., Ren, X., Weng, Q.-M., Shi, Z.-Y., Zhu, L.-L. and He, G.-C. 2004. Mapping of a new resistance gene to bacterial blight in rice line introgressed from *Oryza officinalis*. *Yi Chuan Xue Bao.*, 31:724-729.
- Tan, Z.B., Zhang, Q., Zhu, L.H. and Wang, C.L. 1999. RFLP mapping of a rice bacterial blight resistance gene Xa-14. CRRN, 7:2–3.

Tanksley, S.D. 1993. Mapping polygenes. Annu. Rev. Genet., 27:205-233.

- Tanksley, S.D. and McCouch, S.R. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. *Sci.*, 277:1063-1066.
- Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S. and McCouch, S.R. 2001. Computational and experimental analysis of microsatellites in rice (*Oryza sativa* L.): frequency, length variation, transposon associations, and genetic marker potential. *Genome Res.*, 11:1441-1452.
- Terashima, T. 2008. Mapping of a blast field resistance gene *Pi39(t)* of elite rice strain Chubu 111. *Plant Breed.*, 127:485-489.

- Utz, H. and Melchinger, A. 1996. PLABQTL: A program for composite interval mapping of QTL. J. Quant. Trait Loci, 2(1).
- Valent, B. 1990. Rice blast as a model system for plant pathology. *Phytopathology*, 80:33-36.
- Van der Plank, J.E. 1968. Disease resistance in plants. Academic Press, New York, London.
- Varshney, R.K., Graner, A. and Sorrells, M.E. 2005. Genic microsatellite markers in plants: features and applications. *Trends Biotechnol.*, 23(1):48-55.
- Veneault-Fourrey, C. and Talbot, N.J. 2005. Moving toward a systems biology approach to the study of fungal pathogenesis in the rice blast fungus *Magnaporthe grisea*. *Adv. Appl. Microbiol.*, 57:177-215.
- Veracruz, C.M. and Mew, T.M. 1989. How variable is *Xanthomonas campestris* pv. *oryzae*? Bacterial Blight of Rice. Proceedings of the International Workshop on Bacterial Blight Rice, the proceedings was published by IRRI, Manila, Philippines. 153-66.
- Verma, S.K. 2013. Mapping QTLs for root, yield and yield related traits under water stress and non-stress conditions using RIL population of rice (*Oryza sativa* L.).
 Ph.D. thesis, Indira Gandhi Krishi Vishwavidyalaya.
- Vidhyasekaran, P., Borromeo, E.S. and Mew, T.W. 1986. Host-specific toxin production by *Helminthosporium oyrzae*. Phytopathology, 76:261-266.
- Voorrips, R.E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. *J. Hered.*, 93:77-78.
- Wang, C., Tan, M., Xu, X., Wen, G., Zhang, D. and Lin, X. 2003. Localizing the bacterial blight resistance gene, *Xa22(t)* to a 100-Kilobase bacterial artificial chromosome. *Phytopathology*, 93:1258-1262.

- Wang, G.L., Mackill, D.J., Bonman, J.M., McCouch, S.R., Champoux, M.C. and Nelson, R.J. 1994. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. *Genet.*, 136:1421-1434.
- Wang, S., Basten, C.J. and Zeng, Z.B. 2007. Windows QTL Cartographer 2.5. Raleigh, NC., Department of Statistics, North Carolina State University, Available from Internet: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
- Wang, S., Basten, C.J. and Zeng, Z.B. 2005. Windows QTL Cartographer. 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm 2.5).
- Wang, W., Zhai, W., Luo, M., Jiang, G., Chen, X., Li, X., Wing, R.A. and Zhu, L.
 2001. Chromosome landing at the bacterial blight resistance gene *Xa4* locus using a deep coverage rice BAC library. *Mol. Gen. Genomics*, 265:118-125.
- Wang, Z.X., Yano, M., Yamanouchi, U., Iwamoto, M., Monna, L., Hayasaka, H., Katayose, Y. and Sasaki, T. 1999. The *Pib* gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. *Plant J.*, 19:55-64.
- Webster, R.K. and Gunnell, P.S. 1992. Compendium of rice diseases. American Phytopathological Society, St. Paul, Minnesota. 62 p.
- Weeks, D.E. and Lange, K. 1987. Preliminary ranking procedures for multilocus ordering. *Genomics*, 1:236-242.
- Wen, N., Chu, Z. and Wang, S. 2003. Three types of defense-respon sive genes are involved in resistance to bacterial blight and fungal blast disease in rice. *Mol. Gen. Genomics*, 269:331-339.
- Williams, C.E., Wang, B., Holsten, T.E., Scambray, J., Deassis Goesdesilva, F. and Ronald, P.C. 1996. Markers for selection of the rice *Xa-21* disease resistance gene. *Theor. Appl. Genet.*, 93:1119-25.

- Williams, D.A., Rios, M., Stephens, C. and Patel, V.P. 1991. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. *Nature*, 352:438-441.
- Wisser, R.J., Sun, Qi., Hulbert, S.H., Kresovich, S. and Nelson, R.J. 2005. Identification and Characterization of Regions of the Rice Genome Associated With Broad-Spectrum, Quantitative Disease Resistance. *Genet.*, 169:2277-2293.
- Wu, J.L., Fan, Y.-Y., Li, D.-B., Zheng, K.-L., Leung, H. and Zhuang, J.-Y. 2005.
 Genetic control of rice blast resistance in the durably resistant cultivar Gumei
 2 against multiple isolates. *Theor. Appl. Genet.*, 111:50-56.
- Wu, K.S. and Tanksley, S.D. 1993. Abundance polymorphism and genetic mapping of microsatellites in rice. *Mol. Gen. Genet.*, 241:225–235.
- Wu, K.S., Martinez, C., Lentini, Z., Tohme, J., Chumley, F.G., Scolnik, P.A. and Valent, B. 1996. Cloning a blast resistance gene by chromosome walking. *In* Rice genetics III. Proceeding of the third international rice genetics symposium, ed. Khush, G. S., International Rice Research Institute, Manila (Philippines), 669-674.
- Wu, Y.L. 1971. Varietal differences in sheath blight resistance of rice obtained in Southern Taiwan. SABRAO Newsl., 3:5.
- Xie, Q.J., Linscombe, S.D., Rush, M.C. and Jodari, F.K. 1992. Registration of LSBR-33 and LSBR-5 sheath blight resistant germplasm lines of rice. *Crop Sci.*, 32:507.
- Xiong, M., Wang, S. and Zhang, Q. 2002. Coincidence in map positions between pathogen-induced defensive-responsive genes and quantitative resistance loci in rice. *Sci. China Ser. C.* 45:518-526.

- Xu, J., Wang, J., Ling, Z. and Zhu, L. 2004. Analysis of rice blast resistance genes by QTL mapping. *Chinese Sci. Bull.*, 49: 337-342.
- Xu, S. 1998. Mapping quantitative trait loci using multiple families of line crosses. *Genet.*, 148(1): 517-524.
- Xu, Y. and Crouch, J.H. 2008. Marker-assisted selection in plant breeding: from publications to practice. *Crop Sci.*, 48:391-407.
- Xu, Yunbi. Molecular plant breeding. Wallingford, UK, CABI, 2010. 736 p.
- Yang, Z., Sun X., Wang, S. and Zhang, Q. 2003. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. *Theor. Appl. Genet.*, 106:1467-1472.
- Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y. and Sasaki, T. 2000. *Hd1*, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. *Plant Cell*, 12:2473-2484.
- Yin, Y., Zuo, S., Wang, H., Chen, Z., Gu, S., Zhang, Y. and Pan, X. 2009. Evaluation of the effect of *qSB-9Tq* involved in quantitative resistance to rice sheath blight using near-isogenic lines. *Can. J. Plant Sci.*, 89:731-737.
- Yoshii, H. and Matsumoto, M. 1951. Studies on the resistance to *Helminthosporiose* of the rice varieties introduced to Japan (1). *Bull. Matsuyama Agricultural College*, 6:25-60.
- Yoshimura, A., Mew, T.W., Khush, G.S. and Omura, T. 1983. Inheritance of resistance to bacterial blight in rice cultivar Cas 209. *Phytopathology*, 73:1409-1412.

- Yoshimura, S., Umehera, Y., Kurata, N., Nagamura, Y., Sasaki, T., Minobe, Y. and Iwata, N. 1996. Identification of a YAC clone carrying the *Xa-1* allele, a bacterial blight resistance gene in rice. *Theor. Appl. Genet.*, 93:117-122.
- Yoshimura, S., Yamanouchi, U., Katayose, Y., Toki, S., Wang, Z.X., Kono, I., Kurata, N., Yano, M., Iwata, N. and Sasaki, T. 1998. Expression of *Xa1*, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. *Proc. Natl. Acad. Sci.* USA, 95:1663-1668.
- Yoshimura, S., Yoshimura, A., Nelson, R.J., Mew, T.W. and Iwata, N. 1995. Tagging *Xa-1*, the bacterial blight resistance gene in rice, by using RAPD markers. *Breed Sci.*, 45:81-5.
- Yoshimura, S., Yoshimura, A., Saito, A., Kishimoto, N., Kawase, N.M. and Nakagahara, Y.M. 1992. RFLP analysis of introgressed chromosomal segments in three near isogenic lines of rice for bacterial blight resistance genes, *Xa-1, Xa-3, Xa-4. Jpn. J. Breed*, 67:29-37.
- Young, N.D. 1996. QTL mapping and quantitative disease resistance in plants. *Annu. Rev. Phytopathol.*, 34:479-501.
- Yu, J., Hu, S., Wang, J., Wong, G.-K. and Li, S. 2002. A draft sequence of the rice genome (*Oryza sativa* L. ssp. *indica*). *Sci.*, 296:79-92.
- Yuen, J.E. and Forbes, G.A. 2009. Estimating the level of susceptibility to Phythophtora infestans in potato genotypes. Phytopathology, 99:782-786.
- Zadoks, J.C. 2002. Fifty years of crop protection, 1950-2000. Neth. J. Agric. Sci., 2002:181-193.
- Zadoks, J.C. and Schein, R.D. 1979. Epidemiology and plant disease management. Oxford University Press, New York, p 427.

