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CHAPTER I 

INTRODUCTION 

1.1 Background  

Under challenging environmental situation, significantly improved crop 

varieties are needed to cope up with the rapidly growing human population scenarios 

(Furbank et al., 2009; Sticklen, 2007). It is the greatest challenge to the agricultural 

scientists and policy makers to meet the future demand of agricultural production 

under challenging environmental situations (Bruinsma, 2003). For this purpose, 

systematic quantification of phenotypic traits or components of a particular genotype 

in a given environment is necessary. Plant phenomics is the study of plant growth, 

and performance based on morphology, physiology and phenotypic traits or 

characteristics of the plant. In conventional methods, these traits are recorded either 

manually or visually which is not only time-consuming and labour-intensive but may 

also be error prone to acquire large amount of dataset. Therefore, focus has been 

shifted on precise, accurate and rapid phenotyping for the last few years. In this 

context, high-throughput image analysis (www.plantphenomics.org.au; Furbank et 

al., 2009; Finkel, 2009; Jansen et al., 2009; Klukas et al., 2014; Knecht et al., 2016) 

is being used to extract several phenotypic parameters related to plant growth, 

development, tolerance, resistance, architecture, physiology, ecology, yield and the 

basic measurement of individual quantitative parameters that form the basis for the 

more complex traits. In this manner, the tedious and time-consuming manual 

analyses of phenotypic traits are reduced.  

1.2 Phenomics and high-throughput plant phenotyping facility 

The word “phenome” refers phenotype (Soule, 1967) which means 

expression of a genome for certain traits in a given environment. Phenomics is used 

as an analogy to the genomics that deals with large amount of high-dimensional data. 

Plant phenomics is the study of plant growth, performance and composition on the 

basis of morphology, biochemical and physiological traits or characteristics of the 

plant.  Conventional measurement of these traits are recorded either manually or 

visually which is not only time-consuming and labour-intensive but may also be 

http://www.plantphenomics.org.au/
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error prone to acquire large amount of dataset. Therefore, focus has been shifted on 

precise, accurate and rapid phenotyping for the last few years.  

In this perspective, high-throughput plant phenotyping platforms using non-invasive 

imaging technologies have emerged as an important area to provide efficient data 

management, image analysis and result visualization of large-scale plant phenotypic 

datasets. It is non-invasive as no physical instruments have been directly used to 

measure plant phenotypic parameters in destructive way. The example of high-

throughput plant phenotyping platforms are Integrated Analysis Platform (IAP) 

developed by Klukas et al. (2014), Image Harvest (IH) developed by Knecht et al. 

(2016), LemnaTec (GmbH, Aachen, Germany) etc. Non-invasive imaging 

technologies include visual (or RGB) imaging, near infra-red (NIR) imaging, 

fluorescence imaging etc. 

1.3 Major cereal crops & yield related traits 

Rice (Oryza sativa) and wheat (Triticum aestivum) are considered as major 

cereal crops. Urbanization and rising incomes are driving a rapid rise in the global 

rice and wheat consumption. Besides, there exist several constraints like drought, 

biotic and abiotic stresses, climate changes etc. which affects the global production 

of the crops. Therefore, genetic improvement of rice and wheat genotype for input 

use efficiency and climate resilience is the key for future food security. Plant 

biomass, leaf area, chlorophyll content, number of spikes or panicle etc., plays a vital 

role in the study of functional plant biology, growth analysis and are considered as 

determining factor of net primary production of the crop. Leaf fresh weight (LFW) is 

used to estimate yield as well as plant biomass (Poorter and Nagel, 2000; Niklas and 

Enquist, 2002) and are measured by using gravimetric weighing of the harvested 

sample leaves. Besides, yield is measured in terms of grain which is found within the 

spikes/panicles in the cereal plants. So, counting of number of spikes can be an 

important measure to determine yield of the crop. Spike/panicle is an important 

agronomic component (Jin et al., 2017) which is not only closely associated with 

yield, but also plays an important role in nutrition examination, and growth period 

determination. Conventional measurement of the above mentioned yield related traits 

are destructive, laborious and time-consuming. In this context, several literatures are 

available on non-destructive measurement of these traits through image analysis 
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[Qiongyan et al. (2017); Sadeghi-Tehran et al. (2017); Hasan et al. (2018)]. Most of 

the literature reveals that, current trend in image-based plant phenotyping will be a 

combined effort of image processing and machine learning technique for feature 

extractions and data analysis purpose (Tsaftaris et al., 2016). 

1.4 Artificial intelligence & Machine learning 

In computer science, artificial intelligence (AI) or machine intelligence is the 

intelligence demonstrated by machines in a similar manner as an intelligent human 

can think. According to John McCarthy, father of AI, “it is the science and 

engineering of making intelligent machines, especially intelligent computer 

programs”. The main aim of AI is to program the computer for certain traits such as 

knowledge, reasoning, learning, planning, problem solving etc. Machine learning is a 

subset of AI which uses statistical techniques to enable the machine to perform some 

specific tasks. It follows “learning by example” principle. The methods of learning 

can be categorized into three types: (a) supervised learning algorithm is given with 

labelled data and the desired output whereas (b) unsupervised learning algorithm is 

given with unlabelled data and identifies the patterns from the input data and (c) 

reinforcement learning algorithm allows machines and software agents to determine 

the ideal behaviour automatically within a specific context, in order to maximize its 

performance.  

 

Fig.1.1 Cousins of Artificial Intelligence  

(Source: https://towardsdatascience.com/cousins-of-artificial-intelligence-

dda4edc27b55) 

https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55
https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55
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Deep learning is again a subset of machine learning mainly referred as deep artificial 

neural networks are a set of algorithms that have set a new records in terms of 

accuracy in many important areas of computer vision such as image recognition, 

sound recognition, recommender systems, natural language processing etc. 

Computer vision is concerned with the theory and technology for holding artificial 

systems which obtained information from images, videos multi-dimensional data etc. 

Deep neural network employs the mapping of input layer to the output layer over a 

series of stacked layers of nodes (Mao et al., 2016). Most recently, deep 

convolutional network successfully applied in the area of object detection and 

classification and the results were out-performing than classical machine learning 

approaches in many diverse domains e.g., pattern recognition (He et al., 2016), 

instance detection and segmentation (Girshick, 2015), biomedical image 

segmentation (Ronneberger et al., 2015) etc. A wide range of applications of deep 

learning are also available in the area of plant phenotyping e.g., biotic stress 

identification in banana, pear, cherry and peach (Sladojevic et al., 2016), apple scab 

and black-rot detection (Mohanty et al., 2016), cassava brown streak disease 

detection (Ramcharan et al., 2017) etc. Thus, it has been seen that, computer vision 

integrated with machine learning techniques achieved a great importance in the area 

of agriculture and allied sectors. These scenarios and importance of plant 

phenotyping are the main motivation in deciding thesis areas as well as the 

objectives. 

1.5 Problem definition and Motivation 

In order to design rice and wheat genotypes with higher yield and greater 

stability under various constraints, the phenotype-genotype gap must be bridged up. 

Rice and wheat crops have been selected in this research work because of their 

importance as major food crops, availability of diverse germplasm resources, the 

need to enhance water use efficiency and low temperature stress tolerance and the 

vast available background knowledge of its physiology, genetics and genomics. 

Conventional measurement of the yield related traits like plant biomass and spike 

identification and counting through naked-eye in a large scale is very time 

consuming, labour intensive and destructive. Some literatures are available for 

estimating plant biomass through non-destructive image analysis technique (Paruelo 
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et al., 2000; Mizoue and Masutani, 2003; Golzarian et al., 2011; Schirrmann et al., 

2016). In most of the cases, projected shoot area computed from visual images (VIS) 

as a linear function of plant biomass. None of them, considered water content which 

is the key determinant of biomass (Seelig et al., 2008). In this study, it is 

hypothesized that combined use of VIS and near infra-red (NIR) image can compute 

plant biomass more precisely than VIS image as NIR reflectance image is used to 

measure water content of the plant (Stenberg et al., 2010; Fernández et al., 2015).  

Besides, spike or ear emergence is a critical phenological event in wheat 

development, as it is required for application of nitrogen, water and other critical 

inputs for crop production. Further, yield estimation in wheat has received a 

significant research attention as it is an important primary food for a large proportion 

of the world’s population (Bognár et al., 2017). Since spike number is a key factor 

that determines grain number per unit area and thus yield, counting of number of 

spikes/ears is an important measure to determine yield of the plant (Jin et al., 2017). 

Therefore spike detection and counting is important for phenology based input 

management for crop production and assessing the crop yield. Counting of number 

of spikes per plant or per unit area through naked-eye is a laborious and time 

consuming process.  Image analysis  is being used in the area of spike/panicle 

detection and characterization  (Bi et al., 2010; Zhao and Ajay, 2015; Li et al., 2017; 

Sadeghi-Tehran et al., 2017; Pound et al., 2017; Hasan et al. 2018). Bi et al. (2010) 

carried out, analysis by capturing images after cutting the individual spikes from the 

plant which is destructive procedure. Colour and texture component have been used 

in this study by Li et al. (2017) and to identify wheat spikes which is not totally 

machine depended as manual intervention is required to define the texture and colour 

intensity range for the segmentation purpose. In the recent trend (Li et al. 2017; 

Sadeghi-Tehran et al. 2017; Pound et al. 2017; Hasan et al. 2018), it has been seen 

that computer visions particularly object detection plays an important role in non-

destructive plant phenotyping through digital image analysis which is being helpful 

for automatic detection and counting of spikes in wheat plant. Besides, we have 

high-throughput imaging facility (LemnaTec GmbH, Aachen, Germany) established 

at Nanaji Deshmukh Plant Phenomics Centre, ICAR-IARI, New Delhi, India to 

collect image dataset of large amount of wheat and rice plants. Based on these, the 
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objectives have been decided under the thesis entitled “Image Analysis Algorithms 

for High-throughput Phenotyping of Rice and Wheat”.  

1.6 Objectives 

1. To develop methodologies for deriving phenotypic traits of rice and wheat 

from high throughput images based on computational algorithms. 

2. To evaluate and compare the performance of the developed methodologies 

against existing methods. 

3. To implement the developed methodologies in the form of software package 

for high throughput phenotyping. 

1.7 Plan of thesis 

In this thesis, new methodologies have been developed based on non-destructive 

image analysis for deriving phenotypic traits like Leaf Fresh Weight (LFW) in rice 

plant and spike identification and counting in wheat plant. VIS and NIR imaging has 

been used for estimating LFW. We have developed image processing based 

algorithm to compute two image derived parameter i.e., Green Leaf Proportion 

(GLP) from VIS image and Mean Gray Intensity (NIR_MGI) from NIR image for 

estimating LFW. GLP is the proportion of green pixel area to the total leaf area 

whereas NIR_MGI is the mean gray values of the projected leaves on the image. The 

image derived parameter i.e., GLP from VIS image and NIR_MGI from NIR images 

have been used for building the machine learning model to estimate LFW. The 

proposed approach is named as VN_LFW. Artificial Neural Network (ANN) 

technique has been used in machine learning model development and its 

performance has been compared with linear regression technique. The ANN model 

has been developed by using GLP and NIR_MGI as the input node in the input layer 

and the corresponding actual LFW as the output node in output layer. Distinctive 

combinations of hidden layer and hidden nodes in each layer has been attempted, out 

of which best fitted ANN model has been selected. The developed ANN model for 

LFW estimation has been compared with the conventional destructive method as 

well as other image processing based approaches like, linear function of projected 

shoot area and regression approach based on GLP and NIR_MGI. The statistical 
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evaluating parameters Mean Absolute Percent Error (MAPE) and Root Mean Square 

Error (RMSE) has been used to compare the performance of the mentioned 

approaches of LFW estimation. Macro has been developed in Matlab software for 

LFW estimation. The macro consists of two parts. First part deals with GLP 

measurement from VIS image while second part deals with NIR_MGI measurement 

from NIR image.  

For spike identification in wheat plant, deep learning models have been 

developed namely SpikeSegNet (Spike Segmentation Network) and LGspikeNet 

(Local patch extraction and Global mask refinement Spike detection Network) based 

on convolutional encoder-decoder deep learning technique. For training the network, 

VIS images and its corresponding mask images containing class label (i.e., spike 

region only) have been used. Output of the developed model is a mask image 

containing spikes region only. After identification of spikes, flood-fill image analysis 

based object counting technique has been applied on the output image of the 

developed network for counting spikes number per plant. Details of the developed 

methodologies for estimating LFW in rice plant and spikes identification and 

counting in wheat plant has been elaborated in chapter III. For evaluating the 

performance of the proposed approach of spike identification and counting, 

statistical parameter like precision, accuracy, robustness, Jaccard Index (JI) have 

been computed. Performance of the proposed model (i.e., SpikeSegNet and 

LGspikeNet) has also been compared with the conventional destructive 

measurement. Details of the statistical parameter for evaluation are discussed in 

chapter III and the results are discussed in chapter IV. Web-based software for wheat 

spike identification and counting has also been designed and developed in this study. 

HTML, CSS and JavaScript has been used to build Client Side Interface Layer 

(CSIL) of the software architecture and Server Side Application Layer (SSAL) has 

been implemented using FLASK web development tool. TensorFlow, Keras deep 

learning framework and several python libraries like numpy, scipy, matplotlib etc. 

have also been used in SSAL to develop deep learning module for spike/ear 

identification in wheat plant. For counting spike number “analyse particles” 

function of imageJ is integrated with SSAL. Input of the software is VIS image of 

the wheat plant grown in pot culture and output is binary image/mask image 

consisting of spike regions and corresponding spike count.  
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The whole thesis is divided into five chapters:  

Chapter-I of the thesis i.e., the present chapter gives a brief introduction to non-

destructive plant phenotyping, importance of image analysis and machine learning in 

plant phenotyping, definition of the problem, motivation and objectives of the study. 

This chapter also contains orientation plan of the thesis. 

Chapter-II, Review of Literature, consists of brief reviews in the field of non-

destructive plant phenotyping through digital image analysis, high-throughput 

platforms available for non-destructive plant phenotyping and application areas of 

deep-learning in agriculture and allied fields. 

Chapter-III deals with the Material and Methods that are used in the development 

of the methodologies for deriving LFW in rice plant and spike identification and 

counting in wheat plant and as well as developing software for the same.  

Chapter-IV, Results and Discussion on outcome of the proposed ANN based 

methodologies for deriving LFW in rice plant and deep learning based approach of 

spike identification and counting in wheat plant has been discussed here.   

Chapter-V deals with Summary and Conclusion of the whole research work.  

Followed by Abstract (in English and Hindi), References, Appendix and 

Annexure.  

Appendix is further divided into two parts. Appendix I consists of Matlab (GLP.m) 

macro for GLP computation from VIS image and NIR_MGI computation from NIR 

image (NIR_MGI.m). Appendix II consists of python code for training, testing and 

performance evaluation of the developed encoder-decoder model, java code for spike 

counting and source code for web-based software for spike identification and 

counting. 

Annexure is also further divided into two parts. Annexure I contains ground truth 

of biomass (LFW) data of 104 samples and Annexure II consists of wheat variety 

data of 200 plants. 
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CHAPTER II 

REVIEW OF LITERATURE 

2.1 Introduction 

Precise and accurate measurement of the plant phenotyping parameters in 

high-throughput and non-destructive manner plays an important role in the genetic 

improvement of the crop plants. Well accounts of articles are available in this field 

using digital image analysis. Digital image analysis involves the manipulation and 

interpretation of digital image with the aid of computer. In this chapter, a brief 

account of review of literature exists in the field of plant phenotyping parameter 

estimation concerned with yield related traits and application of deep-learning 

techniques in computer visions has been given. Review of high-throughput plant 

phenotyping platforms are also part of this chapter.  

2.2 Plant phenotyping through digital image analysis 

Plant phenotyping through digital image analysis includes the development 

of computational algorithms to measure plant phenotypic parameters using non-

invasive imaging technologies. Visual (or, RGB) and Near-infrared (NIR) non-

invasive imaging technologies are used in yield related phenotypic traits 

quantification from last two decades. RGB images are used in measuring biomass, 

phenology (i.e., spike/panicle identification especially in cereal plants) and leaf 

health (i.e., leaf area, chlorophyll content) of the plant. NIR images are mainly used 

in quantifying moisture content presents (Serrano et al., 2000) in the plants parts. 

The conventional technique of biomass measurement of the plant involved weighting 

of the plant parts after cutting. Few projects are available to estimate biomass of an 

individual plant by using digital image analysis technique. In most of the cases, 

projected shoot area of the plants captured on two dimensional images was used as a 

parameter to predict the plant biomass.  

Lukina et al. (1999) conducted a study to predict percent vegetation coverage and 

biomass of winter wheat canopies growing in the field using digital image 

processing based on red-green-blue (RGB) color. The digital images were converted 
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from 8-bit RGB tagged image file format (TIFF) files to produce binary pseudo-

color image. Percent of pixels corresponding to the vegetation was then calculated 

and considered as the percent vegetation coverage for each plot in the field. The 

results reflected that binary pseudo-color images provided useful estimates of 

percent vegetation coverage that were highly correlated with the ground truth.  

Montès et al. (2000) proposed a method to measure biomass of agroforestry tree 

thuriferous juniper woodland (Juniperus thurifera L.) in High Central Atlas 

mountains (Morocco).This method was based on reconstructions of volumes of 

different components of the tree by using digital image processing. They had taken 

images from two orthogonal-views of different component of the tree. Then, using 

the volume and the density of each component of the tree, biomass of the whole tree 

was estimated. Regression curves were established and a second-order polynomial 

equation gave the best result to estimate the biomass with a high coefficient of 

determination (R
2
 = 0.96).   

Paruelo et al. (2000) proposed a photographic method to estimate biomass in 

semiarid grasslands. This method was based on the relation between percentage of 

green pixels on the digital image and green biomass. The correlation of green pixels 

and green grass biomass was found as 0.87 (n=36, p<0.001) but in case of total plant 

biomass it was very lower (0.59). 

Smith et al. (2000) proposed a digital photograph based method to assess quantities 

of live and dead plant biomass in the Florida Everglades. Images were captured 

within an open-sided frame. Then the images were transformed by using imaging 

software in such a way that live, dead and the absence of plant material were 

represented by the colors green, red, and black, respectively. Subsequent pixel 

counts were done and regression analyses showed strong correlations (R
2 

> 0.84) 

between estimated and actual dry weights.  

Lim and Treitz (2004) proposed a conceptual model to describe the relation 

between laser heights metrics derived from airborne discrete laser scanner data with 

above ground biomass. In this conceptual model, they introduced the concept of 

canopy-based quantile estimators of the above ground forest biomass and it was 

applied on the uneven-aged, mature to over mature and tolerant hardwood forest. 
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Results obtained from the 0
th

, 25
th

, 50
th

, 75
th

 and 100
th 

percentiles of the distributions 

of laser canopy heights to estimate above ground biomass were reported. The 

coefficient of determination (R
2
) for each model was greater than 0.80 and any two 

models were differing at most up to 9%. Differences in RMSE between models for 

above ground total, stem wood, stem bark, live branch and foliage biomass were 8.1, 

5.1, 2.9, 2.1 and 1.1 Mg ha
−1

 respectively. 

Golzarian et al. (2011) developed a model based on plant specific weight as a 

function of plant area and plant age to estimate the shoot dry weight. 320 plants of 

two bread wheat varieties were grown in hydroponics system for this purpose. Their 

proposed method showed very small difference between actual and estimated shoot 

biomass.  

Leaf area is used for making decisions regarding cultivation pattern, trimming, 

pruning and managing fertilization schedules. Leaf area measurement is important in 

studying plant biological characteristics and in guiding agricultural production 

practice (Sestak and Catsky, 1971). Li-Cor 3100 leaf area meter is one of the most 

popular digital devices to measure leaf area. Another non-digital method involves the 

use of grid paper. After placing the leaves on the grid paper, the number of grid 

squares is calculated and area of the leaf is computed by multiplying the number of 

grid squares with area of one grid square. These methods are considered as ground 

truth of leaf area measurement but, are destructive, laborious and time-consuming. In 

this scenario, digital image analysis poses an alternative role. 

Li et al. (2008) showed that measuring of leaf area based on image processing led to 

very high accuracy compared with the estimated leaf area using the grid paper 

method (non-digital method) by using a camera and personal computer. They used a 

wooded box and made a hole in the center of the top face to install the camera and 

placed it in the hole and fixed the distance between the lens of camera and bottom at 

450 mm. The camera was adjusted to be vertical to the flat surface and the lighting 

conditions were controlled using natural light focused on the leaf under a camera to 

take photos. 

Chaohul et al. (2010) used a non-destructive leaf area measurement through the use 

of Hough Transformation to acquire the coordinates of quadrangle corner points in 



12 
 

distorted image and thresholding for image segmentation. To eliminate the effect of 

holes in the leaf, contour extraction approach was used where pixel scanning from 

one side to opposite side was implemented in four directions to extract contour and 

leaf area was measured by pixel number statistic. They found absolute error 2.88.  

Marcon and Mariano (2011) developed two models for leaf area measurement of 

coffee plants using digital image analysis. One was based on the height and width of 

the canopies and other based on the area of digital image of a tree. Firstly, the images 

were corrected by frequency histograms and then segmentation thresholding was 

done by using Otsu thresholding method. The results of the developed models were 

compared with real area of the leaves using digital scanner and adjusted R
2 

was 

found as 0.82 and 0.91 for model 1 and 2 respectively.  

Patil and Bodhe (2011) described digital image processing techniques to calculate 

betel leaf area through an algorithm which was based on converting RGB (Red 

Green Blue) to grey scale image and grey scale image to binary image. With the 

implemented algorithm the relative error between area measurement by the proposed 

method and the actual value was 0.029. 

Manual chlorophyll extraction procedure using DMSO (Dimethyl sulfoxide) method 

(Porra et al., 1989) is accurate and considered as accurate but, it is destructive, 

laborious and relatively time consuming. In this context, color image analysis is a 

fast and automated alternative. 

Moghaddam et al. (2011) applied machine vision approach for estimating 

chlorophyll content in sugar beet leaf. The results indicated that the neural network 

model trained with the RGB component was capable of proper estimation of 

chlorophyll level with R
2
 = 0.94. 

Mahdi et al. (2012) used following formula to non-linearly map the normalized 

value of Green content (G), with respect to Red (R) and Blue (B), using a 

logarithmic sigmoid transfer functions.  

