A STUDY ON THE SODIUM-POTASSIUM INTERRELATIONSHIP AS AFFECTING THE METABOLISM OF CERTAIN NUTRIENTS IN SHEEP

THESIS

Submitted to the Agra University, Agra in partial fulfilment of the requirements for the Degree of MASTER OF VETERINARY SCIENCE (A. H.)

in

ANIMAL NUTRITION

By ADHIR CHANDRA SAHA

M. V. So. (Final) Post-Graduate College of Animal Sciences, INDIAN VETERINARY RESEARCH INSTITUTE, IZATNAGAR (U. P.)

MAY, 1968

Dr. B. N. Majundar, M.Sc., Ph.D., Member, New York Academy of Sciences, Professor of Animal Nutrition.

> Post-Graduate College of Animal Sciences, Indian Veterinary Research Institute, Izatnagar, U.P.

> > May 12, 1968.

Certified that the entire research work and results presented in this thesis entitled "A study on the sodium-potassium interrelationship as affecting the metabolism of certain nutrients in sheep" have been authentically carried out by Shri Adhir Chandra Saha, M.V.Sc (Final) himself under my supervision and guidance.

TSwing and.

(B.N. MAJUMDAR)

ACKNOWLEDGEMENT

The author with immense pleasure takes this opportunity to express his deep sense of gratitude and indebtedness to Dr. B.N.Majumdar, M.Sc., Ph.D.(Member, N.Y. Academy of Sciences), Professor of Animal Nutrition, Post Graduate College of Animal Sciences, Indian Veterinary Research Institute, Izatnagar, U.P. for his invaluable guidance, constant help and encouragement in diverse ways during the course of this study.

Acknowledgement with a deep sense of gratitude is also made to Shri S.C.Gupta, M.Sc., Senior Research Assistant Shri B.C.Joshi, M.Sc., Assistant Animal Nutritionist (Pig Nutrition), Shri R.N.Pal, B.Sc., B.V.Sc. & A.H., Assistant Animal Nutritionist (Coordination), Shri S.K.Pillai, M.Sc., P.S.C., Assistant Statistician for their help, encouragement and cooperation, and to all others who have in any way helped in the materialisation of this Thesis.

The author also expresses his grateful thanks to Dr. C.M. Singh, M.S., Ph.D. (Michigan), Director, Indian Veterinary Research Institute, Izatnagar and to Dr. V. Mahadevan, M.A., D.Sc., F.R.I.C., M.R.S.H. (London), Head, Division of Animal Nutrition, I.V.R.I., Izatnagar, for providing laboratory facilities.

CONTENTS

.

						Pag
PREFACE	\$ \$ \$ \$	67 6 , Ó	\$ & D	6 0 0	6 6 6	1-1:

CHAPTER I

INTRODUCTION AND REVIEW OF LITERATURE	0 Ø Ø]."]
CHAPTER II		
MATERIALS AND METHODS	000	12- 3
CHAPTER III		
STUDIES ON SODIUM : POT ASSIUM RATIO AS AFFECTING THE NUTRIENT MET ABOLISM IN ADULT SHEEP - PART I	£1 G. 61	37- 8
CHAPTER IV		
STUDIES ON SODIUM «POTASSIUM RATIO AS AFFECTING THE NUTRIENT METABOLISM IN ADULT SHEEP - PART II	6 4 8	85-114

GENERAL SUMMARY AND CONCLUSIONS ... 115-117

BIBLIOGRAPHY 118-122

.

PREFACE

'All flesh is grass'. This biblical saying has been found true even for milk production. For, it is now agreed that the feeding of grasses alone can not only maintain a dairy animal in good health but also sustain milk production to the extent of 2-3 kg. per day. Feeding of concentrates to dairy animals, particularly to the low yielders, being generally uneconomic, efforts from time to time have been made to replace them by grasses, especially of the leguminous variety. Such green feeds, however, may contain as much as 4 per cent of potassium in the dry ration against a computed requirement of 0.5 per cent for ruminants, either adult or rapidly growing (Ward, 1966). Some of them may also contain much higher emounts of potassium as compared to sodium giving a wide potassium: In practice, although this high level of sodium ratio. potassium is apparently well tolerated by such stock, there is some evidence that this may nevertheless have injurious effect on nutrient metabolism and induce hypomagnesaemia (Carbery et al., 1937; Talapatra et al., 1942; 1948; Ward, 1966). Indeed, Bunge (1873), on the basis rather of meagre data, postulated that an excess of

potassium impoverished the organism of sodium and chlorine raising their requirements in the process. That a high ratio of potassium to sodium (10 or 11:1) reduced the assimilation of nitrogen, calcium and phosphorus in young growing pigs has been reported by dichards et al. (1927). Orr (1929) has concluded that the effect of a high potassium: sodium ratio was most likely to be manifested when the supply of other nutrients were low and these observations of Richards et al. and Orr have found corroboration in the study by Zuntz (cited by Russel and Duncan, 1956) who noted malnutrition and pica in animals fed a ration high in potassium: sodium ratio and low in calcium and phosphorus. The Dutch School led by Brouwer (cited by Russel and Duncan, <u>loc</u>. <u>cit</u>.) also suggest that as grazing animals like cattle and sheep normally consume potassium in amounts much larger than their requirements, ill health often leading to hypomagnesaemia grass tetany may result from a deficiency or surplus of the total alkali (potash + soda) and alkali earth metals (calcium and magnosium) or an imbalance of alkali radicals inter se (Russel and Duncan, loc. cit.). Sodium and potassium, on the other hand, are known to serve the needs of great many rumen organisms during growth (Hungate, 1966), while potassium at certain level, according to many

- 11 -

workers, improves cellulose digestion and plays an active role in plants in the synthesis of protein from nonprotein nitrogenous sources.

There, thus, seems to be much grounds for thinking that high potassium ingestion or a wide potassium sodium ratio affects nutrient metabolism. Further study is, therefore, indicated on the level of potassium: sodium ratio <u>vis-a-vis</u> certain nutrient metabolism. Work on ruminants, especially, to study the role of potassium in metabolism does not seem to have been done in any systematic manner so far. This is what has been attempted in this thesis.

The thesis is divided into four Chapters, including one in which relevant literature on the subject has been adequately reviewed. A summary accompanies each chapter followed by bibliography and a general summary and conclusions at the end.

CHAPTER I

INTRODUCTION AND REVIEW OF LITERATURE

Page 1 - 11

.

CHAPTER I

INTRODUCTION AND HEVIEW OF LITERATURE

Sodium and potassium belong to the group of macrominerals and are generally considered together along with chloring because of their certain common metabolic functions, though they each have their own independent roles to play in plant and animal kingdoms.

In plants, sodium strictly is not an essential nutrient, but it nevertheless effects their water relations and helps them to withstand drought conditions and partially conserve or replace potassium, particularly in sodium loving plants such as sugar-beet, mangold, barley etc. (Wallace, 1951). Potassium on the other hand is considered with normal cell division, synthesis of carbohydrates and proteins, reduction of nitrates and development of chlorophyl etc. in them (Robbins <u>et el</u>., 1961).

In animals, the major portion of sodium is present in extra-cellular fluid and that of potassium inside the cells. Their basic functions include maintenance of (a) osmotic pressure, (b) acid-base equilibrium, (c) passage of nutrients to and from the cells and (d) water metabolism in general (Maynard and Loosli, 1962). Both of them are concerned with muscular contraction, have anti-coagulant properties and are present in brain, bone, muscles, teeth, blood, milk, saliva etc. (Oser, 1965). As to their independent roles, sodium is concerned with catalytic effect on enzyme activity, normal appetite, weight increase, storage of fat and its synthesis along with protein, while potassium inside the cells aids in the enzymatic transfer of phosphate from ATP to pyruvic acid and has a role in a number of other basic enzymatic reactions (Oser, Log. cit.).

Sodium and notassium imbalances

There appears to be no specific disease resulting from sodium deficiency. However, its lack can cause retarded growth, lowered utilization of protein and energy and failure of reproduction. In poultry, its deficiency causes a drop in weight and egg production as also the occurrence of cannibulism (Maynard and Loosli, <u>loc. cit.</u>). Cows not getting salt show an abnormal appetite for it and, much later, lustureless eyes and rough body-coat leading to an unthrifty appearance and a decline in body weight and milk yield (Tyler, 1966). Helfferich and Leokeit (1965) observed that cows deprived of sodium appeared to conserve it by a drop in milk yield. On the other hand, poultry are supposed to have a low tolerance for salt, although much more of it can be tolerated in a mash with plenty of fresh water to drink than when salt is given in drinking water (Tyler, loc. oit.).

Potassium deficiency has been reported to have been experimentally produced in several species (Maynard and Loosli, loc. cit.). Besides non-specific symptoms, occurrence of heart lesions, tubular degeneration of kidneys and other pathological changes and a lowering in the potassium content of heart and other organs have been observed. In man, its deficiency causes lack of appetite, muscular weakness and paralysis, as also shallow rapid breathing, heart changes, abdominal distension and mental changes, like lethargy, apathy, delirium etc. (Wright, 1956). On the other hand, large oral doses of potassium administered rapidly have been observed to be fatal to cows. Ward (1966) stated that hypomagnessemia grass tetany was the only pathological situation related to high potassium intakes in ruminants, and this relationship was not clear. He also reported that potassium might be partially responsible for death of calves suffering from diarrhoea.

~ ~ ~ ~

Role of sodium and potassium in urine output

The literature available indicates that the water demands for urinary excretion of sodium and potassium may be a factor in the water turnover rate, but this has not been investigated. However, the water intake and urinary volume are directly related to sodium and potassium intake.

Thus, Warth (1923; 1926) observed that increased urination seen under paddy straw feeding was partly due to higher potassium intake. Feeding of paddy straw with Napier grass both of which are rich in potassium has been reported to lead to enhanced urination (cited by Negi, 1965). Ray et al. (1947) and Pandittesekere (1952) observed that diuresis was reduced on water washed paddy straw feeding which contained less potassium.

On the other hand, ingestion of alkali treated paddy straw which contained a very high amount of sodium increased the water intake and urinary volume (Negi, <u>loc.cit.</u>). Wilson (1966) observed that the ingestion of excess sodium increased the water requirements and induced diuresis in sheep.

Sodium and potassium requirements

Babcock and Carlyle (1905) determined sodium

a 4 a

requirement to be 15 g. for a cow producing 20 lb. of milk. However, for the growth of heifers, a ration providing only 1.5 g. sodium was considered to be enough (Theiler <u>et al.</u>, 1927). DuToit <u>et al.</u> (1934) arrived at the same requirement for growth but suggested 11 g. for a cow giving 20 lb. of milk, which were later put at 0.02% sodium in the ration for growth and 0.16% or more, according to milk yield, for milk production (DuToit <u>et al.</u>, 1940). Brouwer (1961), however, observed that cow can subsist on very small amount of sodium, say, lass than 0.1% in the dry matter of the feed. Maynard and Loosli (<u>log. cit.</u>) recommended sodium requirement during growth of rats, chicks, pigs and calves as ranging from 0.1 to 0.2% of the ration.

Comparatively, potassium requirements seem to be higher. Dutoit <u>et al.</u> (1934) were the first to report that a ration providing 0.32% potassium in its dry matter was adequate to maintain 8 gallons of milk production over a period of two lactations. Telle <u>et al.</u> (1964) found that 0.34% potassium in the ration was the minimum for growing finishing lambs and that the optimum intake was 0.56%. Roberts and St. Omer (1965) found that a potassium level of 0.5 to 0.6% of the ration dry matter was adequate for rapid weight gains in fattening steers. Maynard and Loosli (<u>loc</u>. <u>cit</u>.) report that the requirement of potassium veries between 0.2 snf 0.3% of the dry matter for rats, pigs and chickens, while Ward (<u>loc. cit.</u>) reports the same to be not more than 0.5% of the ration for ruminants and other herbivores, including rapidly growing sheep or cattle.

Sodium-potassium inter-relationship

The fact that plant products contain very high amounts of potassium as compared to sodium raised the question of the significance of sodium-potassium ratio in the diet. In 1873, Bunge (cited by Brouwer, <u>loc. cit.</u>), on the basis of meagre data, postulated that an excess of potassium impoverished the organism of sodium and chlorine. This theory explains the apparently larger requirements for common salt of the herbivores than of other species, as being due to the greater ingestion of potassium relative to sodium in leafy feed materials. Maynard and Loosli (<u>loc. cit.</u>) also reported that controlled experiments with rats and poultry indicated that there were certain interrelationship between sodium and potassium in metabolism. For example, at inadequate levels of either, the deficiency symptoms were aggravated by a large excess of the other.

Theiler <u>et al</u>. (1927) observed that growth of heifers from one year to adult weight on rations low in sodium and chlorine but with a KgO:NagO ratio of 12:1 or

on ones low in sodium and high in chlorine but with a K20:Na20 ratio of 20:1 or 30:1, or even on ones low in potassium, was not affected when the rations themselves provided 1.5 g. sodium and 5 g. chlorine daily, but calving abnormalities were there. Russel and Duncan (1956) calculated Thomas et Al. (1952)'s data and found that the ratios of potassium:sodium for normal pasture grasses and for legumes lay between 15:1 and 30:1 respectively. Glendening et al. (1952) found the ratio to be as wide as 54:1 for prairie grass and hay in Kansas. In experiments on young growing pigs, Richards at al. (1927) found that when the ratio of potassium to sodium was 10 or 11 to 1, assimilation of nitrogen, calcium and phosphorus was reduced. Orr (1929) considered that the effect of a high potassium: sodium ratio was most likely to be manifested when the supply of other constituents was low. These observations of Richards et al. (loc. cit.) and Orr (loc. cit.) find corroboration in the study of Zuntz (cited by Russel and Duncen, 1956) who found melnutrition and pice when the ration contained not only a high potassium-sodium ratio but was also low in calcium and phosphorus.

Objective's of the present investigation

Orasses are by far the best feed for dattle. The

feeding of greens alone can not only maintain a dairy animal in good health but also sustain milk production to the extent of 2-3 kg. per day. Feeding of concentrates to dairy animals, particularly the low yielders, being generally uneconomic efforts from time to time have been made to replace them by grasses, especially of the leguminous variety. Such green feeds, however, may contain as much as 4% potassium in the dry ration against a computed requirement of 0.5% for ruminants and other herbivores including rapidly growing sheep or cattle (Ward, loc. cit.). This is a very high level of potassium feeding and although apparently well tolerated by ruminants. It may nevertheless have injurious effects on nutrient metabolism and induce hypomagnessemia. The injurious effect of puddy straw feeding on mineral motabolism is already well established (Carbory et al., 1937, Talupatra et al., 1942; 1948). In spite of considerable work on the subject, the part which potassium plays in this impaired mineral metabolism has yet to be elucidated.

Another important fodder crop is berseem (<u>Trifolium alexandrinum</u>) which during the winter months often forms the sole feed for dairy cattle in certain parts of the country and contains almost double the amount of potassium present in paddy straw, which is the principal roughage in rice growing areas. Whether such a feeding

regimen adversely affects the mineral metabolism and health of the animals is not yet known. On the other hand, that potassium plays an essential role in plants in the synthesis of proteins from non-protein nitrogeneous sources is well known. Potassium also seems to effect cellulose digestion (Hubbert et al., 1958; Knox et al., 1965; Leitch and Thomson, 1944;Ward, loc. cit.).

Further work is needed on the relation of the potassium level in the gastro-intestinal tract to the absorption of calcium and magnesium, as dietary potassium is stated to take part in the etiology of grass tetary (Ward, <u>loc. cit.</u>). Work on ruminants, specifically to study the role of potassium on all these aspects does not seem to have been attempted so far, which prompted us to undertake the present investigation.

Again, the Dutch School hold that ill health in grazing unimula may arise from or may be promoted by a deficiency or surplus of the total alkali (sodium and potassium) and alkali earth metals (calcium and magnesium) or an imbalance of alkali radicals <u>inter-se</u> (Russel and Duncan, <u>loc. ait.</u>). As grazing animals like cattle and sheep normally consume potassium in high amounts as compared to their requirements, it is logical to assume that an

imbalance of alkali radicals can exist under grazing conditions. So, one of the objectives of the present investigation was to study the effect of varying ratios of potassium sodium, by supplementing potassium to the basal ration, on the metabolism of minorals in adult sheep, keeping the levels, particularly of calcium and phosphorus, as far as practicable at their requirement. Potassium supplement was offered in the form of potassium chloride.

Secondly, it is known that sodium and potassium serve the needs of great many runen organisms during growth (Hungate, 1966) and they along with bicarbonate provide the necessary optimum condition for bacterial fermentation and digestion. Thus, the effect of varying the ratio of potassium:sodium on the digestibilities of proximate principles and metabolism of nitrogen was also made the subject of study.

Thirdly, as very little work has been done on the water requirement and water turn over rate as affected by high petassium diets (Ward, <u>log. git.</u>), the water metabolism studies were also undertaken at the same time.

- 10 -

SUMMARY

The relevent literature available on the subject has been adequately reviewed and the object of the study delineated.

The available information on the essential roles of sodium and potassium, their requirements in the body, their deficiency and toxicity and the importance of the ratio between sodium and potassium in animal nutrition has been fully discussed and the lacunae in our knowledge on the subject stated.

From the literature it appears that very little work has been done on the subject and, particularly, in India no work of this type has been undertaken so far.

CHAPTER II

,

٠

MATERIALS AND METHODS

Page 12-36

CHAPTER II

MATERIALS AND METHODS

A brief account of the experimental techniques and the methods of analysis adopted during the course of two experiments conducted in the present investigation is given below:

I. Experimental techniques

A successful evaluation of the results in any experiment depends upon the sensitivity and accuracy of the experimental techniques employed. Keeping this fact in view, best efforts have been made in every aspect of this investigation.

(a) Selection of animals and their grouping

The nature of the investigation undertaken demanded that the work should be carried out on rusinants. The experiment was, however, designed to be conducted in sheep as per the availability of animals and economy in feeding and management practices.

Twelve healthy adult sheep (male) of local breed, aged between 2 and 24 years and weighing from 20 to 30 kg., were selected for the experiments. The animals were kept under observation for a fortnight and during this period daily rectal temperature, pulse and respiration rates were noted which were found normal. Their faceal samples were also examined for intestinal parasites. As some of the samples showed positive tests for strongyles (nematodes), all the animals were dewormed by doses of Phenothiazine (15 g. each), which is a specific antihelminthic drug drug against a number of common nematode parasites occurring in these animals. Only when the faceal examination revealed negative results, the animals were put to pre-experimental feeding. These precautions were taken to ensure a healthy stock to start with.

The animals were divided at rendom into three groups of four animals after forming 4 blocks of 3 animals each. One of the groups served as control and the other two for different treatments, i.e., different levels of potassium feeding. The treatments also were randomized. For the purpose of the second experiment that was conducted, the animals were regrouped exactly on the pattern as outlined before. The initial live weights of the animals recorded in the beginning of the two experiments and detail of their grouping have been given in Table I.