- Zeigler, R.S., Leong, S.A. and Teng, P.S. 1994. Rice Blast Disease. Cab International. Wallingford, pp 1-626.
- Zenbayashi, K., Ashizawa, T., Tani, T. and Koizumi, S. 2002. Mapping of the QTL (quantitative trait locus) conferring partial resistance to leaf blast in rice cultivar Chubu 32. *Theor. Appl. Genet.*, 104:547-552.
- Zeng, Z.B. 1994. Precision mapping of quantitative trait loci. Genet., 136:1457-1468.
- Zhang, G., Angeles, E.R., Abenes, M.L.P., Khush, G.S. and Huang, N. 1996a. RAPD and RFLP mapping of the bacterial blight resistance gene *Xa-13* in rice. *Theor. Appl. Genet.*, 93:65-70.
- Zhang, H.B., Choi, S., Woo, S.S., Li, Z. and Wing, R.A. 1996b. Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinant inbred mapping population. *Mol. Breed.*, 2:11-24.
- Zhang, J., Feng, Q., Jin, C., Qiu, D., Zhang, L., Xie, K., Yuan, D., Han, B., Zhang, Q. and Wang, S. 2005. Features of the expressed sequences revealed by a largescale analysis of ESTs from a normalized cDNA library of the elite indica rice cultivar Minghui 63. *Plant J.* 42:772-780.
- Zhang, Q. and Mew, T.W. 1985. Adult plant resistance of rice cultivars to bacterial blight. *Plant Dis.*, 69:896-898.
- Zhang, Q., Lin, S.C., Zhao, B.Y., Wang, C.L., Yang, W.C., Zhou, Y.I., Li, D.Y., Chen, C.B. and Zhu, L.H. 1998. Identification and tagging a new gene for resistance to bacterial blight (*Xanthomonas oryzae* pv. oryzae) from O. rufipogon. Rice Genet. Newsl. 15:138.
- Zhang, Q., Wang, C., Zhao, K., Zhao, Y., Caslana, V., Zhu, X.D.L. and Jiang, Q.
 2001. The effectiveness of advanced rice lines with new resistance gene *Xa23* to rice bacterial blight. *Rice Genet. Newsl.*, 18:71.

- Zhao, M., Zhang, Z., Zhang, S., Li, W., Jeffers, D.P., Rong, T. and Pan, G. 2006. Quantitative trait loci for resistance to banded leaf and sheath blight in maize. *Crop Sci.*, 46:1039-1045.
- Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu G., Bellizzi, M. and Wang G.-L. 2006. The eight amino-acid differences within three leucine-rich repeats between *Pi2* and *Piz-t* resistance proteins determine the resistance specificity to *Magnaporthe grisea*. *Mol. Plant Microbe In.*, 19:1216-1228.
- Zhou, J.H., Pan, X.B., Chen, Z.X., Xu, J.Y., Lu, J.F., Zhai, W.X. and Zhu, L.H. 2000. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (*Oryza sativa* L). *Theor. Appl. Genet.*, 101:569-573.
- Zhou, J.H., Wang, J.L., Xu, J.C., Lei, C.L. and Ling, Z.Z. 2004. Identification and mapping of a rice blast resistance gene *Pi-g(t)* in the cultivar Guangchangzhan. *Plant Pathol.*, 53:191-196.
- Zhu, M., Wang, L. and Pan, Q. 2004. Identification and characterization of a new blast resistance gene located on rice chromosome 1 through linkage and differential analyses. *Phytopathology*, 94:515-519.
- Zhu, Y., Chen, H., Fan, J., Wang, Y., Li, Y., Chen, J., Fan, J., Yang, S., Hu, L., Loung, H., Mow, T.W., Teng, P.S., Wang, Z. and Mundt, C.C. 2000. Genetic diversity and disease control in rice. *Nature*, 406:718-722.
- Zou, J.H., Pan, X.B., Chen, Z.X., Xu, J.Y., Lu, J.F., Zhai, W.X. and Zhu, L.H. 2000. Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (*Oryza sativa* L.). *Theor. Appl. Genet.*, 101:569-573.
- Zuo, S., Zhang, L., Wang, H., Yin, Y., Zhang, Y., Chen, Z., Ma, Y. and Pan, X. 2008.
 Prospect of the *QTL-qSB-9Tq* utilized in molecular breeding program of japonica rice against sheath blight. *J. Genet. Genomics*, 35:499-505.

Appendices

S No	Markars	Forward Sequence (5' >3')	Bavarsa Saguanca (5' >3')
1	RM - 499		ACCTGCAGTATCCAAGTGTACG
2	HySSR 1_24		
3	HvSSR 1-24 HvSSR 1-33	AACTTGGGCTCTTTAATTCC	CAGAGTTCGAGAGAGAGCCAG
4	HvSSR 1-34		GTAACGAACTAGAGCATGGG
5	HvSSR 1-34 HvSSR 1-49	TCCTAAAGTTCACACCAACC	TGTCGATTCTCCTTCACTTT
6	RM - 428	AACAGATGGCATCGTCTTCC	CGCTGCATCCACTACTGTTG
7	HvSSR 1-55	ACACCATACCAATACGAAGG	ACACCGTACTGTTTATTGGG
8	RM - 84	TAAGGGTCCATCCACAAGATG	TTGCAAATGCAGCTAGAGTAC
9	RM - 1	GCGAAAACACAATGCAAAAA	GCGTTGGTTGGACCTGAC
10	HvSSR 1-80	TTTGAGCAAATAAACTTGAGG	GCTTCTACTTCCACAAGGC
11	HvSSR 1-87	TTGGTACACGACCATGATTA	ATGGATCTGTGTGTGTGCGT
12	HvSSR 1-89	TGCGACGGATAGAGTACATA	GGATGCAAAGAAAGAACAAG
13	RM - 259	TGGAGTTTGAGAGGAGGG	CTTGTTGCATGGTGCCATGT
14	RM - 243	GATCTGCAGACTGCAGTTGC	AGCTGCAACGATGTTGTCC
15	RM - 572	CGGTTAATGTCATCTGATTGG	TTCGAGATCCAAGACTGACC
16	RM - 24	GAAGTGTGATCACTGTAACC	TACAGTGGACGGCGAAGTCG
17	RM - 449	TTGGGAGGTGTTGATAAGGC	ACCACCAGCGTCTCTCTCTC
18	RM - 5	TGCAACTTCTAGCTGCTCGA	GCATCCGATCTTGATGGG
19	RM - 212	CCACTTTCAGCTACTACCAG	CACCCATTTGTCTCTCATTATG
20	RM - 3825	AAAGCCCCCAAAAGCAGTAC	GTGAAACTCTGGGGTGTTCG
21	RM - 302*	TCATGTCATCTACCATCACAC	ATGGAGAAGATGGAATACTTGC
22	RM - 486	СССССТСТСТСТСТСТСТС	TAGCCACATCAACAGCTTGC
23	RM - 14	CCGAGGAGAGGAGTTCGAC	GTGCCAATTTCCTCGAAAAA
24	RM - 109	GCCGCCGGAGAGGGGAGAGAGAG	CCCCGACGGGATCTCCATCGTC
25	RM - 485*	CACACTTTCCAGTCCTCTCC	CATCTTCCTCTCTCGGCAC
26	HvSSR 2-1	AAGAGATGAGAAGAGCAATGA	CAACTTAGAGGAAGAAGGAGG
27	HvSSR 2-12	TCTCCAATTCTCCATCAAAC	CTTGCTTGAGCGAGTCTAAT
28	HvSSR 2-23	AGCTAGCTACACACTTTCCG	ATAGATGCATGGCGATATTT
29	HvSSR 2-27	GGTGCAATTCTTATTCCTTG	AATTTGGATTCAGATGTTGC
30	HvSSR 2-78	GTTTCCTTGCAAACAGACAT	AGTCATTCTAGCATTTCCCA
31	RM - 174	AGCGACGCCAAGACAAGTCGGG	TCCACGTCGATCGACACGACGG
32	RM - 492	CCAAAAATAGCGCGAGAGAG	AAGACGTACATGGGTCAGGC
33	RM - 475	CCTCACGATTTTCCTCCAAC	ACGGTGGGATTAGACTGTGC
34	RM - 341	CAAGAAACCTCAATCCGAGC	CTCCTCCCGATCCCAATC
35	RM - 221	ACATGTCAGCATGCCACATC	TGCAAGAATCTGACCCGG
36	HvSSR 3-6	AGATGAGCTTCAGTGCTAGG	TTCACCACAAAGTTCACAAA
37	HvSSR 3-9	TGTATTCAAGGAGGGCTAGA	CAACTGTTTCCTGGAATGAT
38	HvSSR 3-35	TTGATTACGTGAATAGCTCG	CATAGCTAACTTGTGCGTTG
39	HvSSR 3-40	CGAGAGGTTCAGAGAGAATG	GCATTCACCCTAAGGATACA
40	HvSSR 3-41	ATGCAATTACTTGTTGCCTT	AAGTTCTGAACAACCACCAC
41	RM - 231	CCAGATTATTTCCTGAGGTC	CACTTGCATAGTTCTGCATTG
42	HvSSR 3-56	GCCTATCAGGCTATCATCAC	GTGATCGACATTGAGGAGTT
43	HvSSR 3-71	CACACCAACTCACTCTTGAA	CCGTTTCGTCTATGTTCATT
44	HvSSR 3-85	GCAAACGACACAAGTCATTA	ATAGTGCCCTTTCTTTCACA
45	RM - 517	GGCTTACTGGCTTCGATTTG	CGTCTCCTTTGGTTAGTGCC
46	RM - 7	TTCGCCATGAAGTCTCTCG	CCTCCCATCATTTCGTTGTT
47	RM - 232	CCGGTATCCTTCGATATTGC	CCGACTTTTCCTCCTGACG
48	RM - 411	ACACCAACTCTTGCCTGCAT	TGAAGCAAAAACATGGCTAGG
49	RM - 135	CICTGTCTCCTCCCCCGCGTCG	TCAGCTTCTGGCCGGCCTCCTC
50	RM - 55	CCGTCGCCGTAGTAGAGAAG	TCCCGGTTATTTTAAGGCG
51	RM - 85	CCAAAGATGAAACCTGGATTG	GCACAAGGTGAGCAGTCC
52	RM- 307	GTACTACCGACCTACCGTTCAC	CTGCTATGCATGAACTGCTC
53	HvSSR 4-26	GAGGAATTCATTCATCATGC	ATTICGITATTIGCATTGGT
54	HvSSR 4-35	ACCAACCTAATACCGATGTG	CGCGAGTGTTGTAACTTTAAC
55	HvSSR 4-38	CCAAGCACCTCTTAACTTGA	CCGTTCTTATTAGGTTGTGG