                (
  

  
   

  
  

   
) 
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The correlation between image processing technique based on the above formula and 

laboratory measured chlorophyll content for tomato, lettuce and broccoli as 0.968, 

0.896 and 0.914 receptively. 

Misra et al. (2018) did a comparative study of the existing techniques (Kawashima 

and Nakatani, 1998; Yuzhu et al., 2011; Adamsen et al., 1999 and Mahdi et al., 

2012) of chlorophyll content estimation through image processing on a real 

experimental data. The technique given by Adamsen et al. (1999) was found as best 

in their experiment with root mean square 0.67. 

Some research works are available in the literature on wheat and rice crop in the area 

of computer vision to detect and characterize objects particularly spikes and panicles 

of the plant.  

Bi et al. (2010) used image processing technique to know the information about 

growth status of wheat plant by measuring the spike characteristics, such as awn 

number, awn length and spike length etc. It provides the facilities of non-destructive 

measurement of wheat spike morphological characteristics and classification of 

several wheat species based on these characteristics. For this purpose, firstly, wheat 

awn was removed through the whole wheat plant and then images were taken. Then 

spike length was calculated by using the method of spindle direction angle and 

external rectangle length.  Awn length and number of awn was calculated through 

the method of thinning and corner detection, and spike type was estimated through 

width coefficient proportion method. Secondly, a three layer back-propagation 

neural network was designed with the extracted characteristic parameters to classify 

the 240 pictures of 4 wheat varieties. The recognition accuracy was 88%.  

Li et al. (2017) proposed an approach to detect and characterize the geometric 

properties of spikes of a single wheat plant grown in a controlled environmental 

condition. They have used color index method for plant segmentation and neural 

network method with Laws texture energy for spike identification with around 80% 

accuracy. 

Sadeghi-Tehran et al. (2017) employed bag-of visual- words approach to identify 

growth stages in field grown wheat. They have used SIFT algorithm for low level 

features extraction and finally support vector machine classification technique was 
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used to classify growth stages. In flowering stage, accuracy was 85% and 99% in 

case of late growth stage. 

Pound et al. (2017) presented a deep learning approach for localizing wheat spikes 

and spikelet with around 95% accuracy and the plants were imaged in a small-

purpose built chamber with uniform background.  

Hasan et al. (2018) used region based Convolutional Neural Network (R-CNN) 

approach for detecting, counting and analysing wheat spikes in the field condition. 

They captured images using RGB camera mounted on land based imaging platform. 

The average detection accuracy was ranging from 88 to 94% across different sets of 

test images. 

Duan et al. (2015) proposed a method for counting rice panicle as maximum number 

of panicle obtained from 12 multi-angle images of the plant. After applying 

hysteresis thresholding for segmentation over i2 component of i1i2i3 colour space 

based on Karhunen-Loeve transformation, local region growing algorithm based on 

normalized RGB colour space was applied and then artificial neural network was 

used for pattern recognition. They achieved test accuracy of 94.27% for panicle 

region identification but only 54.3% for panicle number.  

Xiong et al. (2017) proposed a segmentation method for rice panicles in the field 

named Panicle-SEG by using small window patch of size 32*32. The patches were 

centered on the weighted center of Simple Linear Iterative Clustering super pixel 

region. These weighted patches were used as input to convolutional neural network. 

Mask image generated using PhotoShop and original image was used to label 

patches. Caffe deep learning framework was used with update process based on 

stochastic gradient descent for CNN and named Panicle-SEG-CNN model. As the 

rectangle patches includes pixels which doesn’t represent panicle, to remove these 

negative pixels from patches entropy rate super-pixel optimization was used. 

Hunt and Rock (1989) and Serrano et al. (2000) used Near-Infrared (NIR) 

reflectance in determining water content of the plant parts. The details have been 

discussed as follows: 
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Hunt and Rock (1989) conducted a study for detecting the changes in leaf water 

content using Near-Infrared (NIR, 0.7–1.3 μm) and Middle-Infrared (MIR, 1.3–2.5 

μm) reflectance. The first objective of their study was to test the ability of the Leaf 

Water Content Index (LWCI) to determine leaf Relative Water content (RWC) of 

different species with different leaf morphologies. The second objective was to 

determine how the Moisture Stress Index (MSI; MIR / NIR) varies with RWC and 

the Equivalent Water Thickness (EWT). The results of the sensitivity analysis 

indicated that the reflectance at 1.6 μm for two different RWC must be known for 

accurate prediction of unknown RWC; thus the LWCI was impractical for field 

applications. MSI was found linearly correlated to RWC with each species having a 

different regression equation. 

Serrano et al. (2000) used infrared imaging spectrometer to assess Relative Water 

Content (RWC) at the landscape level. The Water Index (WI) and Normalized 

Difference Water Index (NDWI), reflectance indices were computed from NIR water 

absorption bands and were found as the best indicators of canopy RWC. In this 

study, stepwise multiple regression technique was applied which revealed that 

canopy structure explained 36% and 41% of the variation in WI and NDWI, 

respectively. The relationship between WI and the canopy RWC was improved 

significantly when data from plots with green vegetation cover was greater than 70% 

(r
2
=0.88, p<0.001). These results indicated that WI and NDWI were sensitive to 

variations in canopy relative water content at the landscape scale. 

2.3 Application of deep learning techniques in agriculture and allied sectors 

Recently, deep learning technique has been successfully applied in computer 

vision, especially, in the area of object detection and classification. The results were 

also promising than classical machine learning approaches in many diverse domains. 

AlexNet architecture (Krizhevsky et al., 2012) of convolutional deep-learning 

technique consisting of 5 convolutional layers, 3 fully connected layers with Relu 

activation function was successfully applied in apple scab and black rot detection. 

GoogleNet architecture (Szegedy et al., 2015) consisting of inception module instead 

of simple convolution layer and each inception module containing 3*3 conv, 5*5 

conv, 3*3 max_pooling and 1*1 conv was applied in cassava streak disease detection 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/imaging-spectrometer
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/vegetation-cover
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(Ramcharan et al., 2017) and biotic stress detection in pear, cherry, peach 

(Sladojevic et al., 2016). 

Ronneberger et al. (2015) developed UNet deep learning architecture for bio-

medical image segmentation. The architecture consists of two paths. First path is the 

contraction path (encoder) used to capture the context in the image. The encoder 

consists of stack of convolutional and max pooling layers. The second path is the 

symmetric expanding path (decoder) used to enable precise localization using 

transposed convolutions.  

Mohanty et al. (2016) presented the application of deep convolution neural network 

to identify 26 diseases over 14 crop species using 54306 public dataset images. They 

used two different architectures of CNN viz., GoogLeNet and AlexNet using Caffe 

framework of deep learning on Python and achieved a top accuracy of 99.35%. This 

accuracy was achieved using transfer learning with 80% training data and 20% test 

data. 

2.4 Plant phenotyping facility 

High-throughput plant phenotyping is evolving as an important area, which provides 

efficient data management, image analysis, and result visualization of large-scale 

plant phenotypic data sets.  

Klukas et al. (2014) presented Integrated Analysis Platform (IAP), an open-source 

framework for high-throughput plant phenotyping. For validation of IAP, they 

performed an example experiment that contained 33 maize (Zea mays ‘Fernandez’) 

plants, which were grown for 9 weeks in an automated greenhouse with 

nondestructive imaging. Subsequently, the image data were subjected to automated 

analysis with the maize pipeline implemented in their system. They found that the 

computed digital volume and number of leaves correlate with their manually 

measured data in high accuracy up to 0.98 and 0.95, respectively.  

Knecht et al. (2016) presented an open-source, flexible image-analysis framework, 

called Image Harvest (IH), for processing images originating from high-throughput 

plant phenotyping platforms. Image Harvest offers functionalities to extract digital 

traits from images to interpret plant architecture-related characteristics. To 

http://www.plantphysiol.org/content/165/2/506.short#def-1
http://www.plantphysiol.org/content/165/2/506.short#def-1
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demonstrate the applications of these digital traits, they had done their experiment on 

a rice (Oryza sativa) diversity panel and genome-wide association mapping had 

performed using digital traits of different plant ideotypes. They identified three 

major quantitative trait loci on rice chromosomes 4 and 6, which co-localize with 

quantitative trait loci known to regulate agronomically important traits in rice. 

LemnaTec GmbH, is a company in Aachen, Germany that supplies software and 

automated research platforms for digital plant phenotyping through image analysis 

technique. The product includes LemnaTec Scanalyzers to provide a range of 

phenotyping research platforms from bench-top enclosures to systems that monitor 

large fields; LemnaTec OS, to support the plant phenotyping software system; and a 

range of supported cameras and sensors (RGB, NIR, Hyperspectral, and 

Fluorescence) to address every plant phenotyping requirement. 

In this chapter, a brief account of previous work done in the field of plant 

phenotypic parameter estimation through image analysis has been discussed. Some 

high-throughput imaging platforms are also enlightened here. The next chapter of the 

thesis (chapter III) is concerned with the detailed discussion of materials and 

methodologies used in developing image analysis algorithm for measuring yield 

related traits namely Leaf Fresh Weight (LFW) in rice plant and spike identification 

and counting in wheat plant.  
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CHAPTER III 

MATERIALS AND METHODS 

3.1 Introduction 

In this study, new methodologies for deriving phenotyping traits in rice and 

wheat plant through digital image analysis have been proposed. The methodologies 

have been developed based on image processing and machine learning technique to 

estimate Leaf Fresh Weight (LFW) in rice plant and detection and counting of 

spikes/eras in wheat plant. Machine learning techniques further include artificial 

neural network (ANN) technique, deep learning techniques and its variants. Details 

of experimental materials and methodologies, tools and techniques used in this study 

are given in the following sections. 

3.2 Image analysis based Leaf Fresh Weight (LFW) estimation in rice plant 

Leaf Fresh Weight (LFW) is used to estimate plant biomass which 

determines plant growth rate as well as net primary production. Several digital image 

processing based approaches are available to estimate fresh biomass of plants 

(Paruelo et al., 2000; Mizoue and Masutani, 2003; Golzarian et al., 2011; 

Schirrmann et al., 2016) but, majority are based on projected shoot area estimated 

from the visual (VIS) images only. These approaches do not consider the water 

content of the plant tissues which have a significant amount of contribution (about 

70-80%) in fresh biomass (Paruelo et al., 2000). Since water absorbs radiation in the 

near infra-red (NIR) (900 nm -1700 nm) region, it is hypothesized in this study that 

combined use of VIS and NIR imaging can predict the fresh biomass more 

accurately than the VIS image alone.   

3.2.1 Image acquisition for LFW estimation 

Rice leaves from mini-core rice genotypes have been harvested and subjected 

to dehydration at room temperature to generate samples of rice leaves with different 

fresh mass. The leaves are then arranged in a hanger as shown in Fig 3.1. Leaf 

samples are images using VIS and NIR sensors (LemnaTec GmbH, Aachen, 

Germany) at Nanaji Deshmukh Plant Phenomics Centre, ICAR-IARI, New Delhi, 

India. Total 26 images have been taken and each image contains 4 set of leaves (i.e., 
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104 set). RGB camera of spectral response 400 to 700 nm with sensor (6576 x 4384 

pixels) has been used to collect VIS images, whereas GoldEye P-032 SWIR camera 

of spectral response 900 to 1700 nm with InGas sensor (640*480 pixel) has been 

used for taking NIR images. LFW is measured for each set with the help of weighing 

machine (Annexure 1) which is used as ground truth value to validate the proposed 

approach.  

 

 

 

 

 

      

Fig 3.1 (a) visual image, (b) NIR image 

3.2.2 Proposed approach of LFW estimation - VN_LFW 

For estimating LFW, two image derived parameters viz. Green Leaf 

Proportion (GLP) from VIS image and Mean Gray Intensity (NIR_MGI) from NIR 

images have been developed. As green leaf area has significant relation with the 

weight (Mora et al., 2011) of the plant, hence, it is hypothesized that GLP can play a 

vital role in LFW estimation. These parameters (GLP & NIR_MGI) are used as input 

for building machine learning model to estimate LFW (Fig 3.2) in rice plant. The 

proposed approach is named as VN_LFW. ANN technique has been used in model 

development and its performance has been compared with linear regression 

technique. 

 

 

 

 

 

Fig 3.2 Flow diagram of VN_LFW 

GLP from VIS image and NIR_MGI from NIR image have been obtained by using 

the following algorithms: 

(a) (b) 

 GLP 

Visual Image NIR Image 

NIR_MGI 

 

Machine Learning Model 

Estimate Leaf Fresh Weight (LFW) 
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Computation of GLP from VIS image: 

Step 1: Apply operation „O‟ for background extraction and Otsu‟s thresholding 

(Otsu, 1979) for background removal. 

O = (G-R) / (G+R) 

Where, G=Green content per pixel 

R=Red content per pixel 

 

Step 2: Multiply outcome image of step 1 with the original image for extracting the 

original gray values. 

Step 3: Extract that portion of the resulting image where G>B and G>R, it will be 

Green Leaf Area (GLA).  

Step 4: Green Leaf Proportion (GLP) has been calculated by using the following 

formula: 

GLP = (GLA/TA) 

Where, GLA= Green Leaf Area 

TA= Total Leaf Area (total pixel area covered by leaf) 

 

Computation for NIR_MGI from NIR image: 

For background subtraction and mean estimation of gray value of foreground 

from NIR image, an algorithm has been proposed by taking inspiration from NIR 

imaging pipeline of PlantCV (Gehan et al. 2017). High gray values represent high 

reflectance and indicate low water content, while low gray-scale values represent 

high absorption and high water content in the leaf (Subramaniam1 et al., 1999). The 

algorithm is given below: 

Algorithm for Gray value estimation from NIR image: 

Step 1: Subtraction of original image (leaf image) from background image. 

Step 2: Thresholding of the subtract image using Otsu‟s thresholding algorithm 

(Otsu, 1979): In this step, pixels that have signal value less than the threshold value 

will be set to 0 (black) and else set to 1 (white). 

Step 3: Image Sharpening: This step has been done for capturing maximum amount 

of object of interest (leaf) especially when the background pixel intensity is 

problematic (full of noise). For this purpose Second derivative Laplacian filter 

(Huertas & Medioni, 1986) is applied to the original image. 

(i) 

(ii) 
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Step 4: Subtraction of the filtered image from the original image for increasing the 

contrast between object and background.  

Step 5: Sobel filtering (Kanopoulos et al. 1988) of the original image has been done 

for highlighting more ambiguous boundaries within the image. 

Step 6: Median blur filtering (Huang et al. 1979) has been applied on the Sobel 

filtered image to decrease the amount of noise present in that image. 

Step 7: Add outcome of step 3 and step 6. 

Step 8: Thresholding of the output image using Otsu‟s thresholding algorithm. 

Step 9: Erode the output image of step 8 using 3*3 filter. 

Step 10: Add outcome image of step 2 and step 9. 

Step 11: Multiply outcome image of step 10 and the original image for extracting the 

original gray values. 

The algorithm has been implemented in MATLAB software (version 2015b, 

MathWork, Natick, MA). 

Artificial Neural Network 

Artificial neural networks (ANNs) model are considered as a class of 

generalized nonlinear model that are able to capture various nonlinear structures 

present in the data set. The main advantage of this model is that it does not require 

prior assumption of the data generating process, instead it is largely depend on 

characteristics of the data popularly known as data-driven approach.  Feed forward 

multilayer network is the most popular for regression problem. This model is 

characterized by a network of three layers of simple processing units, the first layer 

is one input layer, the middle layer is the one or more hidden layer and the last layer 

is one output layer. 

The relationship between the output (y) and the inputs (x1, x2,…,xp) can be 

mathematically represented as follows: 

0 0

q p

j i j p

j i

y f g x 
 

  
   

  
   

where,                   and                                 are the 

model parameters often called the connection weights, p is the number of input 

nodes and q is the number of hidden nodes, g and f denote the activation functions at 

(iii) 
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hidden and output layer respectively. Activation function defines the relationship 

between inputs and outputs of a network in terms of degree of the non-linearity. 

Most commonly used activation functions (Table 3.1) are as follows: 

Table 3.1 List of activation functions 

Activation  function Equation 

Sigmoid 1

1 xe  

 TanH 

2

2
tanh( ) 1

1 x
x

e
 

  

ArcTan 1tan ( )x

 

For regression problem generally sigmoid activation function is employed in hidden 

layer and identity activation function is employed in the output layer (Fig 3.3). The 

selection of appropriate number of hidden layers and hidden nodes in each layer is 

important in ANN modelling. Though there are no established theories available for 

the selection of hidden layer and nodes, hence experiments are often conducted for 

the determination of the number of hidden layer and hidden node in each layer. In 

this study, Gradient decent back propagation (Olabode & Olabode, 2012) has been 

employed for estimation of weight in neural network. 

 

Fig 3.3 Simple architecture of ANN 

Linear Regression 

Regression analysis is a statistical methodology which utilizes the relation between 

two or more quantitative variables where one variable can be predicted from the 
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other variable(s) (Seber & Lee, 2012). The functional relation between two variables 

can be expressed by mathematical formula. If X denotes the independent variable 

and Y denotes the dependent variable, the functional relation is of the form:  

Y = f(X)  

 Regression approach may be classified into two broad categories viz., linear 

regression models and nonlinear regression models. The response variable (or, 

dependent variable) is generally related to other causal variables through some 

parameters. The models that are linear in these parameters are known as linear 

models; whereas in nonlinear models parameters appear nonlinearly. Linear models 

are considered as the most satisfactory approximations for most regression 

applications. Linear model can be stated as follows: 

 0 1 1i iY X      

 

 

 

 

3.2.3 Model development and performance measurement of the proposed 

VN_LFW approach 

For developing the model, dataset (104 samples) has been divided into two 

parts randomly: 85% for training and 15% for testing. Feed-forward multilayer 

neural network (MLPNN) has been fitted using the NIR_MGI from NIR image and 

GLP from VIS image as the input and the corresponding actual LFW as the output 

for the training data sets. As two independent variables (NIR_MGI and GLP) and 

one dependent variable (LFW) are used in this study, the ANN architecture consists 

of one input layer with two input nodes and one output layer with one node. The 

choice of suitable number of hidden layer and hidden node within each layer is 

critical in ANN modelling. Despite the fact that there are no settled hypotheses 

accessible for the choice of hidden layer and hidden node, consequently tests are 

frequently used for the determination of the ideal estimations of hidden layer and 

Where, Yi = value of the response variable in the i
th

 trial 

, = parameters 

Xi =value of the independent variable in the i
th

 trial 

= random error with mean zero and variance  

(iv) 

(v) 
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node. Hence, distinctive combinations of hidden layer and hidden nodes in each 

layer has been attempted, out of which best fitted ANN model is selected. 

“Neuralnet” package of R software (Teodoro, 2015) has been employed for the 

model development.  

Performance of the proposed ANN approach of LFW estimation has been 

judged and compared by the existing approaches i.e., based on linear function of 

projected shoot area as well as Linear regression approach based on GLP from VIS 

image and NIR_MGI from NIR image. Mean Absolute Percent Error (MAPE) and 

Root Mean Square Error (RMSE) are measured to compare the performances of the 

approaches. The model with less MAPE and RMSE is preferred for prediction 

purposes. The MAPE and RMSE are computed as follows: 

1

1
ˆ / 100

n

i i i

i

MAPE y y y
n 

                                                                                                

 
2

1

1
ˆ

n

i i

i

RMSE y y
n 

   

Where, n = total number of observations. 

iy  = actual value of observation i (LFW ground truth)  

ˆ
iy  = estimated value (predicted LFW). 

3.2.4 Tools used in implementing VN_LFW approach of LFW estimation 

MATLAB software has been used to compute GLP from VIS image and 

NIR_MGI from NIR image to estimate LFW in rice plant. MATLAB [The 

MathWorks Inc. MATLAB 7.0 (R14SP2). The MathWorks Inc., 2005] is a high-

performance language which facilitates computation, visualization, and 

programming environment. Furthermore, it provides a modern programming 

language environment having sophisticated data structures, built-in editing and 

debugging tools, and also supports object-oriented programming. These factors make 

MATLAB an excellent tool for teaching and research. Various functions of “Image 

analysis” module (Table 3.2) of MATLAB have been used for this purpose as 

follows: 

(vi) 

(vii) 
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Table 3.2 Matlab functions and their functionalities 

Functions Functionalities 

greythresh() Image thresholding using Otsu‟s method 

fspecial(„laplacian‟) For applying Laplacian filter on image 

edge(image, „sobel‟) For applying Sobel filter on image for edge 

detection 

midfilter2(image) For applying median filter on image for 

noise removal 

imerode(image,strel(„square‟,2)) Image erosion 

“neuralnet” package of R software has been used for implementing ANN to 

estimate LFW in rice plant. Various functions (Table 3.3) of “neuralnet” package 

that has been used in this study are listed as follows: 

Table 3.3 R functions and their functionalities 

Functions Functionalities 

compute() Used in computation of the calculated 

network 

confidence.interval() Used in calculation of a confidence interval 

for the weights. 

prediction () For calculation of a prediction 

plot.nn () For plotting of the neural network 

 

3.3 Spike identification and counting in wheat plant through digital image 

analysis 

Detecting and counting of number of spikes per plant or per unit area through 

naked-eye is a laborious, error- prone and time consuming process. In this study, a 

new approach has been presented based on combined effort of digital image analysis 

and deep learning technique.  
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3.3.1. Image acquisition for wheat plants  

In the Phenomics facility, wheat plants are grown in pots in the climate 

controlled greenhouse. Names of the genotypes used in this study are given in 

Annexure 2. Images of the plants are taken (Fig 3.4) by using 6576 x 4384 pixel 

RGB camera (LemnaTec GmbH, Aachen, Germany). It is hypothesized that images 

from one side cannot cover all the spikes of the plant; hence images from three 

different sides (0
o
, 120

0
, 240

o
) of plants are recorded by using the automated turning 

and lifting unit present inside the imaging unit. A uniform background has been 

maintained to increase the accuracy of separate background and plant regions. 

Images have been stored in lossless PNG format as facilitated by the LemnaTec 

facility. Imaging has been done during reproductive stage of the plant. After 

imaging, number of spikes per plant is counted manually which has been used as 

ground truth value to validate the proposed approach. 