··· 13 ···

M
Table

Initial live weights and grouping of animals in Experiments I and II

LEINING CON	I LE	· · · · · · · · · · · · · · · · · · ·	TAININI	II ANN	
Group Aspecification	Maluel No.	Lil To Weight (22.)	Group specification	Minal No.	Litve Veight (kg.)
	80	30°5		28	31.0
Crontr, 7	R	22,5	COATTR 7	8	29.0
(control)	82	24.95	(centrol)	62	27°0
	78	SS v		22	22.0
AVETAGe		26.5		ිදිම	27.3
	8	30°5		1 9	31°C
it mont	80	28°2	Tarcene T	20	63 63
(ca 2% K level)	Š	24°5	(ca 2% K level)	26	27°0
	22	20°5		Ň	34°C
A erege	45	26°0	âv spage	3 6	27°4
	51	30.5		50	31.5
Apoin 795	8	ຊິເ ຊີ	Grantin III	8	28°5
(ca 4% K level)	65	0°22	(ca as I level)	2	26°3
	Ľ	22.5		78	24°0
90846W		25.0	or (addy	330	97.A

- 14 -

(b) <u>Selection and computation of basal diet</u>

Experiment I

The nature of the present investigation demanded that the basal ration fed should be as low in potassium as possible. Sheep generally prefer soft leafy fodders. It was, therefore, decided that the animals should be maintained partly on a green feed which is available throughout the year and at the same time highly palatable. Cultivated fodders like green jowar, malze, etc. were eliminated, because most of them become so stemmy after 3 or 4 months that sheep can neither consume them sufficiently nor utilise them properly. Pakar (<u>Ficus infectoria</u>) leaves, a tree-leaf fodder, which are available green practically throughout the major part of the year were used as a part of the basal ration, especially because of their comparatively low potash content and high palatability for sheep.

To ensure a balanced maintenance ration it was considered advisable to meet up at least 50% of the protein requirement of the individual animals in the form of a concentrate mixture composed of 2 parts of crushed maize, 1 part of maize starch and 1 part of decorticated groundnut cake. Wheat bhoose was fed ad libitum to all the animals to meet their 'dry matter' and 'totaldigestible-nutrients' requirements. As, however, wheat <u>bhoosa</u> contained relatively high amounts of potassium, it was soaked in water for 24 hours, washed thoroughly and then dried in the snu. This washing treatment was done to remove, as far as possible, the soluble salts of potassium (viz. potassium oxalates, etc.) present. The ration was so devised as to make the sodium:potassium ratio in the experimental rations progressively wide between the groups. Their ratios in the three groups were approximately 1:3, 1:10 and 1:19 respectively.

Experiment II

In the second experiment, the concentrate mixture and <u>pakar</u> leaves were replaced by green berseem (<u>Trifolium</u> <u>elexandrinum</u>), which formed the only source of protein meeting the requirement of this nutrient of each animal. Wheat <u>bhoose</u> was fed as such (i.e., unwashed) in order to have a different set of ratios of sodium:potassium ingestion in between the groups of animals, the major part of potassium in which coming from the feeds. The ratios are approximately 1:4, 1:8 and 1:11 respectively. The average chemical composition of ingredients of the basal ration throughout the feeding period of each experiment is set out in Table II.

Crude 'Ether ' Crude protein extract fibre 19.10 2.19 3.53 10.71 2.15 22.24 2.69 0.82 43.22 1) 2.69 2.57 25.72	(2) WILT N DINGEO	6		yeller.	TRAL	MINDRAL NATER (\$)	()	
entrate 19.10 2.19 ure n pakar 10.71 2.15 2 ves t bhoosa 2.69 0.82 4 er washed) n berseem 21.56 2.57	ude fitrogen' bre free- extract	Total	Total ash	'Calcitum'Phos-	Phos- phorus	Mag- nesium	* Sodium	Sodium'Potassi- um
entrate 19.10 2.19 ure n pakar 10.71 2.15 2 ves t bhoosa 2.69 0.82 4 t bhoosa 2.69 0.82 4 n berseem 21.56 2.57		EXPERIMENT	1-4				·	
10,71 2,15 2,69 0,82 21,56 2,57	•53 71.84	96° 66	5°55	0*001	0.308	0°215	0°231	0°972
2,69 0,82 21,56 2,57	•24 54°55	89° 65	10,35	2°510	0°227	0,550	0.271	1.188
berseen 21.56 2.57	•22 <u>4</u> 8°83	95°56	1.0 et 1.	0°242	0°108	0°098	0°169	0.453
berseem 21.56 2.57		REPERTNENT	II II					
	6 72 40°24	80°08	16°8	1,981	0.219	0.382	0.820	216°2
Wheat bhoosa 2.65 0.85 39.48 (unwashed)	₀ 48 50°55	93 ° 53	6.47	0°215	0°102	0°154	161°0	1°249

Table II

Average percentage chemical composition of feeds throughout the feeding period of each experiment (on dry matter basis)

•

17 -

427

In order to avoid, as far as practicable, the variation in the chemical composition of the basal rations, the concentrate mixture was prepared in amounts to last for the whole experimental period, and so was wheat <u>bhoosa</u> stored. All the ingredients that made up the ration were chemically analysed before starting each of the experiments, and the basal ration was computed on this basis. Graded doses of potassium in the form of of potassium chloride were fed as supplement to raise the potassium intake upto the desired levels. Feeding was done according to the schedule given in the N.R.C. report 'Vutrient requirements of sheep' - Revised, 1957, at just above the maintenance level.

(c) Housing and management of animals

(1) Housing:

The animals were housed under hygienic conditions and necessary precautions taken during winter to prevent the animals from exposure to cold. Throughout the preliminary feeding period, the animals were let loose every morning for exercise in the open air, with muzzles on, so that the animals were unable to take any feed outside. While feeding in the shed, the animals were tied properly from both sides in order to prevent them from getting access to the feeding troughs of their neighbours.

(11) Feeding and watering

In the first experiment the animals were fed thrice a day, while in the second twice a day. This was due to the nature of the two rations fed. Potassium is known to have a diurctic effect and as excessive accumulation of potassium in the body may cause toxicity, ad lib. watering of animals at least thrice a day was considered essential in these experiments, under high levels of potassium feeding.

Experiment I

The concentrate quota of the ration for each animal was weighed and offered daily at 9.30 A.M. individually in galvanized iron troughs assigned to each animal separately. When the concentrate mixture offered was completely eaten away, clean wholesome drinking water was offered liberally in measured quantities to each of the animals in order to study their water metabolism. The animals were then let out for exercise, with muzzles on, under the care of an attendant. <u>Pakar</u> leaves were offered in the afternoon followed by wheat <u>bhoosa</u>, which only was supplied <u>ad lib</u>. Every time water was offered the amount drunk was recorded. The quantities of wheat <u>bhoose</u> allotted to each animal was so adjusted, during the first few days of the preliminary feeding periods of both the trials, that there was little residue left over in each case.

Experiment II

Here, the basal ration comprised of green berseen and unwashed wheat bhoosa only. Borseen is rich in potassium and wheat bhoose also constitutes a good source of this mineral. The central idea of choosing this feeding regimen is (a) to limit potassium ingestion, as far as possible, from natural feeds alone and also (b) to study the effect on metabolism of ratios of sodium spotassium other than the ones used in the first experiment. Weighed quantities of green berseem allotted to each animal were offered at 9.30 A.M. daily in the individual mangers assigned to each animal. It was usual for the animals to consume the whole of the berseen offered in an hour or so. They were then watered and let out for exercise as usual. Wheat bhoosa was offered in the afternoon and its quantity consumed recorded.

- 20 -

(111) Live weight records

The animals were initially weighed on three consecutive days to eliminate variability. Thereafter, weekly weighments were carried out and the adequacy of nutrients checked out. The weighings were usually done early in the morning before any feed or water was offered. The animals were also weighed both at the start and at the end of collection period in each trial.

(iv) Potassium supplementation

Potassium chloride (KCl), B.P. quality of S. Merck make, which contained 52.3% of potassium on raw basis formed the mineral supplement. It was added to the concentrate and <u>paker</u> leaves quota of the basal ration of the first experiment and in berseem in the second at two graded levels so that the total potassium ingestion in the first experiment came approximately to 2 per cent and 4 per cent of the dry ration and around 3 and 4 per cent in the second. The control groups in the two experiments consumed about 0.7 and 1.8 per cent potassium respectively from the rations alone. The supplemental feeding of the salt (KCl) was initiated at a low level and then raised slowly to bring it to the levels desired in about a week's time. When the full quota

- 21 -

of potassium chloride was fed, then only the preliminary feeding started.

These high levels of potassium feeding were adopted on the basis of considerations discussed in Chapter I.

(d) Conducting the metabolism trial

(1) Preliminary feeding and collection period

Two metabolism trials were conducted during the course of the present investigation. Each trial was preceded by a preliminary feeding period of 15 days, followed by a 7 day collection period on the basis of the following considerations.

In all metabolic studies, a preliminary feeding period varying from 2 to 4 weeks is usually considered necessary to eliminate the effect of the previous feed, although Hamilton et al. (1927-28) by using different indicators found that a three day preliminary feeding period in the case of ruminants was sufficient to eliminate the residual effect of the previous feed. According to Mitchell et al. (1932) also, longer preliminary feeding is un-necessary. The length of collection period in digestibility trials is likewise a matter of controversy. While longer collection period may secure more accuracy, it increases the labour, expense, and even the risk of animal sickness etc., which may affect the results adversely. Staples and Dinusson (1951) by comparing the relative accuracies between a 7 day and a 10 day collection periods concluded that a 7 day collection period could replace a 10 day period within reasonable limits of accuracy.

In the present investigation, therefore, a 15 day preliminary feeding period was followed by a 7 day collection period.

(11) Sampling and preservation of feeds and feed residues

A regular routine as described before was followed in feeding and watering the animals during both the experimental and pre-experimental feeding periods. (For the purposes of sampling, the concentrate mixture was thoroughly mixed before offering to the animals and a representative sample (about $\frac{1}{2}$ kg.) was taken daily during the trial period for dry matter determination, and subsequently the dried material of each day was pooled and preserved in a well stoppered bottle for chemical analysis. Similarly, a representative sample of wheat <u>bhoose</u> (about $\frac{1}{2}$ kg.) was taken daily and after dry matter determination was pooled and preserved for analysis after milling.

In the case of green berseen or <u>pakar</u> leaves, a

- 24 -

representative sample (about & kg.) was taken out daily from the lot at the time of feeding. After chopping well, two representative samples were taken for dry matter and crude protein estimations. The dried material of each day, after moisture determination, was pooled and preserved for further analysis after milling.

The wheat <u>bhoosa</u> residues left over daily were quantitatively collected for each animal, weighed and preserved. Necessary corrections in the consumption were later introduced. The total residues of all the animals were thoroughly mixed together in a lot and then a truly representative sample was taken to the laboratory for analysis. After dry matter determination, the wheat <u>bhoosa</u> residue was preserved in well stoppered bottles for further analysis after milling.

(111) Collection, preservation and sampling of faces and urine in the metabolism stall

As the usual conventional method was followed for the metabolism trials, the animals were shifted from the shed to the metabolism stall fitted with the usual conveniences and the collections were taken in the usual manner. The animals were harnessed with faccal and urine collection bags three days before the start of actual collection in order to acclimatise them to the harness condition as well as new environment. During these days the collections of faeces and urine, although taken, were rejected after weighing and measuring.

buring the actual collection period of 7 days, the facces and urine voided in 24 hours were collected and preserved in separate containers (plastic buckets for facces and three litre glass bottles for urine) for each animal with the help of trained attendants keeping constant vigilance. The daily faccal excretions (24 hours' collections) were accurately weighed at a particular hour in the morning. Next, the facces of each animal was mixed thoroughly and a representative sample obtained in a wide mouthed bakelite stoppered glass bottle bearing the brand number of the animal.

Simultaneously, the 24 hourly collections of urine from each animal also were accurately measured and after stirring well a representative sample of about half a litre was taken in a rubber stoppered glass bottle assigned to each animal separately. All the samplings were completed by 9.30 A.M. daily before offering feeds to the animals. The samples of faeces and urine were then brought to the laboratory for further aliquoting before analysis.

It may be mentioned here that 5 ml. of toluene

- 25 -

was placed as a preservative in each collection bottle before each collection to avoid bacterial formentations during each succeeding 24 hours.

(iv) Aliquoting and preservation of faces and urine in the laboratory

All precautions were taken to avoid contamination of the samples from extraneous sources right from the time of collection to the time of final estimation. To prevent any decomposition and subsequent loss of ammonia, the urine samples were aliquoted first and the faeces samples later as described below.

Urine

Before aliquoting, the specific gravity of each urine sample was determined by means of a urinometer. There were large variations in the urinary output of different groups of animals in each trial and, therefore, the urine samples were aliquoted groupwise. Different aliquots were taken for nitrogen and mineral estimations.

For nitrogen estimation, the calculated quantity of urine aliquot for each animal was accurately pipetted out into the respective Kjeldahl flask (500 ml. capacity) assigned to each sample, in duplicate, containing 40 ml. of concentrated sulphuric acid. The flasks were,

- 26 -

then properly covered and kept in place for the next day's aliquoting. Thus, the aliquots for 7 consecutive days for each animal were pooled together in the same flask for digestion.

Similarly, for mineral estimations, the calculated quantities of urine aliquot for individual animals were pipetted out into the respective weighed vitreosil basins, in duplicates. The samples in the basins were daily dried over hot water bath and the next day's fresh aliquots were added into the same basins. When all the seven days' pooled samples were completely dried, the basins were weighed again to determine the total solids and then kept for ashing for mineral estimations.

Fasces

After discarding the top layers of fasces from each collected sample, the calculated aliquot (1/20th of the total excretion per day) for dry matter determination was accurately weighed and taken up in a clean weighed petridish. The sample in the petri-dish was evenly spread out with the help of a horn spatula and dried in a hot air oven at 100°-105°C for 24 hours. The dry matter in the facces for each animal was thus estimated daily during the trial period, and the dried material was pooled and preserved separately for each animal. At the end of the collection period, the dried faecal samples were milled in a milling machine and then preserved in well stoppered bottles bearing the brand numbers of the animals for chemical analysis.

Simultaneously, separate aliquots (1/50th of the total fresh facees voided per animal per day) for nitrogen estimations were accurately weighed, taken up in a porcelain mortar, mixed up thoroughly with about 10 ml. of 25% sulphuric acid for fixation of nitrogen and then preserved in wide mouthed well stoppered weighed bottles assigned to each animal separately. After the collection period of 7 days, the bottles were weighed again and the pooled samples in each bottle were thoroughly mixed up. A suitable aliquot (ca 10 g. each) was then taken in a Kjeldahl flask, in duplicate, containing 30 ml. of concentrated sulphuric acid for digestion. Since, considerable loss of nitrogen takes place during drying (Kleiber <u>et al.</u>, 1936), the nitrogen in facees was estimated from the fresh sample only.

- 58 -

II. Methods of Chemical analysis

In the course of the present investigation, the methods of chemical analysis recommended by the A.O.A.C. (1960) were generally followed for the estimations of dry matter and proximate principles, while for the mineral estimations the methods adopted were the A.O.A.C. methods as modified by Telepatra, Ray and Sen (1940).

Feeds, feed residues, and faecal samples were analysed for dry matter, organic matter, crude protein, ether extract, crude fibre, nitrogen-free extract, mineral matter, total ash, calcium, phosphorus, magnesium, sodium and potassium. Nitrogen-free extract and total organic matter were, of course, found by difference. The results have been reported on per cent dry matter basis.

Urine samples, on the other hand, were analysed for total solids, total ash, nitrogen, calcium, phosphorus, magnesium, sodium and potassium; and the results have been reported as 'total excretion in urine per day'.

In all the estimations, the averages of duplicate results have been reported. A brief outline of the analytical methods employed in this work is given below:

- 58 -

(a) Dry matter determination

On proper sampling, a weighed quantity (8-10 g.) was taken in a clean and dry weighed moisture cup. The material was dried in the hot air oven at 100°-105°C for 24 hours and weighed again. The dry matter percentage of the samples was separately determined each time so that the results could be expressed uniformly on moisture free basis.

(b) Estimation of nitrogen and crude protein

This was carried out by the well known semimicro Kjeldahl method. After the usual digestion with concentrated sulphuric acid in the presence of a catalyst (1 g. copper sulphate + 10 g. anhydrous sodium sulphate) the distillation was carried out with excess of 40% sodium hydroxide solution added to liberate ammonia, the distillate being collected in a known volume of standard sulphuric acid containing methyl red as an indicator. The figures of nitrogen found were, as usual, multiplied by 6.25 to obtain the protein content. For accuracy, a blank was run with all the reagents used, every time a batch of distillation was performed.

- 30 -

(c) Estimation of ether extract

Ether extract was estimated by the usual Soxhlet method of extraction as per recommendations of the A.O.A.C. (<u>loc. cit.</u>). After complete removal of the petroleum ether, the oil flask was weighed to a constant weight to get the weight of the ether extract.

(d) Estimation of crude fibre

The usual Weende method of crude fibre estimation was followed, utmost care being exercised in regard to the period of boiling, filtration, washing etc. The washed residue was quantitatively transferred in a weighed crucible and dried at 100°C to a constant weight. The dried residue was then ashed, cooled and weighed again. The loss in weight on ignition gave the weight of crude fibre content.

(e) Estimation of nitrogen-free extract

The percentage of nitrogen-free extract was found by the method of difference by subtracting the sum total of the percentages on dry basis of crude protein, ether extract, crude fibre and total ash from hundred.

- 31 -

(f) Estimation of total ash and organic matter

A weighed quantity of the powdered sample taken in a vitreosil basin was ignited, first on a low flame to ohar the material and then in an electric muffle furnace to ash it at 550°C for about 2 hours. It was cooled and weighed again to get the total ash content. The total organic matter percentage was then obtained by subtracting the percentage of total ash from hundred.

(g) Estimation of calcium

Calcium was estimated in the hydrochloric acid extract of the ash by the method of McCrudden as modified by Talapatra, Ray and Sen (1940).

Calcium was precipitated as calcium oxalate at a pH of 4.0 to 5.5. The washed precipitate of calcium oxalate was then titrated hot against a standard N/19 potassium permangamate solution, using concentrated sulphuric acid to liberate the nascent oxygen from the oxidation of oxalic acid. The result was calculated as elemental calcium on per cent dry matter basis.

(h) Estimation of phosphorus

Phosphorus was estimated by the method of Neumann

as modified by Talapatra <u>et al.</u> (<u>loc. cit.</u>), which is based on the principle that when a solution of phosphorus in an excess of dilute nitric acid is treated with ammonium molybdate, a canary yellow precipitate of ammonium phosphomolybdate $\int (NH_A)_3 PO_A 12MoO_3 6H_2 O \int J$ is obtained.

The washed precipitate of amaonium phosphomolybdate was dissolved in a known volume of standard sodium hydroxide solution and the excess of alkali was back titrated against a standard nitric acid solution, using phenolphthalein as indicator. The percentage of phosphorus was calculated on the elemental basis.

(1) Estimation of magnesium

Magnesium was estimated in the combined filtrate and washings from calcium determination by the A.O.A.C. method as modified by Talapatra <u>et al. (loc. cit.)</u>, which is based on the principle that the magnesium pyrophosphate formed by the addition of 10% ammonium phosphate and sodium citrate in a strongly ammoniated solution can be determined gravimetrically.