Appendix I: Primers used for developing genotypic data

56	HvSSR 4-39	CAAATAAGATCGCTGAAACC	TTCGGAGTAAATTGGACATC
57	HvSSR 4-42	GATGGTGAATCTCGGTCTAA	TGTCCCATCATCACAAACTA
58	RM - 564	CATGGCCTTGTGTATGCATC	ATGCAGAGGATTGGCTTGAG
59	RM - 273	GAAGCCGTCGTGAAGTTACC	GTTTCCTACCTGATCGCGAC
60	RM - 348	CCGCTACTAATAGCAGAGAG	GGAGCTTTGTTCTTGCGAAC
61	RM - 317	CATACTTACCAGTTCACCGCC	CTGGAGAGTGTCAGCTAGTTGA
62	RM - 559	ACGTACACTTGGCCCTATGC	ATGGGTGTCAGTTTGCTTCC
63	HvSSR 5-13	TCCTCTACAGTTGTCTGCCT	CATTCCTCTCCACTTTCTTG
64	HvSSR 5-23	GCAGCCATCTATCATCTAGC	CTAGCTGCACCAGTTTGATT
65	HvSSR 5-31	TGGAGCTGTGTTGTTGATTA	ATTGTGACATGCTGATGTTG
66	HvSSR 5-39	TGAGAGGATACTTGGGACTG	CCAGCATGCAACTGTAACTA
67	HvSSR 5-48	GAATTGAAGGTGGGACATAA	GAAGATGGCATGTAAACGAT
68	HvSSR 5-51	CCATGAAATAGTTCTAGGGAA	TAATTAATGCCTTCGTGGAT
69	HvSSR 5-52	GCTTAGTACTTGCGGCTAAA	CCATCTTACATGTCCTCACC
70	HvSSR 5-56	AAACTATCCGCTTGTGAAAT	CCGGTTAAGGACTCCTATCT
71	HvSSR 5-65	ATTAAACGCACACTGGAAGT	AAACGGAGGGAGTAGTTAGC
72	HvSSR 5-66	GTTATGCGCTTCTGCTTATT	AGTTGGCTTCTGGATTACAA
73	RM - 163	ATCCATGTGCGCCTTTATGAGGA	CGCTACCTCCTTCACTTACTAGT
74	RM - 440	CATGCAACAACGTCACCTTC	ATGGTTGGTAGGCACCAAAG
75	RM - 459	CTGCAATGCTGCATGACC	CACTTTCTCTGCAGCACCAG
76	RM - 188	TCCGCCTCTCCTCTCGCTTCCC	GCAACGCACAACCGAACCGAGC
77	RM - 421	AGCTCAGGTGAAACATCCAC	ATCCAGAATCCATTGACCCC
78	RM - 178	TCGCGTGAAAGATAAGCGGCGC	GATCACCGTTCCCTCCGCCTGC
79	RM - 26	GAGTCGACGAGCGGCAGA	CTGCGAGCGACGGTAACA
80	RM - 274	CCTCGCTTATGAGAGCTTCG	CTTCTCCATCACTCCCATGG
81	RM - 87	CCTCTCCGATACACCGTATG	GCGAAGGTACGAAAGGAAAG
82	HvSSR 6-35	GAAAGGAAATCAGGTTGTGA	CCCATTAGACATTTCGGATA
83	HvSSR 6-44	GGAGCATCCATCACAATATC	GTAATTTCAGTCAGCCAAGC
84	HvSSR 6-56	AGCATTTGTGTGTGCAATAG	ATGCTTGCCTCATCAGTAGT
85	RM - 225	TGCCCATATGGTCTGGATG	GAAAGTGGATCAGGAAGGC
86	HvSSR 6-65	GTGTGGCAATTTAACATCCT	TTGTTGCTTGTTCTTCACTG
87	RM - 217	ATCGCAGCAATGCCTCGT	GGGTGTGAACAAAGACAC
88	RM - 136	GAGAGCTCAGCTGCTGCCTCTAGC	GAGGAGCGCCACGGTGTACGCC
89	RM - 340	GGTAAATGGACAATCCTATGGC	GACAAATATAAGGGCAGTGTGC
90	RM - 400	ACACCAGGCTACCCAAACTC	CGGAGAGATCTGACATGTGG
91	RM - 481	TAGCTAGCCGATTGAATGGC	CTCCACCTCCTATGTTGTTG
92	HvSSR 7-40	GATTTACTCGCAAGTTACCG	TGTTTCAGGTTCGTCTATCC
93	HvSSR 7-43	CAACTCAGTTCCAATCCCTA	TTGTGTGTTTCATATACGGC
94	HvSSR 7-46	ACAGCTGTAGAGGATGAGGA	TCCCTAATTCGAATCACAAC
95	RM - 125	ATCAGCAGCCATGGCAGCGACC	AGGGGATCATGTGCCGAAGGCC
96	HvSSR 7-53	CGAGCATGTCTGTCAAGTAA	GTTCGAATGTAATGTTGGCT
97	RM - 2	ACGTGTCACCGCTTCCT	ATGTCCGGGATCTCATCG
98	RM - 11	TCTCCTCTTCCCCCGATC	ATAGCGGGCGAGGCTTAG
99	RM - 234	ACAGTATCCAAGGCCCTGG	CACGTGAGACAAAGACGGAG
100	RM - 248	TCCTTGTGAAATCTGGTCCC	GTAGCCTAGCATGGTGCATG
101	RM - 337	GTAGGAAAGGAAGGGCAGAG	CGATAGATAGCTAGATGTGGCC
102	RM - 152	GAAACCACCACCACCTCACCG	CCGTAGACCTTCTTGAAGTAG
103	HvSSR 8-29	AACIGAGAGGCIGCIIGIAI	TAAAGGGTTCACTCATGGAC
104	RM - 310	CCAAAACATTTAAAATATCATG	GCTTGTTGGTCATTACCATTC
105	RM - 44	ACGGGCAATCCGAACAACC	TCGGGAAAACCTACCTACC
106	RM - 483	CITCCACCATAAAACCGGAG	ACACCGGTGATCTTGTAGCC
107	RM - 72		GCATCGGTCCTAACTAAGGG
108	KM - 515		
109	KM - 256	GACAGGGAGTGATTGAAGGC	GIIGATTTCGCCAAGGGC
110	RM - 230	GCCAGACCGTGGATGTTC	
111	KM - 433		
112	KM - 281	ACCAAGCATCCAGTGACCAG	GIICTTCATACAGTCCACATG
113	HvSSR 9-5	GAACGGAGGGAGGTTGTT	AAAGTGTCCTAAAGCCAAGTC

114	RM - 444	GCTCCACCTGCTTAAGCATC	TGAAGACCATGTTCTGCAGG
115	HvSSR 9-7	CATCTCAGCAAACAAGAACA	GTAAAGACTCCAGCTTTCTCC
116	HvSSR 9-19	TCGAATTTAGTCCAGGGTAA	GGTGAGAGATCTTGAGTTCG
117	HvSSR 9-25	GATCGATCTCATCATCACCT	TAGCTTCCTACTGGGAGTGA
118	HvSSR 9-27	TGGGCATCTGGTACTATCTT	AGCTCATTCCACAGGTTAGA
119	HvSSR 9-37	AATCTCAACTGCTCGGATTA	TTGATTGATTGATTGAACGA
120	HvSSR 9-57	GGAGGTTGTTGTTACGTTGT	GGGAGGGTAATTCAGGTAAG
121	RM - 296	CACATGGCACCAACCTCC	GCCAAGTCATTCACTACTCTGG
122	RM - 434	GCCTCATCCCTCTAACCCTC	CAAGAAAGATCAGTGCGTGG
123	RM - 410	GCTCAACGTTTCGTTCCTG	GAAGATGCGTAAAGTGAACGG
124	RM - 108	TCTCTTGCGCGCACACTGGCAC	CGTGCACCACCACCACCACCAC
125	RM - 242	GGCCAACGTGTGTGTATGTCTC	TATATGCCAAGACGGATGGG
126	RM - 288	CCGGTCAGTTCAAGCTCTG	ACGTACGGACGTGACGAC
127	RM - 553	AACTCCACATGATTCCACCC	GAGAAGGTGGTTGCAGAAGC
128	RM - 278	GTAGTGAGCCTAACAATAATC	TCAACTCAGCATCTCTGTCC
129	RM - 201	CTCGTTTATTACCTACAGTACC	CTACCTCCTTTCTAGACCGATA
130	RM - 245	ATGCCGCCAGTGAATAGC	CTGAGAATCCAATTATCTGGGG
131	HvSSR 10-1	ATGTATCGCTCGACAGATTT	CCGATTCATTGATGATTTCT
132	HvSSR 10-5	TCTCGCTCACTACCAGACTT	AATTTCGCTTCACATCACTT
133	HvSSR 10-17	CGTCTTGAATCAATTTCCAT	GATTGCCCGTAGAACTATTG
134	RM - 222	CTTAAATGGGCCACATGCG	CAAAGCTTCCGGCCAAAAG
135	HvSSR 10-34	TAGACCGAGGAATTGAAAGA	TTTGGGCTTATTGTCAGTTT
136	RM - 171	AACGCGAGGACACGTACTTAC	ACGAGATACGTACGCCTTTG
137	RM - 228	CTGGCCATTAGTCCTTGG	GCTTGCGGCTCTGCTTAC
138	RM - 484	TCTCCCTCCTCACCATTGTC	TGCTGCCCTCTCTCTCTCTC
139	HvSSR 11-1	TGTGTGTCCGCATACTTAAA	ATGTCAAAGTCCGAAAGTGT
140	HvSSR 11-2	TAGATTGGGTGATGGATAGC	CTACTTGATCCAGGGAAATG
141	HvSSR 11-3	GGTTGACACCGTTAACATTT	TGGAACTACCTACCTAGCCA
142	HvSSR 11-13	TGAAACCACAATGAGTCAAA	GCCCTAAACCCAAATAGAAG
143	RM - 202	CAGATTGGAGATGAAGTCCTCC	CCAGCAAGCATGTCAATGTA
144	RM - 229	CACTCACACGAACGACTGAC	CGCAGGTTCTTGTGAAATGT
145	RM - 21	ACAGTATTCCGTAGGCACGG	GCTCCATGAGGGTGGTAGAG
146	RM - 26334	GACTCCCTACTAGTGGTTCTGATTCG	CCTTTGACGATTGTGATGCTACG
147	RM - 206	CCCATGCGTTTAACTATTCT	CGTTCCATCGATCCGTATGG
148	RM - 254	AGCCCCGAATAAATCCACCT	CTGGAGGAGCATTTGGTAGC
149	RM - 224	ATCGATCGATCTTCACGAGG	TGCTATAAAAGGCATTCGGG
150	RM - 20	ATCTTGTCCCTGCAGGTCAT	GAAACAGAGGCACATTTCATTG
151	HvSSR 12-35	ATGACCATAATCCCAACAAA	GTCGTGGTGTTATTCTTGGT
152	HvSSR 12-36	ATCAGCGACTAAGGATCTCA	CTAATGTTGCCACATACGAA
153	HvSSR 12-40	ATCTAACAACAACAATCCCG	CATCTTCATCCCTCGTGTAT
154	HvSSR 12-48	AAACTCGATCAGACTTAGAGAAG	TCTCTGATGGCAATACAACA
155	HvSSR 12-51	AATCATCATATTGCCGAAAG	ATCACCATCTATCATTGCAC
156	RM - 277	CGGTCAAATCATCACCTGAC	CAAGGCTTGCAAGGGAAG
157	RM - 511	CTTCGATCCGGTGACGAC	AACGAAAGCGAAGCTGTCTC
158	RM - 260	ACTCCACTATGACCCAGAG	GAACAATCCCTTCTACGATCG
159	RM - 519	AGAGAGCCCCTAAATTTCCG	AGGTACGCTCACCTGTGGAC
160	RM - 28305	GTCATCTTCGCAAATGGTGATGG	GGTCGTCGTGGTGTTATTCTTGG
161	RM - 270	GGCCGTTGGTTCTAAAATC	TGCGCAGTATCATCGGCGAG
162	RM - 17	TGCCCTGTTATTTTCTTCTCTCC	GGTGATCCTTTCCCATTTCA