 

Fig 3.4 Visual image of wheat plant 

3.3.2 Proposed approach of spike identification and counting  

The proposed approach involves identification and counting of spikes from 

the digital images of whole wheat plant. Spike identification through image analysis 

is a pixel wise segmentation problem of object (here, spikes). Convolutional 

encoder-decoder deep learning technique (https://medium.com/@aggirma/part-1-

convolutional-neural-network-in-a-nutshell-89f81a329ec3) based model plays a 

promising role in this aspect [Ronneberger et al. (2015); Szegedy et al. (2015); 

Mohanty et al. (2016); Jaswal et  al. (2019)]. In this study, two deep learning models 

have been developed for spike identification namely SpikeSegNet (Spike 

Segmentation Network) and LGspikeNet (Local patch extraction and Global mask 

https://medium.com/@aggirma/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
https://medium.com/@aggirma/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
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refinement spike detection Network) based on convolutional encoder-decoder deep 

learning technique. For counting the number of spikes per plant, “analyse particles” 

function of imageJ (Schneider et al., 2012) software has been applied on the output 

image of the encoder-decoder model which implements flood-fill image analysis 

technique (Asundi and Wensen 1998).  

Convolutional Neural Network  

Convolutional Neural Network (CNN) is most commonly applied in analysing visual 

imagery (https://en.wikipedia.org/wiki/Convolutional_neural_network). CNN is a 

regularized version of multilayer perceptron (MLP). MLP usually refers to fully 

connected network where each neuron in one layer is connected to all neurons in the 

next layer. This "fully-connectedness" property makes the network prone to over-

fitting of data. Regularization technique includes some form of magnitude 

measurement of weights to the loss function. Through regularization, CNN take 

advantages of the hierarchical pattern in data and assemble more complex patterns 

using smaller and simpler patterns. Besides, CNN involves relatively little pre-

processing of the images compared to other image classification algorithms as the 

network learns through the filters/kernels (convolutions) where traditional algorithms 

are only hand-engineered. The independence of prior knowledge and human effort in 

feature design creates major advantage of this technique. A CNN network consists of 

an input and an output layer, as well as multiple hidden layers. The hidden layers of 

CNN typically consist of four (https://medium.com/@aggirma/part-1-convolutional-

neural-network-in-a-nutshell-89f81a329ec3) layers: 

1. Convolution layer 

2. ReLU layer 

3. Pooling layer and 

4. Fully Connected Layer 

Convolution Layer: Convolution refers to the mathematical combination of two 

functions to produce a third function 

(https://en.wikipedia.org/wiki/Convolutional_neural_network). Convolution is 

performed on the input data by using filter or kernel to produce a feature map. For 

extracting the positional relationship in the image data, the kernel takes nearby pixels 

together and covers the input (image) by sliding the filter/kernel over it. At every 

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://medium.com/@aggirma/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
https://medium.com/@aggirma/part-1-convolutional-neural-network-in-a-nutshell-89f81a329ec3
https://en.wikipedia.org/wiki/Convolutional_neural_network
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location, the kernel performs matrix multiplication and then sums the result onto the 

feature map. So, the convolution operation is performed in 4 steps: 

 Line up the kernel window and the input image 

 Multiply each pixel of the image by corresponding feature pixel in the kernel 

 Add the values and find the sum 

 Divide the sum by the total number of pixels in the feature kernel  

 

 

Fig 3.5 First two steps of convolution operation 

 

Fig 3.6 Last two steps of convolution operation 

Lastly final value obtained is placed at the centre of the filtered image (Fig 3.7). 

 

Fig 3.7 Final value after completion of 4 steps of convolution operation is placed at 

the centre of the filter/kernel window 

Now, the kernel moves around and does the same at every pixel in the image and the 

ultimate output obtained as follows: 

Kernel 

Input image 
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Fig 3.8 The output features after completion of convolution operation on the input 

image of CNN deep-network 

ReLU Layer: Rectified Linear Unit (ReLU) activation function 

(https://en.wikipedia.org/wiki/Convolutional_neural_network) only activates a node 

if the input is above or below a certain quantity (threshold).  If the input value is 

below zero, the output is zero, but when the input rises above this threshold, it will 

have a linear relationship with the dependent variable.  

 

Fig 3.9 ReLU activation function 

 

Fig 3.10 The output features after completion of ReLU operation  

Pooling Layer: Output from the previous (ReLU layer) layers is smoothened for 

reducing the sensitivity of filters/kernels to noise and variation. Pooling operation 

(https://en.wikipedia.org/wiki/Convolutional_neural_network) is also known as 

subsampling and can be achieved by taking averages (average pooling) or taking the 

https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
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maximum (max pooling) over a sample of the signal. It is implemented by using the 

following steps: 

 Picking up a window size (usually 2 or 3) 

 Striding or moving the window down or across over the entire image and 

picking the maximum or average value from each window   

 

 

Fig 3.11 Max-pool operation  

For window size 2 (Fig 3.11), there are 4 values and the maximum value is 1 so pick 

1. Also, it has been noted that a 7×7 matrix came down to 4×4 matrix after pooling 

operation (Fig 3.12).  

 

Fig 3.12 The output features after completion of Max-pooling operation of CNN 

So after passing through 3 layers (Convolution, ReLU and Pooling) 7×7 matrix 

converted to 4×4 matrix as shown below (Fig 3.13): 

 

 

Fig 3.13 Output features after completion of Convolution, ReLU and Pooling 

operation of CNN 
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Fully Connected Layer: For further reducing the size from 4×4 matrix, the 3 

consecutive operations (Convolution, ReLU and Pooling) have to be performed 

iteratively (Fig 3.14). In fully connected layer 

(https://en.wikipedia.org/wiki/Convolutional_neural_network), neurons of preceding 

layers are connected to every neuron in subsequent layers which mimics high level 

reasoning to cover all possible pathways from the input to output. Fully connected 

layer is also the final layer where the classification actually happens.  It can be 

viewed as the final learning phase where extracted visual features are mapped to the 

desired outputs and usually adaptive to classification tasks. Here, the output is a 

vector, which is then passed through softmax (Jang et al. 2016) to represent 

confidence of classification. 

 

 

1 

 

0.55 

 

0.55 

 

1.00  

 

1 

0.55 

0.55 

1 

Fig 3.14 Output features after completing 2 iterations of 3 consecutive operations of 

CNN (Convolution, ReLU, and Pooling) 

  From the output of fully connected layer, it can be observed that the value of 1
st
 and 

4
th

 pixel is higher than 2
nd

 and 4
th. 

Therefore, if one input is come with fully      

connected layer output as   

 

 

 

Softmax Function  

Softmax function (Jang et al. 2016) is a type of sigmoid activation function which is 

very useful in handling   classification problems. It is non-linear in nature and 

usually used to handle multiple classes. The softmax function would squeeze the 

0.85 

 0.25 

0.48 

0.94 

then, it will classified in this particular class, 

otherwise, in the different classes.   

https://en.wikipedia.org/wiki/Convolutional_neural_network
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outputs for each class between 0 and 1 and would also divide by the sum of the 

outputs. 

  

Fig 3.15 Sigmoid activation function 𝑦=1/(1+𝑒x) 

Convolutional encoder-decoder deep network 

The convolutional encoder-decoder is a variant of CNN deep-network architecture 

based on encoding/decoding structure (Fig 3.16). Encoding network maps the raw 

input to feature representations holding the contextual information, while decoding 

network takes these feature representations as input, process it and produce 

corresponding segmentation mask as output (Mao et al., 2016). The network is 

mainly used for pixel wise segmentation of objects. In this technique, the input is 

compressed into a latent-space representation, and reconstructed the output from this 

representation (https://hackernoon.com/autoencoders-deep-learning-bits-1-

11731e200694). 

 

Fig 3.16 Simple convolutional encoder-decoder deep-network architecture 

A simple convolutional encoder – decoder deep network with 2 encoders and 2 

decoders block has been explained here (Fig 3.17).  

 

 

https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694
https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694
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Fig 3.17 Simple convolutional encoder – decoder deep network with 2 encoders and 

2 decoders block 
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Generally, each encoder and decoder block consists of convolution layer and ReLU 

layer and additionally batch normalization (Ioffe and Szegedy, 2015) has been done 

to improve the performance and stability of network. Output of the first encoder 

block is sub-sampled/down sampled using max-pooling operation and the output is 

fetched to the second encoder block for further encoding in similar manner. In 

decoding technique, the spatial information from the encoder block has been 

forwarded to the decoder block along with incoming up-sampled features which 

helps in generating more location specific objects. Each decoder block consists of 

convolution, ReLU, batch normalization operations and additionally up-

sampling/up-convolution is done as opposite to max-pooling operation to regenerate 

the features. Output of the final decoder will go through optimizer to update the 

weight depending on the loss function used. In deep-learning, several loss functions 

and optimizers are used based on the situations. Let‟s take an example image of size 

M*N and the inner functionality of each encoder and decoder blocks are explained 

as below: 

Table 3.4 Details of each encoder block and corresponding up-sampling features 

 

Table 3.5 Details of each decoder block and corresponding down-sampling features 

Decoder 

Block # 

Input to 

transpose 

convolution 

Output of 

transpose 

convolution 

Input to 

decoder 

block 

Convolution  

filter/kernal 

size  

Number of 

convolution  

filters 

Output of 

decoder 

block 

Block  1 M/4*N/4* K2 M/2*N/2* K2 M/2*N/2* K2 x*x K2 M/2*N/2* 

K2 

Block 2 M/2*N/2* K2 M*N* K2 M*N* K2 x*x K1 M*N* K1 

 

 

Encoder 

Block # 

Input to encoder 

block 

Convolution  

filter/kernal 

size 

Number 

of 

kernels 

Output of 

encoder block 

Input to max-

pool (usually 

2*2 window) 

Output to 

max-pool 

Block  1 M*N (original 

image) 

x*x 

(usually,x=3 

or 5 ) 

K1 M*N* K1 M*N* K1 M/2*N/2* K1 

Block 2 M/2*N/2* K1 x*x K2 M/2*N/2* K2 M/2*N/2* K2 M/4*N/4* K2 
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Batch normalization 

Batch Normalization (BN) is a special normalization technique for neural networks 

(https://github.com/aleju/papers/blob/master/neural-nets/Batch_Normalization.md). 

As the inputs to each layer in neural networks depend on the outputs of all previous 

layers, the distributions of these outputs can change during the training process. This 

mechanism slows down the training process as each layer learns to adapt new 

distribution in every training step (https://towardsdatascience.com/batch-

normalization-theory-and-how-to-use-it-with-tensorflow-1892ca0173ad). This 

problem is popularly known as internal covariate shift. In this context, batch 

normalization is used to normalize the inputs of each layer. During training time, 

batch normalization layer does the following: 

1. Calculate the mean ( B ) and variance ( 2

B ) of the layers input ( ix ) consists 

of m samples. 

1

1 m

B i

i

x
m




   

2 2

1

1
( )

m

B i B

i

x
m

 


   

2. Normalize the layer inputs using the previously calculated batch statistics. 

2

i B
i

B

x
x








 

3. Scale and shift in order to obtain the output of the layer. 

i iy x    

γ and β are the distribution learned during training along with the original 

parameters of the network. So, if each batch had m samples and there are i 

batches: 

 

(viii) 

(ix) 

(x) 

(xi) 

https://github.com/aleju/papers/blob/master/neural-nets/Batch_Normalization.md
https://towardsdatascience.com/batch-normalization-theory-and-how-to-use-it-with-tensorflow-1892ca0173ad
https://towardsdatascience.com/batch-normalization-theory-and-how-to-use-it-with-tensorflow-1892ca0173ad
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Loss function 

Machine learns by means of a loss function 

(https://towardsdatascience.com/common-loss-functions-in-machine-learning-

46af0ffc4d23). It depends on how much the predicted results deviate from the actual 

results. Loss function learns to reduce the error in prediction with the help of 

optimization function. Loss functions can be classified into two categories depending 

upon the type of learning task - Regression losses and Classification losses. 

1. Regression losses: It involves predicting a real-valued quantity. Following metrics 

are used for measuring regression losses: 

1) Mean Square Error (MSE): MSE is only concerned with the average 

magnitude of error irrespective of their direction. In this technique, predicted 

values which are far away from actual values are penalized due to squaring 

which leads to less deviated predictions. 

 
2

1

ˆ
n

i i

i

y y

MSE
n








 

Where, n = total number of observations.

 

 

 iy  = actual value of observation i  

 ˆ
iy  = estimated/predicted value  

2) Mean Absolute Error (MAE): MAE is measured by taking average of sum 

of absolute differences between predicted and actual observations. Like 

MSE, it measures magnitude of error without considering their direction. 

MAE is robust to outliers as it does not make use of square. 

1

ˆ| |
n

i i

i

y y

MAE
n








 

Where, n = total number of observations. 

 iy  = actual value of observation i  

 ˆ
iy  = estimated/predicted value  

(xiii) 

(xii) 

https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
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3) Mean Bias Error (MBE): This is same as MSE with the only difference that 

absolute values are not considered here. Although it is less accurate in 

practice, it can determine if the model has positive or negative bias. 

 

 
1

ˆ
n

i i

i

y y

MBE
n








 

Where, n = total number of observations. 

 iy  = actual value of observation i  

 ˆ
iy  = estimated/predicted value  

2. Classification losses: It predicts output from a set of finite categorical values. 

Mainly cross entropy loss metrics are used for measuring binary as well as multi-

class classification losses. 

• Cross Entropy Loss: This is the most commonly used metric for 

classification problems. Value of the cross-entropy loss increases as the 

predicted probability value diverges from the actual label. An important 

aspect cross entropy loss is that it penalizes heavily the predictions that 

are confident but wrong. 

ˆ ˆ( log( ) (1 )log(1 ))i i i iCrossEntropyLoss y y y y      

Optimizer 

The goal of machine learning or deep learning algorithm is to reduce the difference 

between the predicted output and the actual output. This is also called as a Cost 

function or Loss function. So the goal is to minimize the cost function by finding 

the optimized value for weights in the intermediate layers of the neural network and 

update them (https://medium.com/datadriveninvestor/overview-of-different-

optimizers-for-neural-networks-e0ed119440c3). For this purpose, several optimizers 

are available and all are variants of Gradient descent approach. Popular optimizers 

used in deep-learning are SGD (Stochastic Gradient Descent), Adadelta, RMSprop, 

Adam, etc. 

 

(xv) 

(xiv) 

https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3
https://medium.com/datadriveninvestor/overview-of-different-optimizers-for-neural-networks-e0ed119440c3
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Proposed methodology of counting number of spikes in a single plant 

For counting the number of spikes per plant, “analyse particles” function of 

imageJ (Schneider et al., 2012) software has been applied on the output image of the 

encoder-decoder model. The “analyse particles” function of imageJ implements 

flood-fill image analysis technique (Asundi and Wensen ,1998). Flood-fill technique 

employs object count by growing through similar pixel regions from the starting 

pixel. The “analyse particles” function counts and measures (pixel area) objects in 

binary or threshold images. It works by scanning the image until it finds the edge of 

an object and then outlines the object. After that the outlined objects are filled by 

using flood-fill approach and then it resumes the scanning process until reaches the 

end of image or selection (Fig 3.18). 

 

Fig 3.18 Output of “analyse particles” function of imageJ (source: 

https://imagej.nih.gov/ij/docs) 

3.3.3 Model development and performance measurement of the proposed 

approach of spike identification and counting 

To develop encoder decoder model, image dataset of 200 plants with 3 

images each are split into training and validation at 85:15 ratio randomly. RGB 

images and its corresponding ground truth (i.e., mask image) images which consist 

of spike regions only are used in developing the model. Training has been done for 

200 epochs. For each epoch, average accuracy and loss in the training and validation 

dataset has been computed based on the cross entropy loss function. Then, the 

developed model has been validated on the randomly selected validation dataset 

(images 15% of plants) to identify/detect spikes of the plant.   

 

https://imagej.nih.gov/ij/docs


40 
 

Performance measurement of the proposed approach of spike identification 

For measuring the segmentation performance of the proposed network to 

identify/detect spikes, the validation dataset has been passed through the training 

network to extract the binary masks.  The resulting binary masks have been 

compared with the ground truth masks and evaluated by difference performance 

parameter (Proenca et al., 2010; Haindl & Krupička, 2015; Zhao & Ajay, 2015) as 

described below: 

Type I Error (E1): For any r
th

 test image, exclusive-OR ( ) operation is done to 

compute pixel-wise classification error (Pix_Errr) between the predicted image (I
pred

) 

and corresponding ground-truth mask image (I
grtr

) of size p×q,  

 
1 1

1
[ ( , ) ( , )]

*
_  ,  

q p
prpred grt ed grtr

r

l k

r I kPix Err I I k lI l
p q  

    

Overall mean segmentation error or Type I error E1 has been computed by averaging 

the Pix_Errr of all the validation images: 

1

1E  = _
1 N

r

r

Pix Err
N 

  

Where, N = no. of validation images. E1 lies within [0, 1]. If the value of E1 is close 

to “0", it refers minimum error, whereas if E1 is close to “1", it signifies large error.  

Type II error (E2): For any r
th

 test image, the error rate 
2

rE   is computed by the 

average of false-positives (FPR) and false negatives (FNR) rates at the pixel level 

defined as: 

2

1 1

1 1

0.5* 0.5*

,

1
[( ( , ) * ( , )) ( , )]

*

1
[( ( , ) * ( , )) ( , )]

*

r

q p
grtr pred pred

l k

q p
grtr pred grtr

l k

FPR

F

E FPR FNR

Where

I k l I k l I k l
p q

I k l I k l I k l
p q

NR

 

 





 



 



 

E2 error rate is computed by taking the average errors of all the input images as given 

below: 

(xvi) 

(xvii) 

(xviii) 
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2 2

1

E =
1

 r
N

r

E
N 

  

Jaccard Index (JI): JI is measured by computing intersection over union (IoU) of 

the labelled segments for each class (i.e., spikes and non-spikes) and thereafter 

averages of them are calculated as given below: 

1

1

P
JI =

r

C
gg

i g g gg

C

C Gr ed C  
  

Where, C (=2) is the number of classes i.e., spikes or and non-spikes 

Cii = number of pixels in the image having ground truth label g and whose 

prediction is also g. 

Grg = total number of pixels in the image with ground truth label g. 

Predg = total number of pixels in the image whose prediction is g.  

Similar to the above metrics, the final Jaccard Index is given by taking the mean of 

the Jaccard Index of all input test images. 

Following performance parameters have also been used for measuring the 

segmentation performance of the proposed network to identify/detect spikes as 

follows: 

 True positive (TP): # pixels correctly classified as spikes pixels. 

 True Negative (TN): # pixels correctly classified as non-spikes pixels. 

 False Positive (FP): # non-spikes pixels classified as spikes pixels. 

 False Negative (FN): # spikes pixels classified as non- spikes pixels.  

Then Precision, Recall, F-measure and Accuracy can be defined as: 

 Pr
TP

ecision
TP FP




measures, % of detected pixels are actually spikes 

 Re
TP

call
TP FN




measures, % of actually spikes spike pixels are detected 

 
TP TN

Accuracy
TP TN FP FN




  
measures performance of the approach 

model  

(xix) 

(xx) 

(xxi) 

(xxii) 

(xxiii) 
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 F1
*

2
precision recall

Score
precision recall




measures robustness of the proposed network 

in detecting or identifying spikes  

Performance measurement in counting number of spikes 

For counting number of spikes per plant, the proposed approach of spike 

counting has been applied on the validation dataset (15%). Output (i.e., spike count) 

of the proposed approach has been compared with the ground truth value i.e. spike 

per plant counted manually. The performance of the developed model in counting 

number of spike has been evaluated on the basis of precision, recall, accuracy and 

the F1 score based on true positive (TP), false positive (FP), true negative (TN), and  

false negative (FN) which are defined as follows: 

 TP no. of objects correctly classify as spike 

 FP  no. of objects incorrectly classify as spike (i.e., leaf, background) or 

overlapping spikes (connected objects) 

 FN  no. of actual spikes that are not visible in any of the side image 

 TN  is always ‟zero‟ in this binary classification problem as background is 

not determined for object detection 

Precision, recall, accuracy and F1 score are measured by using the above equations 

[(xxi), (xxii), (xxiii), (xxiv)] and are defined as follows: 

 Precision: It measures the % of detected objects which are actually spikes 

 Recall: It depicts the % of actually spikes have been detected among the 

ground truth 

 Accuracy: It measures performance of the proposed approach  

 F1 score: measures robustness of the approach 

3.3.4 Tools used in implementing the proposed methodology of Spike 

identification and counting 

The encoder-decoder deep learning architecture used in detecting spikes in 

wheat plant has been implemented through tensorflow and keras framework in 

python whereas for counting number of spikes imageJ API has been used. 

(xxiv) 
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TensorFlow:  

 TensorFlow is an open source machine learning framework used for 

implementing machine learning and deep learning applications 

(https://www.tutorialspoint.com/tensorflow). Google team has created TensorFlow 

to develop and research on fascinating ideas in the area of artificial intelligence. It is 

designed in Python programming language.  Some important features of TensorFlow 

are as follows:  

 It provides facility to define, optimize and calculate mathematical expressions 

with the help of multi-dimensional arrays called tensors. 

 It includes programming facilities of deep neural networks and machine learning 

techniques. 

 It facilitates a high scalable feature of computation with different data sets. 