The washed precipitate of magnesium pyrophosphate along with the filter paper was dried and ignited in an electric muffle furnace at 600°C when a greyish-white ash was obtained. The weight of the ash gave the content of magnesium pyrophosphate which was then calculated as elemental magnesium.

(j) Estimation of sodium and potassium

Sodium and potassium were estimated by the A.O.A.C. method as modified by Talapatra <u>et al</u>. (<u>loc</u>. <u>cit</u>.), a brief outline of which is given below.

A suitable aliquot of the prepared hydrochloric extract, after evaporation to dryness, was moistened with a drop of HCl and little distilled water, boiled for a few minutes with clear baryta water until alkaline and then filtered hot to remove iron, aluminium, sulphates etc. The dried residue of the filtrate, after cooling, was taken up with 35 ml. of alcoholic ammonium-carbonate solution and stirred thoroughly for 5 minutes. It was then transferred quantitatively into a 100 ml. volumetric flask and the volume made upto the mark with the seme alcoholic ammoniumcarbonate solution. The contents were thoroughly shaken, allowed to stund overnight and then filtered to remove calcium, barium etc. An aliquot of the filtrate was pipetted out into a weighed vitreosil basin and evaporated to dryness. The dry residue was taken up with 1 ml. of concentrated hydrochloric acid and a little distilled water and again evaporated to dryness. The latter was carefully

heated on a low flame until dense white fumes of annonium salts no longer appeared. The mixed chlorides of sodium and potassium, after cooling in a dessicator, were weighed and dissolved in a little hot distilled water and then transferred quantitatively into a beaker.

The mixed chlorides were then treated with perchloric acid (sp. gr. 1.125) to transform the potassium chloride into potassium perchlorate which was later separated out in presence of 95% alcohol and filtered. The washed solid potassium perchlorate on the filter paper was dissolved in hot distilled water by washing the filter paper thoroughly and the solution was received in a weighed vitreosil basin and evaporated to dryness. The dry residue was heated on a low naked flame taking care that the solid potassium perchlorate did not melt. It was cooled in a desiccator and weighed again to get the weight of potassium perchlorate formed. The amount of potassium chloride was calculated and by deducting it from the mixed chlorides, the yeight of sodium chloride was obtained. The elemental sodium and potassium were calculated from the weights of sodium chloride and potassium perchlorate respectively.

(k) Statistical interpretation of data

The relevant data concerning each trial was

- 36 -

subjected to 'Analysis of variance' individually according to Snedecor (1961). The characters in which the 'F' ratio between treatments came out to be significant, and their group means were subsequently compared with the help of 'Critical difference' and the results discussed.

SIMMARY

The basis for the selection of animals for the two experiments, their ration schedule and supplements, plan of the experiments, feeding and management of animals, aliquoting and preservation of biological materials, estimation of various nutrients and the methods of analysis including the statistical interpretation of the data employed during the course of the present investigation have been discussed in brief in this Chapter.

CRAPTER TTT

STUDIES ON SODIUM POTAS STUD RATIO AS AFFECTING THE NUTRIENT METABOLISM IN ADULT SHEEP- PART I

Page 37 - 84

CHAPTER III

STUDIES ON SODIM POTAS LUM RATIO AS AFFECTING THE NUTRIENT METABOLISM IN ADULT SHEEP PART I.

Recent investigations on the mineral requirements of the growing animal make it increasingly evident that the adjustment of the proportions of the inorganic constituents of a ration requires as much consideration as the absolute amounts of these elements in the dist. Even though a mineral is present in a ration in sufficient amount for the animal's requirements, the presence of other minerals in unsuitable proportions may lead to insufficient assimilation and retention. The importance in animal nutrition of this balancing of the ration has been frequently emphasised by Orr (1924), who quotes various instances of the interdependence of the different mineral elements. Of special interest in this connection are sodium and potassium. The importance of the ratio of these to each other in the diet was discussed by Bunge as long ago as 1873, and since then the ratio has received more attention than the absolute requirements of e ach.

A perusal of the review of literature in Chapter I would indicate that high potassium intake or wide sodium:potassium ratio can disturb mineral metabolism by the animals. Richards <u>et al.</u> (1927) observed that when the ratio of sodium:potassium was 1:10 or 11, even nitrogen assimilation was reduced in growing pigs. Water intake and urinary volume are also directly related to sodium and potastium intake. Ward (1966) observed that water demands for urinary excretion of potassium may be a factor in water turn over rate, but this has not been investigated. No systematic work on these aspects has been conducted in ruminants, which prompted us to undertake the present investigation. The results obtained are presented in this Chapter.

RESULTS AND DISCUSSION

As already indicated in Chapter II, twelve adult sheep were employed in the present study. Their grouping, mode of feeding and other experimental details have been outlined earlier. After 15 days of preliminary feeding a metabolism trial extending over a 7 day period was conducted. During the trial period the levels of sodium and potassium feeding were as shown in Table III.

It will be seen from Table III that the percentage of sodium in the basal ration on dry matter basis (0.22%) was adequate as per the requirement suggested by Maynard and Loosli (1962) and the percentage of potassium progressively increased from 0.77 to 4.38 as per the planning of the experiment from the first group to the last. Likewise, sodium:potassium ratio as well as sodium + potassium ingestion also systematically increased from group to group.

<u>Reed consumption, dry matter digestibility and live weight</u> records

The data regarding dry matter consumption and its digestibility are presented in Tables IV and V and the live weight records of the whole feeding period in Table VI.

It will be seen from Table IV that the animals ingested on an average 31.81 g., 30.31 g. and 20.91 g. of dry matter per kg. body weight in groups I, II and III respectively, which appeared to be higher than the N.R.C. (1957) recommendations, i.e., 2.6% of the live weight or

⇒ 39 *⇒*

Tratel T		Levels of sodium the	m and potassium te trial period	1 11	incestion during	
Ant-al To.	's na in the ration	'% I 11 the ration	Na Incestod (g.)	' X Ingested (g.)	' ñark ratio ' ef ingestion	Na + K ingested (g.)
		Green I	(control)			
8	0.82	0°75	7°85	0° 50	1:3.4	8.45
ន	0.22	0.75	1,88	6° 45	7:3.4	6.33
62	0.22	0,73		20	50 S	2,98
5 2 2	0.22	20° 222	20 °T	89 90 90	50 0 T	66
al a grant a gr				1 30		
			8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
20	0°23	8°8	5 5 7 5	12°07	Ce:-! :-! :*	80,95
60	0.22	2° %	97		14IO.4	19,93
Š	0.23	- - - - - - - - - - - - - - - - - - -	2°57		5° 92 10° 92	18,41
Ę.	0.24	10°83	10 **		01 03 04 14	500
a la						
			III (ca 45 I	[igav]		
j,	0.22	to di	i s	いたので	2.10°8	36 . 74
8	0.23	E. L.	20°7	20 20	2001.1	33,80
ß	583	4.40	1.66	32972	1:10.0	33, 78
R	0.23	4.22	1°61	29.40	1:18.3	31.01
âvət 256	0.23	4 • 38	L.6B	32,16	13 7 7	33,83

- 40 -

Table III

Teble	

,

Average live velotte and day matter concernation of

individual animals per day

ьĄ	
IIIQ	

Animal	t Live	e velent (kg.	~		Dry E.	uatter consumption	tion (g.)	- 1 14
No.	At the start of collection period	At the e of colle ion pari	Average during collection period	From con- centrate mixture	Prom Pakar Leaves	<pre> Prum wheat bhoosd (water washed)</pre>		'Per kg. Live weight
				Crose I	(Control)			
88	30"00	30,50	80°25	202.50	195°00	476.6 6	874, 18	28°30
ß	28°00	29,00	28°S	202,50	195°.00	454°63	852,13	29, 90
00 00	24°00	34°00	24 °W	202,50	195,00	71°192	788,67	32°86
38	23°00	23.55		202.50	195, 20	429°65	887.15	35.38
AVerege	8°20	······································	8.50	202,50	185.00	438°03	835.83	31.81
				Group II	(aa 25 K	lavel)		
8	28° SU	29°00	54° 88	302°80	195.00	372.80)	769.30	26.76
8	27.00	28°W	27,50	205°202	195.00	379.82	777.32	28.27
2	50°53	00°23	22°32	202.50	196,00	291.64	689°14	31,32
2 2	19,50	18.00	10.75	202.00	195.20	256,90	65% 40	34.90
Nerago	24.25	24,25		505°50	18			1 TC 9 21 1
1 1 1		and the series of the series o		Crow III		1evel)		
19	28.50	23° W	28 ° 75	202,50	195,00	21888C	786.68	87 N
28	24.50	25°00	24,75	202,50	CO SET	331.45	728,95	29°45
69	23.50	22°50	23.00	202,50	195.00	327,22	724.72	
K	22.50	22 °00	22,25	202.50	195°00	299,66	697.16	31,33
áverako	24.35	24.63	24.69	202.50	195.00	336,833	134.38	

Minal Total Dutge thillity $N0_{\circ}$ intake faces digesthal Digesthality $N0_{\circ}$ intake faces digesthal Digesthal $N0_{\circ}$ intake faces digesthal confrid $S3$ $87a_{\circ}2$ $42a_{\circ}6$ $42a_{\circ}7$ $50_{\circ}87$ $S3$ $852_{\circ}1$ $42a_{\circ}6$ $398a_{\circ}1$ $50_{\circ}85$ 78 $827a_{\circ}2$ $42a_{\circ}6$ $398a_{\circ}1$ $50_{\circ}85$ 78 $827a_{\circ}2$ $420_{\circ}6$ $30_{\circ}85$ $50_{\circ}85$ 78 $825_{\circ}5$ $412_{\circ}8$ $422_{\circ}7$ $50_{\circ}83$ $87a_{\circ}6$ $335_{\circ}5$ $412_{\circ}8$ $50_{\circ}83$ $50_{\circ}83$ $898_{\circ}1$ $336_{\circ}7$ $324_{\circ}4$ $51_{\circ}87$ $50_{\circ}83$ $898_{\circ}1$ $826_{\circ}7$ $422_{\circ}4$ $51_{\circ}87$ $50_{\circ}83$ $898_{\circ}1$ $826_{\circ}7$ $424_{\circ}4$ $51_{\circ}87$ $50_{\circ}83$ $898_{\circ}1$ $826_{\circ}7$ $342_{\circ}4$ <		Bandarian Barati	Dry matter algestil	steet pitter dete	
Groun I Control 3 874.5 429.5 414.7 3 852.1 424.6 427.5 3 852.1 424.6 427.5 3 852.1 424.6 427.5 3 852.5 412.8 420.6 8 825.5 412.8 422.7 8 835.5 412.8 422.7 1 779.3 374.9 332.5 1 777.3 306.7 332.5 1 777.3 305.7 342.8 2 654.4 311.6 342.8 1 722.5 339.0 333.5 1 722.5 339.0 333.5 1 726.7 375.4 411.3 1 726.7 345.4 353.5 1 725.5 333.5 414.4 1 726.7 342.4 414.5 1 726.4 311.6 342.5 1 734.5 345.5 345.7 1 67.2 345.4 345.7	inal No.	, Total Intake (g.)		Totel digested (g.)	'Digestibility coefficient (\$)
8 874.2 429.5 414.7 8 852.1 424.6 427.5 8 788.7 390.6 398.1 8 827.8 406.6 427.5 8 825.5 412.8 422.7 8 835.5 412.8 422.7 8 835.5 412.8 422.7 1 1 10 10 1 1 10 10 1 1 10 10 1 1 10 10.6 342.6 1 1 10 10.6 342.6 1 1 10 10.6 342.6 1 1 10.6 342.6 342.5 1 10.6 342.6 342.5 1 10.6 342.6 343.6 1 10.6 342.6 343.6 1 10.6 345.6 343.6 1 10 10.6 345.6 1 10.6 345.6 345.5 1 10			j-4	trol)	
3 852.1 424.6 427.5 2 788.7 390.6 427.5 8 827.2 406.6 420.6 835.5 412.8 420.4 835.5 412.8 422.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<	83	874.2	429.5	3 077 T	50.87
2 788.7 390.6 398.1 8 827.82 406.6 420.6 8 825.5 412.8 422.7 835.5 412.8 422.7 422.7 835.5 412.8 422.7 422.7 0 777.3 372.9 334.4 1 769.3 372.9 344.4 6 83.1 306.7 382.4 4 683.1 306.7 382.4 5 777.3 352.9 342.8 6 83.1 306.7 382.4 7 722.5 3310.6 342.8 1 786.7 375.4 411.3 7 722.5 335.0 333.5 1 786.7 375.4 411.3 6 720.0 345.4 325.5 7 734.5 351.5 345.7 7 351.5 345.7 345.7	83	252°T	424.6	427,5	50.17
8 827.52 406.6 420.6 420.6 835.55 412.8 422.7 835.55 412.8 422.7 0 777.3 274.9 234.4 0 777.3 377.9 332.4 4 689.1 306.7 382.4 4 689.1 306.7 382.4 5 533.9 311.6 342.8 7 772.5 333.5 323.5 1 722.5 333.0 353.5 1 722.5 333.5 353.5 1 722.5 333.5 353.5 1 722.5 3353.5 353.5 1 722.5 3353.5 353.5 657.4 311.6 353.5 724.4 351.5 345.7 1 724.4 351.5 1 724.4 351.5 1 724.4 351.5 1 724.4 351.5 1 724.4 351.5 2 351.5 345.7	02	78 5%	390.6	398°I	50.48
835.5 412.8 422.7 0 777.3 374.9 334.4 1 777.3 374.9 334.4 1 777.3 362.9 414.4 1 777.3 362.9 414.4 2 654.4 311.6 342.8 2 654.4 311.6 342.8 3 775.5 339.0 333.5 1 722.5 339.0 333.5 1 786.7 345.4 311.3 1 786.7 345.4 311.3 1 786.7 345.4 311.3 1 786.7 345.4 411.3 1 786.7 345.4 411.3 1 786.7 345.4 411.3 1 786.7 345.4 353.5 1 697.2 351.5 345.7 1 697.2 351.5 345.7	ę	200 200 200	£06,6	200 °C	50 85
0 769.3 372.9 304.4 0 777.3 372.9 304.4 4 689.1 306.7 382.4 2 654.4 311.6 342.8 2 654.4 311.6 342.8 2 654.4 311.6 342.8 2 654.4 311.6 342.8 2 654.4 311.6 342.8 7 722.5 339.0 342.5 1 722.5 339.0 363.5 7 722.5 339.0 363.5 1 786.7 375.4 411.3 7 725.5 345.4 383.6 1 786.7 375.4 411.3 6 724.5 353.5 345.7 7 697.2 345.4 345.7 7 391.5 345.7 345.7					50°53
0 772.5 372.9 334.4 4 366.7 382.4 382.4 2 689.1 306.7 382.4 2 654.4 311.6 342.8 2 654.4 311.6 342.8 2 654.4 311.6 342.8 7 722.5 339.0 333.5 1 722.5 339.0 333.5 1 722.5 339.0 383.5 1 722.5 339.0 383.5 1 722.5 335.0 383.5 1 722.5 335.0 383.5 1 722.5 335.6 383.5 1 728.7 375.4 411.3 1 734.4 351.5 345.7 2 551.5 345.7 391.5				14 167	
4 4	8	769.3	5°748	304 a	52,23
4 689.1 306.7 382.4 2 654.4 311.6 342.8 722.5 339.0 323.5 722.5 339.0 333.5 722.5 339.0 333.5 722.5 339.0 333.5 722.5 339.0 333.5 722.5 339.0 333.5 722.5 339.0 333.5 722.5 339.0 333.5 726.7 375.4 411.3 726.0 345.4 383.6 724.4 299.2 425.5 1 697.2 351.5 7345.9 391.5	8	69777	362.9	<u>61402</u>	53,31
2 654.4 311.6 342.8 722.5 339.0 333.5 722.5 339.0 333.5 7 726.7 375.4 411.3 7 726.7 375.4 411.3 7 726.7 345.4 383.6 8 720.0 345.4 411.3 7 724.7 299.2 425.5 9 724.7 299.2 425.5 7 734.4 345.9 345.5	Š	689°.1	306.7	362 4	55°40
722.5 339.0 333.5 722.5 339.0 333.5 786.7 375.4 411.3 786.7 345.4 411.3 724.7 299.2 425.5 724.7 299.2 425.5 734.4 342.9 351.5 345.7	72	654. 4	311.6	345	52.38
1 786.7 375.4 411.3 6 786.7 375.4 411.3 7 786.7 375.4 411.3 7 720.0 345.4 283.6 7 720.0 345.4 285.5 7 729.0 345.4 285.5 7 724.7 299.2 345.7 7 734.4 321.5 345.7 7 734.4 342.9 345.7					
1 786.7 8 720.0 720.0 8 724.7 8 825.5 825.				x ¥	
6 720.0 345.4 383.6 9 724.7 299.2 425.5 1 697.2 351.5 345.7 734.4 342.9 391.5	ы С	786.7	375,4	5°175	83° 82°
0 724.7 299.2 425.5 1 697.2 351.5 345.7 1 734.4 342.9 391.5	3	720.0	345ª4	383.6	52.62
1 697,2 351,5 345,7 734,4 342,9 391,5	20	722.	2 3 0 %	19 19 19	58.71
	Ę.	687 S	5160	345.7	49°58
	1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · ·			53,30

e contactor

.

- 42-

		Tai	Table II		
Trial I	Live weights	of anim	als during the wole period	riole feeding	
Mimal No.	' o day	Sth đay	(16th day (before expt.)	, 25th day (after expt.	weight gain or .) loss
		dnory	I (control)		
8	30.5	80°5	30.0	30°5	anna Anna Bang
30	60 80 80 80 80 80 80 80 80 80 80 80 80 80	28°0	28°0	29 ° 0	+ 0.5
62	24.5	24.0	24.0	24.0	- 0.5
84	29 60	23.0	23.0	2°2	+ 1°0
iverage	20°-21	26.4	20°3		+ 0,3
		Group	II (ca 2% X lev	10761)	
8	30°5	30.0	28°5	29°0	u) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60	23°5	28°0	27.0	28°0	- 0.5
54	24.5	23°0	22,0	22.0	10 00 1
22	20°5	20°0	69 69	18.0	2°2 67
in erese Merese					
		Group	III (ce 4% X 14	level)	
8	30.5	30,0	23,5	29°0	4) ~
8	3°92	2°22	24.5	25.0	1 6 1
60	28.0	24.0	2°22	29°2	1 8 1
<u>T</u>	22.5	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8°5	22°0	0,5
herage	25°9	25°5	8°\$2	24.6	- 13

- 43 -

26 g. per kg. live weight on a ration containing 90% dry matter. The ration fed was evidently palatable. The live weight records given in Table VI, however, indicate that the animals maintained their live weights during the short period of 25 days with difficulty and indeed in the potassium supplemented groups there was a small depression. This seems to be in harmony with the observations of Meyer and Cohn (1911) who stated that potassium salts, as a rule, caused a loss of weight (cited by Richards et al., loc. cit.).

The data concerning the total dry matter ingested and its digestibility coefficients presented in Table V were subjected to analysis of variance. The 'F' ratio within treatments was found to be significant at 5% level in the case of total dry matter intake only. The results of analysis of variance has been set out in Table VII.