S. No.	SSR marker	Forward primer	Reverse primer
Ļ	RM6464	CGAGGAGAATACTCGTTCGGTAGC	CCCTTCTCCATCTCACTCC
2	RM10018	ACTAGTACACCTCAACTTCACTCC	CCTTTAGTTTGCTTGTGACC
3	RM3252	ATGCAAGCATCTGCTTATGG	GTTGGTAACTTTGTTCCCATGC
4	RM6470	AGTGTCAGAACCAGGATGAAATGC	AGTGCAGCTTCAGCCATGAGG
5	RM8068	GTGTCATATGCAAGCAACAACTCC	AGTATGTACGTCTCCCTCCGTTGC
9	RM10218	AGCTAGCCCTCTTGTCTCCATGC	CACACTAGCACAGTGGCATACTGG
7	RM3746	CCTTGATCGGAAGTAGCTCAACG	GCCCTCAGAGCAGTAAGGAGAGG
80	RM8131	ACCGGCGGTCCTAATAACTATGG	GGTCCGATTAGATGAGAATCAGTTGG
6	RM600	CCTGTTAGGTGGCACATTTATGG	TCGGCCCTGTATATCATTACTCG
10	RM8071	GGACAAGAGGTTCCTCAATCTCG	AAACGGGATTATCGCCACTACC
11	RM140	CTTGCACAAGAGATGATGATGAGC	CATGCTGAGAATAGTACGCTTGG
12	RM594	TCGAGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GCCTTCGCACATAAAGGATGAACC
13	RM129	CACTCCACGCCATCTCTCG	CTCAGACTCGGAGCTCATCTTCC
14	RM8139	GGAACAAACGAAGCCTTAGTGG	GGACCCATTGTATCTGGTATTACGG
15	RM3341	GTCGTCGCCATCATTGGTATCG	CACCTTTCCCGGATCAAGTACG
16	RM7405	CCCATATATAGGAGGAGGAGGAGG	AGTCAGTCACTGGTAGTCG
17	RM11307	AAAGCTCTGCAATCTTCTCTCC	GAATACGACATCAGAACAGTGC
18	RM6738	GCAAGTCGATAGGCTAATCAATCC	CATGTGTGGGGAGGAGATGTGGG
19	RM128	TGATTTCTTGGAAGCGAAGAGTGAGG	CCTCCTTGTGCTCAGCCATGC
20	RM1095	CCCATTCAGTTGATCCTGTCTGC	AGCTGGGATGCAGAAGAGTATGG
21	RM11739	TCTTCAGGGAGAAGATGAGG	TTCACAAACGAACTCCAAGG
22	RM3285	AAGGAACGCGAGAGAAGAGAACC	ATTCTGAGCAGGAGAGGGGAAGG
23	RM3738	GTGATGGGAGGGGGGGGGGGAGGGG	CGCAAGTGGACCTCTTATTGTGC
24	RM5794	AATCCGTCAACCACCATGAACG	TTGCAGACTCATGGACACATGG
25	RM5310	GGGACCAAGACCTTTCCAATGC	GCGGAAGCAGGAGAATCGTAGC
26	RM3362	ATTGCGTGGGATATGGACTATGC	CCTCTTCAATTCCCTTCCTCTGC
27	RM12276	GTCGACGGCTTCCTCAAGATTGG	TGAGACCTCTGTGAAGGCACTCG
28	RM6840	CGACTGGAAGAAGGGATCATGG	CACACTACCAAGACTCCGCTATGG
29	RM6842	CCGTGCATCTCGCTACCTAACC	TGCACACACATAGAGGGAAGAAGG
30	RM6367	GCAACCACGACATCAAAGAAACC	GGAGGTTAGTGCTTCGGAGTGG
31	RM12368	GAGATAAGTGCCACGATTGATTGC	GGAGCCGTACGAGTAATCTCTGC
32	RM12478	CTAGGGTTTGCGGGCGATGG	CCGCGGTTGACGTAGATGATGG

-
تة
<u> </u>
0
-
Ξ.
5
on
3
\frown
_
Ξ.
H
3
•
ТС -
5
>
j
70
č.
Ť.
2
~
\Box
_
Ξ
H
d
5
0
é
5
ч,
0
õ.
_
9
1
e.
1
3
0
_
5
0
Ð
1£0
d fo
ed fo
sed fo
used fo
s used fo
s used fo
sts used fo
cers used fo
kers used fo
rkers used fo
arkers used fo
narkers used fo
markers used fo
a markers used fo
R markers used fo
SR markers used fo
SR markers used fo
SSR markers used fo
: SSR markers used fo
I: SSR markers used fo
II: SSR markers used fo
II: SSR markers used fo
x II: SSR markers used fo
lix II: SSR markers used fo
dix II: SSR markers used fo
ndix II: SSR markers used fo
endix II: SSR markers used fo
pendix II: SSR markers used fo
pendix II: SSR markers used fo
ppendix II: SSR markers used fo
Appendix II: SSR markers used fo

33	RM6616	TCAAGATCAACGCACTCCTCTCC	TCGTACGAGCAACAGGTGGTAGC
34	RM4355	GGGATGAGAGTAGAAGGCACAAGG	GCTTAATGCCTTTGATCGTTGC
35	RM555	TTGACATGCGAAATGGAGATGG	TTGGATCAGCCAAAGGAGACC
36	RM12923	AAATGCACAGGCATTCGTAGACC	GAAGAAGTGGATGGAGGACATGG
37	RM6375	CGAATGGAACGACAAGAGATGC	ATAGATCGACAACGTAGATCCACAGG
38	RM452	GTGGACTTGGCGAGATGCTACG	GTTAAGGGCAGCCACCAGATCG
39	RM550	GCTCTGGTCCGAAGTCTTCTTCC	GGCTAAGCCCACATGAGACAGG
40	RM13069	GGAGGGTTATTCTCGCGTAAAGG	GACCCTTCACATTTCGGTCAGC
41	RM13170	GCCTCTTCACCCTCATCCTTCTCG	CGCCTGCCACCTTTATCTTGAACC
42	RM6509	GTAAGACGGACAGCCATGGAAGC	GACAGCACCTGCTCGAACTGC
43	RM13541	CTCCTCGCTTCGTCCACTTCC	CCATGTGTCACCGACTCAACG
44	RM13542	CTTGCTTCAAGCGGTGGTGACG	CACGTCGCTCCACTCCAGATCC
45	RM6617	CTCCTCCCCCCCCTCTACTCC	TAATAGATGGCGATGGACGAAGG
46	RM13611	CTCTTGAACGGCTGCACGAAAGG	CGCGAGAATGGTAGGTGGATCG
47	RM573	TCATGTTGACGCACACATACACG	CTCTTCTTCCCTGGACCACACC
48	RM425	ACCACAGCAGGTGGAACAGG	GCTAGCTAAGCCAACACCAACG
49	RM14001	TGTGGCTGGGCTCCGATACC	ACCCTGCAGGATCATCAGAACG
50	RM6307	GCCTCACCTCATCACAACG	TGGTCCTTCCTACTGTTGGTTCG
51	RM1063	TTGATCCACTATCGTGGCCTACC	TGGCAAGTGCAACTGCAAGG
52	RM208	AGTACCACCATTCTCTGCAAGC	TCGATTGGCCATGAGTTCTCG
53	RM3850	GCCTCGAGAAAGAAGCATGTCC	AAGCGACCTGTACCTCAACTTCG
54	RM7485	TCATGGAAATGCCAGTTTCTCC	TTCTTCGATTAACTAGCCTCGACAGC
55	RM5807	CGCCATGCCTAACCTATTATTGTGC	ATCGTCATCCAGCAAGC
56	RM3654	AGGCGAGAGAGATGGAGATGG	GCGGCGGATATAAAGAGAATGG
57	RM3265	CCGTCTCTGTTGTTGTTCTGC	TGGTTCGCCAACAATTAAGACG
58	RM60	CAAGTTCACCCGCCTTCTCG	TTTCCATCATTAGCAGGCAGTAGC
59	RM14303	GTCTGTGCGCTCCTTGTTCTAGC	CCTGGACCAATTTGTATGGTTGG
60	RM14327	GATGCAGTAGGAACACCAAACAGC	ATCGAGTACCAAGTGCCTGTGC
61	RM5474	GTGGGTTTGTGTTTGGAGAGACG	GTGTTGGTGAGCATAGCAGTTGG
62	RM3392	AGCAACCAACCCAGTAGTTAGCC	GCTCATTTGCATGCTGTGTTAGC
63	RM175	GACGGAGGAGTTCGAGAGGAAGC	GTGAAGCGACTAGGCGGAGAAGG
64	RM14593	GCACCACCGCTCACACTTGC	GCTCCGGTTTCTCGAGGAGTTTACC
65	RM1256	TTCTTCTTCGTCTTCTGGTTCC	CAAAGCCATACTAAACCCTAGCC
66	RM5748	TATCCAAGCCTCCATACACATAGTGC	ACAAGAGGTGAAGAACTGGATGAGC
67	RM3204	CTTACACACATGGCCCACATGC	TCCTCTTCTCACTCTCCCCAACC