 

Keras:  

 Keras is a high-level Python library run on top of TensorFlow framework 

(https://www.tutorialspoint.com/tensorflow/tensorflow_keras). It is developed with 

focus on understanding the deep learning techniques by providing the facilities of 

creating and maintaining the layers, it‟s shapes and mathematical details of the deep 

neural networks. It consists of several libraries to provide the following facilities to 

create a deep learning model: 

 Loading the data 

 Preprocess the loaded data 

 Definition of model 

 Compiling the model 

 Fit the specified model 

 Evaluate it 

 Make the required predictions 

 Save the model 

Various modules of keras framework used in this thesis as follows: 
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Table 3.6 Keras modules and their functionalities 

Functions Functionalities 

keras.models import Sequential For developing feed-forward CNN model 

of sequential type 

keras.layers import Dense, Dropout, Activation, 

Flatten 

For importing „core‟ layers from keras 

that are used in almost any Neural 

Network 

keras.layers import Convolution2D, 

MaxPooling2D 

For implementing convolution layers 

keras.utils import np_utils For implementing some utilities to 

transform data 

model.compile(loss='binary_crossentropy', 

optimizer='adam', metrics=['accuracy'])       

For compiling the deep-learning model, 

optimizer and loss functions are required. 

binary_crossentropy loss function is 

used in binary classification (spikes or, 

non-spikes) 

Some of the most popular optimization 

algorithms are: Stochastic Gradient 

Descent (SGD), ADAM and RMSprop. 

model.fit() Used in fitting the model 

 

ImageJ:  

 ImageJ is a public domain Java image processing program 

[http://rsbweb.nih.gov/ij/docs/] inspired by NIH Image for the Macintosh. It runs, 

either as an online applet or as a downloadable application, on any computer with a 

Java 1.1 or later virtual machine. Downloadable distributions are available for 

Windows, Mac OS, Mac OS X and Linux. It can display, edit, analyze, process, save 

and print 8-bit, 16-bit and 32-bit images. It can read many image formats including 

TIFF, GIF, JPEG, BMP, DICOM, FITS and “raw”. It supports “stacks”, a series of 

images that share a single window. It is multithreaded, so time-consuming operations 

such as image file reading can be performed in parallel with other operations. As 

imageJ API‟s [http://rsbweb.nih.gov/ij/developer/api/] are available, it is helpful to 

download &run it with own system (installed JVM). 

 

http://rsbweb.nih.gov/ij/docs/intro.html
http://rsbweb.nih.gov/ij/developer/api/
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ImageJ API: It has been used in counting no. of spikes  

Class Analyzer 

 Package: ij 

 public class Analyzer extends java.lang.Object implements PlugInFilter, 

Measurements 

This plugin implements ImageJ's Analyze/Measure and Analyze/Set 

Measurements commands which again implements flood-fill technique of image 

analysis. 

Online software for spike identification and counting in wheat plant 

In this thesis, online software for identification and counting of wheat spikes 

has been developed using the following architecture (Fig 3.19). 

 

 

 

 

 

Fig 3.19 The architecture of the software 

 Client Side Interface Layer (CSIL): It has been implemented using Hyper Text 

Markup language (HTML), Cascading Style Sheet (CSS) and JavaScript. User 

interface has been developed for capturing the information (i.e., input images) 

from the user which will be used for spike identification and counting. 

 Server Side Application Layer (SSAL): Application layer has been built using 

Flask web-development tool for taking the input from users, Deep learning 

module built with Tensorflow, Keras framework and Numpy, Scipy, Matplotlib, 

CSIL 

 

Internet 
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OpenCV etc. libraries of python language for identification of spikes and ImageJ 

module to count the objects (or, spikes) on the output image of the deep learning 

module. After that, the output images with spike count output are again fed to the 

Flask API to communicate with the users.  

Hyper Text Markup Language (HTML) 

 HTML (Berners, 1990) is a platform independent simple text formatting 

language that is used to create hypertext documents. HTML tells the interpreter i.e. 

the browser, how the document has to be interpreted. The interpretive directions are 

given to the browser by a set of indicators called HTML elements, which helps to 

mark-up the document. 

JavaScript 

 JavaScript (Burns and Growney, 2001) was designed for extending the 

capabilities of Web browser. It also facilitates the web developers with an easy 

means of adding interactivity to their web sites. There are actually three essences of 

JavaScript: Core JavaScript, Client-Side JavaScript and Server-Side JavaScript. Core 

JavaScript considered as basic JavaScript language which includes the operators, 

control structures, objects etc. that makes JavaScript as a programming language. 

Client-Side JavaScript (CSJS) is used to provide access to the web-browser and web 

document objects via the Document Object Model (DOM). Another extension of 

Core JavaScript is Server-Side JavaScript (SSJS) which is embedded directly within 

HTML documents and runs on any SSJS-enabled Web server. 

Cascading style sheets (CSS) 

 The main purpose of Cascading Style Sheets (CSS) 

[http://www.w3schools.com/css/] is to allow the web authors in manipulating the 

appearance of web pages without affecting its HTML structure.  

Flask 

 Flask is a micro web framework which is written in Python 

[https://en.wikipedia.org/wiki/Flask_(web_framework)]. It was developed by Armin 

Ronacher, who leads an international group of Python enthusiasts named Pocco. It is 

classified as a micro-framework as it does not require particular tools or libraries. 

Flask supports extensions to add and update application features. Extensions involve 

https://en.wikipedia.org/wiki/Flask_(web_framework)
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object-relational mappers, form validation, upload handling, various open 

authentication technologies and several common framework related tools.  

PyCharm  

PyCharm is an integrated development environment (IDE) provides the 

facilities of computer programming, specifically for the Python language 

[https://en.wikipedia.org/wiki/PyCharm]. It is designed and developed by the Czech 

company JetBrains [https://www.jetbrains.com/pycharm/]. It facilitates of code 

analysis, graphical interface for debugging, integrated unit testing environment and 

also supports the web development facility. PyCharm is cross-platform, 

with Windows, macOS and Linux operating system. The Community Edition of 

Pycharm has been released under the Apache License[ 

https://www.eweek.com/development/jetbrains-strikes-python-developers-with-

pycharm-1.0-ide] and there is also Professional Edition of Pycharm with extra 

features and has been released under a proprietary license. PyCharm provides APIs 

to the developers to write their own plugins to extend the PyCharm features.  

In this chapter, details of the materials and methodologies that have been 

used in developing image analysis based approach for measuring LFW in rice plant 

and spike identification and counting in wheat plant has been elaborated. Materials 

include image collection and dataset preparation for developing machine learning 

model whereas methodology section concerns with VIS and NIR image processing 

along with machine learning techniques (especially deep learning technique). The 

details about software tools and technologies that have used in developing macros 

and web bases software are also highlighted here. The next chapter (Chapter IV) 

contains the outcome and discussion of the proposed approach of Phenotyping 

parameter estimation. 

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/PyCharm
https://en.wikipedia.org/wiki/JetBrains
https://en.wikipedia.org/wiki/PyCharm#cite_note-6
https://en.wikipedia.org/wiki/PyCharm#cite_note-6
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Apache_License
https://www.eweek.com/development/jetbrains-strikes-python-developers-with-pycharm-1.0-ide
https://www.eweek.com/development/jetbrains-strikes-python-developers-with-pycharm-1.0-ide
https://en.wikipedia.org/wiki/Proprietary_software
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Introduction 

In this chapter, methodologies proposed in chapter III have been described 

with experimental datasets. Specifically, this chapter describes (i) Analysis of the 

proposed VN_LFW approach of LFW estimation using VIS and NIR images and its 

comparative performance measurement with existing methods, (ii) Analysis of the 

proposed deep learning based approach SpikeSegNet and LGspikeNet for spike 

identification, (iii) counting approach and (iii) details description of the developed 

software. 

4.2 Analysis of VN_LFW approach of LFW estimation 

The proposed approach of LFW estimation is based on VIS and NIR 

imaging. Green Leaf Proportion (GLP) from VIS image and Mean Gray Intensity 

(NIR_MGI) from NIR image have been used to develop Artificial Neural Network 

(ANN) model to estimate LFW in rice plant. In this study, the experimental dataset 

of 104 set of leaves [26 images and each with 4 set of leaves (Fig 4.1)] have been 

considered. Ground truth of LFW has been measured by using weighting machine. 

LFW values corresponding to each set are given in Annexure 1. The flow diagram of 

the proposed approach has been given in section 3.2.2 of chapter III.  

 

(a) 

 

(b) 

Fig 4.1 Visual (a) and NIR (b) image and red boxes indicates the set of images 
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Green Leaf Proportion (GLP) measurement from VIS image 

For GLP measurement from VIS image, the algorithm mentioned in the 

previous chapter of section 3.2.2 has been used and implemented in MATLAB 

software of version 2015b, MathWork. The macro (GLP.m) is given in Appendix I. 

GLP refers the ratio of green leaf area with respect to the total leaf area. Outcome of 

each step of the proposed algorithm is given in Fig 4.2. GLP values corresponding to 

104 set of leaves are graphically represented in Fig 4.3. 

  

Fig 4.2 Outcome of each step of GLP measurement from VIS image 

 

Fig 4.3 GLP values corresponding to 104 set of leaves 

Mean Gray Intensity (NIR_MGI) measurement from NIR image 

For NIR_MGI measurement from NIR image, the algorithm mentioned in the 

previous chapter of section 3.2.2 has been used and implemented in MATLAB 

software of version 2015b, MathWork [Fig 4.4 (a), (b)]. The macro (NIR_MGI.m) is 

given in Appendix I. The outcome of each step is given in Fig 4.5. NIR_MGI values 

corresponding to 104 set of leaves are given in Fig 4.6. 
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(a) 

 

 

 

 

 

 

 

 

(b) 

Fig 4.4 (a), (b) Snapshot of MATLAB code for measuring NIR_MGI from NIR 

image processing 
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Fig 4.5 Outcome of each step of gray value extraction from NIR image 

 

Fig 4.6 NIR_MGI values corresponding to 104 set of leaves 

4.2.1 Model development and performance evaluation of VN_LFW approach 

For model development, the dataset (104 samples) has been divided into two 

parts randomly: 89 (i.e., 85%) for training and 15 (i.e., 15%) for testing. ANN model 

has been developed by using two independent parameters (GLP from VIS image and 

NIR_MGI from NIR image) and one dependent variable (ground truth LFW). 

Distinctive combinations of hidden layer and hidden nodes in each layer have been 

attempted as there are no settled hypotheses accessible for the choice of hidden layer 

and hidden node. Out of which one hidden layers with 5 hidden nodes are 

performing superior than other combinations. “Neuralnet” package of R software 

(Teodoro, 2015) has been employed for development of the model. The architecture 

of the best fitted ANN model is given in Fig 4.7.  
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Fig 4.7 Fitted ANN architecture 

The proposed ANN approach has been compared with the conventional 

approaches (based on linear function of projected shoot area) as well as linear 

regression approach based on GLP from VIS image and NIR_MGI from NIR image. 

Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are 

measured to compare the performances of the approaches both in training and testing 

dataset and the results are given in Table 4.1 and Table 4.2 respectively.  The 

predicted LFW after applying ANN and regression technique in training and test 

dataset has been given in Annexure I. 

Table 4.1 Comparison of proposed ANN based approach, regression and 

conventional approach in training dataset. 

Indices of 

Prediction 

accuracy  

Training 

Conventional approach based 

on linear function of 

projected shoot area 

Regression 

approach based 

on GLP and 

NIR_MGI 

ANN approach 

based on GLP 

and NIR_MGI 

RMSE 0.33 0.31 0.15 

MAPE 27.66 23.44 9.55 
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Table 4.2 Comparison of proposed ANN based approach, regression and 

conventional approach in testing dataset. 

Indices of 

Prediction 

accuracy  

Testing 

Conventional 

approach based on 

linear function of 

projected shoot area 

Regression 

approach based 

on GLP and 

NIR_MGI 

ANN approach 

based on GLP 

and NIR_MGI 

RMSE 0.36 0.31 0.13 

MAPE 32.06 24.97 9.65 

 

The above tables reflect that the proposed approach has outperformed than 

the other approaches in both training and testing dataset. The graphical plot of actual 

fresh weight of leaf versus fresh weigh predicted with different approaches (ANN, 

regression and conventional) are plotted in Fig 4.8. This also showed that the 

hypothesized approach with ANN modelling is superior as compared to other 

approaches. 

 

Fig 4.8 Line plots between actual LFW and modelled LFW (Regression, ANN and 

conventional approach) for the considered 104 samples 
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4.3 Analysis of the proposed approach of spike identification and counting in 

wheat plant 

The proposed approach involves identification (section 4.3.1) and counting of 

spikes (section 4.3.2) from the digital images of wheat plant is discussed as follows: 

4.3.1 Deep learning based approach for spike identification  

Spike identification through image analysis is a pixel wise segmentation 

problem of object (here, spikes). Convolutional encoder-decoder deep learning 

technique based model plays a promising role in this aspect [Ronneberger et al. 

(2015); Szegedy et al. (2015); Mohanty et al. (2016); Jaswal et al. (2019)]. In this 

study, two deep learning models have been developed for spike identification namely 

SpikeSegNet (Spike Segmentation Network) and LGspikeNet (Local patch 

extraction and Global mask refinement spike detection Network) based on 

convolutional encoder-decoder deep learning technique as discussed in the previous 

chapter. Details of these two network architecture, dataset preparation for developing 

the network and performance evaluation are discussed below: 

4.3.1.1 SpikeSegNet - Spike Segmentation Network: 

Dataset preparation for developing SpikeSegNet  

Original size of the image is 6576 x 4384 pixels which consist of not only the 

plant regions but also the chamber used in imaging Fig 4.9a. So, the images are 

cropped to get only the region of interest (plant regions of size 1656*1356) from the 

whole image as shown in Fig 4.9b.  

 

(a) 

 

(b) 

Fig 4.9 a) Original image of plant with imaging chamber, b) Cropped visual image 
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For developing the proposed network, cropped images (of size 1656*1356) 

are resized into 256*256 to reduce the network complexity. Complexity of the 

network is proportional to the size of the image to be processed (Ronneberger et al., 

2015). For training the network, visual images (RGB image) and its corresponding 

ground truth images (usually mask image) with class label (i.e., spike regions of the 

plant) has been prepared. Mask images consists of spike portions only corresponding 

to the visual image and are considered as part of network learning architecture for 

efficient identification of the objects (i.e., spike regions).  For masking the image 

following steps have been involved: 

Step 1: “wand tool” of photoshop software has been used to create a selection by 

tracing objects of uniform color which implements 8-connected region growing 

technique (Fig 4.10b).  

Step 2: Thresholding the resultant image of step 1 (Fig 4.10c).  

 

 

 

 

 

 

 

Fig 4.10 a) Visual image, b) Selection of spike regions of the image, c) Threshold 

binary image or mask image 

Development of SpikeSegNet network 

In this experiment, total 600 images of 200 plants from 3 side directions were 

recorded. Image dataset of randomly selected 85% of the total plant (i.e., 510 images 

of 170 plants) have been used in developing the model to identify or recognize spike 

regions on the digital image (binary masks) of the plant. The developed model has 

been tested on the randomly selected 15% of the dataset (i.e., 90 images of 30 

plants). The network is developed for pixel wise segmentation of objects (or spikes) 

from the whole plant of wheat. The proposed network has been trained by using 

visual images and its corresponding masks images containing class label (i.e., spike 

regions of the plant). In this study, the proposed network consists of 3 encoder 

Visual Image 
Binary Image/Ground 

truth mask image 

Apply 

thresholding 

Select Ear through 

8-connected Region 
growing technique 

(a) (b) (c) 
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blocks and corresponding hierarchy of 3 decoder blocks as shown in Fig 4.11. The 

numbers of encoder and decoder blocks are estimated empirically to yield the best 

results with optimum performance and by taking inspiration from UNet architecture 

(Ronneberger et al., 2015) popularly used in biomedical image segmentation. 

 

Fig 4.11 Details architecture of the proposed SpikeSegNet deep-network  

Each encoder block consists of convolution layer to produce a set of feature 

maps with rectified linear non-linearity (ReLU) activation function (Agostinelli et 

al., 2014). Then these feature maps are batch normalized (Ioffe & Szegedy, 2015) to 

improve the performance and stability of the network and followed by max-pooling 

with 2*2 window with stride 2 (filter/kernel moves across and down a 2 pixel) has 

been used for sub-sampling or down-sampling the features by factor of 2. Each 

encoder block is repeated with varying filter depth of 16, 64, and 128 to encode the 

features. Square filters have been used as it is popularly used in various state-of-art 

methods (Simonyan & Zisserman, 2014). Details of each encoder block (i.e., input to 

the each encoder block, number of convolution filter used with their sizes, output of 



58 
 

each encoder block, input and output to the corresponding max-pool) are given in 

Table 4.3. 

Table 4.3 Details of each encoder block and corresponding max-pool 

Encoder 

Block #  

Input to 

encoder 

block 

Convoluti

on  filter 

size 

Number of 

convolution  

filter 

Output of 

encoder 

block 

Input to 

max-pool 

Output to 

max-pool 

Block  1 256*256 

(original 

image) 

3*3 16 256*256*16 256*256*16 128*128*16 

Block 2 128*128*

16 

3*3 64 128*128*64 128*128*64 64*64*64 

Block 3 64*64*64 3*3 128 64*64*128 64*64*128 32*32*128 

For decoding, convolutional 2D transpose (or, de-convolution) has been used 

to up-sample the feature maps by a factor of 2 as opposite to the max-pool. The 

spatial information from the encoder has been forwarded to the decoder along with 

incoming up-sampled features which helps in generating more location specific 

masks. Each decoder block consists of convolution layer with “ReLU” activation 

function to produce features followed by batch normalization has been done to the 

each produced feature. Each decoder blocks are repeated for varying channel depths 

of 128, 64, and 16 to decode the features. Details of each decoder block (i.e., input to 

the each decoder block, number of convolution filter used with their sizes, output of 

each decoder block, input and output to the corresponding transpose convolutional 

layer) are given in Table 4.4. 

Table 4.4 Details of each decoder block and corresponding transpose convolutional 

layer 

Decoder 

Block # 

Input to 

transpose 

convolution 

Output of 

transpose 

convolution 

Input to 

decoder block 

Convolution  

filter size 

Number of 

convolution  

filter 

Output of 

decoder block 

Block  1 32*32*128 64*64*128 64*64*128 3*3 128 64*64*128 

Block 2 64*64*128 128*128*64 128*128*64 3*3 64 128*128*64 

Block 3 128*128*64 256*256*64 256*256*64 3*3 16 256*256*16 

Output of the final decoder has been fed into 3*3*1 convolution layer with 

“softmax” activation function (Dunne & Campbell, 1997) to classify the object (i.e., 

spike). “Adam” optimizer (Kingma & Ba, 2014) was used with a learning rate of 

0.0005 to update the weights. “Binary cross-entropy” (Hagenauer et al., 1996) loss 

function has been used in this study to predict binary class label (i.e., spikes and non-

spikes). It is the most commonly used loss function in image segmentation to 
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compute pixel-wise cross entropy. It examines each pixel individually and compares 

its binary class predictions (either 0/1; in this context, spikes region or not) to the 

ground truth (or, segmented ground truth consisting of spike regions only). Cross 

entropy loss evaluates the class predictions for each pixel individually and averages 

it over all the pixels. Therefore, each pixel contributes uniformly to the overall 

objective loss function. Suppose there is wheat plant image I of size p×q, 

corresponding ground truth mask is I
grtr 

and the mask image predicted by the 

developed network is I
pred

. Hence, binary cross entropy loss 

Loss_Binary_Cross_Entropy (I
pred

, I
grtr 

) can be defined as follows: 

 
1 1

1
[ ( , )*log( ( , )) (1 ( , ))*log(1 ( ( , ))]

*
_ _ _  ,  

q p
grtr pred grtr prpred er

k

g dtr

l

Loss Binary Cross Entrop I p q I p q I p q I
q

I qy p
p

I
 

    

            

The network has been developed and implemented by using python libraries 

(such as, Keras, TensorFlow, Matplotlib etc.) in PyCharm editor (Fig 4.12).  

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Fig 4.12 (a), (b) Training of encoder-decoder network in PyCharm 

 

Encoder Block 

(vi) 

 

Decoder 
Block Model 
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Performance evaluation of SpikeSegNet  

Training of the network has been done for 200 epochs and at each epoch 

training and validation loss has decreased and plateaued around 160 epochs (Fig 

4.13). The performance analysis of the proposed segmentation network for 

identification or detection of spikes has been tested on the randomly selected 

validation dataset (i.e., 90 images from 3 side-directions of 30 plants). For this 

purpose, the dataset has been fed to the developed model of the trained network and 

the resulting binary mask images are compared with the ground truth images and 

thereafter, segmentation performance is measured by different performance 

parameters. The different evaluation parameters like E1, E2, Jaccard Index (JI), 

Accuracy, Precision, Recall, and F-measure are computed and average value of these 

parameters for the 90 images of 30 plants has been shown in Table 4.5. Details about 

statistical evaluation parameters are given in section 3.3.3.1of chapter III. Predicted 

output masks of some of the sample test images are shown in Fig 4.14. 

  

Fig 4.13 Training and validation loss per epoch 
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Fig 4.14 Predicted output masks of some of the sample test images 

Table 4.5 Metrics for identification of spikes 

E1 E2 Jaccard 

Index 

(JI) 

Accuracy Precision Recall F-

measure 

0.03061 0.13356 0.94348 0.94669 0.94561 0.94786 0.94887 

 The average value of the segmentation error E1 and E2 are 0.03061 and 0.13356 

respectively (Table 4.5). As the performance has been calculated at pixel level, the 

error seems to be statistically significant. Accuracy of the developed model is near to 

95% and spikes are detected with an average precision and recall of 94.56% and 

94.78%, respectively. The precision value reflects that 94.56% of the detected pixels 

are actually spikes, whereas recall value reflects that 94.78% of actual spikes pixels 

were detected among the ground truth spike pixels using the developed network. 

Average F1 score reveals that the proposed network is 94.88% robust in identifying 

or detecting spikes from whole plant images.  

4.3.1.2 LGspikeNet - Local patch extraction and Global mask refinement spike 

detection Network: 

While carrying out the experiment, it was observed that SpikeSegNet 

resulted in some blurriness and irregular shape of the object (Fig 4.14). This might 

have arisen as the network has been trained end-to-end by resizing the original image 
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into 256*256; it loses the contextual as well as spatial information which is very 

essential to learn features for the segmentation network. To improve upon the same a 

new deep network LGspikeNet (Local patch extraction and Global refinement spike 

detection Network) has been proposed for spike identification at patch level. Patches 

are nothing but the small size parts of an image as shown in Fig 4.16. LGspikeNet is 

combination of two especial features as follows:  

1) Local Patch Extraction (LPspikeNet) 

2) Global Mask Refinement (GMspikeNet) 

In LPspikeNet, the contextual and spatial features are learned at local patch level. 

The output of the network is segmented mask image which are then refined at global 

level using GMspikeNet. The details of the dataset preparation for patch level feature 

learning and the network architecture are given below: 

Dataset preparation for developing LGspikeNet: 

For dataset preparation same procedure has been followed as mentioned in 

the sub-section of 4.3.1 for SpikeSegNet. After that, visual images (of size 

1656*1356) as well as ground truth mask images (of size 1656*1356) are divided 

into 100 pixel overlapping patches of size 256*256. So, from one image 180 patches 

will be generated. In this process from one image 180 patches will be generated 

which in turn will act as images. 