In the case of total dry matter intake, it will be seen from Tables IV and VII that the means of experimental groups were not statistically different from one another, though both were significantly different from the control. This shows that a change of average sodiums potassium ratio from 1:3.5 to 1:10.4 tends to depress the dry matter consumption significantly and is not further

فارم م
9
- C
en

analysis of variance data for dry matter incested, digested and and per cent direstibility

<u>I Isli</u>

yarla	Var1at1on	freedom	sources and	squares	terlorige
	- •	Total dry ma	y matter ingested		
Between bl	blocks	Ø	14778,6135	4926,2045	
Between tr	treatments	Ø	30850.5207	15425,2504	9°80*
IDITI		ø	9448.7374	1574, 7896	
		Totel dry no	dry matter digosted		
Setween bl	blocks	<i>~</i> ,	3789.72	1263,24	
	tre _s tnents	673	3435,26	1717.630	2°74 163.
BTTOT		Ø	3766.29	627,715	
		per cent dry	r metter algestibility	: Thi II the	
Between bl	blocks	ø	28,0016	9.3339	
Between th	trectments	8	18,2689	9,1345	2.06 N.S.
101 Ju		\$	26,5650	4.4275	

* Significant at 5% level. Criticul difference (c.D.) = 68.80 N.S. denotes not statistically significant.

- 45 -

affected when the ratio becomes as wide as 1:19.2.

<u>Digestibility of proximate principles</u>

The digestibility data of crude protein, ether extract, crude fibre and nitrogen-free extract are presented in Tables VIII, IX, X and XI respectively. In addition, actual T.D.N. ingestion during the metabolism trial as compared with the N.R.C. (loc. <u>git.</u>) recombendations for identical weights has been calculated and incorporated in Table XII.

It will be seen from Table XII that the animals had been ingesting more T.D.N. than their stipulated requirements; C.P. ingestion likewise as shown in Table VIII had been more than adequate as per the N.R.C. (<u>loc</u>. <u>cit</u>.) calculated allowances, which are 2 g. per kg. live weight.

The average digestibility figures of crude protein given in Table VIII indicate an increase from 33.32 in the control group to 38.83 and to 42.38% respectively in the two potassium supplemented groups, those of ether extract increased from 45.22 to 54.12 and to 56.41% (Table IX) and of nitrogen-free extract (Table XI) from 55.92 to 59.79 and to 60.46% from group I to II

• 46 •

s~4

1
S
AND D
03
g31
10
14
名词

<u>Erule rrotoin direstivility date</u>

Antmal From No. From From Concentrate 58 38.68 53 38.68 53 38.68 58 58 68 38.68 50 38.68 50 38.68 50 38.68 50 38.68 54 38.68 56 38.68 54 38.68 50 38.68 54 38.68 56 38.68 56 38.68 56 38.68 57 38.68 50 5		おおどくなるがないというないというないのないないないないであっていたのであるという	「ないたかなため」となったいのの日本の人民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民	行政は国政国家の国家があれていた国政政政政の政策の政策であった。		
	4UI	Intake (g.)		Cuten in	, 84 02	Digestivility
	Fror pakar leaves	1 5.1 ST 130 R	Total	10 em 1	digested (g.)	coefficient (%)
		Croin	I (control)			
	22,22	13,01	72,96	44°63	8° 88°	38° 33
	27°31	12,48	72.43	12°13	27° 76	29, 16
	21,27	20°83	70.88	49,94	20.94	29°54
			J. S	46.13	25.68	35,76
	5792			48.00		
		U.S.OUD	TT (ca 5%	K level)		
	20 20	10,46	70.41	57°55	25.66	36,44
	21.27	10.65	8.6	46,13	74.47	34.66
	21.27	6° 51	68,45	41.53	26° 36	39,38
	35576	tinte Linde Marco	1000	37,633	30°31	44, 80
		8110-E2	111 (ca	(Isac I %7		
99°92 19		10°88	83°Q.	£6,25	26,58	37,53
56 38•63	22.27	9.48	69,43	40.44	33,93	41,75
59 38,68	22°22	9°38	60,03	34,13	35°.28	50,77
71 38.68	22.27	2°2	68.66 1	9. T	87 <u>.</u> 10	39.47
åverage 38.68	21.27	9°61	69.55	40.10	29.47	42,38

- 47 -

ï

PS	
oruer	

1 [BHG		· • •	Ether extrect	extract alrestibility data	tr data		
ůnt mo T		Intere	Ku (g.)		Outgo in		M roat 5 11 14 tw
10.	Prom concentrate mixture	Prom Pskar Leaves	'From whect bhoosa (vashed)	fotal	10	digested (g.)	cuefficient (\$)
			GTOID I	(Control)			
58	A. S. S.	4,19	3,63	2021	7.56	4°63	58° 53
63	4.43		5° 62	97 ci	0,75	5°.£	4 ,49
62	\$.43	4.19	3.25	11, 93	2	6	48°06
ا ا ع	4.65	4,19	50 50 50 50 50 50 50 50 50 50 50 50 50 5	12.65	30°9	ତ° ୦3	So or
Average	6	4,13		1 12°09	· · · · · · · · · · · · · · · · · · ·	190	45,22
					Level)		R with usual time applies
8	5 7.0 5	2) 2) 2)	en e	82*TT	5.42	6.05	
8	St. A	0 4	ನ್		e v	9009	
24	87°4	67°7	2,82		4.0 0	8	64,24
5 I 1 1			2.67	11°20	8	5,22	47.03
herego -	4.43	1 879 1					
			r cnorg	TT (ca 40 r	[1946]		
G	4.43	4°.10	3° 55 55	20077	67-69	5°38	A5. 32
8	S. S.	0] ¢Į	2.80	19°TI	3.50	10.0	67.27
59	4.43	4.19	2,87	57°17	ត្ត	6.33	55.05
r I I		4,10	28 S	Rien's Long Altra Altra Altra	10 10 10		57.58
<i>kverage</i>	\$°\$3	4,19	3.02		21(8)	1 8 0	16.95

- 48 -

×
80
64

Crude fibre digestibility data

Digestibility coefficient (\$) 50,33 56,40 55.84 57,80 48,00 57.0% 52,522 51,999 10° 70 56,92 65.48 55,55 54,32 55,99 51.02 ting they been ŧ. ŧ. 퀧 Real Property lies **}** to and Total digested 87,55 104.60 139,28 83, 72 108,48 72. JI 112,83 144,84 124,80 134,90 117,30 122,99 109,89 101.58 152,59 ŝ 南省 費利 e g ĝ な目 outgo in facces 8 8 ¥ 家住を割 95°09 68,76 107,55 94,83 112,14 100,15 72.701.47 98,64 85° 71 95,61 82,37 107,95 96,68 109,63 78, 77 С ар (ca 4% K level) (cs 2% X 16761) 1000 trus (FB) ł 8781 GT°56T 199°681 242,85 246,75 152,49 224,02 195,20 182,38 224,95 215.94 178,65 197.17 Lotol 264, 73 254 42 219,67 Group I (control) 1 自行し Į, of the second se UTOWN III Į ţ 1 Jrow II 1 宿留 From wheat 皆むる 169,56 144.08 147,06 145.09 149.58 196.64 165,83 128,54 112,33 10.61 132,27 174.84 204,36 214.62 102, 74 bhoosa (washed) Intake (g.) Ci Ha Į 教教 ġ 1 自己 43,37 43,37 Pakar Leaves 13.57 43,37 43.37 43,37 43,37 43,37 **43**, 37 43,37 **33.37** Lo er A3.27 43,37 43,37 同社 l **Margaret** concentrate mixture Station. 中国社 Conception of the 6.74 6,74 6,74 6. 74 6,74 6.74 6° 72 6,72 6.74 6.74 6.74 6.72 6.74 6,74 0°.7% BLU Average 1 1 1 1 1 1000 自身 and the second Ê and the second Inimal Average AVOTAGE No. Š R 8 **8** 6 R 8 00 đ ß 80 ø B

- 49 -

1 TOTI

	\$reed.	LITO	Kitrogen-Iree extract	et digestinility	1117 1240		
		Intske	ske (g.)		outgo in	Total	Digestibility
No.	From concentrate mixture	Fron peker leaves	'rrom wheat bhcosa (washed)	Total	faccas (g,)	diffested (g.)	
			Group I	(Control)			
58	145,88	100.13	223 , 42	469,43	12 910	255°32	54.39
83	145,88	100,13	212,99	459,00		252.47	50° 44
00 00	145,88	100.13	182,35	428,97	182°53	246.44	57.45
ę,	145,88	100,13	201972	12102-1	195,05	1.0.1	56.33
Werage	142°83	100,13	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		ALC: NO.	252,09	55,92
			Group II	(ca 25 K	1940		
8	145,88	100,13	173,73	£19,80	176,84	242°96	57,88
80	145,88	100.13	177.59	423 。6 0	168°02	255,58	60,34
ху СЛ	145 . 88	100,13	135,86	331,87	147,85	234°01	61,28
8	145,00	10,52	119.42	305.43		218°07	
herage	145,88			397.68		237,66	59,79
			Group I	III (ca 4% K	[level]		
67	145,88	100,13	182,01	428°02	169°.16	258, 36	60°48
8	145 ° 88	100,13	154.70	400.71	161.99	236,72	59°57
8	145,328	LUU, LG	132,23	398°71	Like in	259,85	65,17
Z	145,88	100,13	139,66	385.67	167,82	218,36	S6.63
agerage	145.88	100.13	L57.23	408.28	123.23	22,95	60,46

Eltrogen-free extract digestibility data

Table XI

T
e H
9
ĕ -4]

Actual T.D.W. ingestion per day as compared to the stipulated average requirements (N.R.C., loc. cit.) on the basis of

	Ten 1 cm	Stipulated
	ingestion	requirement
	Group I (Control)	
53	446°79	393 ° 25
53	432.60	370,50
62	405.03	312,00
90 r	426,28	302,25
Aver age	427,68	344,50
	Group II (ea 2% X 1	level)
00	400,21	373°75
09	416.68	257.50
- L L L L L	387,42	286°00
72	344°05	243,75
Norad Norad		315.25
	N %7 80) III 0	level)
Ð	414°02	373,75
56	386° 84	321.75
00	ASS. AS	290°00
Ę	347.97	289° 25
		Ξ,
and the	0000	5000 m

- 51 ~

and to III respectively. In the case of crude fibre, however, the average digestibility figures shown in Table X, show a decreasing trend from 56.40 to 55.84 and to 52.33 in groups I, II and III respectively.

When the digestibility data of each nutrient was subjected to analysis of variance, the 'F' ratio between treatments came out to be significant at 5% level in the case of nitrogen-free extract only. In all other cases, it was not significant even at this level. The results of analysis of variance are given in Table XIII.

So far as the digestibility of crude fibre is concerned, our results do not tally with the following observations:

Hubert et al. (1958) observed that potassium was essential for cellulose digestion in an <u>in vitro</u> system. Balch and Johnson (1950) showed that a higher moisture content in the rumen, as a result of potassium feeding, favoured cellulose digestion by the cow. Increases in potassium intake were related among others to increases in crude fibre intake (Knox <u>et al.</u>, 1965, Leitch and Thomson, 1944). Simultaneously, a number of trials with cattle and sheep fed high grain rations or

XIII
@[
r-4
- Cal
8-H

Analysis of variance data for various nutrient digesti-

billty and actual flotal digestible nutrients"

<u>1175-5100</u>	
TTOTI	

	ant such	Tetlo P	
	Mean	squares	
Provide the second	itain		
	Sun of	squares	
	Degrees of t	freedom	
	Sources of	Verletton	

Crude protein digestibility (\$)

46°7302 15.5367	CUIT 83, 3025 2.73 N.S.	1806 20,6301	extract digestibility (3)	IX.6519 52.2173	
3	20,002	6 123, 1806	Sther extract d	3 I.W.	
Between blocks	Between treatments		23 	Between blocks	
Between	Between	Rrror		Between	

Between blocks Between treatments Error	<i>ന လ</i> ဖ	174.6519 279.2325 313.5821	52.2173 109.6463 2.67 N.S. 52.2637
	<u> Crude fibre</u>	e digestibility	
Dates history	6	22 CAND	

	2.90 N.S.	
57 , 6783	19,4812	6.8240
60°0343	36,9623	40° 9438
Q	0	ø
blocks	treatment s	
Between	Between	Brrot

N.S. denotes not statistically significants

- 63 m

• •
conto
Blocker P
TIX
的终情
ac l
(Carried B)
, m, B
point and
ះជី ពី
AL
. 10

bources of variation	restort vi Itaedom	squares	squares	ili ottal
	<u>Mitrozen-free</u>	extract	dizestibulity	
Between blocks	(*)	20° 1233	9-3746	
Between treatments	61	40, 1834	24,0917	6°30*
Br TOP	Ø	20°8071	3, 4 845	
	schuel To Dak	N. Incerci		
Between blocks	್ರ	3897,2756	1299°0919	
Between treatments	63	3863,8797	1931, 3399	Sell N.S.
RI TOF	Q	2269,0066	378,2678	

* Ilmificant at 55 level

Critical difference (C.D.) = 3.23

Res denotes not statistically significants

rations containing corn cobs as roughage have shown that improvements in digestibility and weight gains could be produced by adding alfalfa or alfalfa ash to the rations, which contained much higher concentration of potassium than the basal ration supplemented with a mineral mixture supplying all the known requirements of sheep (Chappel et al., 1955; Ward, <u>loc. cit.</u>). The results of certain experiments conducted by Gupta (1967) have indicated that the digestibility of wheat <u>bhoose</u> nitrogen was improved when buffale bullocks were offered rations consisting of urea, wheat <u>bhoose</u> and molasses, the latter two being rich in potassium.

<u>Balances of Mitrogen and Minerals</u>

The belance data of nitrogen, calcium, phosphorus, magnosium, sodium and potassium have been set out in Tables XIV, XV, XVI, XVII, XVIII and XIX respectively.

Nitrogen balance data

From Table XIV, it will be seen that the total amount of nitrogen ingested was about the same in all the groups and the ingestion was higher than that recommended by N.R.C. of the U.S.A. (log. git.) for animals of similar body weight. The balances of nitrogen were also positive

- 65 -

I TETIL								
kainal.		Intake	9 (& •)			Outgo (g.)		
° Z	From concentrate mixture	From Dakar lesves		Total	t Seces t	in Wrine	Total	e)ip to a
			Ċ	ton) I anoig	(Control)			
88	6,19	3.40	2,08	11.67	70 L4	3,89	11.03	+ 0.64
ß	61.9	3.40	2°00	73°59	8.27	28 82 1	11.13	+ 0.46
80 80	6,19	3.40	1, 75	11.34	7.99	3,05	11.04	+ 0.30
20	07 10	3.40	8°-		60 60	(7) (7) (7)	10°71	+ 0°.78
i and i		3:40			7.68		10.98	+ 0.55
			C	<u>Orow II</u> (ca	a 2% I letal)	prove proved		
ß	6° 19	3.40	2007	21,86	7° 16	4 , 16	11,32	%°° -
8	6°10	3.40	2° 7	62°11	7,33	3°83		80°0 +
3	6°19	3.40	7°36	10,95	6.64	\$ •33	10.97	• 0.63
2	6° 18	3.40		10,82	5.97	1,48	10.45	
werzę		3.40						
				H	(ca 45 % lev	level)		
6	61°9	33-40		11.33	2.05	5.18	12,26	- 0,33
8	6.19	3,40		Burg Garg Arry Burg	6.47	57°5	9° 80	4 1 , 221
00	6° 18	3.40	96°T	60°TT	5.46	6°08	х Г	0.45
TC	6.19	3.40	1+30 1-30	10.98	0.65	4.07	10.72	+ 0.26
herage	6.19	с ф .е	1.02	11,13	6°42	4 ,69		* 0°0

- 56 -

			And a second sec					
Å** 1 a 1		Intake	ako (g.)			(Outgo	(8°)	
Ċ.	From concentrate mixture	From pakar Leeves	Pro Pho Pho	Total	In faces	, In urine	' Total	a ance a ance
			Group	PI (Control)	(IOI		• •	
58	1.24	4.21	7°28	6,77	88°5	0,33	(*) (*)	+ 1.46
83	1.24	4.31		6.77	5°62	6,17	5°69	+ 0.98
80	J. 24	Te ş	200	0.07	5.31	0°18	2•49	+ 1.08
R	1.24	R V V		6°67	4.72	0.20	4.92	4 7 2 2 4
kverage	1.24	6 6		6.67			1 22 1	
				II (ca				
8	7. 24	4.31	0.22	6.47	5.73	0.83	5°97	+ 0,50
60	1.24	rice V	1-02	6.57	5°01	0,36	5°37	+ 1,220
Z	7.24	12.2	0.82	6.07	5,24	0.18	5°43	+ 0,95
81	1 7 7		0.72	6.27	4°52	0,38	4.90	+ 1. 37
worage	ø .	2°37		3 3 6				
			<u> (Trovin</u>	D III (ca	44 44	and the second sec		
r C	7° 24	5	7°05	6.57	£, 73	0.51	5°2%	89 84 84
8	7°34	7°37	0°33	6.47	4,49	0,61	5°10	60°7 7
8	1°24	te y	0,88	cr°e	4 22	0.34	4,56	+ 1.87
r i	87 1	4.37 1 1 1	0.82	6,37	4.67	0.49	5.06	1691 +
<i>k</i> rerage	7	4 °3	10.0	6.46	1 8 4	0*70		

- 57 -

<u>Table XV</u> Celcium balance data

ban¢∦
.
£

Phosphorus balance data

.