68	RM15064	AACGTAACACAGCTGAGCAGCTACC	ATCTCCTGCAGCCTCCACACC
69	RM15065	ATAGAGGTCGTCGGGGGGGGGGAGGG	ACTGAGTTCCAATGGCTCAACG
70	RM7642	TTAGATCACGATACTCAGGGATGC	CGAAGAAGAGCACGAAACG
71	RM15281	CGGGCTTATATCTTTGGCAAATGG	GCCTCCTCCTTTCTCG
72	RM5626	GGACGCCACCTTCCTCTCTGC	CGGTCATAAACGCCATTAGACCAAGC
73	RM15567	TGCATCGATCCTTTCTTTGTCC	CCGGGGACGCTATATGTTCTTCC
74	RM426	CATCGCCGAAATCCATCTTCC	AAGGCCCATTTCATTGTAGAGTGC
75	RM15721	CAGCCAAGCTCTCCAATTAAACC	TGTGCCTTCTGATCTGATGTTGC
76	RM15741	AGCTGTTAGCCGACTTGTCAACC	TCTCCAACAGTTCTTCGATTGTCC
77	RM3525	CGCAAACGACACAAGTCATTACC	CTCAGCTCATCAAGACCTCAAGC
78	RM1373	TGCTATACCCAAATGTCCAAGC	ATCTTCTGAGTGCTGCCAAGC
79	RM16140	CGAGATGGCGTCAGCGAAGG	AAATGGCGAACAAGGCTGTCACC
80	RM3684	CGACGCAACCTATACTTGACAAAGG	GGTGTCCCAGCAAGTATTTCACC
81	RM16147	GAGATCATCCTGAACAACCACTGC	TGTCCACCCAAACCCTCTTTACC
82	RM7389	ACGGATGCATGATCGAGATGG	TTTGAGCCGGAGGTAGTCTTGG
83	RM7585	TGCAATCGCGTAGTTGGTAGAATAGG	CTCGACTACCTCGCCATCATCC
84	RM16368	TGTCCAGAGAATGACAAGTACGC	GGATGTATATCTGCCACCAAATGC
85	RM16382	ACTCTGGTATATCCAAGCGATCC	TCACACTCCGTTTCTGTTCAGG
86	RM16493	TCGGCAGCAACACTCTTAAACC	TCAACAAGATGACTCCCTGTAGCC
87	RM6659	TGTGGAGGCTTAGGAAATTCTGG	TGTGAAACATGCCACGATACTGC
88	RM16559	CCTGGAACCTGGAGGTGTTCTCG	GTCGTGGACGATTTCTTCGTCAGC
89	RM401	GCATGAGCTGCTCTCATTATTGTCC	GAAACGAACCAAACGTTCATCG
06	RM16717	ACAGCACTCATTCCATGTCC	GATAACTGATCGACGCGACACC
91	RM6314	CATGTCTGATATTGCGGTTCAGG	TCAAGCCCTGCCCAACTACG
92	RM16825	AACTAAACACCCTGAACAGC	ATGTAGTACCCAAAGCACAACG
93	RM5979	GTTTGAACTCTGGTCTCAATGC	ACAGTATACGTGGCTCAATCAGG
94	RM3708	GCGTAAGACGACGAGACCTTACC	TGATGACGTGGCTTTCATTTGG
95	RM3839	ATGCATGTGATGCCAAGAGTGG	GAAAGCACACTGCACACATACCC
96	RM17303	TAGCGATTGGATGGAGGCTGAGG	GGTCGCCTCGCCATTAGTTACG
97	RM17388	CGAGCCACCCCCAACTCTATCC	GCTATGTTGACGGGCCTTGTGG
98	RM349	GCTCGTCTTTCGTCTCTGTGTGC	AAGTACGCGCTGTCCATCATCC
66	RM8217	TTGCCAGATGGAGGTTCTAATGC	TTATCAACATGAGACTGCGGAGTAGG
100	RM17604	TCCTCTCCTCCGATCCTTAGC	CACATCACAACCACAAACCATGC
101	RM17616	TCGTCGTCCTCTTCTTCATCG	GCTAACACCGAAAGAGGCAAAGC
102	RM507	TGCCCATGTATGTGAGGTACTCC	GCCTAATCCAGGACAAGCTACGG

103	RM1024	AACTGCCATCTCTGAAACTCTGC	CATCTCACTTCAGAAGGATCATAGCC
104	RM17804	GTCACCACCACAATCTCTCCC	GTCAATCTCCTCAAGAACTGACG
105	RM5374	TTAGGGTTAGGTCTGTTGTGTACTGG	CGCTGGATCACACACTGTAGC
106	RM17863	GGACGTCATGATTTGTGCTTGG	GTCATTGGCTTGCAGGATACACC
107	RM17886	AAGAGATGTGGTTCAACTCC	CCTAGGTATTCCCAAGAGAGAGTCC
108	RM17962	CAGCAAATCTCTATCACTGCAACC	GCTAGATGACCACCTGCTGTACG
109	RM7588	GCAATTTCCGAAGCCCATGACG	GCCCATGGGTACGTGCTATGATCC
110	RM3381	ACGAACGCGAGCTGACAGAGG	AATAGCTGCCAGCAACTGCAACG
111	RM5140	GGCACTCGTATTTCTCAACTTCTCC	GGGTGTATCAGGAGTACAGGTTGC
112	RM6229	TTCACACTGCTCCACAGCCATCC	ATTCGATCGACGCCGGTAGGG
113	RM18451	ATATACAGCGCGGACATTGTGG	CATGTCATCTTCACGCGAATCC
114	RM18614	TGGCGCAATATCTCTCTCATTCC	TGCCACTTGTGTGTTGTTCTGC
115	RM6054	AGGCTCTTCGGCTTCATCTCC	GGTCTCTGATCAGTTTGCTTTGG
116	RM3486	GGAGGTCGGCACGTAGTAGAGG	GTCGGTACTATTCCTGCCATCG
117	RM538	CAGTTTGACACAAGCAGCAAGC	CTCCACAGCTTGAGGGAATGC
118	RM3790	CGATCAACCACCTCAACTACTGC	TGTGCATGTGGACACGTAATGC
119	RM3170	GCAGTGTCATTCTCATGAAACCTACC	CAGACTCCAAAGCACCCATAACC
120	RM19218	CGGAGGGAGTAGGTACGTAGGG	CCCATTCCATTCTACACTGACG
121	RM6775	AATTGATGCAGGTTCAGCAAGC	GGAAATGTGGTTGAGAGTTGAGAGC
122	RM7158	CATGGACTTGTTAGCAGCGTACC	ATTTCATCGATGGCCTCTACACC
123	RM6467	TGTTGGATTGGAATCGGAAAGC	CTCTGCTGTGCTGCTGCTAGG
124	RM1369	CATCGATTAGCTTACATGGCAACG	ACTAGTGCGACCGTCTTCAATGG
125	RM3805	ACACCACCATCAACGTACCAACC	AAGTCGAGGGAAGAAGCCAAGG
126	RM19623	CATTCTGCAGTGTCCATTGTGACC	GTGGTTGGTCCCAGTTCG
127	RM3431	AAGGGAACATTCTGGAAGACACG	ACACATTGCGTGTAGTGTGAAGC
128	RM5963	TCAAGTTACGGGAAATGTGTGG	CTGCCTAGCTTCCGTTTCTCC
129	RM3183	GTGGTGCTAGTATGGACGAGAGGG	CGGTTGGTAGACTGTAAACAAAGTGC
130	RM7583	ACTGAGCCAGCCACTGACAAGC	CCGTAAAGCAGTCAGTCATTCAGC
131	RM19976	AATGGAGTCATCGCACCAAGG	TTTAACTGGTCCCTACGATCCTATCC
132	RM20069	GCGAGCGAGGAGAGAGAGACG	CGAATTCGGCACGAGTAATAGGG
133	RM20071	GGAGGCGCCTTGTTGGAACC	ATGTCATCGGAATCGGATCAAGC
134	RM20152	GGGTGGGCGTATTATAGATTCAAGG	TTAGGCCCAATAGTGGAGGAAGG
135	RM20155	GTCTCGTCTCGTCGTCTTCTCC	CCTCTAACCTCGTCGGAATCG
136	RM7434	AGGCTTCTTGGAATGGAACTGC	GGGAATATACGTGGATGTGAGAGG
137	RM1370	GGAGGGAGGAATGGGTACACG	TTGAGAGTGAAACGAGAACCAACC