Fig 4.15 Original image (of size 1656*1356) is divided into 100 pixel 

overlapping patches where red box is of size 256*256 

 

 

 

 



63 
 

 

 

                                                    

 

 

 

 

 

Fig 4.16 (a) Patches of visual image and (b) corresponding mask image  

Architecture of LGspikeNet:  

1. Architecture of Local Patch Extraction Network (LPspikeNet):  

 The network architecture consists of Encoder, Decoder and Hourglass as 

bottleneck of the Encoder and Decoder. The architecture of the network has been 

built by taking inspiration from UNet (Ronneberger et al., 2015). Encoder takes 

input patch images to give feature map representation that holds the contextual and 

spatial information.  Decoder takes the information as input and produce 

corresponding segmentation masks as output. Hourglass is introduced in the 

bottleneck to compress the feature map representation for better segmentation 

results. Additionally, skip connections [Ronneberger et al. (2015); Jaswal et al. 

(2019)] are formed between the encoder and the decoder. The skip connection helps 

in transferring the spatial information across the network for better localization of the 

segmentation masks. Through the skip connections, corresponding feature maps 

from the encoder before down sampling (or, max-pooling) are concatenated with the 

corresponding feature maps of the decoder after up-sampling (or, transverse 

convolution). The architecture of the proposed LPspikeNet network consists of 3 

encoder blocks, corresponding hierarchy of 3 decoder blocks and 3 hourglasses 

between encoder-decoder as bottleneck. By introducing hourglass in the bottleneck, 

  

 

(a) (b) 
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the segmentation network gives precise and contextually more confident 

segmentation mask (Ronneberger et al., 2015). But, more than one hourglass in the 

network will increase the network depth as well as performance may fall due to over-

fitting. The numbers of encoder blocks, decoder blocks and the hourglass are 

estimated empirically to yield the best results with optimum performance and by 

taking inspiration from UNet architecture. The architecture is given in Fig 4.17 and 

the details of encoder, decoder and hourglass are given in the following sections. 

Fig 4.17 Details architecture of the proposed LPspikeNet network 
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Encoder (E): The 1
st
 encoder block takes the image patches as input and produces 

corresponding feature maps as output and forwarded it to the 2
nd

 and 3
rd

 encoder 

block for further feature extraction. Each encoder block consists of repeated sets of 

dual 3*3 convolutions (with padding 1 and stride 1) succeeded by ReLU activation 

and Batch Normalization. Each block is succeeded by a max-pool operation (size 2 * 

2 and stride 2) and is repeated with filters having varied channel depths of 16; 64; 

128. The design architecture is same as discussed in subsection of 4.3.1 and Table 

4.4. 

 

Hourglass (H): By introducing hourglass network as the bottleneck, it gives more 

confident segmentation result with lesser blurriness [Ronneberger et al. (2015)]. It’s 

mainly due to the innate design of hourglass network which minimizes the feature 

map and captures the information by only concentrating on essential features. 

Multiple hourglass networks enhance the invariant features that are captured at 

various scale, viewpoint and occlusion very effectively to predict the segmentation 

mask of the image accurately [Jaswal et al. (2019)]. The output of the encoder 

network has been passed as input to the hourglass network. Along with local context, 

it captures relationship among different local patterns (i.e., global context).The 

network consists of two parts: Hourglass Encoder (Hg
E
) and Hourglass Decoder 

(Hg
D
). Each encoder and decoder in hourglass again contains Residual 

Module/Block to resolve the problem of over-fitting as well as gradient vanishing 

issues. In simple Encoder/Decoder network, after each max pool step the output of 

encoder block is concatenated with the corresponding decoder block. In hourglass 

network, instead of concatenating the layer of the encoder with that of the decoder, 

the layer is further convolved through residual block and then added element-wise to 

the corresponding layer of the decoder. The Residual Module/Block consists of a 1 

* 1 convolution of depth 128 followed by 3 * 3 convolution of depth 128 and then 1 

* 1 convolution of depth 256 as shown in Fig 4.18. Hg
E 

network receives the output 

from the encoder network E and contains four residual modules in sequential order 

and Hg
D
 network contains long-term skip connections in order to preserve the spatial 

information. Similar to Hg
E
, it also contains four residual modules in sequential 

order. Input and output of each hourglass has been given in Table 4.6. 
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Fig 4.18 Structure of single residual block 

 

Table 4.6 Input and output of each hourglass  

Hourglass Input  Output After Scale Up After Scale Down 

Hourglass 1 32*32*128 32*32*128 64*64*128 _ 

Hourglass 2 64*64*128 64*64*128 _ 32*32*128 

Hourglass 3 32*32*128 32*32*128 _ - 

“_” indicates the corresponding operation has not been done 

 

Decoder (D): In decoder, the output from the 3
rd

 hourglass (32 * 32 * 128) is up-

sampled using a 3*3 transpose convolution with padding 1 and stride 1. Then the 

resulting feature map (of size 64 *64*128) got concatenated with the corresponding 

encoder feature map. The concatenated feature map (of size 64 * 64 * 256) is then 

passed to two, 3 * 3 convolution layers (padding 1 and stride 1) followed by ReLU 

activation and Batch Normalization and is repeated with filters having varied 

channel depths of 128, 64 and 16 as opposite to the encoder blocks. The design 

architecture is same as discussed in subsection of 4.3.1 and Table 4.4. 

Output of the final decoder has been fed into 3*3*1 convolution layer with 

“softmax” activation function to classify the object (i.e., spike) at patch level. 

“Adam” optimizer was used with a learning rate of 0.0005 to update the weights. 

“Binary cross-entropy” was used as loss function to predict binary class label (i.e., 

spikes and nonspikes) at patch level. Sample outputs of LPspikeNet are already 

given in Fig 4.17. 
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B. Global Mask Refinement Network (GMspikeNet):  

 Architecture of GMspikeNet is same as SpikeSegNet as discussed in section 

4.3.1 of this chapter. Output of LPspikeNet is predicted mask image of size 256*256 

of the visual image patches as shown in Fig 4.17. These mask image patches then 

merged to construct the predicted mask image (mergeLPmask) of original size 

(1656*1356) as represented in Fig 4.19.  

 

 

 

 

Fig 4.19 Merging of mask image patches (mergeLPmask)  

As shown in the above diagram, output of LPspikeNet contains blurriness. 

To resolve the problem GMspikeNet has been developed for refining the mask 

image (mergeLPmask). After that mergeLPmask (of size 1656*1356) has been 

resized into 256*256 and used as input/dependent variable (X) to produce actual 

ground truth mask image (Y) as output/dependent variable as shown in Fig 4.20. 

 

(X) 

 

 
 
 
 

(Y) 

 

(Y) 

Fig 4.20 Independent (X) and dependent (Y) variable for training GMspikeNet 
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The proposed GMspikeNet network consists of 3 encoder blocks and 

corresponding hierarchy of 3 decoder blocks. The inner-structure and hyper-

parameter of the encoder/decoder block is same as given in Table 4.3 and Table 4.4. 

Details architecture of GMspikeNet is given below (Fig 4.21). 

 

Fig 4.21 Details architecture of the proposed GMspikeNet network  

Training and performance evaluation of LGspikeNet:  

For training LGspikeNet, 85% of the total plant images (i.e., 510 images out of 600 

images) have been used. First part of the network i.e., LPspikeNet has been trained 

by extracting patches from the training image dataset as mentioned in section 4.3.2. 

As original image (of size 1656*1356) and its corresponding ground truth mask 

image (of size 1656*1356) is divided into 100 pixel overlapping patches, so, the 

training dataset contains 91800 patches (180 patches of 510 images each). Training 

of the network has been done for 200 epochs and the loss has been computed at each 

epoch. At every epoch it was decreased and after 145 epochs it was plateaued (Fig 
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4.22). Average accuracy has also been computed for each epoch (Fig 4.23), and 

around 118 epochs it was plateaued and shown high accuracy in identifying the mask 

image at patch level.  

 

Fig 4.22 Training loss per epoch 

 

Fig 4.23 Training accuracy per epoch 
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Sample of the predicted output mask image patches are already shown in Fig 

4.17. Then the corresponding mask image patches are merged to construct original 

size of the mask image of the training dataset (i.e., 510 mask image of size 

1656*1356). As discussed in the previous section, output of LPspikeNet contains 

blurriness. For refining these blurriness second part of the LGspikeNet network i.e., 

GMspikeNet has been trained. The training dataset contains 510 output images of 

LPspikeNet as independent variable (X) and its corresponding ground truth mask 

image as dependent variable (Y) (Fig 4.20). Predicted output masks of some of the 

sample test images after applying GMspikeNet are shown in Fig 4.24. 

 

 

  

 

 

 

 

Fig 4.24 Predicted output masks of some of the sample test images 

The performance analysis of the proposed segmentation network 

LGspikeNet for identification or detection of spikes was tested on the same 

validation dataset (i.e., 90 images from 3 side-directions of 30 plants) as done in case 

of SpikeSegNet network. For this purpose, the dataset was fed to the developed 

model of the trained network and the resulting binary mask image was compared 

with the ground truth image and thereafter, segmentation performance was measured 

by different performance parameters. The different evaluation parameters like E1, E2, 

Jaccard Index (JI), Accuracy, Precision, Recall, and F-measure are computed and 

average value of these parameters for the 90 images of 30 plants has been shown in 

Table 4.7.  
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Table 4.7 Metrics for identification of spikes 

E1 E2 Jaccard 

Index 

(JI) 

Accuracy Precision Recall F-

measure 

0.000608 0.033561 0.999387 0.999693 0.999516 0.999871 0.999693 

 Accuracy of the developed model is near to 100% and spikes are detected with 

an average precision and recall of 99.95% and 99.98%, respectively. The precision 

value reflects that 99.95% of the detected pixels are actually spikes, whereas recall 

value reflects that 99.98% of actual spikes pixels were detected among the ground 

truth spike pixels using the developed network. Average F1 score reveals that the 

proposed network is 99.96% robust in identifying or detecting spikes from whole 

plant images.  

 

4.3.2 Analysis of spike count approach 

For counting number of spikes per plant, VIS images from three directions 

(0
0
, 120

0
, 240

0
) of the plant have been used because image from one direction cannot 

cover all the spikes. Then the three direction VIS images corresponding to one plant 

are passed as input to the developed LGspikeNet model. LGspikeNet network 

model has been chosen for spike detection as it out-performs than SpikSegNet. 

Output of the model is nothing but the predicted mask image/ binary image. After 

that, “analyse particles” function of imageJ has been applied on the output images 

to count number of spikes/ears (Schneider et al., 2012). Flow diagram of approach is 

presented in Fig 4.25. Performance of the developed model has been tested on the 

same validation dataset (15% of the dataset i.e., 90 images of 30 plants). It has been 

found that, the maximum spike count obtained from the images of three directions 

(0
0
, 120

0
, 240

0
) of the single plant is very closely associated with the ground truth 

spike count. Hence, the image with maximum spike count has been used to compare 

and evaluate the performance of the proposed approach for spike counting. 
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Fig 4.25 Flow diagram of counting spike number in a single plant 

In order to validate the counting approach, resultant output mask images were 

superimposed over the original image (RGB image) and TP, FP, FN, etc. was 

computed. Some of the test images, their output mask image and corresponding 

superimposed images are as shown in Fig 4.26.   

  

 

Fig 4.26 (a) original image (RGB image), (b) Predicted output masks image,                               

(c) superimposed image 

 

The precision, accuracy and F1 score corresponding to the 30 plants are represented 

in Table 4.8. Average precision, accuracy and F1 score was 99%, 94% and 96%, 

respectively. 
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Table 4.8 Outcome of the proposed approach of spike counting on the test images of 

30 plants 

Image 

no. 

Ground 

Truth 

Predicted 

using 

Model 

TP FP FN Precision Accuracy F1 score 

1 10 9 9 0 1 1.00 0.90 0.95 

2 8 7 7 1 1 0.88 0.78 0.88 

3 10 9 8 0 1 1.00 0.89 0.94 

4 11 10 10 0 1 1.00 0.91 0.95 

5 10 10 10 0 0 1.00 1.00 1.00 

6 9 9 8 1 0 0.89 0.89 0.94 

7 10 9 8 1 1 0.89 0.80 0.89 

8 6 6 6 0 0 1.00 1.00 1.00 

9 12 11 10 0 1 1.00 0.91 0.95 

10 12 12 11 0 1 1.00 0.92 0.96 

11 13 12 10 0 1 1.00 0.91 0.95 

12 11 10 9 0 1 1.00 0.90 0.95 

13 6 6 6 0 0 1.00 1.00 1.00 

14 8 8 7 1 0 0.88 0.88 0.93 

15 16 15 13 2 1 0.87 0.81 0.90 

16 2 2 2 0 0 1.00 1.00 1.00 

17 10 10 10 0 0 1.00 1.00 1.00 

18 1 1 1 0 0 1.00 1.00 1.00 

19 11 10 10 0 0 1.00 1.00 1.00 

20 7 7 7 0 0 1.00 1.00 1.00 

21 8 7 7 0 1 1.00 0.88 0.93 

22 8 7 7 0 1 1.00 0.88 0.93 

23 10 10 8 0 2 1.00 0.80 0.89 

24 11 10 10 0 1 1.00 0.91 0.95 

25 2 2 2 0 0 1.00 1.00 1.00 

26 8 8 7 0 0 1.00 1.00 1.00 

27 9 8 7 0 1 1.00 0.88 0.93 

28 12 10 10 0 2 1.00 0.83 0.91 

29 7 7 7 0 0 1.00 1.00 1.00 

30 8 8 7 1 0 0.88 0.88 0.93 

Average   

   

0.99 

 

0.94 

 

0.96 

 

 

The proposed encoder-decoder based model (LGspikeNet) achieved 99.96% 

accuracy in detecting/identifying spikes, but counting accuracy is about 94% (Table 

4.8). This may be due to undercounting of spikes that overlap each other and object 

linking (or connecting) problem (Fig 4.31) and invisibility of some spikes which are 

hidden behind other plant structures. As flood-fill technique employs object count by 
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growing through similar pixel regions from the starting pixel therefore; if multiple 

objects are linked together, it will be counted as one object. In this study, an attempt 

has been made to resolve this problem by taking the images from three different 

angles i.e., 0
0
, 120

0
 and 240

0
. 

 

(a) 

 

(b) 

Fig 4.31 (a) Overlapping problem, (b) Object connecting problem 

4.3.3 Online software for spike identification and counting: 

In this study, online software for spike identification and counting has been 

developed. Details architecture of the software and technologies used have been 

discussed in the previous chapter. Client Side Interface Layer (CSIL) of the software 

is responsible for taking input from the user. It has been implemented using Hyper 

Text Markup language (HTML), Cascading Style Sheet (CSS) and JavaScript. 

Server Side Application Layer (SSAL) consists of FLASK web development 

module, deep learning module for spike identification and counting module for 

counting number of spikes. FLASK web development module is responsible for 

taking request from CSIL and gives appropriate response to the layer. Deep learning 

module is built with Tensorflow, keras framework and several python libraries 

Numpy, Scipy, Matplotlib etc. whereas counting module built with “analyse 

particles” function of imageJ. 

For identifying and counting wheat spikes in the online software, following 

steps need to be taken: 

Step 1: Browse and select three input images of wheat plant of three directions (0
0
, 

120
0
, 240

0
) and upload them by clicking on “Upload” button. Snapshot of the 

software is given in Fig 4.27. 
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Step 2: (Spike identification) click on “Run Model” to apply the developed deep-

learning model on the input image for identifying spikes (Fig 4.24). The output 

image is mask/binary image consists of spikes only (Fig 4.28). 

Step 3: (Spike counting) click on “Count” button to apply “analyse particles” 

function of imageJ to count number of spikes for each image of three directions. (Fig 

4.29). 

 

Fig 4.27 Browse and upload the input images 

 

 

 

Fig 4.28 Click on Run Model for spike identification 
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Fig 4.29 Output of spike identification  

 
Fig 4.30 Output of spike counting 
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In this study, a new approach has been proposed to estimate LFW by using 

ANN model with combination of VIS-NIR images. The main feature of the proposed 

approach is that the concept of moisture content has been included which is the most 

important basis of LFW. This study uncovered that GLP from VIS image and Mean 

Gray Value from NIR image can be effectively used for estimating LFW. Another 

approach has been presented in this study to detect and count wheat spikes in non-

destructive manner based on combine effort of digital image analysis and deep 

learning technique. In this study, two deep learning models have been developed for 

spike identification namely SpikeSegNet (Spike Segmentation Network) and 

LGspikeNet (Local patch extraction and Global mask refinement spike detection 

Network) based on convolutional encoder-decoder deep learning technique. It was 

observed that SpikeSegNet resulted in some blurriness and irregular shape of the 

object. To improve upon the same LGspikeNet has been proposed for spike 

identification at local patch level. Online software has also been developed to 

automate the pipeline of spike detection and counting. The next chapter (Chapter V) 

contains the summary and conclusion of the whole study. 
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CHAPTER V 

SUMMARY AND CONCLUSION 

Significantly improved crop varieties are much needed to deal with rapidly 

growing human population scenarios. Besides, systematic quantification of plant 

phenotypic traits or components in a high-throughput and non-destructive manner is 

a challenging task. In this context, high-throughput image analysis for plant 

phenotyping can be used to extract several phenotypic parameters related to plant 

growth, physiology, yield etc. avoiding time consuming manual efforts.   In this 

study, rice and wheat crop have been selected because of their importance as major 

food crop and vast available background knowledge of their physiology, genetics 

and genomics. New approaches have been proposed based on image analysis and 

machine learning technique to derive phenotypic traits like biomass in rice plant and 

spike identification and counting in wheat plant. 

Plant biomass plays a vital role in studying functional plant biology and 

growth analysis.  It is an important factor to determine plant growth rate and net 

primary production. Leaf Fresh Weight (LFW) is one of the parameters used to 

estimate the plant biomass. Conventional method of estimating LFW is not only time 

consuming and laborious but also destructive in the nature, Some studies are 

available for estimating plant biomass through non-destructive image analysis 

technique (Paruelo et al., 2000; Mizoue and Masutani 2003; Golzarian et al., 2011; 

Schirrmann et al., 2016), but most of them considered projected shoot area as a 

linear function of plant biomass. None of them, considered water content which is 

the key component of biomass. In this study, it is hypothesized that combined use of 

visual (VIS) and near infra-red (NIR) image can compute plant biomass more 

precisely than VIS image only as NIR reflectance image is used to measure water 

content of the plant. For developing the model of LFW estimation in rice plant 

through image analysis, VIS and NIR images are taken from high-throughput plant 

phenotyping facility established at Nanaji Deshmukh Plant Phenomics Centre, 

ICAR-IARI, New Delhi. Two image derived parameter i.e., Green Leaf Proportion 

(GLP) from VIS image and Mean Gray Intensity (NIR_MGI) from NIR images have 

been used for building the machine learning model to estimate LFW. The proposed 
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approach is named as VN_LFW. Artificial Neural Network (ANN) technique has 

been used in model development and its performance has been compared with linear 

regression technique. The image dataset (104 samples) has been divided into training 

and testing at 85:15 ratios to develop ANN model to estimate LFW. Distinctive 

combinations of hidden layer and hidden nodes in each layer has been attempted and 

out of which one hidden layers with 5 hidden nodes performed superior than other 

combinations. Thus, the ANN architecture for estimating LFW consists of one input 

layer with two input nodes (GLP and NIR_MGI), one hidden layers with 5 hidden 

nodes and one output layer with one output node (LFW). The proposed approach has 

been compared with the conventional image processing based approach (linear 

function of projected shoot area from VIS image only) as well as linear regression 

approach based on GLP from VIS image and NIR_MGI from NIR image. Proposed 

approach VN_LFW has outperformed   than the other comparative approaches in 

both train and test dataset with Root Mean Square Error (RMSE) and Mean Absolute 

Percentage Error (MAPE) as 0.15 and 9.55 in training dataset and 0.13 and 9.65 in 

testing dataset respectively. The algorithm of measuring GLP and NIR_MGI has 

been implemented in Matlab software.  

Another image processing based approach has been given for spike 

identification and counting in wheat plant Spike counting per plant or per unit area 

through naked-eye is a laborious, destructive and time consuming process for large 

amount of genotypes. Yield estimation of wheat in high-throughput and non-

destructive manner has received a significant research attention. In this context, few 

literatures (Bi et al., 2010; Duan et al., 2015; Zhao et al., 2015; Li et al., 2017; 

Sadeghi-Tehran et al., 2017; Pound et al., 2017; Hasan et al., 2018) are available in 

the area of spike/panicle detection and characterization through image analysis. In 

some cases, images were captured after cutting spikes from the plant which is 

destructive in nature. Some researchers applied machine learning techniques by 

manually defining colour intensity and texture component for segmenting the spike 

regions. In the recent trend, it has been seen that computer visions particularly object 

detection plays an important role in non-destructive plant phenotyping through 

digital image analysis which is being helpful for automatic detection and counting of 

spikes in wheat plant (Pound et al., 2017; Hasan et al., 2018). In this context, an 

approach has been presented based on combined effort of digital image analysis and 
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deep learning techniques which involve identification and counting of spikes from 

the digital images of whole wheat plant.  