TELEL T

		Intake	ke (¿.)		•	Outso (g.)	17.14	•
No.	From concentrate mixture	From pakar leaves	Fron wheat bhoosa (vashed)	Total	Taeces	urine	Total	Balance
			4	Group I (Con	(Control)			
58	0.608	0.429	0.534	170 × 1	0,863	0,013	0.876	+ 0.695
23	0.608	0.429	0.516	1.553	0.692	0°07	0°699	+ 0.854
8	0.60B	0,429	0,454	1.501	0,633	0°00	0°642	+ 0°829
20	0.608	0.429	0.495	1,532	0,386	0.007	0.893	+ 0.639
Nerago I	0.608	0.429		T. 539	0.789	60.0	0.778	+ 0.762
			B	Group II (ea	2 2% I lavel)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
8	0.608	0.429	0°443	1,435	1.342	0.005	1.0247	+ 0°138
8	0.608	0.429	0.454	10201	1,310	0°00	1,319	+ 0.172
C.	0.608	0.429	0.382	2.419	T.037	0°100	Let at	+ 0°282
R	0.608	0.429	0.354	1.001	0*981	0,005	0°986	+ 0.405
yorage i	0.608	0.429	0.410	1.47	1-168	0.030	1.197	+ 0.249
			W)	trati	(ca 4% I level)	tang tang		
10	0°608	0.429	0.462	1.499	1.558	0.004	L.562	* 0.063
8	0.608	0.429	0.415	1.452	1,351	0.003	1.354	+ 0,098
59	0.608	0.429	0.411	1,448	1,150	0,035	1.223	+ 0.225
Z	0.608	0.429	0.389	1.428	1,121	0.004	1.125	+ 0.301
Merege I	0.608	0.429	0.419	1.456	L.305	0.012	1.316 1.316	RT-0 +

<u>1ab</u> Magnesium

Trial I								
		Intake	ùfe (g.)			Outgo (g.)	(*)	
Anlual No.	From ' concentrate mixture	From paker lerves	'From wheat' bhoosa (weshed)	Total	In feces	e en l	Total	Balance
				Group I ((control)			
8	0.435	1.073	0.473	1881	1,250	0.550	1,800	+ 0.781
53	0.435	1.073	0.453	1.961	1,230	0.310	7,550	+ 0.421
8	0.535	21002	0.396	1.964	1,090	0.520	1.610	+ 0.234
р I	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.023	0.431			0.460	1.640	+ 0*300
Average	0.435	1.073	0.438	1.9%		0,460	1.650	- 0°539
				Group II	(ca 2% I level)	(19)		
8	0.435	1.073	0.379	7.887 L.887	1.460	0.380	1.850	+ 0.037
8	0.435	1.073	0.356	1.69 4	1.160 L	0.400	095°T	+ 0,334
\$	0.435	1,073	0.307	918°7	1.470	0.280	1,750	+ 0,065
81	0.435	1.073	0°575	1.783	1.020	0.20	1.690	+ 0.093
Average	0.435	17033	0.337				1.713	+ 0 133
				III anoin	(ca 4% <u>x</u> 1e	Teas		
5	0.435	1.073	0.394	1,902	1°500	0.370	7°27	+ 0,332
83	0.435	L.023	0.342	1,850	J. 310	0.380	1,690	+ 0,160
8	0.435	7°02	0.339	1985	0.960	0,540	J ₀ 500	+ 0,3&7
	0.435	1,03 1,03	0.314	1.822	1.510	0,350	1°80	- 0.048
àver ago	0.435	1.072	0,347	1.835	1.250	0.410		867°0 +
	1000000000000000000000000000000000000							

1 0

- 59 -

B	
e e e e e e e e e e e e e e e e e e e	
64) 6-4)	

Trial I

Sodium balance data

	-	Intake	ko (g.)		2Na 2Na	outgo (1	(8°)	
No.	From ' concentrate mixture	From pakar leaves	'From wheat bhoosa (weshed)	Total	In faces	' In urine	Totel	Bal ance
			010	croup I (Co	(Control)			
83	0.47	0.53	0°92	1°92	0.52	0.08	0.60	+ 1.32
23	0.47	0.53	0 88	1,83	0,13	0.12	0°25	89 7 4
8 3 8 3	0.47	0.53	0°77	77 J	0.51	0.05	8°0	4
<u></u>	0,47	0.53	0.84	7°84	0.61	0.00	0°0	+ 1.23
kver age	0.47		0.85	7°82	4		1 2 0	
			(iron	<u>ao II (ca</u>	3 2% X 10761)	1		
8	0.47	0.53	0.74	20 7 <u>8</u>	0°22	87°C	2°60	26°0 -
8	0.47	0.53	0.75	1,75	0.18	0.49	0.67	+ 1,08
м Ю	0.47	0.53	0.60	1,60	0.06	0.83	0.0	1201 +
2	0.47	0.53	0.54	1°54	87.0	98°0	0.47	50°1 4
Nerage		0.5						
			Grow	þædi þædi	(ca 4% X 10	3		
19	0.47	0.53	0.77	7.°T	0.04	0.28	0.32	97°7 7
8	0.47	0.53	0,67	1.67	0,21	2°22	2.47	- 0.80
20	0.47	0.53	0.65	1,66	0.51	0.0%	0.55	tion t
Ľ,	0.47	0.53	0.61	To T	0.28	15	0,40	4 1.2
a a a a a a a a a a a a a a a a a a a	0.47	65-0						

- 60 -

I LEII I									
			Intake (g.	~ •			outgo (g.)		tr tr tr tr
Miwel No.	From ' concentrate nizture	From pakar leaves	'From wheat bhoosa (washed)	From pot-' assium chloride supplement	Total Intake	In facces	In urine	Total	Bûlance
				Group I	(control)				
58	70°71	5° 35	2,24	ß	6.53	2,02	1°97	3° 33	+ 2°54
83	1.97	5° 33	2.10	ij	6.45	2.87	0.95	3.92	+ 2°53
82	1°97	88°8	1. 02	đ	6,21	2,11	1.20	9°51	+ 2,90
78	1.001	100	43	ţ	9°32	A	8	3.53	Dr.
Average		8			6.39	5°35	1.8	00°	+ 2, 7
Ĭ				Group II	(ca 2% K	level)			
20	2001	2,32	1.84	13,08	10,21	2°00	10.00	13,36	+ 5°85
8	2691	2,32	28°7	12,03	61,61	23 24	13,80	15,03	+ 3,16
2	1001	ନ ୧୯	n Sy S	10°98	19-91	2° &	642	 	+ 2070
22	1.97	634	9 9 9 9 9 9 1 9	100	11.51		13.40	14.21	+ 0.40
werego							11084	8.81	+ 3,53
1				Group II.	C.P Sure funda	level)			
19	7.02 1	8 8 8	1671	28 .77	34.97	1.3	25.89	27,52	* 7,955
8	66°7	23.32	1°69	26,15	67 °20	7,62	25,23	22,82	50 \$
59	7.6°T	2°32	1.68	26.15	32°78	Teet	1,88	13,79	+1833
F	1°97	232	1°57	23,54	29.40	1,93	23.50	25,43	+ 0°87
Average	1.97	2,32	1.71	26°15	32,16	1,80	20°62	22,42	+ 9,74

Table XIX

Potessium balance data

in all the groups. But while in the control group the intake and outgo of the nutrient were almost balanced leaving a small positive retention of * 0.55 g. on the average, in the potassium supplemented groups the retention progressively declined so that in the 4 per cent potassium supplemented group the intake and outgo just balanced. Thus, although the decline was in consonance with similar decline in ingestion, it seems obvious that large potassium ingestion does not help nitrogen retention and, if at all, it depresses it.

That water washing of paddy straw improves nitrogen retention because of the removal of the large amount of potassium present in it has been shown by Ray <u>et al.</u> (1947). Similar improvement in nitrogen retention when alkali treated paddy straw is fed has also been reported (Sen <u>et al.</u>, 1942; Negi, 1955). The latter contains more of sodium than of potassium and it seems that potassium rather than sodium is involved in this improved retention of nitrogen. In the present experiment also water-washed wheat straw was used and a low potassium ration was fed to the control animals, so that the higher nitrogen retention may be the direct result of it. But the statistical treatment of the data shown in Table XX does not support such a conclusion.

- 62 -

M
2
B -4

•

inalysis of variance data for nitrogen and mineral

balances

T T T T

	freedom	squares	square	ratio 'P'
	n	Mitrogen balances	2	
Between blocks	63	1,1105	0.3702	
Between treatments	63	0.6595	0.32975	1. 14 N. C.
Error	Φ		0°2892	
		Calcium belances		
Between blocks	63	0,2431	0.6010	
Between treatments	Q	0.4495	0.2248	1,73 M.S.
e a companya da	¢	0,7791	0,12385	
	6 6 7 7 7	Phosphorus balances		
Between blocks	3	0.048527	0.016176	
Between treatments	\$ \$\$	0,822350	0.411175	25°50 #
20113	ý	0.069445	0°017234	

- 63 -

Table XX (contd.)

.

,

Varlation	freedom	squares	square	0
	Magnestum	<u>lum belances</u>		
Retween blocks	St 1	0.052397	0.019466	
Between treatments	0	0.056285	0,028143	l.y n.g.
1011J	v	0,128391	0°021309	
	m i pos	l belances		
Between blocks	ti viti ti viti	1.0857	0.3619	
Between treatments	0	J.07755	0.538825	0.56 N.S.
ic to t	Ø	5°8219	0.9703	
	Potassiu	tim Delences		
Between blocks	6	59°0346	19,6982	
Between trestments	N	118°5079	59°2540	5.03 X.S.
25 - 200 and 100 and 10	9	70.6773	JI, 7796	

Non denotes not statistically significante

- 64 -

,

Calcium and phosphorus balance data

Looking at the calcium balance data shown in Table XV, it is found that calcium ingestion from the ration was also similar in all the groups and the level of its feeding was much higher than the recommended allowance, according to the N.R.C. (<u>loc. cit.</u>). The balances too were positive in all the groups and of elmost similar order. It is also seen that the retention was comparatively low against an ingestion level which is regarded to be much higher than the recommended allowance (1.8 g. calcium/25 kg. body weight).

It, therefore, seems that potassium ingestion as such had no influence on calcium retention and the statistical analysis shown in Table XX supports it.

The phosphorus ingestion figures set out in Table XVI are within limits of the recommended allowance (1.4 g.P/25 kg. body weight). Even so, there was a slight positive balance in the potassium supplemented groups and this increased many times when the level of potassium feeding was at its lowest, i.e., 0.8% compared to 2 and 4% in the supplemented groups. Here also it would seem that removal of potassium from the ration was, as in the case of nitrogen, helpful in the retention of

~ 65 ~

phosphorus in the body and what is more, this is fully supported by the analysis of variance conducted on the phosphorus balance data as shown in Table XX, the level of significance being 1 per cent. Critical difference test also shows that the mean of the control group was significantly different from both the experimental ones, although the two means within the experimental groups were not much different. The conclusion, therefore, seems justified that the effect of wide sodiums potassium ratio was highly depressing on the retention of phosphorus under the condition of feeding where phosphorus requirement was only marginally met.

Reference has already been made of the studies on pigs by Richards <u>et al.</u> (<u>loc. cit.</u>) or the observation of Orr (<u>loc. cit.</u>) that high potassium ingestion, especially when associated with a wide sodium spotassium ratio like lslO or lsll, reduced the assimilation of nitrogen, calcium and phosphorus, particularly when the supply of these nutrients in the ration was low. Zuntz(1912) (cited by Russel and Duncan, 1956) also has observed that malnutrition and pica resulted when the ration contained not only a wide sodium spotassium ratio but also was low in calcium and phosphorus.

The ration fed to our animals was marginal in

- 66 -

respect of phosphorus only but not to calcium or protein. This was, rather unfortunate, for initially this was intended to be. Nevertheless, from what has been shown above, it seems that high level of potassium ingestion with a sodium:potassium ratio as wide as 1:10.4 detrimentally affected phosphorus metabolism, although a still wider ratio of 1:19.2 had no greater harmful effect. It is possible, had the level of phosphorus feeding been still less, the effect would have been more pronounced.

Reference may also be made in this connection to the work of Negi (loc. cit.), who did not find any appreciable effect of supplementing a rape cake plus wheat <u>bhoose</u> ration with potessium oxalate to simulate the conditions of paddy straw feeding on calcium and phosphorus retention. This worker as also sen <u>et al.</u> (loc. cit.) reported lower retention of phosphorus from untreated paddy straw (containing high potassium) than from alkali treated straw. On the other hand, Ray et al. (loc. cit.) did not find any improvement in phosphorus retention on feeding water washed paddy straw. The level of phosphorus feeding in their case, however, was 28 per cent lower than the comparable group.

- 67 -

Magnesium balance data

Magnesium balance data are set out in Table XVII. Here also magnesium ingestion in all the groups was almost the same and the balances too were positive. The retention of this mineral in the control group was the highest and no difference in retention attributable to the higher levels of potassium ingestion was noted in the other two groups. Statistical analysis of the data given in Table XX also does not reveal any significant variation from group to group. Thus, although with the same level of magnesium ingestion its retention was almost double in the low potassium group, because of lack of statistical support the conclusion can not be confirmed.

Burch and Wolton (1961) observed that pastures containing 0.2% of magnesium in the dry ration might not produce hypo-magnesaemia. Assuming this to be the requirement level the needs of the animals appear to have been adequately met as from the ration they were receiving about 0.25% of magnesium on dry matter basis. It seems, therefore, that any adverse effect that may follow high potassium ingestion and wide sodium:potassium ratio can not show itself up when the level of magnesium feeding is already adequate or more than that. There is no doubt that a large

- 68 -

volume of evidence exists in support of the theory that high potassium ingestion affects magnesium metabolism and may produce hypomagnesaemia grass tetany. This has been fully reviewed in Chapter I. On the other hand, work of Negi (<u>loc. cit.</u>) and Ray <u>et al.</u> (<u>loc. cit.</u>) has shown that increased potassium ingestion in the form of supplemental potassium oxalate on a rape cake + wheat <u>bhoosa</u> ration or in the form of untreated paddy straw did not influence magnesium retention.

Sodium and potassium balance data

Sodium balance data are shown in Table XVIII and those of potassium in Table XIX. From the Tables it will be seen that while sodium ingestion remained almost the same in all the groups, potassium increased considerably from one group to another reaching its maximum in the last. The latter, of course, is due to the supplemental potassium feeding resorted to in the last two groups. But while potassium excretion and retention both increased from group to group, sodium excretion increased progressively, without, however, a similar retention. Sodium retention, on the contrary, declined. It was the highest in the control group and almost the same but much lower in the other two groups. It is also to be noted that sodium excretion was encouraged

- 69 -

and helped by a higher potassium ingestion.

The statistical analysis of both the data shown in Table XX does not reveal any significant differences in retention of sodium and potassium from group to group.

<u>Nitrogen and mineral excretion in facces and urine</u> vis-a-vis their ingestion

The daily excretion in the faces and urine of nitrogen and the minerals is given respectively in Tables XXI and XXII. Their percentages <u>vis-a-vis</u> the amounts ingested are also shown there.

A reference to Table XXI will show that the amounts of nitrogen, calcium and magnesium excreted in the facces daily did not differ from group to group <u>visa-vis</u> the amounts ingested, whereas the excretion of phosphorus, sodium and potassium varied considerably, of which phosphorus was rather more conspicuous than the other two. It formed only about 50 per cent of the total ingested in the control group and increased to about 81% in the 2% potassium and about 90% in the 4% potassium supplemented groups. Both sodium and potassium excretion by way of facces, on the other hand, declined in the supplemented group, although the decline was more pronounced in the case of potassium than in that of sodium.

~ 70 ~

		朝からいち	
1	¢î P		
1		All and a second	

100
190
in facces
<u>s</u>
and minerals
and
nitrocen
630
excretion
Veraze

.

Trial I						
ininal.	' Nitrogen (g.)	(.s)	'Phosphorus (g.)	' Magnesium ' (g.)	Sodium (g.)	' Potassium (g.)
			Group I (Control)	(Ioi		
28	57° 1	4,98	0.863	2.250	0°52	2,02
8	8°21	5.62	0,692	. 1.230	0.13	2,37
80	7°99	5°3]	0,633	1.090	0.51	20
8	7.38	20	0.886	<i>6</i> 3	0.61	2°33
Average		2°13	0.769	1991	0.4	2°°35
14° × 1	inteke 66.68	76°81	49.97	61.15	23.78	36.78
			croup II (ca	5% K Jevel)		,
8	7.16	8°3	2323	1.460	0.22	2.66
8	7,33	5°01	1,310	197°2	0,18	20°7
ß	6°64	5,24	T.037	1.470	0.06	2.54
2	5.97	\$°23	0,981	1,220	or do	170 170 171
offer to Ay	2°29	19 19 19 1	11188		്ക്	
1.N. & OT	intake 61.28		8.2			
8	0 		Group III (ca	4% K		
10	7.08	& 73	2007	1,220	000	
56	6°47	40°	19201	7.810	0.81	
50	5.46	4,22	1,138	0.960	0.51	19 - 1
antes.	~	8	5 5 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7	1.510	0.22	1.93
Average		· · · ·	1-305	1.250	0.36	1.80
N. S OT	intake 57.68	1 99.68 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80°83	67,39	12°\$8	5°60

- 71 -

	•	なるの間でいたいとないたちのというないないないないないない					1
T Turr							
Animal No.	.	Mitrogen ¹ (g.)	Celcium (8.)	<pre>Phosphorus (g.)</pre>	' Magnes1um ' (g.)	Sodium (g.)	' Potassium (g.)
				Group I (control)	(10:		
28		3°89	0.33	0°013	0.35	0.08	1°97
ŝ		2°93	0=13	0.007	0.31	0,12	0,95
62		3.05	0.18	0°00	0.52	0.05	5°5
8		880	0°20	0.007	0.46	0000	
Average		1 08 ° 1		0.009		90.0	
in % of	intako	58°60					
				croup II (ca 2	2% K level)		
8		4.16	0.27	0.005	0 . 39	2.44	04°01
69		3°80	0.36	0,009	0.40	0.49	13.8
Š		4.33	0.18	0°100	0°28	0.03	9.47
8		4.4 0	Q.33	0.005	0.47	6	C * 3
Average		2012/2012	1 8 0 0 8 0	0,080		0.83	
av. & or	intake	38.09		2e07			
				Group III (ca	4% X level)		
TS S		5.18	10.01		0.37	0,23	25,89
Š		3.43	0.61	0,003	0.38	02°0	21.22
59		6°03	0.34	0.025	0.54	0.04	11,88
Ę.		4.07	0.40	0.004	0.36	0.12	
hverage		4.69	0.49	0.012	14.0	0.08	20.62
AV. % Of	1 nt ake	42.14 H	1.58	0.820	22,10	40.48	64.12

- 72 -

TIXX alder

Referring to Table XXII, where the excretion pattern in urine is shown, it seems that the pattern of excretion of nitrogen, calcium, phosphorus and magnesium in urine in all the groups remains practically the same whether potassium is fed or not, except that there was a slight tendency for the 2 and 4% potassium groups to excrete more of the first two nutrients vis-a-vis their In the case of sodium and potassium, however, intake. the picture is altogether different. Here not only potassium excretion <u>vis-a-vis</u> ingestion increases enormously, as it should, sodium excretion also is seen to increase tremendously. Thus, while the daily excretion of the mineral in the urine <u>vis-a-vis</u> ingestion was only 3.24% in the control, it was 50% in the 2% potassium supplemented group and 40% in the 4% one.

This shows that high potassium ingestion impoverishes the body of sodium, and the sodium requirement under this condition goes up. It seems to be in harmony with the theory of Bunge that excess of potassium impoverished the organism of sodium and chlorine (cited by Brouwer, 1961).

The influence of variations in the sodium-potassium ratio on water metabolism

Of the three factors, water, salts and food,

- 73 -

water is the most important for life and, hence, it is considered as an essential principle in dietetics. Besides its numerous physiological functions, it also acts as a vehicle for various physiological processes, such as (a) for absorption of food materials from the intestine, (b) for re-absorption from kidney tubules, (c) for the transport of various food stuff from place to place, (d) for the drainage and excretion of the end products of metabolism, (e) for the manufacture of various secretions such as digestive juices etc., (f) for carrying the hormones to their places of activity etc.

Thus, water plays a major role in the utilisation of nutrients in the body. Ritzman and Benedict (1924) have reported that the water intake of animals is significantly correlated with their dry matter intake. The water intake is also influenced by the protein and salt contents of the diet (Negi and Mullick,1859). The above workers concluded that the ratio of water intake to dry matter ingested and digested is influenced both by the dry matter intake and etmospheric conditions, viz. sirtemperature, relative humidity etc. They also stated that at all atmospheric temperature and relative humidity levels, the ratio between water intake and dry matter varied within a narrow range. They, therefore, recommended

- 74 -

that the water intake of animals on maintenance rations should be 3 to 5 times that of dry matter intake; in summer it may be 3.5 - 5 times and in winter 2.5 - 3.5 times.