138	RM3765	ACACCATGACACCAAAGGAAGG	GGATGCTTCCAATCCTCTCACC
139	RM5753	GCACCATCCGTCAGAAACAGC	TCCGAGAAAGAACCGCTAGG
140	RM5463	AGTGCCTGTTTGTTTCCTCTTCG	CATGGTCAGAGCAAGTTAGTGTGG
141	RM6652	AAGCTCGTCGAGAGTAAGAAGACC	ACCAGTCCAATCTTCGTCATCG
142	RM3394	GAGAGGGAAGGAGTTTCTTAGC	TAGTTTACACGTACCCATGTGC
143	RM20891	GTGGATGTACGTATAAGCATGTGTGC	GTACGGCTGACGGCTTTATTCC
144	RM20973	CGTGATGGTACAGGGAAAGAAGG	CGCTACAACACACACACAAATCG
145	RM3224	CGCGAGGAAGAAGAGAGAGATCC	ATTCATCGAGTGACGGAGAGAGGG
146	RM3484	TCCGGTCGTCCTCATCGTATCC	GCCCTCTTGCTCCCACATCG
147	RM21238	GAGCTTCTCCTCACCCATCACC	CTTCTGCAGGGGTGTTCAACG
148	RM21242	GAGAGGAATGGAATGGAATGAGG	GAACAGGCATGGTGAAGAGTGC
149	RM21323	ATTGCGATGTTTGGATGTACCG	AGCAACTCGTCAATGAACATGC
150	RM3456	TTCTCCTTGCGACACAGATGAAAGG	GCCTCCTATATAAACCGGCGGAACC
151	RM214	GAACATGCTTTCAACCATCAGG	GATCCTCTCAGTTCAGTGCAAGC
152	RM5543	GGTGCTAGGTACATGGCTGACG	AGAGCAAATTCTGGGCTATCTGC
153	RM500	AGAAGTGCAGGTTGGCTCTGC	CACGAATCTCGGAGTGTCTAGGG
154	RM5875	AATAAGCGAGATGGACGAACC	TTTCCCACCAGGGAGGAGGATGG
155	RM2752	GATCCGCTTGCACATGGATAGG	TACACGTGTGAGCGAGCTTAGCC
156	RM22105	AAGTGGAGGCGTACCTTGTTCC	CGTATCGCGTTCGTAATGTTGC
157	RM6389	ACGAGGAGTTCGTCGCTACTGC	AGTCCTCGAACACGTCGACTTCC
158	RM420	CCTCTCACTCTGCCTGCTCTACC	TCTCTAACTCTTGAGTGACAGCAACC
159	RM7034	GTGACCAATCCTTTGACAACTCG	TGATACATGAAACGTCCGTCTAGC
160	RM3702	CCAGCACCATCTGAAATAGAAGC	CCATTGATTAGGACGGTCAAAGG
161	RM3309	GCCTACTCAGCTTCCTCTCCTTCG	CGCCATTTACGGCAGCAACC
162	RM22418	GCAGTATCACGCAGTAGCACACC	CCATCCTCTTCCTCATCACACG
163	RM547	TTGTCAAGATCATCCTCGTAGC	GTCATTCTGCAACCTGAGATCC
164	RM8243	TCTACCTTAGCTGTCCTGAATTGG	CACATACCTGTTCCGTTTGATCC
165	RM22694	TTAGCTGTATTTAGCCCGACATAGCC	CGCCGGTTCTTCTCCTCTTAGG
166	RM22696	AGGTGAGACTGTGAGAGTCATGC	AGAGTACGAAGCCTCTATCTGACC
167	RM22837	ACCTGGGTCAGATGTCTGTTTGG	GGTAGAGCTCCATCCATCTTAGTGC
168	RM22883	TTGCCTCCTCAACTCATGTCC	ACAACGTGGACAAAGATGACACG
169	RM6990	ACTGGGTGTGATCCTTTCTGATGC	GTGATCCCAGATACACGATGTAGGG
170	RM6193	ACAGCTTCACGATGTTCTTGTGC	GTCAAGAAGCTCTGGGCTAACG
171	RM22997	AGTCATGGTGTTGGACTGTTGG	CAAGATGGATGTGAACATGG
172	RM23001	CAGTTCCTCCTCCACCACTTCG	TGGTGGACTGGAGGGCTACTGC

173	RM23175	CGTGAAACACAAGAACCAGATGC	AGCAATGTCTGCCTGCTACTGC
174	RM23251	TCCGATACTCCCATAGTTAGACC	ATGTGGGTTGGCTATAGTCTAGG
175	RM3845	TCGGATGAGTCCTTCGGTTTCC	TCTCAGCTCGATCTCCTCTCTAGACC
176	RM3452	TGGACTTGGTCTCCCAAACTCC	CAGTATGTGTTGGTGGGTCAAGC
177	RM502	CATCTCTGTTCCACTTGCTTTGC	CTACCAACCAACAAGAAGG
178	RM23502	GGCTAAAGCCTCAGAGCCAACC	ATTTCGTTCGTTCGTTCG
179	RM7631	TGAGACAGGCAACATATGCTGAGACC	GCATGTTCATCTTTGGTCACTCATGG
180	RM23654	CTCCGATGCCTTCTTCCTCTTGC	AAAGGGAGTAGCAAGCCGAGTGG
181	RM23662	GAGAGGACGATGGCACTATTGG	CGAGGAACTTGATTCGCATGG
182	RM23736	GGCGATACCTGCCATAGTTTCC	CCGAAAGCAATCTATGAGACACC
183	RM23742	GTGGCATGGAGAAGGAGGAGGAAGC	GGCCCAATATGTCACTCCCTACCC
184	RM23743	AGGTTTGCAGAAGCCAGAAAGAGC	GGCCGATGGTATGATGTGACC
185	RM5799	CTTGCACAAGAGGCAACACTCC	GTTTGGTAGGTCGCATTGTTTGG
186	RM23916	GATGGGTTGGGTGGGTTAGG	GTCCAGTGATAAGCCATGCTTGC
187	RM24085	CGACGAACTCCTCTACCGTTTACC	CTGCGTGTATCCAATCCCAAGG
188	RM3912	CACTCAGATTTGGCCGATCC	GCTGATCCAGATCTACCTGACACC
189	RM6845	CGGCAAACTCTACGAGGTAATGC	CACACGTTCTTCTCCTTCATCTCG
190	RM24271	TCTTGCATTGACACCTCTTGAGC	AGTCCCAACAACTGGAAGAGAGG
191	RM257	CCGTGCAACTTAAATCCAAACAGG	GGAATCCTATATGAGCCAGTGATGG
192	RM6491	Getettcctgcgtggcttcg	GTTCCCGCGCTTTGTCTGTCC
193	RM24718	TGACGTGGCAAGTTGACTGTGG	TAGCCGATGGAGCCACTAGAAGG
194	RM24740	AGTCAACACATGAGCGTGAGAGG	TGCTTTGGATGTACGACTTGTCC
195	RM1026	TCTGAGCTTACAGCTGCTTGACC	TGCTGCCTAGGCTAGAAAGTCC
196	RM6797	CTCCTCCATCAGGATCATCTCG	GTGAAGCCAGCTAGGTTGAATGC
197	RM7492	CAAGGATTTGAGGGGAACATGG	TTTAGAGATGGTTGCCAAGAGC
198	RM24952	AGTGGAGGAATATGACTTCAGAGG	AGAAGATGGTAGCTGGCTTGC
199	RM6179	GCGCCGCCGAGATGATAAGC	AGCGGCATCTCGTCCATCTCC
200	RM3882	AGTATTGCCACCAGATGGCTACC	CCTTCCTCAAACTGGTGATTTCC
201	RM216	GATGGTAAAGGAAGAACGTGTGC	CACTCATAGACGCATCACATAGCC
202	RM6646	GGCAGTTTGATGTTGGAGAACTGC	ATTCAGCGACGACATGCACACC
203	RM25149	CATGCCTATTGCCTCTGATGACC	TTGCCCGTAGAACTATTGGATCG
204	RM1126	TATTCTACTCGCAAGTCGCAAGC	GTGGATCACAATGCGAACTTGG
205	RM25366	TCGGTCTCTGTGCCGTGATTAGG	CACCAGCGCAGCAACTAACATCC
206	RM5689	TTAAGTCCTGTAGTAGGTCACACC	CGATGAGTCAGATTGAAGTAGC
207	RM1375	GCTTGTTGGCAGTTTGTATTGTGG	GGTACACTAAGTGGGCAAATCAGG

208	RM25663	GCTTGAGCTCGTCGTGGAAGG	CTCCTGCGTTCTCCATCGAAGC
209	RM3510	ATAGAATGCCATGGAGGCCAACC	AGACGACGAGGCAGATAAGTCG
210	RM3563	TGGTACGGAAAGACGAGAGAGATGC	TGAGGCGAGTGTCTGATAACTGC
211	RM6673	CCACCCGTCTCATGTTCTACTCG	ATGGAGATGATACACTCGCATCG
212	RM4771	AACTGAGAAACATGGGACAGAAGC	CTCAACCACACCCTCATTCACC
213	RM590	GAGATCGAGGAGGAGGTGAGG	AGTACTGCCGATCATATGGAAGC
214	RM6327	GGAGCTGATACAACAATCAGACAGC	CGCTACGCTGCTCCAGATTAGG
215	RM7173	TTTCTGTGGGTCCTCATCTTCTCTCC	CAATGTGTGATGTCGGATTCTTGG
216	RM26063	GATCCATATGCCTCTTCGATTGG	AACTCCAGCAGTGAGGCGTAGC
217	RM26105	AGCATCAATTCAGCTTGCTTGC	TTCTGGTTCTTTGAGAGAGTGTGC
218	RM332	GAAGGCGAAGGTGAAGAAGAAGC	CCTCCCTTGCATGATACCTTGG
219	RM26108	TTGTGCCTGTGTCAGAAGAACTAGG	GCAAAGGTAGCTAACACACATACGG
220	RM26249	AGAAACAGCTGGAACTCACAATGG	CATECTCGECTCCTCTACCC
221	RM536	TACCAGGATCATGTTTCTCTCC	ACTGTGAGATTGACTGACAGTGG
222	RM5590	GAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	AGCAACTGGATAAGCGATTGAGG
223	RM26643	CTCCCTTCTTCTGCTGAGACACC	CAAGCTACTCATTGGGCTCATCC
224	RM26646	GTTCATCGGATTCTCGGTTCAGG	GCGGAGGAACAAGACACGAAGC
225	RM26652	CAATCCATTGCTGGTTGATGC	CAAGATCTCCAAGGTGCTGAGG
226	RM26796	TTCAAGACATGGTGTGGGATCTGG	GCCACTGTGCCAACATTATAACC
227	RM26998	ACGCACGCACATCCTCTTCC	CGGTTCTCCATCTGAAATCCCTAGC
228	RM27167	GCGATCTCTCGCTTCTTGTTTCTCG	GCTCCGCGTCGACATGATGG
229	RM27318	TGAACTGGACATGCCTTTATCC	ATGCGCCTTACTTTGTTGTAGG
230	RM27326	ATCAACGAGTACGCAACAGTCC	TCCTGTCTTCACATCCTAATCG
231	RM3577	GTGACGGCAGGGGGGGGGGAGAAGC	CAAATCTTTCTGCATGCCACACC
232	RM7443	ATTAACCCTTCATCAGGCTACGC	AAAGTGCTGCGTGTTACTTTGG
233	RM5568	GATCCAAATGGAAAGACCTGTGC	TTATTGCTTGCGCCTTTAGTCC
234	RM3323	CATCTTGGCGTTGATACGAAGG	ACGAGTCGAGCACTACATCTCTCG
235	RM5927	TGTATAGCCCGGAAGTATGATCC	TCTGGTCTCGTCTCATGTGC
236	RM3747	CTTGGTTTGGTTGTGCCAAGC	GTTCTGATGAACAGGCCGTAGC
237	RM27542	GCCATCTTCTCGTACCTCTTCTTCC	CCACCTACACCACCACGTACTCC
238	RM27564	CTTCTTCGAGGGTTTCTCGTTGC	CTCCTCTTATGCCCACCACTTCC
239	RM27706	ACTCCCTCCGACACCATCATCC	ATACGGGAACCCTCACGCTACC
240	RM1036	CTTCCCTGTCCATAGATCTGCTTGG	GAATGACCCAACCTGTCATTCTTAGC
241	RM27877	GGAAGCCATGAAAGATGTGTGC	AATTTCTCCGAGCACCTGAAACG
242	RM27962	GGGAGTCGTGGATTCTGAGACG	ATCCCACGCCAGGAGATAATAAGG