For spike identification, deep learning models have been developed namely 

SpikeSegNet (Spike Segmentation Network) and LGspikeNet (Local patch 

extraction and Global mask refinement Spike detection Network) based on 

convolutional encoder-decoder deep learning technique, whereas for counting 

number of spikes per plant, “analyse particles” function of imageJ which 

implements flood-fill image analysis technique has been applied on the output image 

(binary/mask image containing spike regions only) of the developed model. For 

developing the deep learning model and validating the proposed approach, VIS 

images of wheat plants are taken from three different angles (0
o
, 120

0
, 240

o
) of the 

plant. To develop the model, image dataset of 200 plants with 3 images each are split 

randomly into training and validation at 85:15 ratios. The developed model was 

validated on the validation dataset (images of randomly selected 15% of plants). The 

proposed SpikeSegNet network model architecture consists of 3 encoder blocks and 

corresponding hierarchy of 3 decoder blocks and the network has been trained end-

to-end by resizing the original image (of size 1656*1356) into 256*256. Encoder 

blocks take input image to give feature map representation that holds the contextual 

and spatial information and decoder blocks take the information as input and produce 

corresponding segmentation masks as output. For spike identification, precision, 

accuracy and robustness (F1 score) of the proposed SpikeSegNet network model has 

been found as 94.56, 94.66 and 94.88% respectively. It was observed that, 

SpikeSegNet network results some sort of irregular and inaccurate segmentation of 

the objects (or, spike). As the network has been trained end-to-end by resizing the 

original image into 256*256, it loses the contextual as well as spatial information 

which is very essential to learn features for the segmentation network. To improve 

upon the same, another deep network LGspikeNet has been proposed. LGspikeNet 

network model architecture is a combination of two especial feature networks 

namely Local Patch Extraction (LPspikeNet) and Global Mask Refinement 

(GMspikeNet). The network has been trained at patch level. Patches are nothing but 

the small size parts of an image. For spike identification, precision, accuracy and 

robustness (F1 score) of the proposed LGspikeNet network model has been found as 

99.95, 99.96 and 99.96% respectively, while for spike counting the precision, 
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accuracy and robustness were 99, 94 and 92% respectively. Although the proposed 

encoder-decoder model for detecting/identifying spikes achieved 99.96% accuracy 

but counting accuracy is comparatively less (94%). This is because of overlapping of 

spikes and invisibility of some spikes which are hidden behind other plant structures. 

In this thesis, online software for identification and counting of wheat spikes has also 

been developed by using the proposed LGspikeNet network model. Client Side 

Interface Layer (CSIL) of the developed software has been implemented using 

Hyper Text Markup language (HTML), Cascading Style Sheet (CSS) and JavaScript 

technology. Server Side Application Layer (SSAL) has been built using Flask web-

development tool for taking the input from users and Deep learning module built 

with Tensorflow, Keras framework and Numpy, Scipy, Matplotlib, OpenCV etc. 

libraries of python for detection of spikes and ImageJ module has been integrated to 

count the objects (or, spikes) on the output image of the deep learning module.  

Thus, in this study a new approach, VN_LFW, has been proposed to estimate 

LFW by using ANN model with combination of VIS-NIR images. The main feature 

of the proposed approach is that the concept of moisture content has been included 

which is the most important basis of measuring LFW. This study also uncovers that 

GLP from visual image and NIR_MGI from NIR image can be effectively used for 

estimating LFW and the developed model out performs over projected shoot area 

based conventional approach as well as the linear regression approach based on GLP 

and NIR_MGI. Another approach has been presented in this study to detect and 

count wheat spikes in non-destructive manner based on combine effort of digital 

image analysis and deep learning technique. Online software has also been 

developed to automate the pipeline of spike detection and counting. The approach 

can be applicable to predict yield of the particular plant by using the spike count and 

pixel area of the spikes as well as the presence of chaffy grain in the spike can be 

detected by differences in moisture content which can be obtained by super-

imposing the output of LGspikeNet network (i.e., binary image consists of spike 

regions only) on the NIR image. This approach may be useful to other cereal crops 

like rice, maize in future. 



 

ABSTRACT 

Quantification of phenotypic parameter is necessary to meet the future demand of 

agricultural production. Conventional measurements of these traits/parameters are time-

consuming, destructive and labour-intensive. In this study, new approaches have been 

proposed based on image analysis and machine learning technique to derive phenotypic 

traits like Leaf Fresh Weight (LFW) in rice plant and spike identification and counting in 

wheat plant. For this purpose, images have been taken from high-throughput plant 

phenotyping facility established at Nanaji Deshmukh Plant Phenomics Centre, ICAR-IARI, 

New Delhi. In this study, it is hypothesized that combined use of visual (VIS) and near infra-

red (NIR) image can compute LFW more precisely than VIS image only as NIR reflectance 

image is used to measure water content of the plant. Two image derived parameters i.e., 

Green Leaf Proportion (GLP) from VIS image and Mean Gray Intensity (NIR_MGI) from 

NIR images have been used for building Artificial Neural Network (ANN) model to estimate 

LFW. The proposed approach is named as VN_LFW. The proposed approach significantly 

enhanced the fresh biomass prediction as compared with the conventional regression 

technique in both train and test dataset with Root Mean Square Error (RMSE) and Mean 

Absolute Percentage Error (MAPE) as 0.15 and 9.55 in training dataset and 0.13 and 9.65 in 

testing dataset respectively. The algorithm of measuring GLP and NIR_MGI has been 

proposed and the macro has been developed using Matlab software. Another significant area 

for spike identification has been attempted with deep learning models of Artificial 

Intelligence.  Two models have been developed for spike identification namely 

SpikeSegNet (Spike Segmentation Network) and LGspikeNet (Local patch extraction and 

Global mask refinement Spike detection Network) based on convolutional encoder-decoder 

deep learning technique. For counting number of spikes per plant, “analyse particles” 

function of imageJ which implements flood-fill image analysis technique has been applied 

on the output image (binary/mask image containing spike regions only) of the developed 

model. For spike identification, precision, accuracy and robustness (F1 score) of the 

proposed SpikeSegNet model has been found as 94.56, 94.66 and 94.88% respectively 

whereas for LGspikeNet it has been as 99.95, 99.96 and 99.96% respectively. In spike 

counting using LGspikeNet, the metric values are 99, 94 and 92% respectively. Online 

software for identification and counting of wheat spikes has also been developed by using 

the proposed LGspikeNet network model. 

Keywords: deep learning, encoder-decoder deep network, GLP, image analysis, LFW, 

moisture content, NIR, NIR_MGI, non-destructive plant phenotyping, rice, VIS, wheat 

spikes identification and count.  



 

lkj 

Ñf"k mRiknu dh Hkfo"; dh ekax dks iwjk djus ds fy, QSuksfVfid izkpyksa dh ek=k dk fu/kkZj.k vko’;d 

gSA bu y{k.kksa@izkpyksa ds ikjEifjd eki le; ysus okys] fMLVªfDVo ,oa Je&xgu gSaA bl v/;;u esa] 

pkoy ds ikS/ks esa yhQ QzS’k OgsV ¼LFW½ tSls QSuksfVfid y{k.kksa dks izkIr djus rFkk xsgw¡ ds ikS/ks esa 

Likbd dh igpku ,oa x.kuk djus ds fy, best ,ukfyfll rFkk e’khu yfuZax Vsduhd ds vk/kkj ij 

u;h vizksps izLrkfor dh x;h gaSA bl mn~ns’; ds fy,] bestst ukukth ns’keq[k IykaV fQuksfeDl lsaVj] Hkk-

Ñ-v-i-&Hkk-Ñ-v-la-] ubZ fnYyh esa LFkkfir gkbZ&FkzqiqV IykaV fQuksfVfiax QsflfyfV ls izkIr dh xbZaA bl 

v/;u esa] ;g ifjdYiuk dh xbZ gSa fd fotqvy ¼VIS½ ,oa fu;j bUQzk&jSM ¼NIR½ ds la;qDr mi;ksx ls 

dsoy VIS best dh vis{kk LFW vf/kd lVhdrk ls x.kuk dj ldrk gS D;ksafd ,uvkbZvkj 

fjQysDVsUl best dk mi;ksx ikS/ks dh ty dh ek=k dks ekius ds fy;s fd;k tkrk gSA LFW ds vkdyu 

ds fy;s vkfVZfQf’k;y U;wjy usVodZ ¼ANN½ ekWMy ds fuekZ.k ds fy;s nks best O;qRiUu izkpyksa vFkkZr~ 

ohvkbZ,l best ls xzhu yhQ iziksj’ku ¼GLP½ rFkk ,uvkbZvkj bestst ls ehu xzs bUVsuflfV 

¼NIR_MGI½ dk iz;ksx fd;k x;k gSA izLrkfor vizksp dks VN_LFW dk uke fn;k x;k gS A 

izLrkfor vizksp us :V ehu Ldosvj ,jj ¼RMSE½ ,oa ehu ,ClksY;wV ijlsUVst ,jj ¼MAPE½ ds lkFk 

VsfLVax MkVk lSV eas Øe’k% 0-15 ,oa 9-55 rFkk 0-13 ,oa 9-65 ds :i esa Vªsu ,oa VsLV MkVk lSV nksuksa esa 

ikjEifjd lekJ;.k rduhd dh rqyuk esa QzS’k ck;ksekl fizfMD’ku dks dkQh c<+k;k A  GLP ,oa 

NIR_MGI dks ekius ds fy;s ,YxksfjFe dk izLrko fn;k x;k gS rFkk eSVySc ¼Matlab½ lkWW¶Vos;j dk 

mi;ksx djrs gq;s eSØks fodflr fd;k x;k A Likbd igpku ds fy;s ,d vkSj egRoiw.kZ {ks= 

vkfVZfQf’k;y bUVsfytsUl ds xgu yfuZax ekWMykas ds lkFk iz;kl fd;k x;kA Likbd igpku ds fy;s nks 

ekWMy] uker%  SpikeSegNet ¼Spike Segmentation Network½ ,oa LGspikeNet ¼Local 

patch extraction and Global mask refinement Spike detection Network½ fodflr fd;s 

x;s gSa tks duoksY;w’kuy ,udksMy&fMdksMj Mhi yfuZax Vsduhd ij vk/kkfjr gSa A izfr ikS/kk LikbDl dh 

x.kuk djus ds fy;s bestJ ds ^^,ukykbt ikfVZdYl** Qyu] tks QYM&fQy best ,ukfyfll rduhd 

dks fØ;kfUor djrk gS] fodflr ekWMy dh vkmViqV best ¼ckbujh&ekld best ;qDr Likbd {ks= dsoy½ 

ij ,IykbZ fd;k x;k gSA izLrkfor SpikeSegNet ekWMy Likbd igpku ds fy;s ;FkkZFkrk] lVhdrk ,oa 

jkWcLVusl ¼F1 score½ Øe’k% 94-56] 94-66 ,oa 94-88 izfr’kr ikbZ xbZ tcfd LGspikeNet ds fy;s 

;g Øe’k% 99-95] 99-96 ,oa 99-96 FkhA  LGspikeNet dk iz;ksx djrs gq;s eSfVªd eku Øe’k% 99] 94 

,oa 92 izfr’kr Fks A xsgw¡ ds LikbDl dh igpku ,oa igpku ,oa x.kuk ds fy;s izLrkfor LGspikeNet 

usVodZ ekWMy dk mi;ksx djrs gq;s vkWuykbu lkW¶Vos;j Hkh fodflr fd;k x;k A    
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APPENDIX I 

 MATLAB code of GLP computation from VIS image: 

 

clc; 

clear all; 

close all; 

imtool close all; 

tic; 

I=imread('D:\Raju Sir\RWC\NIR_R2_06112016_NIR_RWC_1_2016-11-06_06-51-

14_4346100\VIS_SV\0_0_0.png'); 

I2=imcrop(I,[1358.5 1830.5 396 816]);%cropped image 

r=double(I2(:,:,1)); 

g=double(I2(:,:,2)); 

b=I2(:,:,3); 

% [a1,b1,c1]=size(I2); 

ndi=((g-r)./(g+r));%actual NDI image 

% ndigray=mat2gray(ndi);%normalize of NDI image 

imtool(ndi);     

imtool(mat2gray(ndi))       

 [a1,b1,c1]=size(I2); 

 thresh1=multithresh(ndi); 

 %thresh=multithresh(mat2gray(ndi)); 

 ind=1;%index variable 

 for i=1:a1 

     for j=1:b1 

       % if ndi(i,j)==0 %for thresh==0 

          %  I3(i,j)=0; 

           if ndi(i,j)>thresh1%otsu 

            I3(i,j)=1; 

        else 

           %I3(i,j)=1;% thresh==0 

            I3(i,j)=0;%otsu's threshold 

           % ndi1(ind)=ndi(i,j); 

           % ind=ind+1; 

        end 

     end 

 end 

  

 imtool(I3)     

  

 r2=I3.*double(I2(:,:,1)); 

 g2=I3.*double(I2(:,:,2)); 

 b2=I3.*double(I2(:,:,3)); 

  

 I4=cat(3,r2,g2,b2); 

  

 for i=1:a1 

     for j=1:b1 
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        if I4(i,j,2)>I4(i,j,1)&& I4(i,j,2)>I4(i,j,3) 

           % I5(i,j)=1; 

            I5(i,j)=I2(i,j); 

            ndi1(ind)=I2(i,j,1); 

            ndi2(ind)=I2(i,j,2); 

            ndi3(ind)=I2(i,j,3); 

            ind=ind+1; 

        else 

            I5(i,j)=0; 

           end 

     end 

 end 

 imtool(I5); 

 Area=size(ndi2); 

 me=mean(ndi2); %mean of projected area 

 mo=mode(ndi2); %mode of projected area 

 med=median(ndi2); %median of projected area 

% std=std(ndi1); 

  

 toc; 

  

  MATLAB code of NIR_MGI computation from NIR image: 

 

clc; 

clear All; 

imtool close all; 

tic; 

I=imread('D:\Raju Sir\RWC\NIR_R2_06112016_NIR_RWC_1_2016-11-06_06-51-

14_4346100\NIR_SV\0_0_0.png');  

NI=imread('D:\Raju Sir\RWC\NIR_R2_06112016_RWC_1_2016-11-15_12-59-

19_4470200\NIR_SV\0_0_0.png');%emplty image 

  

I2=imcrop(I,[110.967455621302 203.523668639053 55.6094674556213 

285.562130177515]);%cropped image 

NI2=imcrop(NI,[110.967455621302 203.523668639053 55.6094674556213 

285.562130177515]);%cropped image 

  

imtool(I2); 

imtool(NI2); 

  

SubtractImage=NI2-I2; 

imtool(SubtractImage); 

sub2gray=mat2gray(SubtractImage); 

imtool(sub2gray); 

r=(sub2gray(:,:,1)); 

  

[a,b,c]=size(r); 

thresh=multithresh(r);  

 for i=1:a 

     for j=1:b 
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        if r(i,j)<thresh 

            I3(i,j)=0; 

        else 

            I3(i,j)=1; 

          end 

     end 

 end 

  

 imtool(I3); 

  

  

 % laplacian filter of the Original Image (I2) 

    H = fspecial('laplacian'); 

     % apply laplacian filter.  

    blurred = imfilter(I2,H); 

    imtool(blurred);  

% subtract of original and blurred 

   SubtractImageLaplac=I2-blurred; 

     imtool(SubtractImageLaplac); 

 % apply sobel operator for detecting edges   

     BW1 = edge(I2(:,:,1),'sobel'); 

     imtool(BW1);       

   % apply median filter to sobel image and invert     

     medianblur = medfilt2(BW1); 

     invertmedBlur = imcomplement(medianblur); 

    % imtool(invertmedBlur);    

    IM2=imadd(blurred(:,:,1),uint8(invertmedBlur)); 

     imtool(IM2); 

      

     threshIM2=multithresh(IM2); 

      

    for i=1:a 

     for j=1:b 

        if IM2(i,j)<12 

            I4(i,j)=0; 

        else 

            I4(i,j)=1; 

           % SubtractImage_1(ind)=r(i,j); 

          %  ind=ind+1; 

        end 

     end 

 end  

 imtool(I4); 

      

se=  strel('square',2) 

erodedI = imerode(I4,se); 

imtool(erodedI); 

  

%IM5=imadd(double(BW1),erodedI); 

IM5=imadd(double(BW1),I3);% 
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imtool(IM5); 

   

     ind=1; 

      for i=1:a 

     for j=1:b 

        if IM5(i,j)==2 ||  IM5(i,j)==1 

            I44(i,j)=1; 

        else 

            I44(i,j)=0; 

           % OutputImage_1(ind)=r(i,j); 

          %  ind=ind+1; 

        end 

     end 

 end  

      

      

      

 FinalImage=double(I44).*double(I2(:,:,1)); 

 imtool(FinalImage); 

  

  

 for i=1:a 

     for j=1:b 

        if FinalImage(i,j)==0 

            OutputImage(i,j)=0; 

        else 

            OutputImage(i,j)=FinalImage(i,j); 

            OutputImage_1(ind)=FinalImage(i,j); 

            ind=ind+1; 

        end 

     end 

 end   

  

 z=mat2gray(FinalImage); 

  imtool(z); 

  

   

 Area=size(OutputImage_1); 

 me=mean(OutputImage_1); %mean of projected area 

 mo=mode(OutputImage_1); %mode of projected area 

 med=median(OutputImage_1); %median of projected area 

toc; 
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APPENDIX II 

 Python code for training encoder-decoder deep learning network. 

 

'''Import the libraries''' 

import os 

import cv2 

from keras.layers.core import * 

from keras.layers import  

Input,Dense,Flatten,Dropout,merge,Reshape,Conv2D,MaxPooling2D,UpSampling2

D,Conv2DTranspose,ZeroPadding2D, Add 

from keras.layers.normalization import BatchNormalization 

from keras.models import Model,Sequential,load_model 

from keras.callbacks import ModelCheckpoint 

from keras.optimizers import Adadelta, RMSprop,SGD,Adam 

from keras import regularizers 

from keras import backend as K 

import numpy as np 

import scipy 

import numpy.random as rng 

from sklearn.utils import shuffle 

from sklearn.cross_validation import train_test_split 

#from skimage.transform import resize 

#from skimage.io import imsave 

import matplotlib 

matplotlib.use('Agg') 

import matplotlib.pyplot as plt 

 

'''Set Keras image format ''' 

K.set_image_data_format('channels_last') 

 

 

'''Define the model''' 

###########################################  Hourglass  

#################################################### 

 

def Encoder(input_img): 

 

 Econv1_1 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"block1_conv1")(input_img) 

 Econv1_1 = BatchNormalization()(Econv1_1) 

 Econv1_2 = Conv2D(16, (3, 3), activation='relu', padding='same',  name = 

"block1_conv2")(Econv1_1) 

 Econv1_2 = BatchNormalization()(Econv1_2) 

 pool1 = MaxPooling2D(pool_size=(2, 2),strides=(2,2),padding='same', name 

= "block1_pool1")(Econv1_2) 

  

 Econv2_1 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"block2_conv1")(pool1) 
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 Econv2_1 = BatchNormalization()(Econv2_1) 

 Econv2_2 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"block2_conv2")(Econv2_1) 

 Econv2_2 = BatchNormalization()(Econv2_2) 

 pool2= MaxPooling2D(pool_size=(2, 2),strides=(2,2), padding='same', name 

= "block2_pool1")(Econv2_2) 

 

 Econv3_1 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"block3_conv1")(pool2) 

 Econv3_1 = BatchNormalization()(Econv3_1) 

 Econv3_2 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"block3_conv2")(Econv3_1) 

 Econv3_2 = BatchNormalization()(Econv3_2) 

 pool3 = MaxPooling2D(pool_size=(2, 2),strides=(2,2), padding='same', name 

= "block3_pool1")(Econv3_2) 

 

 encoded = Model(input = input_img, output = [pool3, Econv1_2, Econv2_2, 

Econv3_2] ) 

 

 return encoded 

#########################################  Bottleneck 

################################################## 

# 

## 

def neck(input_layer): 

 

 Nconv = Conv2D(256, (3,3),padding = "same", name = "neck1" 

)(input_layer) 

 Nconv = BatchNormalization()(Nconv) 

 Nconv = Conv2D(128, (3,3),padding = "same", name = "neck2" )(Nconv) 

 Nconv = BatchNormalization()(Nconv) 

 

 neck_model = Model(input_layer, Nconv) 

 return neck_model 

# 

##########################################  Decoder   

################################################## 

 

def Decoder(inp ): 

 

 up1 = Conv2DTranspose(128,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_1")(inp[0]) 

 up1 = BatchNormalization()(up1) 

 up1 = merge([up1, inp[3]], mode='concat', concat_axis=3, name = 

"merge_1") 

 Upconv1_1 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"Upconv1_1")(up1) 

 Upconv1_1 = BatchNormalization()(Upconv1_1) 

 Upconv1_2 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"Upconv1_2")(Upconv1_1) 
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 Upconv1_2 = BatchNormalization()(Upconv1_2) 

 

 up2 = Conv2DTranspose(64,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_2")(Upconv1_2) 

 up2 = BatchNormalization()(up2) 

 up2 = merge([up2, inp[2]], mode='concat', concat_axis=3, name = 

"merge_2") 

 Upconv2_1 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"Upconv2_1")(up2) 

 Upconv2_1 = BatchNormalization()(Upconv2_1) 

 Upconv2_2 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"Upconv2_2")(Upconv2_1) 

 Upconv2_2 = BatchNormalization()(Upconv2_2) 

  

 up3 = Conv2DTranspose(16,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_3")(Upconv2_2) 

 up3 = BatchNormalization()(up3) 

 up3 = merge([up3, inp[1]], mode='concat', concat_axis=3, name = 

"merge_3") 

 Upconv3_1 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"Upconv3_1")(up3) 

 Upconv3_1 = BatchNormalization()(Upconv3_1) 

 Upconv3_2 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"Upconv3_2")(Upconv3_1) 

 Upconv3_2 = BatchNormalization()(Upconv3_2) 

     

 decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same', name = 

"Ouput_layer")(Upconv3_2) 

 convnet = Model(input = inp, output =  decoded) 

 return convnet 

 

####################################################################

##################################### 

 

##########################################'''Initialise the 

model.'''#################################### 

 

x_shape = 256 

y_shape = 256 

channels = 3 

i_s = 256 

input_img = Input(shape = (x_shape, y_shape,channels)) 

 

#Encoder 

encoded = Encoder(input_img) #return encoded representation with 

intermediate layer Pool3(encoded), Econv1_3, Econv2_3,Econv3_3 

 

#Decoder 

HG_ = Input(shape = (x_shape/(2**3),y_shape/(2**3),128)) 

conv1_l = Input(shape = (x_shape,y_shape,16)) 
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conv2_l = Input(shape = (x_shape/(2**1),y_shape/(2**1),64)) 

conv3_l = Input(shape = (x_shape/(2**2),y_shape/(2**2),128)) 

decoded = Decoder( [HG_, conv1_l, conv2_l, conv3_l]) 

 

#BottleNeck 

Neck_input = Input(shape = (x_shape/(2**3), y_shape/(2**3),128)) 

neck = neck(Neck_input) 

 

#Combined 

output_img = decoded([neck(encoded(input_img)[0]), encoded(input_img)[1], 

encoded(input_img)[2], encoded(input_img)[3]]) 

model= Model(input = input_img, output = output_img ) 

model.summary() 

model.compile(optimizer = Adam(0.0005), loss='binary_crossentropy', metrics = 

["accuracy"]) 

model.save_weights('Model_exp/UNet/Stats/UNet.h5') 

 

####################################################################

##################################### 

 

 

name = os.listdir("/media/biometric/Data21/W/Autoencoder/Original_Data_120") 

input_images = [] 

output_images = [] 

 

print("loading_images") 

count = 0 

for i in name :  

 img_x = 

cv2.imread("/media/biometric/Data21/W/Autoencoder/Original_Data_120/"+i)  

 img_x = cv2.resize(img_x, (256,256))  

 input_images.append(img_x) 

 img_y = 

cv2.imread("/media/biometric/Data21/W/Autoencoder/Mask_data_120/"+i.split(".")[

0] + "_mask" + ".png", 0) 

 img_y = cv2.resize(img_y, (256,256))  

 img_y = img_y[:,:,np.newaxis] 

 output_images.append(img_y) 

''' 

print("converting to numpy arrays") 

#input_images = np.asarray(input_images, np.float32) /255  

#output_images = np.asarray(output_images, np.float32)/255 

''' 

print input_images[0].shape  

print("Data_splitting..") 