Ritzman and Benedict (<u>loc</u>. <u>cit</u>.) and Leitch and Thomson (1944) also reported that the difference between the mean water intake per unit of dry matter ingested at different planes of nutrition was not stutistically significant.

Apparent insensible loss or insensible perspiration was calculated, as usual, from the total water intake minus total water excreted as urine and facees, assuming that the rest of the water was lost by the evaporative mechanisms through lungs and skin. Since large amount of water is constantly appearing and dis-appearing from the body and inspite of it a fairly accurate balance is maintained between production and loss, it is obvious that there must be a strong regulating mechanism which is very intricate and is not yet fully known.

The water metabolism data have been presented in Tables XXIII and XIV.

It will be seen from Table XXIII that while the water ingested from feed and that derived from the metabolism of nutrients were practically the same in all the three groups, free water ingestion increased enormously from group to group, so that the total water ingestion from all sources was about one and a half and two times respectively more in the 2% and 4% potessium supplemented groups than in the control. Its outgo through urine likewise increased, but the increase was at least four fold in the case of the 4% potassium supplemented group compared to the two fold increase seen in the 2% potassium group, excretion by way of facees being almost the same in all the groups. Simultaneously, there was an enormous increase in the amount of total solids in the urine of the potassium supplemented groups, the increase being Table XXIII

Water metabolism data (werage water balance per day)

(Basal reion - concentrate mixime + Pakar leaves + wheat bhoosa (washed)

I TUTAL

		Water In	Intake (ml.)	44		Water outgo	(ml.)	Insensible	-
No.	Free drink	Fron feeds	Metabolic ¹ water	Total	În Îaeces		'Total in urine and facces	perspirat- ion (ml.) in urine(g)
			~~**	Oroup I (Co	(Control)				
53	1571.0	243°5	241.0	2060.5	2722	829,4	1346,6	$713_{*}9$	25.1
23	929°0	246.5	235°0	1410.5	613.3	150.1	772.04	639°1	17.0
8	O'LLOI	242.5	220.0	1533°5	503.8	241.9	745°7	787.8	17.5
78	1286.0	245,5	230.0	297	1000	666°.0	1305.1	455,4	
average	1214.0	245.8	232°0	1691.5	568 v.	473.9	1042.2	640°3	19.4
				Group II (M	Tevel)			
8	1786°0	241.0	0°272	2244.5	601°1	10183	1088.2	1156°3	\$ 3°0
60	2643°0	241,5	0°92°0	3109.5	559°0	19991	1 1 2 2 2 3 3	561 a 4	48.0
57	1643.0	235°5	108.0	2086.5	776.0	1046.5	1822.5	264.0	29°62
22	1571.0	233°5	184°0	1988,5		936,4	1253, 5	735°0	2 2
Average	1911.0	539°0					1677.8		40.6
				III anoiy	(ca 45 K 10	level)			
61	3321.0	242.5	223°0	3796.5	594.0	2540,3	3134 3	652°2	72.9
8	2250°0	238.5	207.0	2695.5	519.8	0°1101	2831,42	864.5	64.9
60	2786.0	220.0	226°0	3232 5	24 20 20	1918,6	2463,7	768,8	52°0
¢,	2833°0	230°22	186.0	3255.5	497.1	2193.4	2690.5	565.0	6 7 °3
eyerege	2798.0		0°118	3242.5	539.0	1990.9	2529.4	20.5	S. S.

u W

XXXV
ø
5-3
e-II

Metabolism of water and dry matter (Sasel ration - concent-rate mixture + pakar leaves + wheat bhoosa (washed)

Trial I

,

<u> </u>						
Animal No.	(Total water intake (g. or ml.)	Total dry matter intake (g.)	Dry mattor digested (g.)	'Ratio of t to dry Intais	water intako matter Digested	Vol. of urine/ (ml.)/Nat + K ⁺ lons (mlll- equiv.)
		anoze	U M			
58	2060.5	874.2	44407	* *	S*Ş	
53	1410.5	852°1	<u> 227 a</u> u	r ri	8°8	C°2
62	1633°5	788,7	398° I	с. Г	ရာ ကိ	7,5
ę	1761.5	827.2	420.6	5	2.4	21.8
iver age	1691.5		42.2° 7		\$°	12.66
		Group	TT (ca 3	(Teas)		
8	2244 5	769.3	394,4	0	යා න	89 83 -
80	3109.5	e 117	<u>é</u> 14.4	¢*0	С Л	5° 20
2	2086.5	683,1	382 4	0 °°	5 S	5°%
22	1938 5	654ª4	342,3	8.0	S S	8
Nerage	2357,3		383.5			
		arom	777 (ca 45	K level)		
Ţ	3786,5	786°7	£11.3	\$°\$	9° 2	63 60
50	2695.5	729°0	383.6	6° 67	7.0	2
59	3232.5	724°7	425,5	\$°0	3.6	6. A
7	3255,5	697.2	345°7		5 5 5 1	
Average	3242.5	724.4	391.5	4 ***	8	4.0

- 78 -

double and three fold in the 2 and 4% potassium groups respectively.

Again, a reference to Table XXIV will show that the ratio of water intake to dry matter ingested and digested progressively increased from group to group. This evidently shows that potassium increases the water requirement per unit of dry matter ingested and digested considerably, and at the same time there is diversis. It appears to be in harmony with the following observations concerned with the divertic effects of potassium.

Warth (1923; 1926) suggested that high potassium intake under paddy straw feeding was partly responsible for increased urination.

Feeding of paddy straw with napler grass, which involved a heavy ingestion of potassium, was also accompanied by heavy urinary output (cited by Negi, 1955).

Ray et al. (1947) and Fandittesekere (1952) observed that animals fed on water-washed paddy straw which contained lesser potassium, exhibited reduction in diuresis.

Negi (loc. cit.) also found that by reducing the potassium content of paddy straw by lime treatment the

··· 79 ···

extent of urination was decreased, which was again enhanced when the basal ration comprising of wheat <u>bhoosa</u> as roughage was supplemented with potassium oxalate providing potassium upto the level present in paddy straw.

Wright (1956) has reported that isotonic potassium chloride solution (1.3%), if administered by mouth, is rapidly excreted like uses or other waste products and gives rise to a marked diuresis.

Meyer and Cohn (1911) suggested that potassium salts as a rule, cause increased elimination of water (cited by Richards, <u>et al.</u>, <u>loc</u>. <u>cit</u>.).

Diuresis is a mechanism by which the kidneys get rid of surplus accumulation of harmful ingredients of the ration or products of metabolism. Under this condition not only there is an excessive urination, there is also a greater consumption of water. This is actually what we find in this experiment, where in order to efficiencly eliminate from the body the large quantities of potassium ingested, water intake and excretion went progressively up along with the increased levels of the harmful mineral.

However, when the ratio of the volume of urine in ml. to the sum of Na⁺+ K⁺ ions excreted in urine in terms

- 80 -

of milli-equivalents (presented in the last column of Table XXIV), is considered, it becomes clear that the excretion of each of the Na⁺ or K⁺ ion by way of urine is effected in every 12.6 ml. of urine in the case of control animals against 3.6 and 4.0 ml. of urine in the case of experimental ones. Evidently, the kidneys are able to excrete Na⁺+ K⁺ ions in a more concentrated form in the case of potassium supplemented groups as compared to the control, thus effecting the water economy proportionately. It is, however, interesting to find that an increase of potassium in the ration from 2 to 4% does not appear to alter the amount of sodium or potassium ions per ml. of urine.

SIMM ARY

The relation, if any, existing between sodium: potassium ratio, on the one hand, and the digestibility and metabolism of nutrients, on the other, was studied and the results are presented in this Chapter.

The results show that when the level of sodium in the ration was kept constant at 0.22% and the potassium percentage varied from 0.77 to 4.38, so that the ratio of sodium and potassium progressively rose from 1:3.5 to 1:19.2 through 1:10.4, the digestibility of the organic nutrients did not show any statistically significant variation from group to group.

The balance studies with respect of nitrogen, calcium, phosphorus, magnesium sodium and potassium also did not show that a change in the retention of nitrogen, calcium and magnesium was brought about in any significant manner by a widening in the sodium potassium ratio. Perhaps, a still lower level of these nutrients in the ration could have brought about a more sustained lowering in retention of these nutrients, a trend of which only was discernible. This was, however, more pronounced in the case of phosphorus, which was fed at about the requirement level, showing statistically significant (P < .01) lowering in retention from group to group as the ratio widened. Sodium also showed a progressive lowering in retention but this was not statistically significant.

The average excretion pattern of nitrogen and the minerals through the urinary and faecal routes was then studied. In urine, the pattern of excretion of nitrogen, calcium, phosphorus and magnesium was not affected. But so far as sodium and potassium excretion through this channel

- 82 -

is concerned, it seem that high potassium ingestion impoverishes the body of sodium and the sodium requirement under this condition perhaps goes up. In the faeces, on the other hand, the excretion of phosphorus, in particular, went so high as to constitute about 81 per cent in the 2 per cent potash fed group and 90 per cent in the 4 per cent group compared to 50 per cent in the control group (0.77 per cent K). Potassium excretion by way of faeces, however, declined with increasing potassium in the ration.

The result of water metabolism studies conducted during this investigation shows that free water ingestion increased enormously from group to group so that the total water ingestion from all sources was about 1½ and 2 times more respectively in the 2 per cent and 4 per cent potassium supplemented groups than in the control. Its outgo through urine also increased simultaneously, but the increase was at least four fold in the case of the 4 per cent potash group compared to the two fold increase in the 2 per cent group. Excretion of total solids in the urine likewise increased progressively.

Potassium (and wide sodium spotassium ratio) was also found to increase the water requirement per unit of dry matter ingested and digested, and also lowered the

- 83 -

appetite which was significant at 5% level.

Indication of water economy in the excretion of the alkali metals in the potassium supplemented animals was also noted.

CHAPTER IV

.

STUDIES ON SODIUM POTAS ILM RATIO AS AFFECTING THE NUTRIENT METABOLISM IN ADULT SHEEP - PART II

.

Pago 85 - 114

CHAPTER IV

STUDIES ON SODIUM (POTAS NUM RATIO AS APPECTING THE NUTRIENT METABOLISM IN ADULT SHEEP PART II

The second feeding trial, which is being presented in this Chapter, as already discussed earlier, was undertaken with the object of studying the influence of different sodium spotassium ratios, other than those studied earlier and presented in Chapter III, on the digestibility and metabolism of certain nutrients, particularly when the supply of potassium, as far as practicable, is from natural feeds. Berseem is rich in this mineral and so is unwashed wheat straw. These, therefore, were the main ingredients of the ration with a small quantity of potassium chloride added to them, where necessary, in order to bring the ratio of the minerals to the desired levels. Their ratios in the three groups were 1:4.5, 1:8.1 and 1:10.3 as shown in Table XXV, the percentage of sodium and potassium in the basal ration being 0.42 and 1.85 respectively.

II INFUL		STANDY	17003 10	en pore	Derlog	a autra		
Anlmal No.	's Na in the ration	's I in the ration	la l	1 1 123	ingested s from KCl supplement	Total K Insested	'Na:K ratio of ingestion	na 4 K ingestod
			1801	· ·		(80)		(8°)
				() T GROAD	(rounse)			
8	0,39	89	89 00	88°01	ß	38° 97	7: 400	19.34
8	0.40	1.0	3.40	15,37	ġ	16,37	2. 2.5	18.7
80	0.44	00 	3°15	13,87	ŝ	59 ST	22 4.4	17.02
R 1	1 0 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			14.23		14,29	13 40 4	17.51
kverage I I -	0.42		8-33 					18.16
				lanti barti	(ca 3% K level.)	And the second se		
73	0.42	ч с?	3.29	74.72	12.78	27,80	40 00 %1	31,09
8	0.40	8° 8°	3,83	15.35	88	27,28	r 0 1	30.66
53	0.43	3°\$		14020	Lio Li	8.80	L: 3.0	28 . 97
N.	0.44		3.16	13.96	10.46	24.42	2 2 2	27,53
a a a a a a a a a a a a a a a a a a a								
				Group III	(oz 4ý X Jevol	2		
8	0.44	4 °8	3.16	72°32	20,92	34.84	0°11°1	38.00
8	0.39	4 .0	3.47	15, 73	10°87	35,66	1110.2	39° 13
	0.47	0°Y	3.00	13,00	10,01	31,31	I:10.4	34,31
82 I	0.42	420 1 1 1	3.28	14°78	16.74	31.42	11 8.6	34, 70
herege	0.43	2.0 B	3, 23	14,35	18.96	33°31	1:10°3	8.8

Table XV

,

Levels of sodium and potassium ingestion during

- 86 -

RESULTS AND DISCUSSION

Nutrient Digestibility

The dry matter consumption of the animals is shown in Table XXVI, which is the same in all the groups. Its digestibility figures, set out in Table XXVII, also are similar without any variation. The live weight changes within the short period of the experiment (25 days) shown in Table XXVIII likewise show a similarity with the experiment reported in Chapter III, indicating a progressive loss in weight as the level of potassium feeding increased and the ratio of sodium and potassium widened. The analysis of variance data for dry matter ingested, digested and digestibility (%) have been set out in Table XXIX, which do not show any statistically significant variation from group to group.

The digestibility data of crude protein, ether extract, crude fibre and nitrogen-free extract, given in Tables XXX, XXXI, XXXII and XXXIII respectively also do not show any statistically significant variation from group to group as shown in Table XXXV. All these results are in no way different from those found earlier with the animals fed <u>paker</u> leaves, water-washed wheat straw and concentrate mixture plus the potassium chloride supplement. This shows that under the conditions of feeding, irrespective of whether potassium is fed in the form of natural feed or as the salt, sodium:potassium ratio ranging between 1:3.5 and

- 87 -

Table XVI

Average live veight and dry matter consumption of individual animals per day

Trial II

	MVO	e velent (kg.			Dry matter	consumption	
No.	At the start of collection period	' At the ' end of collection period	Average during collection period	from green berseem	From wheat bhoosa	Total	'Fer kg. Live weight
- - -			droad	DI (Control)			
83	31.50	32.00	31,75	278°80	618,62	897 .4 2	28°27
8	29°50	31,50	30.53	278.80	573.07	18.128	27,93
N 9	27 ° 00	27.50	238	278.80	435,12	713.92	26,20
R	23°W	25°00	24°00	278.80	474.17	752.97	S
Werefe	27.75			278°80		804°05	
			<u>Group</u>	1 (es 3% X	(Teast)		
Ũ	31,50	31.50	31,50	278,80	513,86	792.66	25.16
ß	28°W	28,50	28,25	276,80	562.01	840°81	83° K
8	26°00	24,50	25°25	278,80	469,61	140,41	29°63
វ័	24.00	24.00	24.00		443°58	722,38	
Average	57.38					776.07	28,67
			Uroup	w III (ca 45	X lovel)		
8	31.00	30°00	30.50	273,80	439,68	718.48	22°55
8	29°00	30,00	29°50	270.80	15°73	890,27	30,18
Z	24.50	22°00	23,25	278.80	355,08	633°88	27,28
R	24°20	24.00	24.25	278.80	509,95	788.75	32,53
iverage		26.50	88° 88	278,30	479,04	757.84	88.38

.

- 88 -

XXIII	
Table	

Dry matter direstibility data

II TETTI

Digestibility cosficient (%)	
Total digested (g.)	
Outgo in faeces (g.)	
Total Intere (g.)	
ànlmal No.	

Group I (Control)

	55,86	52,80	50.50	59,16	55.60	Testant Testant
1040 D 4 10 00 00 00 00 00 00 00 00 00 00 00 00	501,323	11°677	389, 32	12,212	146,55	(ca 3% k level)
	336.10	402,10	324.30	307,50	357,50	OPOUD II (
~₽	697,42	861.87	713.92	752,97	804.05	
	80	0 2 2	63	ţ	Average	

400.98 55.51 428.07 55.06 58°33 50,37 56°02 444,06 490°41 377,01 iverage 776.07 348.00 321.40 371,40 348.60 350.40 722,38 732.98 746,41 540°81 0) U) Ť 20 đ

Grow III (ca 4% K level)

			54.64	<u>57, 03</u>	55,70
•	396,68	12-162	346,328	\$\$\$. \$\$	422,64
	321,80	392,50	287,50	333°,80	335,20
	718.42	890,27	633,88	788°75	757.24
	20	60	F	8	Averago

SX
c eid

Animal To.	Aav Qay	8th Óav	i leth dav	· 25th dav	Waight gain or
	Ť.	ð 1	(before expt.)	(at	Sand
		Grow	w I (centrol)		
80	31.00	31.0	33.5	32.0	÷ 1.0
ß	29,00	28°2	20°5	n lo	4 4
89	27.00	26 °Ö	27.0	27.5	+ 0°5
R	22.00	29°22	23.0	22°0	0°0 4
Nerde Nerde N					
			Group II (ca 3% K	[]evel)	•
r Q	31.00	30.5	20 20 20 20 20	s L L	+ 0.5
8	27.50	26°0	28.0	28,5	
60	27.00	26.0	26.0	24.5	1 1 1 1 1
Å	24°W	8 8 8	24.0	24.0	
Average 1					0,25
			from III (ea 45	K level)	
80	31.80	31.0	33.00	30.0	1) ~~
00	28°50	28,5	29°0	30.0	4 1.00
Z	25,50	25.0	24.5	22.0	10 00 1
78	24.00	23°2	24.5	24.0	

Live veights of animals during the whole feeding

XIIX
ଙ୍କା
p
2
Ē4

Analysis of variance data for dry matter ingested, digested and per cent digestibility

Trial II

Volte Lica	freedow v	sum or squares	Mean squáres	Variance ratio 'F'
	ħ	matter ingested		
Between blocks	Ø	43000,9407	14333 ° 6469	
Between treatments	03	4332,3851	2166, 1925	0.59 N.S.
Jor Ju	ø	22258,9632	3709,8272	
	Total dry I	matter digested		
Between blocks	62	17583°2269	58 61,075 6	
Between treatments	en	1252,4381	626,2190	0.42 N.S.
Error Correction	Ø	9026,4315	1504.4053	
	Por cent dry	matter	direstibility	
Between blocks	es	25,1697	9°3366	
Between treatments	0	0.9483	0,4742	0°00 N.S.
	\$	33,4721	5,5787	

- 91 -

TI LEIT	· · · · · ·	Crude	Crude protein diges	<u>cicestibility data</u>		
Animal		Intake (g.)		outgo in	B #14	Digestibility
° M	From green berseen	¹ From wheat ¹ bloosa (unvashed)	Total	f acces (g.)	digested co (g.)	coefficient (%)
		140	Group I (Control)	, 1000		
58	60°11	17° 412	76°56	36,31	40°25	52,57
80	60°11	15,45	75.56	35,50	40,06	53.02
62	60°11	12.42	72,53	35.06	1210	23°66
72	60°11	L3,23	73°.88	31.50		57.08 1
worage					30,92	
		ė	Group II (ca 3%	K level)		
Tø	60° TT	14,15	74.26	37.19	37.07	49, 92
8	20°77	15.21	75,32	22.44	41,88	09°23
88	11.08	13,16	73.23	6T°22	97 ° 78	56.08
2	11.00	12°60		6.3	40.90	56,25
oferetage					1.4.1 1.4.1 1.1.1 1.1.1	
		<u>er</u>	Group III (ca 4%	(X lovel)		
8	60.11	12,52	72.63	31.69	40°94	56°37
8	50°11	16.20	17°92		39.60	51,83
Z	60, 11	10°76	70,87	34,81	30°98	50.88
29	60°11	14,16	74.27	32.31	% %	49,76
A Birteni	8° F1		73.55	35, 16	300	52°21