	TATGGATGGTCTGAACCATATCGTCGCACCATCCAACGCGGGTATTGTCGGTGTTCAACCATCGTTCGCATGCAGGGCAGGAGACTTCACGTCTTCGTTCGCATGCAGGAGCAGAGACTTCAGACCACTCCGCCTGAGGACAGAGCCATGCATGCATGC		AICATCGICGICATCCICTUCC CGLCCAGITCGIAGGCGIA TGTGAATGCCCGTATGGATGG TCTGAAACCATATCGTCGCCGC GTGAAGGCTGTACCATCCAACG CGGGTATTGTCGGTGCGCGTCCA TCTTCTACTCCTCGTCCAACG CATGCAGGGCGGTCCA CATCGACGTCTCGTCGTCG CATGCAGGCGAGCAGCACCATCCATCG CATCGACATGTGGACCACTCC GCCTGAGGCAGCAGCAGCAGCAGGCAGGCAGGCAGGCAGG
CATGCA			
Ø	CETCTTCETTCE	CTTCTACTCCTCGTCTTCGTTCG	TCTTCTACTCCTCGTCTTCGTTCG
9	ACCAL CCAACG DGTCTTCGTTCG	CTTCTACTCCTCGTCTCGTTCG	TCTTCTACTCCTCGTCTCGTTCG
00	ACCATCCAAC CGTCTTCGTT GACCACTCC	TICAAGGCTGTACCATCCAAC CTTCTACTCCTCGTCTCGTT ATCGACATGTGGACCACTCC	GTGAAGGCTGTACCATCCAAC TCTTCTACTCCTCGTCTCGT

Appendix III: Mean phenotypic value of diseases symptom in RIL population

Ori. No.	Line No.	Mean Symp. Length (cm)	BLB qualitative (0-9) scale Score
10	1	6.85	5.00
11	2	2.03	1.00
12	3	3.93	3.00
14	4	3.55	5.00
15	5	4.19	1.00
16	6	3.81	1.00
17	7	4.35	5.00
19	8	6.38	5.00
20	9	4.52	1.00
22	10	3.89	1.00
23	11	5.83	3.00
25	12	3.08	1.00
26	13	4.91	3.00
27	14	20.05	9.00
28	15	3.97	3.00
30	16	2.11	1.00
31	17	3.81	1.00
32	18	2.03	1.00
33	19	9.18	7.00
35	20	8.88	5.00
39	21	5.4733	5.00
40	22	4.7067	1.00
42	23	6.14	7.00
44	24	6.4867	5.00
45	25	3.2867	1.00
55	26	5.7067	1.00
58	27	8.7867	7.00
59	28	2.8	1.00
60	29	4.4267	5.00
65	30	6.5733	1.00
70	31	2.6133	1.00
72	32	3.76	3.00
74	33	3.9133	7.00
76	34	2.4667	1.00
78	35	2.1333	1.00
79	36	2.74	1.00
80	37	2.0733	1.00
84	38	11.26	7.00
85	39	21.02	7.00
89	40	2.7733	1.00
91	41	3.0333	3.00
92	42	7.2867	7.00
93	43	4.34	1.00
95	44	3.44	3.00
98	45	3.5133	3.00
102	46	4.6533	5.00
104	47	11.447	7.00
105	48	15.633	7.00

Mean phenotypic value of Bacterial blight resistance in RIL population

106	49	13.6	7.00
109	50	3.9667	1.00
114	51	7.16	7.00
118	52	6.66	7.00
119	53	2.58	1.00
121	54	5.8933	5.00
124	55	10.653	5.00
125	56	5.3667	5.00
126	57	2.5867	1.00
128	58	4.02	5.00
130	59	6.84	7.00
133	60	8.2333	5.00
139	61	9.3867	5.00
140	62	2.18	1.00
143	63	6.5667	5.00
148	64	6.5933	5.00
149	65	3.9733	5.00
155	66	4.7133	3.00
156	67	2.66	1.00
157	68	4.88	1.00
159	69	4.2733	3.00
164	70	2.8	1.00
165	71	1.6733	1.00
168	72	2.8267	1.00
171	73	1.9733	1.00
172	74	3.02	5.00
174	75	18.807	9.00
175	76	2.6933	1.00
177	77	2.0667	1.00
179	78	2.0333	1.00
180	79	17.493	5.00
186	80	14.667	7.00
191	81	2.7	1.00
192	82	2.76	1.00
193	83	1.9067	1.00
197	84	3.3333	5.00
198	85	2.3933	1.00
201	86	2.8533	5.00
202	87	4.7667	5.00
210	88	1.8333	1.00
211	89	3.2267	5.00
212	90	2.42	3.00
213	91	4.2	5.00
215	92	19.433	7.00
218	93	2.9867	5.00
220	94	1.5133	1.00
224	95	13.667	5.00
225	96	5.5467	5.00
226	97	8.0267	5.00
227	98	8.8467	7.00
229	99	2.2733	3.00
230	100	5.2133	5.00
231	101	6.74	5.00
227	100		
-----	-----	--------	------
237	102	5.28	5.00
239	103	6.5733	5.00
240	104	9.7133	7.00
241	105	3.26	1.00
242	106	2.62	1.00
244	107	1.9	1.00
245	108	2.64	3.00
246	109	0.8933	1.00
251	110	7.46	5.00
252	111	6.0133	7.00
254	112	4.5467	3.00
255	113	4.3933	5.00
256	114	5.8067	5.00
257	115	1.6133	1.00
259	116	3.2867	7.00
261	117	2.9333	5.00
262	118	8.1933	7.00
268	119	14.387	7.00
269	120	2.7267	3.00
270	121	24.82	9.00
271	122	9.26	7.00
P 1	P1	2.28	3.00
P 2	P2	11.347	7.00

Mean phenotypic value of Sheath blight resistance in RIL population

Ori. No.	Line No.	Total lesion Area (Individual lesion		Lesion Length %
		cm²)	Area (cm ²)	of Sheath length
10	1	13.53	1.19	8.77
11	2	20.59	1.26	7.22
12	3	21.51	1.31	6.91
14	4	25.24	1.43	5.51
15	5	20.03	2.35	9.39
16	6	10.34	1.50	9.81
17	7	18.13	1.30	8.96
19	8	10.40	1.12	8.40
20	9	9.81	1.26	11.09
22	10	8.42	0.99	8.18
23	11	9.29	0.87	5.32
25	12	14.51	2.43	8.53
26	13	12.40	1.69	12.08
27	14	12.17	0.67	5.41
28	15	19.94	1.66	11.76
30	16	8.50	1.31	10.40
31	17	11.79	1.46	9.22
32	18	8.90	0.86	8.08
33	19	10.87	1.28	7.28
35	20	11.45	0.87	6.48
39	21	9.68	2.59	16.64
40	22	11.23	1.12	7.37
42	23	11.17	0.65	5.48
44	24	9.45	1.08	7.72