X_train,X_test,Y_train,Y_test=train_test_split(input_images,output_images,test_size

=0.3) 

del input_images  

del output_images  
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X_train = np.asarray(X_train, np.float16)/255 

print("Done") 

X_test = np.asarray(X_test, np.float16)/255 

print("Done") 

Y_train = np.asarray(Y_train, np.float16)/255 

print("Done") 

Y_test = np.asarray(Y_test, np.float16)/255 

print("Done") 

saveModel = "Model_exp/UNet/Stats/UNet.h5" 

#numEpochs = 100 

batch_size = 8 

num_batches = int(len(X_train)/batch_size) 

print "Number of batches: %d\n" % num_batches 

saveDir = 'Model_exp/UNet/Stats/' 

loss=[] 

val_loss=[] 

acc=[] 

val_acc=[] 

epoch=0; 

best_loss=1000 

r_c=0 

 

while epoch <1001 : 

     

    history=model.fit(X_train, Y_train, batch_size=batch_size, epochs=1, 

validation_data=(X_test,Y_test), shuffle=True, verbose=1)  

    #print float(history.history['loss'][0]) 

 

    #print 'INSIDE LOOP' 

  

    model.save_weights(saveModel) 

 

    epoch=epoch+1 

    print "EPOCH NO. : "+str(epoch)+"\n" 

    loss.append(float(history.history['loss'][0])) 

    val_loss.append(float(history.history['val_loss'][0])) 

    acc.append(float(history.history['acc'][0])) 

    val_acc.append(float(history.history['val_acc'][0])) 

    loss_arr=np.asarray(loss) 

    e=range(epoch) 

    plt.plot(e,loss_arr) 

    plt.xlabel('Number of Epochs') 

    plt.ylabel('Training Loss')  

    plt.savefig('Model_exp/UNet/Stats/Plot'+str(epoch)+'.png')  

    plt.close() 

    loss1=np.asarray(loss)  

    val_loss1=np.asarray(val_loss) 

    acc1=np.asarray(acc) 

    val_acc1=np.asarray(val_acc) 

 



x 
 

    np.savetxt('Model_exp/UNet/Stats/Loss.txt',loss1) 

    np.savetxt('Model_exp/UNet/Stats/Val_Loss.txt',val_loss1) 

    np.savetxt('Model_exp/UNet/Stats/Acc.txt',acc1) 

    np.savetxt('Model_exp/UNet/Stats/Val_Acc.txt',val_acc1) 

 

    s=rng.randint(30) 

    x_test=X_test[s,:,:,:] 

    y_test=Y_test[s,:,:,:] 

    print(y_test.shape) 

    a = np.zeros([i_s, i_s,3]) 

    a[:,:,0] = y_test[:,:,0] 

    a[:,:,1] = a[:,:,0] 

    a[:,:,2] = a[:,:,0] 

 

    #X_test,y_test = shuffle(X_test,y_test) 

    x_test=x_test.reshape(1,i_s, i_s,3) 

    y_test=a.reshape((1,i_s, i_s,3)) 

    decoded_imgs = np.zeros([1,i_s, i_s,3]) 

    print(model.predict(x_test)[0].shape) 

 

    decoded_imgs[:,:,:,0] = model.predict(x_test)[0][:,:,0] 

    decoded_imgs[:,:,:,1] = decoded_imgs[:,:,:,0] 

    decoded_imgs[:,:,:,2] = decoded_imgs[:,:,:,0] 

    temp = np.zeros([i_s, i_s*3,3]) 

 

    temp[:,:i_s,:] = x_test[0,:,:,:] 

    temp[:,i_s:i_s*2,:] = decoded_imgs[0,:,:,:] 

    temp[:,i_s*2:,:] = y_test[0,:,:,:] 

 

    temp = temp*255 

    scipy.misc.imsave('Model_exp/UNet/' + str(epoch+1) + ".jpg", temp) 

 

print("training Done.") 

 Python code for testing encoder-decoder deep learning network. 

 

'''Import the libraries''' 

import os 

import cv2 

import numpy.ma as ma 

from keras.layers.core import * 

from keras.layers import  

Input,Dense,Flatten,Dropout,merge,Reshape,Conv2D,MaxPooling2D,UpSampling2

D,Conv2DTranspose,ZeroPadding2D, Add 

from keras.layers.normalization import BatchNormalization 

from keras.models import Model,Sequential,load_model 

from keras.callbacks import ModelCheckpoint 

from keras.optimizers import Adadelta, RMSprop,SGD,Adam 

from keras import regularizers 

from keras import backend as K 

import numpy as np 
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import scipy 

import numpy.random as rng 

from sklearn.utils import shuffle 

from sklearn.cross_validation import train_test_split 

#from skimage.transform import resize 

#from skimage.io import imsave 

import matplotlib 

matplotlib.use('Agg') 

import matplotlib.pyplot as plt 

import tensorflow as tf 

 

'''Set Keras image format ''' 

K.set_image_data_format('channels_last') 

'''Define the model''' 

###########################################  Hourglass  

#################################################### 

 

def Encoder(input_img): 

 

 Econv1_1 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"block1_conv1")(input_img) 

 Econv1_1 = BatchNormalization()(Econv1_1) 

 Econv1_2 = Conv2D(16, (3, 3), activation='relu', padding='same',  name = 

"block1_conv2")(Econv1_1) 

 Econv1_2 = BatchNormalization()(Econv1_2) 

 pool1 = MaxPooling2D(pool_size=(2, 2),strides=(2,2),padding='same', name 

= "block1_pool1")(Econv1_2) 

  

 Econv2_1 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"block2_conv1")(pool1) 

 Econv2_1 = BatchNormalization()(Econv2_1) 

 Econv2_2 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"block2_conv2")(Econv2_1) 

 Econv2_2 = BatchNormalization()(Econv2_2) 

 pool2= MaxPooling2D(pool_size=(2, 2),strides=(2,2), padding='same', name 

= "block2_pool1")(Econv2_2) 

 

 Econv3_1 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"block3_conv1")(pool2) 

 Econv3_1 = BatchNormalization()(Econv3_1) 

 Econv3_2 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"block3_conv2")(Econv3_1) 

 Econv3_2 = BatchNormalization()(Econv3_2) 

 pool3 = MaxPooling2D(pool_size=(2, 2),strides=(2,2), padding='same', name 

= "block3_pool1")(Econv3_2) 

 

 encoded = Model(input = input_img, output = [pool3, Econv1_2, Econv2_2, 

Econv3_2] ) 

 

 return encoded 
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#########################################  Bottleneck 

################################################## 

# 

## 

def neck(input_layer): 

 

 Nconv = Conv2D(256, (3,3),padding = "same", name = "neck1" 

)(input_layer) 

 Nconv = BatchNormalization()(Nconv) 

 Nconv = Conv2D(128, (3,3),padding = "same", name = "neck2" )(Nconv) 

 Nconv = BatchNormalization()(Nconv) 

 

 neck_model = Model(input_layer, Nconv) 

 return neck_model 

# 

##########################################  Decoder   

################################################## 

 

def Decoder(inp ): 

 

 up1 = Conv2DTranspose(128,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_1")(inp[0]) 

 up1 = BatchNormalization()(up1) 

 up1 = merge([up1, inp[3]], mode='concat', concat_axis=3, name = 

"merge_1") 

 Upconv1_1 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"Upconv1_1")(up1) 

 Upconv1_1 = BatchNormalization()(Upconv1_1) 

 Upconv1_2 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"Upconv1_2")(Upconv1_1) 

 Upconv1_2 = BatchNormalization()(Upconv1_2) 

 

 up2 = Conv2DTranspose(64,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_2")(Upconv1_2) 

 up2 = BatchNormalization()(up2) 

 up2 = merge([up2, inp[2]], mode='concat', concat_axis=3, name = 

"merge_2") 

 Upconv2_1 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"Upconv2_1")(up2) 

 Upconv2_1 = BatchNormalization()(Upconv2_1) 

 Upconv2_2 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"Upconv2_2")(Upconv2_1) 

 Upconv2_2 = BatchNormalization()(Upconv2_2) 

  

 up3 = Conv2DTranspose(16,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_3")(Upconv2_2) 

 up3 = BatchNormalization()(up3) 

 up3 = merge([up3, inp[1]], mode='concat', concat_axis=3, name = 

"merge_3") 
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 Upconv3_1 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"Upconv3_1")(up3) 

 Upconv3_1 = BatchNormalization()(Upconv3_1) 

 Upconv3_2 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"Upconv3_2")(Upconv3_1) 

 Upconv3_2 = BatchNormalization()(Upconv3_2) 

     

 decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same', name = 

"Ouput_layer")(Upconv3_2) 

 convnet = Model(input = inp, output =  decoded) 

 return convnet 

 

####################################################################

##################################### 

 

 

x_shape = 256 

y_shape = 256 

channels = 3 

i_s = 256 

input_img = Input(shape = (x_shape, y_shape,channels)) 

 

#Encoder 

encoded = Encoder(input_img) #return encoded representation with 

intermediate layer Pool3(encoded), Econv1_3, Econv2_3,Econv3_3 

 

#Decoder 

HG_ = Input(shape = (x_shape/(2**3),y_shape/(2**3),128)) 

conv1_l = Input(shape = (x_shape,y_shape,16)) 

conv2_l = Input(shape = (x_shape/(2**1),y_shape/(2**1),64)) 

conv3_l = Input(shape = (x_shape/(2**2),y_shape/(2**2),128)) 

decoded = Decoder( [HG_, conv1_l, conv2_l, conv3_l]) 

 

#BottleNeck 

Neck_input = Input(shape = (x_shape/(2**3), y_shape/(2**3),128)) 

neck = neck(Neck_input) 

 

#Combined 

output_img = decoded([neck(encoded(input_img)[0]), encoded(input_img)[1], 

encoded(input_img)[2], encoded(input_img)[3]]) 

model= Model(input = input_img, output = output_img ) 

model.summary() 

model.compile(optimizer = Adam(0.0005), loss='binary_crossentropy', metrics = 

["accuracy"]) 

model.load_weights('/media/biometric/Data21/W/Autoencoder/Model_exp/UNet/Sta

ts/UNet.h5') 

 

####################################################################

##################################### 
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#############################################Testing#################

########################### 

name = os.listdir("/media/biometric/Data21/W/Autoencoder/Test_Data/Original") 

input_images = [] 

output_images = [] 

 

print("loading_images") 

count = 0 

for i in name :  

 img_x = 

cv2.imread("/media/biometric/Data21/W/Autoencoder/Test_Data/Original/"+i)  

 img_x = cv2.resize(img_x, (256,256)) /255.0 

 img_x = img_x.reshape(1,256,256,3) 

 img_x = img_x.reshape(1,256,256,3) 

 pred = model.predict(img_x)[0][:,:,0] 

 pred = pred.reshape(256,256,1) 

 cv2.imwrite("/media/biometric/Data21/W/Autoencoder/Test_Result/" + i, 

pred *255) 

 

 Performance evaluation of the developed encoder-decoder model 

 

'''Import the libraries''' 

import os 

import cv2 

import numpy.ma as ma 

from keras.layers.core import * 

from keras.layers import  

Input,Dense,Flatten,Dropout,merge,Reshape,Conv2D,MaxPooling2D,UpSampling2

D,Conv2DTranspose,ZeroPadding2D, Add 

from keras.layers.normalization import BatchNormalization 

from keras.models import Model,Sequential,load_model 

from keras.callbacks import ModelCheckpoint 

from keras.optimizers import Adadelta, RMSprop,SGD,Adam 

from keras import regularizers 

from keras import backend as K 

import numpy as np 

import scipy 

import numpy.random as rng 

from sklearn.utils import shuffle 

from sklearn.cross_validation import train_test_split 

#from skimage.transform import resize 

#from skimage.io import imsave 

import matplotlib 

matplotlib.use('Agg') 

import matplotlib.pyplot as plt 

import tensorflow as tf 

 

'''Set Keras image format ''' 

K.set_image_data_format('channels_last') 

'''Define the model''' 
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###########################################  Hourglass  

#################################################### 

 

def Encoder(input_img): 

 

 Econv1_1 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"block1_conv1")(input_img) 

 Econv1_1 = BatchNormalization()(Econv1_1) 

 Econv1_2 = Conv2D(16, (3, 3), activation='relu', padding='same',  name = 

"block1_conv2")(Econv1_1) 

 Econv1_2 = BatchNormalization()(Econv1_2) 

 pool1 = MaxPooling2D(pool_size=(2, 2),strides=(2,2),padding='same', name 

= "block1_pool1")(Econv1_2) 

  

 Econv2_1 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"block2_conv1")(pool1) 

 Econv2_1 = BatchNormalization()(Econv2_1) 

 Econv2_2 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"block2_conv2")(Econv2_1) 

 Econv2_2 = BatchNormalization()(Econv2_2) 

 pool2= MaxPooling2D(pool_size=(2, 2),strides=(2,2), padding='same', name 

= "block2_pool1")(Econv2_2) 

 

 Econv3_1 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"block3_conv1")(pool2) 

 Econv3_1 = BatchNormalization()(Econv3_1) 

 Econv3_2 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"block3_conv2")(Econv3_1) 

 Econv3_2 = BatchNormalization()(Econv3_2) 

 pool3 = MaxPooling2D(pool_size=(2, 2),strides=(2,2), padding='same', name 

= "block3_pool1")(Econv3_2) 

 

 encoded = Model(input = input_img, output = [pool3, Econv1_2, Econv2_2, 

Econv3_2] ) 

 

 return encoded 

#########################################  Bottleneck 

################################################## 

# 

## 

def neck(input_layer): 

 

 Nconv = Conv2D(256, (3,3),padding = "same", name = "neck1" 

)(input_layer) 

 Nconv = BatchNormalization()(Nconv) 

 Nconv = Conv2D(128, (3,3),padding = "same", name = "neck2" )(Nconv) 

 Nconv = BatchNormalization()(Nconv) 

 

 neck_model = Model(input_layer, Nconv) 

 return neck_model 
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# 

##########################################  Decoder   

################################################## 

 

def Decoder(inp ): 

 

 up1 = Conv2DTranspose(128,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_1")(inp[0]) 

 up1 = BatchNormalization()(up1) 

 up1 = merge([up1, inp[3]], mode='concat', concat_axis=3, name = 

"merge_1") 

 Upconv1_1 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"Upconv1_1")(up1) 

 Upconv1_1 = BatchNormalization()(Upconv1_1) 

 Upconv1_2 = Conv2D(128, (3, 3), activation='relu', padding='same', name = 

"Upconv1_2")(Upconv1_1) 

 Upconv1_2 = BatchNormalization()(Upconv1_2) 

 

 up2 = Conv2DTranspose(64,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_2")(Upconv1_2) 

 up2 = BatchNormalization()(up2) 

 up2 = merge([up2, inp[2]], mode='concat', concat_axis=3, name = 

"merge_2") 

 Upconv2_1 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"Upconv2_1")(up2) 

 Upconv2_1 = BatchNormalization()(Upconv2_1) 

 Upconv2_2 = Conv2D(64, (3, 3), activation='relu', padding='same', name = 

"Upconv2_2")(Upconv2_1) 

 Upconv2_2 = BatchNormalization()(Upconv2_2) 

  

 up3 = Conv2DTranspose(16,(3,3),strides = (2,2), activation = 'relu', padding 

= 'same', name = "upsample_3")(Upconv2_2) 

 up3 = BatchNormalization()(up3) 

 up3 = merge([up3, inp[1]], mode='concat', concat_axis=3, name = 

"merge_3") 

 Upconv3_1 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"Upconv3_1")(up3) 

 Upconv3_1 = BatchNormalization()(Upconv3_1) 

 Upconv3_2 = Conv2D(16, (3, 3), activation='relu', padding='same', name = 

"Upconv3_2")(Upconv3_1) 

 Upconv3_2 = BatchNormalization()(Upconv3_2) 

     

 decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same', name = 

"Ouput_layer")(Upconv3_2) 

 convnet = Model(input = inp, output =  decoded) 

 return convnet 

 

####################################################################

##################################### 
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x_shape = 256 

y_shape = 256 

channels = 3 

i_s = 256 

input_img = Input(shape = (x_shape, y_shape,channels)) 

 

#Encoder 

encoded = Encoder(input_img) #return encoded representation with 

intermediate layer Pool3(encoded), Econv1_3, Econv2_3,Econv3_3 

 

#Decoder 

HG_ = Input(shape = (x_shape/(2**3),y_shape/(2**3),128)) 

conv1_l = Input(shape = (x_shape,y_shape,16)) 

conv2_l = Input(shape = (x_shape/(2**1),y_shape/(2**1),64)) 

conv3_l = Input(shape = (x_shape/(2**2),y_shape/(2**2),128)) 

decoded = Decoder( [HG_, conv1_l, conv2_l, conv3_l]) 

 

#BottleNeck 

Neck_input = Input(shape = (x_shape/(2**3), y_shape/(2**3),128)) 

neck = neck(Neck_input) 

 

#Combined 

output_img = decoded([neck(encoded(input_img)[0]), encoded(input_img)[1], 

encoded(input_img)[2], encoded(input_img)[3]]) 

model= Model(input = input_img, output = output_img ) 

model.summary() 

model.compile(optimizer = Adam(0.0005), loss='binary_crossentropy', metrics = 

["accuracy"]) 

model.load_weights('/media/biometric/Data21/W/Autoencoder/Model_exp/UNet/Sta

ts/UNet.h5') 

 

####################################################################

##################################### 

#############################################Testing#################

########################### 

 

''' 

name = 

os.listdir("/media/biometric/Data21/W/Autoencoder/New_Data/Test/Original") 

input_images = [] 

output_images = [] 

 

print("loading_images") 

count = 0 

for i in name :  

 img_x = 

cv2.imread("/media/biometric/Data21/W/Autoencoder/New_Data/Test/Original/"+i)

  

 img_x = cv2.resize(img_x, (256,256)) /255.0 
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 img_x = img_x.reshape(1,256,256,3) 

 img_x = img_x.reshape(1,256,256,3) 

 pred = model.predict(img_x)[0][:,:,0] 

 pred = pred.reshape(256,256,1) 

 cv2.imwrite("/media/biometric/Data21/W/Autoencoder/New_Data/Test/Test

_Result/" + i, pred *255) 

''' 

####################################################################

##################################### 

#############################################Testing#################

########################### 

 

name = os.listdir("/media/biometric/Data21/Iris_All_Dataset/Interval_all_image") 

input_images = [] 

gt_images = [] 

pred_images = [] 

 

print("loading_images") 

count = 0 

for i in name :  

    if(os.path.exists("/media/biometric/Data21/Iris_All_Dataset/Interval_all_image/"+ 

i) and 

os.path.exists("/media/biometric/Data21/Ranjeet/NI2SEGNET/hard_train/Hard_case

s/NEW/Test_on_New_Contour_Data/Interval_V3_Mask/"+ i.split(".")[0] + '.png')): 

     

  img_x = 

cv2.imread("/media/biometric/Data21/Iris_All_Dataset/Interval_all_image/"+ i, 0)

  

  img_x = cv2.resize(img_x, (256,256))  

  img_x = img_x[:,:,np.newaxis] 

  input_images.append(img_x) 

  img_y = 

cv2.imread("/media/biometric/Data21/Ranjeet/NI2SEGNET/hard_train/Hard_cases/

NEW/Test_on_New_Contour_Data/Interval_V3_Mask/"+ i.split(".")[0] + '.png', 0) 

  img_y = cv2.resize(img_y, (256,256))  

  img_y = img_y[:,:,np.newaxis] 

  gt_images.append(img_y) 

 

  count+=1 

  print count 

 

#print (input_images[0].shape)  

print("Data_conversion..") 

input_images = np.asarray(input_images, np.float32)/255 

gt_images = np.asarray(gt_images, np.float32)/255 

 

#predicting the segmentation(iris) 

pred_images = model.predict(input_images) 

cv2.imwrite("1.jpg", gt_images[40]*255) 

cv2.imwrite("2.jpg",pred_images[40]*255) 
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for i in range(len(pred_images)): 

 temp = np.zeros([256,256*2]) 

 temp[:,:256] = input_images[i,:,:,0]+gt_images[i,:,:,0] 

 temp[:,256:] = input_images[i,:,:,0]+pred_images[i,:,:,0] 

 cv2.imwrite("Results_Interval_V3_26_Jan/predicted/"+str(i)+".jpg", 

temp*255) 

 

 

 

def pixel_count(x): 

 y = 0 

 for j in range(256): 

  for k in range(256): 

   if x[j][k] >=0.5: 

    y+=1 

 return y     

 

XOR=[] 

f = open("Results_Interval_V3_26_Jan/E1_n.txt", "w+") 

h = open("Results_Interval_V3_26_Jan/E2_n.txt", "w+") 

g = open("Results_Interval_V3_26_Jan/JI_n.txt", "w+") 

pr = open("Results_Interval_V3_26_Jan/Precision_n.txt", "w+") 

rc = open("Results_Interval_V3_26_Jan/Recall_n.txt", "w+") 

F1_m =  open("Results_Interval_V3_26_Jan/F1_measure_n.txt", "w+") 

Accuracy_t =  open("Results_Interval_V3_26_Jan/Accuracy_n.txt", "w+") 