Table XXX

~ 92 ~

Ether extract digestibility data Teble MM

heatTotalfacesdigested $g_{2,0}$ $T_{0,0}$ (g_{0}) (g_{0}) (g_{0}) $hedd$ $12, 47$ $8, 15$ $4, 31$ 30 $12, 47$ $8, 15$ $4, 31$ 30 $12, 47$ $8, 15$ $4, 31$ 31 $11, 48$ $7, 17$ $4, 31$ 32 $11, 48$ $7, 17$ $4, 31$ 32 $11, 48$ $7, 17$ $4, 31$ 32 $11, 48$ $7, 17$ $4, 31$ 32 $11, 48$ $7, 25$ $4, 66$ 30 $11, 67$ $8, 21$ $3, 76$ 30 $11, 67$ $8, 69$ $3, 02$ 30 $11, 67$ $8, 69$ $3, 02$ 30 $11, 67$ $8, 69$ $4, 04$ 52 $11, 67$ $8, 69$ $4, 20$ 34 $11, 67$ $8, 69$ $3, 02$ 34 $11, 67$ $8, 69$ $3, 02$ 34 $11, 67$ $8, 69$ $3, 02$ 34 $11, 67$ $8, 69$ $3, 02$ 34 $11, 67$ $7, 49$ $4, 20$ 34 $11, 68$ $7, 89$ $3, 69$ 34 $11, 68$ $7, 88$ $3, 69$ 34 $11, 89$ $7, 88$ $4, 06$ 55 $11, 89$ $7, 88$ $4, 06$ $7, 88$ $7, 88$ $7, 88$ $4, 06$ $7, 88$ $7, 88$ $7, 88$ $4, 06$ $7, 88$ $7, 88$ $7, 88$ $4, 06$ $7, 88$ $11, 89$ $7, 88$ $4, 06$ $7, 88$			Intere (g.)		Outgo in	Total	¹ Digestibility
Qround (control) 7.017 5.30 12.647 8.16 4.31 34.65 7.017 5.06 12.647 8.16 2.654 20.75 7.017 5.06 $12.2.23$ 9.69 2.654 20.75 7.017 4.52 11.697 8.21 3.76 31.52 7.017 4.50 11.697 8.21 3.76 31.52 7.017 4.50 11.697 8.21 3.76 31.54 7.017 4.50 11.691 7.255 4.666 39.13 7.017 5.00 12.17 6.97 5.202 42.73 7.017 5.00 11.652 7.255 4.066 36.06 7.017 4.65 11.652 7.659 4.066 36.06 7.017 4.052 11.652 7.853 30.657 7.017 5.28 11.652 7.639 4.056 34.56 7.017 5.28 11.652 7.633 4.666 34.56 <th>-ON</th> <th>From green berseen</th> <th>1.202</th> <th>Total</th> <th>@ 🗠 🕴</th> <th>digested (g.)</th> <th>coefficient (%)</th>	-ON	From green berseen	1.202	Total	@ 🗠 🕴	digested (g.)	coefficient (%)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<u>in cro</u>	-	2004 0004		
7.17 5.06 12.23 9.69 2.64 20.77 7.17 4.51 11.48 7.17 4.31 37.53 7.17 4.53 11.49 7.81 3.83 33.919 7.17 4.53 11.49 7.81 3.83 33.919 7.17 4.53 11.49 7.81 3.83 33.919 7.17 4.53 11.91 8.21 3.83 33.93 7.17 4.50 11.91 8.21 3.76 31.52 7.217 4.74 11.91 7.25 4.96 39.13 7.217 4.50 11.65 7.55 4.96 39.13 7.217 4.55 11.65 7.59 4.96 35.70 7.217 4.55 11.65 7.59 4.96 35.70 7.217 4.35 11.65 7.59 4.96 35.70 7.217 4.35 11.65 7.59 4.96 35.70 7.217 4.35 11.65 7.59 4.96 36.95 7.17 5.28 </td <td>83</td> <td>67 ° 2</td> <td>8°3</td> <td>12,47</td> <td>8.16</td> <td>A. 01</td> <td>33° 26</td>	83	67 ° 2	8°3	12,47	8.16	A. 01	33° 26
7_017 4_031 11_046 7_017 4_033 37_053 37_053 33_013 37_053 33_013 37_053 33_012 33_012 33_0103 33_0103	ß	7.57	5.05	12,23	9,69	2.02	20° 77
$7_{0.17}$ $4_{0.52}$ $11_{0.97}$ $8_{0.21}$ $3_{0.76}$ $3_{0.15}$ $7_{0.17}$ $4_{0.50}$ $11_{0.97}$ $8_{0.21}$ $3_{0.76}$ $31_{0.52}$ $7_{0.17}$ $4_{0.74}$ $11_{0.91}$ $6_{0.97}$ $8_{0.21}$ $3_{0.76}$ $31_{0.52}$ $7_{0.17}$ $4_{0.74}$ $11_{0.67}$ $8_{0.67}$ $5_{0.20}$ $4_{2.66}$ $39_{0.13}$ $7_{0.17}$ $4_{0.50}$ $12_{0.17}$ $6_{0.97}$ $5_{0.20}$ $4_{2.67}$ $35_{0.70}$ $7_{0.17}$ $4_{0.56}$ $11_{0.52}$ $7_{0.49}$ $4_{0.04}$ $35_{0.04}$ $7_{0.17}$ $4_{0.56}$ $11_{0.52}$ $7_{0.59}$ $4_{0.23}$ $31_{0.54}$ $7_{0.17}$ $4_{0.56}$ $11_{0.52}$ $7_{0.59}$ $4_{0.50}$ $36_{0.70}$ $7_{0.17}$ $4_{0.56}$ $11_{0.52}$ $7_{0.59}$ $4_{0.50}$ $36_{0.70}$ $7_{0.17}$ $4_{0.56}$ $11_{0.52}$ $7_{0.59}$ $4_{0.50}$ $36_{0.67}$ $7_{0.17}$ $4_{0.56}$	8	27°2	10.01	11,48	1205	50 51 51	37.54
7,17 $4,.80$ $11,.97$ $8,.21$ $3,.76$ $31,.52$ $7,.17$ $4,.74$ $11,.91$ $7,.25$ $4,.66$ $39,.13$ $7,.17$ $4,.74$ $11,.67$ $6,.97$ $5,.20$ 4276 $7,.17$ $4,.50$ $11,.67$ $8,.66$ $3,.02$ $25,.89$ $7,.17$ $4,.56$ $11,.67$ $8,.66$ $3,.02$ $25,.89$ $7,.17$ $4,.56$ $11,.67$ $8,.66$ $3,.02$ $25,.99$ $7,.17$ $4,.56$ $11,.67$ $8,.66$ $3,.02$ $25,.99$ $7,.17$ $4,.65$ $11,.63$ $7,.59$ $4,.04$ $35,.70$ $7,.17$ $4,.65$ $11,.63$ $7,.59$ $4,.65$ $35,.54$ $7,.17$ $5,.28$ $12,.64$ $7,.93$ $4,.50$ $35,.54$ $7,.17$ $5,.28$ $12,.64$ $7,.93$ $4,.50$ $35,.54$ $7,.17$ $5,.28$ $11,.51$ $7,.93$ $4,.50$ $35,.54$ $7,.17$ $4,.72$ $11,.63$ $7,.83$ $4,.50$	R	150	4°62	69°77	5	30 50 60 70 70 70 70 70 70 70 70 70 70 70 70 70	33,19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rer age	21.2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			010	<u>11</u> (ea	×		
$7_{\circ}17$ $5_{\circ}00$ $12_{\circ}17$ $6_{\circ}97$ $5_{\circ}20$ $7_{\circ}17$ $4_{\circ}50$ $11_{\circ}67$ $8_{\circ}65$ $3_{\circ}02$ $7_{\circ}17$ $4_{\circ}36$ $11_{\circ}53$ $7_{\circ}49$ $4_{\circ}04$ $7_{\circ}17$ $4_{\circ}65$ $11_{\circ}53$ $7_{\circ}49$ $4_{\circ}04$ $7_{\circ}17$ $4_{\circ}65$ $11_{\circ}62$ $7_{\circ}59$ $4_{\circ}23$ $7_{\circ}17$ $4_{\circ}34$ $11_{\circ}61$ $7_{\circ}59$ $4_{\circ}23$ $7_{\circ}17$ $4_{\circ}34$ $11_{\circ}51$ $7_{\circ}59$ $4_{\circ}23$ $7_{\circ}17$ $4_{\circ}34$ $11_{\circ}51$ $7_{\circ}88$ $3_{\circ}63$ $7_{\circ}17$ $4_{\circ}36$ $12_{\circ}43$ $7_{\circ}88$ $3_{\circ}63$ $7_{\circ}17$ $4_{\circ}72$ $11_{\circ}63$ $7_{\circ}83$ $4_{\circ}50$ $7_{\circ}17$ $4_{\circ}55$ $11_{\circ}72$ $7_{\circ}44$ $4_{\circ}58$	6		10 TA	1.81	7.25	4.66	39°.13
7.17 4.50 11.67 8.65 3.02 7.17 4.36 11.53 7.49 4.04 7.17 4.85 11.62 7.59 4.05 7.17 4.85 11.62 7.59 4.05 7.17 4.85 11.62 7.59 4.23 7.17 4.34 11.51 7.59 4.53 7.17 5.26 12.643 7.83 3.63 7.17 5.28 11.05 6.10 4.50 7.17 3.83 11.05 6.10 4.50 7.17 4.55 11.89 7.83 4.56	8		5.00	22-22	6.97	5.20	42 73
7.17 4.36 11.53 7.49 4.04 7.17 4.65 11.82 7.59 4.23 7.17 4.65 11.82 7.59 4.23 7.17 4.34 11.51 7.59 4.23 7.17 5.26 12.43 7.93 4.50 7.17 5.28 12.43 7.93 4.50 7.17 5.88 11.05 6.10 4.95 7.17 4.72 11.69 7.83 4.66 7.17 4.55 11.78 7.83 4.06 7.17 4.55 11.78 7.83 4.66	8	6102	A. 30	73.11	8°8	3,02	25,88
7.17 4.65 11.82 7.59 4.23 7.17 4.34 11.61 7.58 3.63 7.17 4.34 11.51 7.88 3.63 7.17 5.26 12.43 7.93 4.50 7.17 5.26 12.43 7.93 4.50 7.17 3.88 11.05 6.10 4.95 7.17 3.88 11.65 7.83 4.66 7.17 4.72 11.89 7.83 4.66 7.17 4.75 11.89 7.44 4.26	ß		£. 38		7.40	4.04	35.04
7.17 4.34 11.61 7.88 3.63 7.17 4.34 11.61 7.88 3.63 7.17 5.28 12.45 7.93 4.56 7.17 3.88 11.05 6.10 4.95 7.17 3.88 11.05 6.10 4.95 7.17 3.88 11.66 7.83 4.66 7.17 3.88 11.05 6.10 4.95 7.17 4.72 11.89 7.83 4.66 7.17 4.55 7.83 4.66							33,8
7.17 7.17 7.17 7.16 7.16 7.16 7.17 7.17			GTO	III (ca	M		
7.17 5.28 12.43 7.93 4.50 7.17 5.38 11.05 6.10 4.95 7.17 3.88 11.65 6.10 4.95 7.17 4.78 11.69 7.83 4.06 7.17 4.55 11.78 7.83 4.06	8	2792	in the second	5-1 20) 9-1 9-1	7°83	8°.63	31.54
7.17 3.88 11.05 6,10 4.95 7.17 4.72 11.69 7.83 4.06 7.17 4.55 11.78 7.40 7.17 4.55 11.78 4.86	00	5	5.28	12.43	7.93	4.50	36,20
7.17 4.78 11.69 7.63 4.06 7.17 4.55 11.78 7.41 4.66		510	5 00 8	23°02	0°70	4 ,95	44.80
	76	gang gang Can	4.72	60°77	2.83	4.06	27.42
	Verege						28°87

- 63 -

TIXXX	
able.	
6 4	

Cande fibre dicestibility date

,

II TEML

An1ma1		Intake (g.		001280	Totéi	Diectibility
No	From green berseem	From wheat bhoosa (unvashed)	Total	UI (201) ¥	digested (g.)	coefficient (%)
			Group I (Control)	(TQ		
\$0 \$0	74.50	243, 26	317,76	130.91	186.35	53, 30
ŝ	09°72	222-16	296。68	129.36	167,32	56.40
83	74.50	158.37	222,87	92° 72	139,15	50° 42
0	74° EC	170.43	\bigcirc	<i>P</i> N7	153.56	£3.
Åvetægo	74.58	000.00	5.74° 56		162°97	
			TI (os	(Teasi I %8		
G	74.50	CL. 194.	569° 592	IIO,02	159,27	50° 14
8	172 °FL	20°272	62°T62	271°23	280.35	61,85
83	74.50	70° 71'	248,32	543 543 544	137.44	55,24
ర	72.50	dia in	ģ	12 60	139,27	58,82
Werege	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		281.62 1		124°08	28°28
			crow III (ca	4% X Jevel)		
8	74° 50	160, 43	234,98	104,23	120.75	50.05
8	74.50	229 95	314,45	126.42	138°03	59,20
Z	74,50	121, 34	195,84	13.88	109°33	89
8	74.50	192,98	267.48	105.57	161-91	60,63
aver age	74°50	178.69	253.19	105.68	147.01	22.95

- 94 -

		N1trogen-fre	e extract dig	<u>Nitrogen-free extract digestibility data</u>	نه قصر	
Trial II						
ģen â - A		Inteke (g.)		ntro in	Total	Digestibility
Tratur	From green berseen	<pre>' Trom wheat ' bhoosa (unvashed)</pre>	Total		digested (g.)	coefficient (%)
		59 <u>1</u>	Group I (Control)	01)		
80	109.40	313,33	422.78	168,38	254.40	60°17
ŝ	109.40	292.49	401°83	169°63	232,20	57,78
62	109.40	229,23	330 63	153,20	195,43	St. 3
R	109,40	247.14	356, 54	126.23	230.31	1000
Average I	103.40	529°.88	379 , 96	1 1 1 1 2 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	522 8	
			Group II (ca 3%	s x level)		
ų	109.40	265,34	374.072	If I g	233• 00	62°13
18	109.40	287,42	396°82	147,97	248,85	62,71
69	109°40	245,05	354,45	166.57	60°267	53°01
\$	109.40		342,51	134, 73	207.78	60°65
Merage 1			1 367.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	147.75	1 378	
		UI.	and III (as	4% X Jevel)		
S	109.40	231.32	340.72	130.91	209.81	61.58
60	109.40	310,10	419,50	168,23	251.27	69°30
R	109.40	192,53	301°93	229°971	17° 201	61.41
82	100° 4 0	226 55	345.95	1309.17	207.72	60°.06
arerego	109.601		352,63	136.66	- 69°8	50°74
		· · · ·				

Table XXXII

- 95 -

XXXIV	
2016	
Ņ	

Actual T.D.N. ingestion per day as compared to the stiulated requirements (M.R.C., loc. cit.)

on the besis of everage live weights huring II TEFUI

the trial period

,

and a second	<u> </u>	, 5117712250
AO [®]	ingestion	requirement
	Group I (Control)	

nt May
northe a
TON
祭母
12
100
Q
2001
hant
-izat 🛛
2
UNO.
0
Lot B

412,75 396,50 354,25 312,00		409,60 367,25 328,25 328,25 354,25	396°50 383°50 380°50 380°50 380°50 380°50 380°50 380°50 380°50 380°50 380°50 380°50 380°50 380°50 38
491.20 446.30 371.75 439.49	437.19 (2000 II (ca 3% I level	439.00 482.78 373.29 397.04 397.04 423.22 423.22 62 4% X 10	389.67 489.03 341.94 415.79
9888 8888			3848
	oferation	90: 10 L	

349,38

400°11

iverage

XXXV	
10	
Tai	

Analysis of variance data for various nutrient digestibility and actual 'Total digestible nutrients' ingested

II IETAI

variation	Ireedon	squares	squares	ratio 171 ratio 171
	Crude prote	protein digestibility	(%) 777	
Between blocks	ದ	4.2315	1,4105	
Between trestments	0)	10,3093	6.1547	0.47 A.S.
ure of	ю	65.9996	10°0999	
	Fther extr	tract direstibility		
Retween blocks		51 2596591		
Between treatments	61	60°0369	30,0185	0.44 H.S.
	Q	407.4120	87,902	
	Crude fibre	e direstibility	1 (S) 1 (S)	
Between blocks	63	26,4726	8.8242	
Betwen trestments	C	2,5255	1.2628	0.18 J.S.
	ŝ	41° 72%	6°9662	

No.5. denotes not statistically significant.

- 97 -

variation	Degrees of freedom	Sun of squares	Ne 21 squeres	Variance ratio 171
	Nitrogen-free	extract	digestibility (%)	~
Between blocks	673	53 , 5413	17,8471	
Between treatments	ເນ	1955 A	2,1936	0.20 ¥.S
Etro?	9	64,3085	10°7181	
	âctual T.D.	T.D.N. Ingested		
Between hlocks	~	19446.8774	6482。2025	
Between treatments	ରୀ	1576,7056	733 。 3528	0.91 R.S.
Error	\$	2171°1076	861,8513	

N.3. denotes not statistically significant,

Table XXXV (contd.)

1:19.2 does not effect nutrient digestibility in any manner. Nor does it affect the 'total digestible nutrients' (T.D.N.) ingestion in any significant manner as shown in Table XXXIV and XXXV.

Balance studies

The results of the balance study conducted on these animals were likewise similar. The nitrogen retention shown in Table XXXVI in the control group was positive (+ 1.14 g.) and this was reduced to - 0.64 g. in the 3% potassium fed group and further to - 1.26 g. in the 3% Calcium retention also went down from + 0.78 g. in the control group to + 0.41 g. and further to + 0.30 g. in the 3% and 4% potash fed groups (vide Table XXXVII). This trend was practically maintained in the case of phosphorus and magnesium retention as well (vide Tables XXXVIII and XXXIX). Statistical analysis, however, did not reveal these variations to be significantly different, except in the case of phosphorus, which were highly significant between the treatments (vide Table XLII).

Coming to the retention of sodium and potassium, the picture is somewhat different than that we have come across in the earlier study where potassium was mainly supplied as supplement and sodium content of the ration too

<u> Table XXVI</u> Mitrogen balance data

.