45	25	6.03	0.78	5.41
55	26	6.03	0.59	4.00
58	27	9.59	0.97	5.70
59	28	5.89	0.78	9.27
60	29	13.57	3.25	13.36
65	30	8.98	1.03	5.97
70	31	12.13	1.85	10.89
72	32	7.54	1.20	8.83
74	33	11.88	2.04	10.51
76	34	15.05	4.21	6.34
78	35	7.90	1.24	6.78
79	36	11.47	1.30	8.13
80	37	9.76	1.43	11.76
84	38	9.90	1.27	6.80
85	39	11.14	1.41	7.52
89	40	7.87	1.42	8.40
91	41	8.75	2.21	10.71
92	42	17.66	1.85	10.95
93	43	12.58	1.87	9.23
95	44	19.32	1.34	7.43
98	45	16.28	1.41	6.53
102	46	9.18	1.04	7.15
104	47	13.22	0.73	5.08
105	48	19.95	1.60	6.05
106	49	19.94	2.64	11.59
109	50	26.64	1.80	9.29
114	51	9.94	0.88	5.36
118	52	10.91	2.36	8.94
119	53	11.98	1.46	11.26
121	54	8.53	1.56	8.65
124	55	15.63	1.09	5.49
125	56	12.16	1.28	8.61
126	57	11.36	1.61	10.65
128	58	44.60		
130		11.63	1.91	10.68
130	59	<u>11.63</u> 10.76	1.91 0.88	10.68 6.35
130	59 60	11.63 10.76 11.90	1.91 0.88 1.36	10.68 6.35 8.42
130 133 139	59 60 61	11.63 10.76 11.90 10.40	1.91 0.88 1.36 1.39	10.68 6.35 8.42 9.23
130 133 139 140	59 60 61 62	11.63 10.76 11.90 10.40 10.33	1.91 0.88 1.36 1.39 1.32	10.68 6.35 8.42 9.23 9.78
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \end{array} $	59 60 61 62 63	11.63 10.76 11.90 10.40 10.33 17.51	1.91 0.88 1.36 1.39 1.32 3.40	10.68 6.35 8.42 9.23 9.78 13.67
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \end{array} $	59 60 61 62 63 64	11.63 10.76 11.90 10.40 10.33 17.51 12.75	1.91 0.88 1.36 1.39 1.32 3.40 1.48	10.68 6.35 8.42 9.23 9.78 13.67 8.31
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 149 \end{array} $	59 60 61 62 63 64 65	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19	1.91 0.88 1.36 1.39 1.32 3.40 1.48 1.32	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ \end{array} $	59 60 61 62 63 64 65 66	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72	1.91 0.88 1.36 1.39 1.32 3.40 1.48 1.32 1.80	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ \end{array} $	59 60 61 62 63 64 65 66 66 67	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46	1.91 0.88 1.36 1.39 1.32 3.40 1.48 1.32 1.48 1.32 1.78	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ 157 \\ \end{array} $	59 60 61 62 63 64 65 66 66 67 68	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46 13.69	$ \begin{array}{r} 1.91 \\ 0.88 \\ 1.36 \\ 1.39 \\ 1.32 \\ 3.40 \\ 1.48 \\ 1.32 \\ 1.32 \\ 1.80 \\ 1.78 \\ 1.45 \\ \end{array} $	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37 7.59
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ 157 \\ 159 \\ \end{array} $	59 60 61 62 63 64 65 66 66 67 68 69	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46 13.69 24.23	$ \begin{array}{r} 1.91 \\ 0.88 \\ 1.36 \\ 1.39 \\ 1.32 \\ 3.40 \\ 1.48 \\ 1.32 \\ 1.80 \\ 1.78 \\ 1.78 \\ 1.45 \\ 2.24 \\ \end{array} $	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37 7.59 8.15
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ 157 \\ 159 \\ 164 \\ \end{array} $	59 60 61 62 63 63 64 65 66 67 68 68 69 70	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46 13.69 24.23 12.17	1.91 0.88 1.36 1.39 1.32 3.40 1.48 1.32 1.48 1.32 1.48 1.32 1.48 1.32 1.48 1.32 1.48 1.32 1.80 1.78 1.45 2.24 1.79	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37 7.59 8.15 14.12
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ 157 \\ 159 \\ 164 \\ 165 \\ \end{array} $	59 60 61 62 63 64 65 66 67 68 68 69 70 71	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46 13.69 24.23 12.17 2.90	$ \begin{array}{r} 1.91 \\ 0.88 \\ 1.36 \\ 1.39 \\ 1.32 \\ 3.40 \\ 1.48 \\ 1.32 \\ 1.80 \\ 1.78 \\ 1.78 \\ 1.45 \\ 2.24 \\ 1.79 \\ 0.84 \\ \end{array} $	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37 7.59 8.15 14.12 8.63
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ 157 \\ 159 \\ 164 \\ 165 \\ 168 \\ \end{array} $	59 60 61 62 63 64 65 66 67 68 69 70 71 72	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46 13.69 24.23 12.17 2.90 12.15	$ \begin{array}{r} 1.91 \\ 0.88 \\ 1.36 \\ 1.39 \\ 1.32 \\ 3.40 \\ 1.48 \\ 1.32 \\ 1.80 \\ 1.78 \\ 1.78 \\ 1.45 \\ 2.24 \\ 1.79 \\ 0.84 \\ 0.89 \\ \end{array} $	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37 7.59 8.15 14.12 8.63 7.95
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ 157 \\ 159 \\ 164 \\ 165 \\ 168 \\ 171 \\ \end{array} $	59 60 61 62 63 64 65 66 67 68 69 70 71 72 73	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46 13.69 24.23 12.17 2.90 12.15 8.25	1.91 0.88 1.36 1.39 1.32 3.40 1.48 1.32 1.48 1.32 1.48 1.32 1.48 1.32 1.80 1.78 1.45 2.24 1.79 0.84 0.89 0.90	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37 7.59 8.15 14.12 8.63 7.95 8.99
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ 157 \\ 159 \\ 164 \\ 165 \\ 168 \\ 171 \\ 172 \\ \end{array} $	59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46 13.69 24.23 12.17 2.90 12.15 8.25 8.39	1.91 0.88 1.36 1.39 1.32 3.40 1.48 1.32 1.48 1.32 1.48 1.32 1.80 1.78 1.45 2.24 1.79 0.84 0.89 0.90 1.11	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37 7.59 8.15 14.12 8.63 7.95 8.99 9.89
$ \begin{array}{r} 130 \\ 133 \\ 139 \\ 140 \\ 143 \\ 148 \\ 149 \\ 155 \\ 156 \\ 157 \\ 159 \\ 164 \\ 165 \\ 168 \\ 171 \\ 172 \\ 174 \\ \end{array} $	59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	11.63 10.76 11.90 10.40 10.33 17.51 12.75 24.19 16.72 14.46 13.69 24.23 12.17 2.90 12.15 8.25 8.39 3.79	$ \begin{array}{r} 1.91 \\ 0.88 \\ 1.36 \\ 1.39 \\ 1.32 \\ 3.40 \\ 1.48 \\ 1.32 \\ 1.80 \\ 1.78 \\ 1.78 \\ 1.45 \\ 2.24 \\ 1.79 \\ 0.84 \\ 0.89 \\ 0.90 \\ 1.11 \\ 0.39 \\ \end{array} $	10.68 6.35 8.42 9.23 9.78 13.67 8.31 7.29 11.64 10.37 7.59 8.15 14.12 8.63 7.95 8.99 9.89 2.92

177	77	7.26	0.67	7.74
179	78	10.16	0.81	7.81
180	79	8.99	1.15	10.54
186	80	12.73	1.22	7.55
191	81	14.32	1.55	11.67
192	82	11.41	1.22	9.39
193	83	10.60	1.24	9.82
197	84	7.15	0.97	9.18
198	85	9.30	1.21	8.58
201	86	13.23	1.34	9.07
202	87	5.30	0.94	7.20
210	88	8.98	1.32	10.22
211	89	13.21	1.29	6.46
212	90	9.78	1.32	8.75
213	91	12.96	0.95	4.96
215	92	9.70	0.28	3.97
218	93	6.82	0.50	4.89
220	94	8.29	0.48	4.29
224	95	4.08	0.26	3.70
225	96	3.57	0.38	5.00
226	97	4.78	0.59	5.31
227	98	5.68	0.57	4.51
229	99	16.41	1.56	8.51
230	100	1.80	0.23	4.68
231	101	8.10	0.97	9.93
237	102	9.59	1.85	13.98
239	103	21.08	1.70	13.88
240	104	3.25	0.35	3.73
241	105	5.18	0.82	10.71
242	106	14.73	1.38	8.02
244	107	18.91	1.54	14.55
245	108	16.78	1.62	10.63
246	109	15.06	1.09	11.12
251	110	12.23	1.34	10.80
252	111	11.44	1.26	9.84
254	112	8.34	0.65	6.98
255	113	10.02	0.98	7.70
256	114	17.15	1.85	8.37
257	115	10.57	1.19	9.76
259	116	13.27	1.64	11.65
261	117	11.10	1.16	9.90
262	118	13.63	1.15	9.40
268	119	16.77	1.59	10.44
269	120	14.81	2.28	13.14
270	121	12.02	1.45	11.14
271	122	9.41	1.27	10.83
P 1	P1	10.28	1.62	13.72
P 2	P2	24.14	1.05	7.82

Ori. No.	Line No.	Blast reaction R2
10		13-08-2013
10	1	3
12	2	3
12	3	3
14	4	3
15	5	3
16	6	3
17	7	3
19	8	5
20	9	3
22	10	3
23	11	3
25	12	5
26	13	5
27	14	3
28	15	5
30	16	3
31	17	7
32	18	5
33	19	5
35	20	5
39	21	1
40	22	3
42	23	5
44	24	5
45	25	2
55	26	3
58	27	3
59	28	3
60	29	3
65	30	3
70	31	5
72	32	3
74	33	3
76	34	3
78	35	3
79	36	5
80	37	5
84	38	5
85	30	2
80	40	<u></u> ۲
07	40	2
02	41	<u>ງ</u>
92	42	2
95	45	2
95	44	3
98	45	1
102	46	1

Mean phenotypic value of Blast resistance in RIL population

104	47	3
105	48	2
106	49	3
109	50	3
114	51	3
118	52	3
119	53	1
121	54	3
124	55	3
125	56	2
126	57	2
128	58	1
130	59	3
133	60	2
139	61	3
140	62	2
143	63	2
148	64	3
149	65	1
155	66	3
156	67	1
157	68	1
159	69	3
164	70	1
165	71	1
168	72	2
171	73	1
172	74	1
174	75	1
175	76	1
177	77	1
179	78	1
180	79	3
186	80	3
191	81	7
192	82	7
193	83	1
197	84	7
198	85	5
201	86	5
202	87	7
210	88	0
211	89	7
212	90	7
213	91	3
215	92	3
218	93	7
220	94	5
224	95	5
225	96	6

226	97	6	
227	98	7	
229	99	7	
230	100	7	
231	101	5	
237	102	7	
239	103	5	
240	104	5	
241	105	7	
242	106	9	
244	107	5	
245	108	9	
246	109	5	
251	110	9	
252	111	3	
254	112	7	
255	113	7	
256	114	7	
257	115	7	
259	116	7	
261	117	5	
262	118	3	
268	119	7	
269	120	3	
270	121	8	
271	122	4	
P 1	P1	7	
P 2	P2	2	

Mean phenotypic value of Brown spot resistance in RILs population

Ori. No.	Line	Score (0-9	Ori. No.	Line No.	
	No.	scale)			Score (0-9 scale)
10	1	9	143	63	4
11	2	8	148	64	3
12	3	6	149	65	2
14	4	6	155	66	7
15	5	5	156	67	4
16	6	3	157	68	2
17	7	8	159	69	4
19	8	3	164	70	2
20	9	4	165	71	2
22	10	3	168	72	4
23	11	6	171	73	7
25	12	2	172	74	5
26	13	3	174	75	3
27	14	5	175	76	4
28	15	2	177	77	2
30	16	5	179	78	5

	. –	-	100		_
31	17	9	180	79	7
32	18	7	186	80	4
33	19	8	191	81	2
35	20	8	192	82	2
39	21	2	193	83	4
40	22	6	197	84	7
42	23	7	198	85	2
44	24	7	201	86	2
45	25	9	202	87	4
55	26	3	210	88	2
58	27	3	211	89	7
59	28	2	212	90	6
60	29	4	213	91	4
65	30	5	215	92	3
70	31	7	218	93	2
72	32	3	220	94	2
74	33	5	224	95	5
76	34	2	225	96	6
78	35	2	226	97	8
79	36	4	227	98	7
80	37	2	229	99	3
84	38	5	230	100	4
85	39	3	231	101	6
89	40	2	237	102	4
91	41	4	239	103	5
92	42	5	240	104	3
93	43	4	241	105	4
95	44	4	242	106	5
98	45	5	244	107	7
102	46	2	245	108	6
104	47	3	246	109	4
105	48	4	251	110	3
106	49	8	252	111	5
109	50	4	254	112	7
114	51	6	255	113	3
118	52	8	256	114	2
119	53	7	257	115	3
121	54	8	259	116	6
124	55	9	261	117	6
125	56	8	262	118	5
126	57	7	268	119	5
128	58	8	269	120	6
130	59	7	270	121	7
133	60	3	271	122	8
139	61	2	P 1	P1	4
140	62	3	P 2	P2	5