Iris_JI_File =  open("Results_Interval_V3_26_Jan/Iris_JI.txt", "w+") 

input_images = input_images 

gt_images = gt_images 

pred_images = pred_images 

 

E1 = 0 

E2 = 0 

A1 = 0 

I11 = 0 

NI11 = 0 

PR_avg = 0 

RC_avg = 0 

F_1_avg = 0 

Accuracy_avg = 0 

Iris_JI = 0 

for i in range(len(gt_images)) : 

 xor =0 

 uni = 0 

 inters = 0 

 gt_images[i,:,:,0] =  (np.around(gt_images[i,:,:,0])).astype(int) 

 pred_images[i,:,:,0] =  (np.around(pred_images[i,:,:,0])).astype(int) 

 print ("error_rate_ : "+str(i+1)) 

    #classification error rate (E1) 
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 xor = cv2.bitwise_xor(gt_images[i,:,:,0],pred_images[i,:,:,0]) 

 Ei = float(np.sum(xor)) / float(256*256) 

 f.write(str(Ei)+"\n") 

 E1 += Ei   

 print("E1 : "+ str(Ei)) 

 print(gt_images[i,:,:,0]) 

 print(pred_images[i,:,:,0]) 

    #classification error rate (E2) 

 FP = float(np.sum(cv2.bitwise_xor(pred_images[i,:,:,0] , 

cv2.bitwise_and(gt_images[i,:,:,0],pred_images[i,:,:,0])))) 

 TN = float((256*256) - float(np.sum(gt_images[i,:,:,0]))) 

 FPR = float(FP) / float(FP+TN) 

  

 FN =float(np.sum(cv2.bitwise_xor(gt_images[i,:,:,0], 

cv2.bitwise_and(gt_images[i,:,:,0],pred_images[i,:,:,0])))) 

 TP = float(np.sum(gt_images[i,:,:,0])) 

 FNR = float(FN) / float((FN+TP))  

  

 Ej = 0.5*FPR+0.5*FNR 

 h.write(str(Ej)+"\n") 

 E2 += Ej   

 print("E2 : "+str(Ej) ) 

     

 # Jaccard Index (JI) 

 #uni = cv2.bitwise_or(gt_images[i,:,:,0],pred_images[i,:,:,0]) 

 C11 = np.sum(cv2.bitwise_and(gt_images[i,:,:,0],pred_images[i,:,:,0])) 

 print('C11:' + str(C11)) 

 G1 = np.sum(gt_images[i,:,:,0]) 

 print('G1:' + str(G1)) 

 P1 = np.sum(pred_images[i,:,:,0]) 

 print('P1:' + str(P1)) 

 Iris = C11/(G1 + P1 - C11) 

 Iris_JI = Iris_JI + Iris 

 print('Iris:' + str(Iris)) 

 G_N = np.where(gt_images[i,:,:,0] > 0.5, 1, 0) 

 P_N = np.where(pred_images[i,:,:,0] > 0.5, 1, 0) 

 C22 =   np.sum(cv2.bitwise_and(G_N, P_N)) 

 print("C22:" + str(C22)) 

 G2 = 65536 - G1 

 P2 = 65536 - P1 

 Non_Iris = C22/(G2 + P2 - C22) 

 JI = (Iris + Non_Iris)/2 

 g.write(str(JI)+"\n") 

 A1 += JI 

 TP =  np.sum(cv2.bitwise_and(gt_images[i,:,:,0],pred_images[i,:,:,0])) 

 TN =  np.sum(cv2.bitwise_and(G_N, P_N)) 

 print('TN:' + str(TN)) 

 FP =  np.sum(pred_images[i,:,:,0]) - TP  

 FN = np.sum(gt_images[i,:,:,0]) - TP  

 Precision = TP/(TP + FP) 
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 if math.isnan(Precision): 

     Precision=0 

 print('Precision:', Precision) 

 Recall = TP / (TP + FN) 

 print('Recall:', Recall) 

 F1_measure = 2*Precision*Recall/(Precision + Recall) 

 if math.isnan(F1_measure): 

     F1_measure = 0 

 print('F1_measure:',F1_measure) 

 Accuracy = (TP + TN)/(TP + TN + FP + FN) 

 print('Accuracy:',Accuracy) 

 PR_avg = PR_avg + Precision 

 RC_avg = RC_avg + Recall 

 F_1_avg = F_1_avg + F1_measure  

 Accuracy_avg = Accuracy_avg + Accuracy 

 pr.write(str(Precision)+"\n") 

 rc.write(str(Recall)+"\n") 

 F1_m.write(str(F1_measure)+"\n") 

 Accuracy_t.write(str(Accuracy)+"\n") 

 Iris_JI_File.write(str(Iris)+"\n") 

print(len(gt_images))  

print("classification error rate (E1) : " + str(E1/len(gt_images)) ) 

f.write("classification error rate (E1) : " + str(E1/len(gt_images))+"\n") 

print("classification error rate (E2=avg(FPR+FNR)) : " + str(E2/len(gt_images)) ) 

f.write("classification error rate (E2=avg(FPR+FNR)) : " + 

str(E2/len(gt_images))+"\n") 

print("Average_Jaccard_Index : " + str(A1/len(gt_images))) 

print("Average_Precision : " + str(PR_avg /(len(gt_images)-1))) 

print("Average_Recall : " + str(RC_avg /len(gt_images))) 

print("Average_F_1_measure : " + str(F_1_avg /(len(gt_images) - 1))) 

print("Average_Accuracy: " + str(Accuracy_avg /len(gt_images))) 

print("Average_Jaccard_Index_for_Iris: " + str(Iris_JI/len(gt_images))) 

print("Testing Done.") 

 

 

 

 Flask we development module code 
 

import os 

from flask import Flask, render_template, request, redirect, url_for 

from werkzeug.utils import secure_filename 

 

UPLOAD_FOLDER = '/home/lc/Desktop/Flask_new/static/my' 

ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif']) 

 

imagefolder=os.path.join('static','my') 

outimagefolder=os.path.join('static','output') 

spike_count=os.path.join('static','Count_output') 

home_img=os.path.join('static','HOME_IMG') 
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app = Flask(__name__) 

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER 

app.config['imagefolder'] = imagefolder 

app.config['outimagefolder'] = outimagefolder 

app.config['spike_count'] = spike_count 

app.config['home_img'] = home_img 

 

@app.route('/',methods = ['POST', 'GET']) 

def test(): 

    f=os.listdir('/home/lc/Desktop/Flask_new/static/my') 

    k=os.listdir('/home/lc/Desktop/Flask_new/static/output') 

    l=os.listdir('/home/lc/Desktop/Flask_new/static/Count_output') 

    for i in f: 

        os.remove('static/my/'+i) 

    for j in k: 

        os.remove('static/output/'+j) 

    for m in l: 

        os.remove('static/Count_output/' + m) 

    return render_template("home.html",home_img=home_img) 

 

@app.route('/hello1', methods=['POST']) 

def hello(): 

    first_name = request.form['first_name'] 

    last_name = request.form['last_name'] 

    return 'Hello %s %s have fun learning python <br/> <a href="/">Back Home</a>' 

% (first_name, last_name) 

 

@app.route('/uploader', methods = ['POST', 'GET']) 

def upload_file(): 

  # if 'photo' in request.files: 

    for f in request.files.getlist('file'): 

        filename = secure_filename(f.filename) 

        f.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) 

        filename_img = os.path.join(imagefolder, filename) 

        #return render_template("showimg.html", user_img=filename_img) 

    return render_template("insert.html", user_img=filename_img) 

 

 

@app.route('/showimg', methods=['POST', 'GET']) 

def show(): 

    # if 'photo' in request.files: 

 

    f=os.listdir(imagefolder) 

    return render_template("showimg.html", user_img=f) 

 

 

@app.route('/RunModel', methods=['POST', 'GET']) 

def RunModel(): 

    # if 'photo' in request.files: 

    os.system('python3 /home/lc/Desktop/Flask_new/Test_Wheat_Autoencoder.py') 
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    f_in = os.listdir(imagefolder) 

    f_out = os.listdir(outimagefolder) 

    return render_template("showoutputimg.html", out_img=f_out, in_img=f_in) 

 

@app.route('/Count', methods=['POST', 'GET']) 

def Count(): 

    # if 'photo' in request.files: 

    #os.system('python3 imageJ_Test.py') 

    os.system('python3 /home/lc/Desktop/Flask_new/spike_count.py') 

    #os.system('javac -cp .:ij149v.jar Test.java') 

    #os.system('java -cp .:ij149v.jar Test') 

    f_in = os.listdir(imagefolder) 

    f_out = os.listdir(outimagefolder) 

    s_count=os.listdir(spike_count) 

    path = '/home/lc/Desktop/Flask_new/static/Count_output/'+ s_count[0] 

    days_file = open(path, 'r') 

    lines = days_file.readlines() 

    y = [0] 

    z = [] 

    for x in lines: 

        # print(x.split(",")[1]) 

        z.append(x.split(",")[1]) 

 

    for i in range(len(z)): 

        t = int(z[i]) 

        y.append(t) 

 

    max_count=max(y) 

    return render_template("Count_page.html", out_img=f_out, 

in_img=f_in,line=lines,max_count=max_count,spike_count=s_count[0]) 

 

if __name__ == '__main__': 

    app.run() 

 

 Spike counting code 
 

import ij.IJ; 

import ij.ImagePlus; 

import ij.measure.ResultsTable; 

import static ij.plugin.FFT.fileName; 

import ij.plugin.PlugIn; 

import ij.plugin.filter.Analyzer; 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

import java.io.*; 
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import java.util.Random; 

 

public class spike_count_java_new implements PlugIn { 

 

    public static void main(String[] args) { 

 

        spike_count_java_new test = new spike_count_java_new(); 

        test.run(""); 

 

    } 

 

    @Override 

    public void run(String arg0) { 

 

        try { 

           // FileWriter fileWriter = new 

FileWriter("C:\\Users\\Tanuj\\Desktop\\Book3.txt"); 

             Random rand = new Random(); 

             int n = rand.nextInt(50); 

            

             PrintWriter pw = new PrintWriter(new 

File("/home/lc/Desktop/Flask_new/static/Count_output/test_"+n+".txt")); 

              

              

            //BufferedWriter bw = new BufferedWriter(fileWriter); 

            //bw.write(content); 

             

            String line = "\n"; 

 

             

            File file = new File("/home/lc/Desktop/Flask_new/static/output/"); 

            String[] fileList = file.list(); 

             

             

            for(String name:fileList){ 

   System.out.println(name); 

  } 

             

           for(String name:fileList){ 

                StringBuilder sb = new StringBuilder(); 

                 

                ImagePlus imp = 

IJ.openImage("/home/lc/Desktop/Flask_new/static/output/" + name); 

                // FileSaver fileSaver = new FileSaver(imp); 

 

                // System.setProperty("plugins.dir", "D:\\Tanuj\\SOFTWARES\\ImageJ2-

20160205\\ImageJ.app\\plugins"); 

                // IJ.run(imp, "canny.txt", "sigma=5 smoothing_factor=1"); 

                //  fileSaver.saveAsJpeg("C:\\Users\\Tanuj\\Desktop\\0_7\\011_mask.txt"); 
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  IJ.run(imp, "Convert to Mask", "");            

  IJ.run(imp, "Analyze Particles...", " clear summarize stack"); 

                //  IJ.renameResults("Results"); 

                // fileSaver.saveAsText("C:\\Users\\Tanuj\\Desktop\\0_7 

Output\\011_mask.txt"); 

 

                ResultsTable rt = Analyzer.getResultsTable(); 

                int counter = rt.getCounter();  //number of results  

                System.out.println("Object Count = " + counter + "\t"); 

                int col = 0; 

 

                double total_area = 0.0; 

                if (counter == 0) //no results, handle that error here  

                { 

                    col = rt.getColumnIndex("Area"); 

                } 

                int tmp_counter = 0; 

                double tmp_value = 0.0; 

                for (int row = 0; row < counter; row++) { 

                    double value = rt.getValueAsDouble(col, row); //all the Area values  

 

                    // System.out.println(value); 

                    if (value <= 5.0) { 

                        tmp_counter = tmp_counter + 1; 

                        tmp_value = tmp_value + value; 

                        // counter=counter-1; 

                        System.out.println(tmp_counter + "\t" + tmp_value); 

                        // System.out.println(tmp_value+"\t"); 

                    }else{ 

                         

                    total_area = total_area + value; 

                    //   System.out.println("\t"+total_area); 

                    } 

                } 

                System.out.println(name+"" + "\t Ear Count = " + (counter - tmp_counter) 

+ "\t and total area =" + (total_area - tmp_value)); 

                System.out.println("########### ###########"); 

 

                //fileWriter.append("\n"); 

                sb.append(name + ""); 

                sb.append(','); 

                sb.append((counter - tmp_counter)); 

                sb.append(','); 

                sb.append((total_area - tmp_value)); 

                sb.append("\r\n"); 

                 

                 

             //   fileWriter.write("\n"); 

                // bw.close(); 

                //fileWriter.flush(); 
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               // bw.newLine(); 

                

                

               pw.write(sb.toString()); 

                

               //pw.write(sb.toString()); 

            } 

           pw.close(); 

        } catch (IOException ex) { 

            //Logger.getLogger(Test.class.getName()).log(Level.SEVERE, null, ex); 

        } 

    } 

 

} 

 

 

 

 



ANNEXURE I 

Actual Leaf Fresh Weight (LFW) of 104 dataset of Rice plants 

 

Sample ID Actual LFW 

1 0.8547 

2 0.986 

3 1.5285 

4 1.0472 

5 1.2852 

6 1.3781 

7 2.1308 

8 0.5684 

9 0.8437 

10 1.1199 

11 1.4649 

12 1.2826 

13 1.14186 

14 0.9365 

15 1.03 

16 2.0161 

17 1.3291 

18 1.5938 

19 1.1628 

20 0.9259 

21 1.2055 

22 0.7815 

23 1.4402 



 
 

ii 
 

24 0.9532 

25 1.3678 

26 1.0217 

27 1.7201 

28 1.513 

29 1.1411 

30 1.6886 

31 1.1756 

32 1.4062 

33 0.8926 

34 1.1614 

35 0.648 

36 1.259 

37 1.5472 

38 1.3694 

39 1.1427 

40 1.4896 

41 1.0869 

42 0.9999 

43 1.4485 

44 1.6742 

45 1.3625 

46 1.8072 

47 1.1131 

48 1.0112 

49 0.9328 

50 1.2973 



 
 

iii 
 

51 1.0613 

52 1.3586 

53 0.8439 

54 1.1995 

55 0.902 

56 0.8238 

57 1.0153 

58 1.7563 

59 1.0304 

60 1.9593 

61 1.1409 

62 1.8024 

63 1.0957 

64 1.1691 

65 0.7167 

66 1.1462 

67 1.3058 

68 1.0206 

69 1.5849 

70 0.3107 

71 1.251 

72 1.1756 

73 1.0149 

74 0.8508 

75 1.8085 

76 1.5708 

77 1.3974 
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78 1.2991 

79 1.35883 

80 1.101 

81 1.5229 

82 1.2709 

83 0.8471 

84 1.2769 

85 1.1751 

86 1.1947 

87 1.1342 

88 1.5372 

89 1.31 

90 1.0147 

91 0.8961 

92 1.5938 

93 1.6712 

94 1.1343 

95 0.7515 

96 1.06 

97 1.4586 

98 1.3622 

99 1.3258 

100 0.6828 

101 1.2629 

102 0.8524 

103 1.1232 

104 0.8715 
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Regression and ANN result of predicted LFW for Training data (85% data) 

 

Sample 

number Actual Regression ANN 

1 0.8547 1.194357411 1.090467 

2 0.986 1.157517543 0.708862 

3 1.5285 1.040767648 1.512766 

4 1.0472 1.329587674 1.157463 

5 1.2852 1.31778662 1.321762 

6 1.3781 1.281891172 1.318168 

7 2.1308 1.230841021 2.191886 

8 0.5684 1.154673087 1.061525 

9 0.8437 1.072166977 1.02361 

10 1.1199 1.31742561 1.069163 

11 1.4649 1.231542323 1.344454 

12 1.2826 1.306094384 1.265604 

13 1.14186 1.222134341 1.090421 

14 0.9365 1.037058562 1.050514 

15 1.03 1.350090375 1.032488 

16 2.0161 1.210703962 1.707225 

17 1.3291 1.237832178 1.186294 

18 1.5938 1.351629717 1.563844 

19 1.1628 1.345121227 1.182816 

20 0.9259 1.39133077 1.117523 

21 1.2055 1.289937842 1.221875 

22 0.7815 1.163375781 0.755871 

23 1.4402 1.20974974 1.507946 

24 0.9532 1.16398516 1.045079 
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25 1.3678 1.162000449 1.15672 

26 1.0217 1.23906742 1.136381 

27 1.7201 1.314154293 1.733475 

28 1.513 1.034540759 1.037258 

29 1.1411 1.223908571 1.301314 

30 1.6886 1.245485987 1.605727 

31 1.1756 1.155936575 1.058107 

32 1.4062 1.315272872 1.113947 

33 0.8926 1.160226407 1.009922 

34 1.1614 1.181205828 1.101409 

35 0.648 1.120944452 1.188074 

36 1.259 1.213823189 1.083776 

37 1.5472 1.247229638 1.458849 

38 1.3694 1.099242002 1.229204 

39 1.1427 1.32430285 1.211172 

40 1.4896 1.442789078 1.388392 

41 1.0869 1.136153343 1.087626 

42 0.9999 1.269812171 1.053476 

43 1.4485 1.218449762 1.115781 

44 1.6742 1.212202673 1.649836 

45 1.3625 1.405744902 1.475658 

46 1.8072 1.409424576 1.756091 

47 1.1131 1.139430733 1.090061 

48 1.0112 1.115552635 1.003306 

49 0.9328 1.219513871 1.140082 

50 1.2973 1.242276454 1.203397 

51 1.0613 1.188951593 0.904732 
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52 1.3586 1.23395552 1.412873 

53 0.8439 1.240021613 1.128721 

54 1.1995 1.105878927 1.256914 

55 0.902 1.174674316 0.900025 

56 0.8238 1.231793823 1.109479 

57 1.0153 1.348974013 1.000861 

58 1.7563 1.316077404 1.626006 

59 1.0304 1.052705879 1.069268 

60 1.9593 1.367238849 1.87805 

61 1.1409 1.074936989 1.146205 

62 1.8024 1.319290168 1.81509 

63 1.0957 1.234693579 1.18846 

64 1.1691 1.285222578 1.214118 

65 0.7167 1.127231334 0.830305 

66 1.1462 1.186850882 0.964212 

67 1.3058 1.215602735 1.223091 

68 1.0206 1.212643107 1.098573 

69 1.5849 1.143270845 1.552766 

70 0.3107 1.264534295 0.313068 

71 1.251 1.342620205 1.343419 

72 1.1756 1.232796484 1.073729 

73 1.0149 1.224417152 1.09809 

74 0.8508 1.119884454 0.795994 

75 1.8085 1.305469265 1.83776 

76 1.5708 1.253538038 1.521117 

77 1.3974 1.139111008 1.406595 

78 1.2991 1.121819981 1.345173 
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79 1.35883 1.277461254 1.248263 

80 1.101 1.382078359 1.068182 

81 1.5229 1.310939948 1.421569 

82 1.2709 1.226933971 1.388138 

83 0.8471 1.190496214 1.154481 

84 1.2769 1.363853325 1.29037 

85 1.1751 1.324899436 1.173334 

86 1.1947 1.318138314 1.108916 

87 1.1342 1.179875328 1.129137 

88 1.5372 1.219216198 1.378671 

RMSE  0.311902918 0.154417 

MAPE  23.44 9.55 

 

Regression and ANN result of predicted LFW for Testing data (15%) 

 

Sample 

number Actual Regression ANN 

1 1.31 1.462116983 1.121451 

2 1.0147 1.273211328 0.967244 

3 0.8961 1.283466754 1.062385 

4 1.5938 1.337284528 1.703273 

5 1.6712 1.043436518 1.469714 

6 1.1343 1.283009075 1.290553 

7 0.7515 1.447989148 1.044846 

8 1.06 1.110433963 1.133104 

9 1.4586 1.15528355 1.304589 

10 1.3622 1.305172784 1.359343 

11 1.3258 1.358812454 1.303432 



 
 

ix 
 

12 0.6828 1.078149895 0.637565 

13 1.2629 1.309835282 1.276677 

14 0.8524 1.079990963 0.93024 

15 1.1232 1.244293724 1.147654 

16 0.8715 1.119716541 0.930143 

RMSE  0.315493959 0.130001 

MAPE  24.97 9.65 

 



ANNEXURE II 

Wheat variety data of 200 plants: 

Plant ID Genotype Spike count 

0 10_C_Choti Lerma_NUE_R1 14 

1 10_C_Choti Lerma_NUE_R2 11 

2 10_C_Choti Lerma_NUE_R3 15 

3 10_D_Choti Lerma_NUE_R1 10 

4 10_D_Choti Lerma_NUE_R2 8 

5 10_D_Choti Lerma_NUE_R3 10 

6 10_N_Choti Lerma_NUE_R1 14 

7 10_N_Choti Lerma_NUE_R2 11 

8 10_N_Choti Lerma_NUE_R3 9 

9 11_C_HD2851_NUE_R1 9 

10 11_C_HD2851_NUE_R2 4 

11 11_C_HD2851_NUE_R3 13 

12 11_D_HD2851_NUE_R1 10 

13 11_D_HD2851_NUE_R2 10 

14 11_D_HD2851_NUE_R3 8 

15 11_N_HD2851_NUE_R1 13 

16 11_N_HD2851_NUE_R2 14 

17 11_N_HD2851_NUE_R3 16 

18 12_C_HUW468_NUE_R1 12 

19 12_C_HUW468_NUE_R2 8 

20 12_C_HUW468_NUE_R3 12 

21 12_D_HUW468_NUE_R1 9 

22 12_D_HUW468_NUE_R2 11 

23 12_D_HUW468_NUE_R3 8 

24 12_N_HUW468_NUE_R1 11 

25 12_N_HUW468_NUE_R2 10 

26 12_N_HUW468_NUE_R3 11 

27 13_C_HD2985_NUE_R1 5 

28 13_C_HD2985_NUE_R2 8 

29 13_C_HD2985_NUE_R3 16 

30 13_D_HD2985_NUE_R1 6 

31 13_D_HD2985_NUE_R2 7 
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