		Intake (g.	iter.		outeo (g	(&•)	
No.	From green berseen	 From Wheat bhoosa turvashed) 	2040Z	T T T T T T T	autus nt	Total	and the trad
			Orow I (C	(2017-10)			
89	80° 60	2°83	12,25	5.81	5.50	10 11	+ 0.94
ŝ	3 *62	2,47	12,09	5 . 69	4,96	10.64	+ 1.45
83	9°62	7°99	13.11	190	5	10.88 L	+ 0,33
Ş	9.62	87 EV	103 17- 1-1 1-1	5.04	228	10.29	+ 1,65
AVerage	1 3.6		11.88				
			JIOUD II	(ca 3% K level)	-1 (1)		
G	9°63	2°28	11 . 88	0° 83	102	12,95	- 1,88
8	9°62	57°2	12°05	5°35	5,14	10°49	20 7 *
ŝ	9°63	5	el ett	цр С	82°8	12.41	с С С С С С С С С С С С С С С С С С С С
Ť	9 . 62	2°02	11.64	5°08	7.89	12,88	
werage	0.62					0	- 0°64
) 8 1			III moid	(ca 4% K 19	(teast		
8	0.62	2,00	11.62	5,07	67.0	13,25	- 1.63
80	0° 83	2,62	2°23	5,30	6.U4		- 0,20
TT.	9°83	1.72	11.34	0.07	ton ton ton	14.68	8 8 9
8	0,00	S.S.		5.97	5°82	e T	+ 0.10
average			11.47	2.63	2.43	13-03	*

- 100 -

<u>Table XXVII</u> Calcium balance data

Animal		Intake (g.)			Outgo (g	g.)	
No.	Fron green derseen	'From wheat' bhoosa (unvashed)	Total	In Iaaces	ur In	Total	ene te c
			L more	(control)			
28	5°24	Cent	6. 44	6°06	0.09	6° 15	+ 0°39
8	S S S S S S S S S S S S S S S S S S S	1	6°45	6°35	0.03	6.33	÷ 0.08
00 00	5.24	0°36	6°70	4.09	0°02	4.14	÷ 2.05
ş	2.0	BC = I	6°24	5°60	0.07	5°83	÷ 0°60
iver ago					8.0		\$ 0°%
			Group II	(ca 35 K	level)		
Б1	2°5%	otot	6.3 <u>4</u>	5.61	0.12	5°3	·} 0*61
ŝ	5,23	1,20	6.44	5.22	0.20	S.A.S	* 1°83
65	5.24	1.02	6 •26	5°73	\$7°0	50 - OC	+ 0.33
3	5.24	000		6,42	0,08	0°37	- 0,30
Average						1 8 1 8 1 1 1 1	
			(1.0MD I)	<u>III</u> (ca 4% K	level)		
ß	5,24	0,96	6°20	S, 95	0.0	6.05	+ 0.15
8	5,24	1,29	6.53	6,04	5780	0,10	+ 0.37
5	5°24	0.80	6.04	5,69	0°15	* 0° :	+ 0°50
82	5°2&	L.10	6,3 <u>4</u>	61	0.15	5.33	+ 0.46
, a l a duà		 					

- 101 -

TT IL T			SDJOJOSOH	aver anti-ten source	10100		
		Intake (g.)			Outgo (z.)		
Animal No.	From green berseen	'Prom wheat bhoosa (unvashed)	Total	In faces	ur Tu Tu	Total	B: Lance
			droup I	(Control)			
85	0.611	0.619	1,233	0.642	0.058	0°200	+ 0.530
8	11900	0.575	1.187	0,533	0°011	0.550	+ 0,637
00 0	0.611	0.443	1.054	387°0	0.033	0,467	+ 0,587
2	0.611	187°0	1°092	0.400	0.033	0.433	+ 0.659
Average	118.0			0.50	0.034	0,538	+ 0.603
			aroup II	(ce 3% K	level)		
tø	0,611	0.519	08T°T	0,966	13000	1.027	50T03 +
8	179°0	0.565	22.T.°T	0,753	0.041	0.798	* 0,378
83	1280	0.476	1.067	1,018	0.045	J. OSS	+ 0.Wg
3	0,611	1320	1.082	0.784	0.457	1.221	&T-0
Average .	110.0	0,503				1.037	+ 0.077
			Group I.	II (co % R]	lovel)		
8	0,611	1220	1,058	0,988	0.068	1.056	+ 0,002
80	0,611	0.612	1,223	0.934	0.040	54C°0	+ 0°740
P	0.611	0.366		0, 775	0.079	0,852	+ 0*158
R	0.611	0,515	1.126	T.CO	0.037	1.037	+ 0°080
iver 200		0,485	1,096	0.924	0.056	0.980	+ 0,118
A STREET AND A STR							

TIDIC VEXNIII

Phosphorus balance data

- 102 -

×	
XX	
Ø	
19	
¢-1	

Hagneslim belence data

<u>Trial II</u>							
P 1		Intako (g.)			Outgo (g.)	• •	l P P
•OU	Fron green berseen	'Frem wheat ' bhoosa (unwashed)	Totel	In faces	In urine	Total	
			Group I	(control)			
89	1.057	0.884	1768°T	1*660	0.240	1,900	+ 0,041
2 3	1.057	0.876	1.933	010.1	0.210	1.820	+ 0,113
8	1,057	0.85&	116°T	T.T?O	0.320	1.490	+ 0°421
72	1.057	0.561	1,018	1.570	0.300	1.87	+ 0.048
Average	1.057	0.869	1.926	1-502 1	0,268	1.78	+ 0.155
			CILOID J	II (ca 3% I 1	level)		
Tg	1.057	0.867	1.924	I. 720	0.380	2,120	90T°0 -
33	1.057	0.875	1.932	220	0.410	1,920	+ 0,012
60	1°027	0.860	L1917	1.600	0.400	2°002	- 0,033
Š	1.057	0.856	eto f	1.640	0,360	2,000	- 0.057
Werage			1.82	1,623	0.388	2,011	. 0.059
			Grow	X % ro) III	levol)		
8	1.057	0.855	218T	1,420	0.460	1.940	- 0,028
80	1.057	0.883	1,940	Le 690	0.350	2.040	001.0 -
Z	1.057	0.842	568°T	1-500	0.430	069.I	- 0.031
82	L.057	0.866	1,923	1.460	0,470	1,920	- 0.07
iverage	1.057	0.862	1,919	1.533	0.428	1°801	670°0

T

- 103 -

was lower, 0.22% against 0.42% in the present instance. It will be seen in Table XL that sodium retention was almost the same in all the groups in contrast to a gradual fall in sodium retention noted in the earlier experiment. Potassium retention too behaved differently here (Table XLI). In the second group where the sodium:potassium ration was 1:8.1 with only 26.32 g. of potassium ingested the retention came to be + 9.55 g. while in the third with a sodium: potassium ratio of 1:10.3 and ingestion of 33.31 g. of potassium the retention was only 8.08 g. The statistical analysis of the data, presented in Table XLII, shows that the potassium retention data are significant at 5% level between treatments.

The results of a probe into the excretion pattern of all these nutrients <u>vis-a-vis</u> their ingestion are shown in Tables XLIII and XLIV for facees and urine respectively. A reference to Table XLIII will show that of all the nutrients studied phosphorus alone has shown a definite pattern of excretion in the facees, followed perhaps by potassium. Phosphorus excretion by way of facees computed on the basis of its percentage in relation to intake increased as the potassium ingestion increased, the increase between the control and 3 per cent potash groups was almost double. Between the 3 and 4 per

В 4	Pu	Intako (g.)		74	outzo (g	60	(
on No.	From green berseem	'From wheat' bhoosa (unvashed)	Total	I acces	urine	Total	and the
,			I ano.19	(Control)			
<u></u>	8°30	07 °1	3.40	0 . 32	0,08	0.40	+ 3,08
83	883		3.40	0° 73	0.52		8
02 0	2°30	0,85	10 10 10 10	C. 23	0.84	1.07	+ 2,08
Ş		0.92	3022	0.55	0.89	- 1 - 1	+ 7°78
morage —				0.466			
	- - -		Grow 1	TT (ca 3% K 3	lavel)		
Ţ	2,30	0,99	3°53	0,42	0.63	1.05	4 20 20 20
95	2°.30	30°1	3, 38 3, 38	0.56	0.42	0.98	+ 2,40
50	00°2	0.91	3°21	0°56	0.28	0.83	+ 2,23
S	2,30	0.86	or en	0.53	0.17	榆	*
Werage	5.3						
			Group I	17 (ca	level		
ß	2°30	0,86	3°10	0.35	0.87	5°.1	+ 1.92
80	2°30	2191	270	0,31	0.60	16 0	+ 2,55
5	2,30	0,70	3.00	0.09	0,93	1.07	+ 1°83
æ	2,30	0,98	82 82 8	0°.14	0.84	0.98	08°0 +
l l l l							

<u>Sodium balance data</u>

- 105 -

forest t	
Ø	
ar 1	

Potessim belence data

II TRIII

		Intake	ake (g.)			outeo (z.)	~	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
No.	From green berseen	From wheat bhoosa (unwashed)	'From ' potassium chloride (KCl) supplement	Total	Lu faeces	In urîne	Total	e de le de l
				Group I (Cont	(Control)			
83	8.13	7.73	9	15.86	010	12,54	14.72	+ Lold
ŝ	8° 13	7° 24	ŧ	5.37	2,69	9°39	12,08	+ 3,29
00	8,13	0° 27	Ş	13,87	200	JI, W	13.01	+ 0.86
2	87 ° 00	6,16	1	14.20		8,77	10.92	4 2° 27
			1 			12.4	1 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
			5	Group II (ca		d Charles		
ç	80 H3	6. 59	13.08	27,80	2	13.21	15,65	+10.15
8	8°.13	ST C	8° 87	27,28	2,10	13,23	15.33	96°TT4
59	6 1 2	6. <u>1</u> 2	ruo T	8°.3	2,46	13,87	16. 32	+ 9°44
31	or or or or or or or or or or or or or o	، الا الا الا الا الا الا الا الا الا ال	1 10°,48	24.42	1.2	128.68	19,76	*
Werage	ø.		12	86.38			10.77	+
				2.34	a 4% K lovel)	2000 2000		
8	8 13	5°73	20°92	34,34	2,09	25,14	27,23	+ 7.61
8	87°8	7,66	79°81	30, 56	8° 8	25,97	28°23	+ 6,43
Ł	8,13	4,87	18.91	ನ್	2.2	22,87	83 ° 8	* 0°33
ې ا مې	1 0°13		16°74 16°74	87.15 1	67 %	20,18	23,37	
àr gr'ag đ	8,13	6. 22	18,95	33,31	2.44	53°83		

- 108 -

Table XIII

Analysis of variance data for nitrogen and mineral

balances

TT IN II

Varietion	Degrees freedom	Jo	oun ur squares	squares	'Variance ratio 'F'
		Nitrogen	gen balances	27) 211	
Between blocks	3		9°9638	3,3213	
Between treatments	10 10	₩	10.654B	5.3274	4.00 N.S.
Brior	0		7.9691	1°3282	
		Celai	calcium balances		
Between blocks	n		0°6124	0,2041	
Between treatments	80 80 80		0.5105	0,2553	0.58 N.S.
Error	Q		2.6604	0.434	
		ISOUA	Phosphorus balances		
Between blocks	3		0.100958	0.033653	
Between treatments	87 87 87		0.6888287	0.34144	20°13**
LITOT	Ô		0*102554	0,017092	

Critical difference (C.D.) = 0.226 N.S. denotes not statistically significant.

1

(conta.)
Table yrr

.

.

	• • •	Langelm D.1 (neg	500	
Between blocks	63	0°042605	0.014203	
Between treatments	N	0.134366	0.067183	4.98 R.S.
ETTOT	Q	0.080948	0.013491	
	U U	sodium baiances		
Between blocks	9	0,1563	0°0521	
Between treatments	01	0°0721	0°0360	O.IS N.S.
Teta	v	1.2219	0.2037	
	l R R R			
	v	ESOUETPO INTESSIO.		
Between blocks	63	6°3734	20 1.265 1.265	
Between treatments	61	116,0095 J	55,42,55	9° 36
RTTOT .	Ø	37,5029	6.2505	

- 108 -

ITTY	
able	ł
E-1	

Animal ¹ N No.	Mitrogen ' (g.)	calcium (g.)	' phosphorus' (g.)	Magnesium ' (g.)	Sodfum (g.)	' Potassium (g.)
			Group I (Control)	T)		
22	5°84	8.9	0.641	1,660	0.32	\$°18
20	5,63	6 . 35	0.539	1.610	0°72	2°69
0 0	5°61	4.09	0.535	7,170	0.23	2002
22	5.04	5°60	0.400	1*570	0°22	39 42
Average	2° 27 1		0.534	L.502	0.46	8
We \$ of intake	1 4 9					
			Group II (ca	K level)		
Q	0°0 0	it S	0.966	1.740	0.42	2,44
ß	5 6 9	s.22	0°757	1,510	0.56	97 ° 0
69	5	5.73	1.018	1,600	0.50	\$\$ \$
S.	5°09	403	0,734	1.640	0.58	75 ° 7
inerege		2	0.881	T.623	0.53	2°18
Av. S of intake	1 1 82°58 1 33 1		80°62	84.44	16.26	£7a
8	5.07 20	5° 96	0.888	L.480	0° 35	2°08
00	5°80	6°04	0.934	1.690	0.31	3,28
7	5,57	5.69	0°773	1.500	60°0	1.22
78	5°97	5.73	1.000	1.460	0°1&	
NVerage			0.924		0°22	
		and the second s	it where works where and here with both		The second secon	

- 109 -

Trial II	Average excretion of	n of nitrozen	m and minerals	ls in urine per	çş	
Animal No.	M trogen (g.)	Calcium (g.)	(.z) ospherus	Magnesium (g.)	Sodlum (go)	Potassium (g.)
			Group I (Control)	2		
58	5,50	0.09	0°058	0.240	0.08	12.54
ŝ	4.96	0.03	0°077	0.210	0.82	0°30
62	5°27	0.05	0°032	0.320	0.84	11,00
22	S.85	0.07	0.033	008.0	0.89	8°77
Average			0.034	0.268	0.66	10.43
hr. % of intered	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					70.24
			<u>Orond II</u> (ce 3%	X 16701)		
	7.01	0°13	0°261	Q.380	0.63	13.21
8	5.14	\$°0	0.042	015°U	0.42	13.23
80	8°26	0.15	0,005	0.400	Q. 28	13.87
Ż	7,89	0.08	0.457	0.350	0.13	18.02
áverese	7.08		0.18	0.388		14.63
iv. 5 of inters			14°.30	50°19		55.40
		J.	Group III (ca 4%	(X Jevel)		
50	8° 18	0.30	0,068	0.460	0.87	25,34
8	6,53	07 ° ° °	0°040	0.350	0.60	25.97
Z	9°11	0.15	0.073	0.430	0.98	21.87
22	5° 82	0.15	0.037	0.470	0.84	62
Average Merage	192		0.056	0.428	0.82	23.29
Av. & of intake	62°96	2.07	H	27.92	25.39	68.83

Table XLIT

- 110 -

cent levels, however, there was not much difference. Potassium excretion behaved exactly in the opposite direction and in a similar manner. The urinary excretion pattern, on the other h nd, was rather erratic and no systematic variation from group to group could be identified (vide Table XLIV). If comparison is confined to the control and 3% potassium (1:8.1:sodium:potassium) fed groups alone, exerction of nitrogen, calcium, phosphorus and magnesium increased considerably with the higher level of potassium ingestion, while that of sodium and potassium declined as much. But between 3 and 4 per cent potash fed animal, i.e., when the sodium:potassium ratio varied between 1:8.1 and 1:10.3, the difference in the rate of excretion was less pronounced.

In general, it can be stated that while in the first experiment the excretion of phosphorus in the faces was reised from 50 per cent of that ingested in the control group to almost 80 and 80 per cent in the supplemented groups in the socond experiment, also similar increases have been noticed. A similarity in potassium excretion in the two experiments has also been found. But the impoverishment of sodium in the body noted earlier was not so marked in the present experiment.

The results of water metabolism studies are presented in Tables XIN and XLVI. It will be seen from

- 111 -

C XIN		
e.	XIX	
Tabl	Table	

Mater metabolism data (Average water balance per day) - (Basal ration -Green berseem + wheat bhoosa (unvashed)

Trial II

		Water Intake	e (ml.)			warer ourgo	o (ml.)	alorsens1016	20481
No.	Free drink	feeds	'Metabolic' water	letol	Lu faeces	Ln urine	'Total in urine and faeces	perspirat- ion (ml.)	solids in urine(g)
			10	Group I (Contra	ntrol)				
88888	821°0 500°0 500°0 500°0	1786.0 1782.0 1769.0	285°0 285°0 199°0 199°0	2872.0 2450.0 2468.0	647 895,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 946,5 947,6 94	1411.1 527.4 487.6	2058,7 1422,9 1558,4	813.3 1027.1 1023.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
kverage	228.0	7777.0	235.0	2583.0		806.4	1618,6	964.4	29,3
				Group II (cs	a 3% X level	a) (1	8 8 8 8		4 6 9
g 8 8 8	2070.0 1571.0 1036.0 857.0	1776.0 1781.0 1772.0 1769.0	836.0 859.0 812.0 812.0	4083.0 3611.0 3007.0 2838.0	020°4 726°5 543°0 543°0	2515.1 1722.1 1727.0	3444 5 2448 6 2525 2 2290 9 2290 9	638°5 1162°4 547°1	8885 8885 8885
kverage	1384.0	1775.0	227.0	3386.0	1 5 972		1 2011 1 2011 1		
8848	1250 1250 1321 0 1321	1769.0 1761.0 1776.0	00000 8000 8000 8000 8000 8000 8000 80	Group III (3227.0 3941.0 3319.0 3319.0	ca 4% 5 790.1 8376.4 8386.4	1evel) 1798.1 2542.6 1685.9 1723.5	CO CO 40 40	888 892 998 998 998 998 998 998 998 998	6 4 6 6 G
Average	1250.0	1730.0	519.0	3242.0	635 I	7837.5	2572.9	699	5°19

Editor.

XIVI
Table

Metabolism of water and dry matter

(Basel ration - green berseem + wheat bhoosa)

Trial II

,

Total	8 19 - 6 - 18		Ratio of t	water intaké	Vol. of myine
	Taon.	Dry matter	o dr	matt	6 6 6
intake	ary matter intake	. Derseg ID	Intako '	Digested	ions (milli - equiv.)
	Group	I (Control)			
2872°0	897.4	501.3	N N	5 ° 7	4 °3
2450.0	6°133	449.8	6) 61	S. &	0°T
2468°0	0°et/	389 6	ŝ	0°3	10 m
2543.0	753.0	425,5			0.0
2583.0	804°1	446.6			
		TI (ce 3% K	[649])		
383 ° 0	732.7	E.E.C.	r-4 v)	80	6° 0
3611.0	840.8	490.4	0 4	Fe S	\$°0
3007.0	748.4	377.0	4.0	8.0	20 T
2838°0	722.4	401.0	3°0	1-2-1-2-1-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1	
3385.0	 p=	,		6.2	
		III (ca 45	16701)		
3227.0	718.5	396, 7	5	۲- ۵۵	\$ \$
3 341 °0	890°3	497.8	Sec.	8°2	5°3
2479.0	633.9	346,4	0 0	87 2	00 00 00
3319°0	788.3	449.9	4	7.4	~ 1
3242.0	757.9	422,7	N	and a second sec	0
	4083.0 3611.0 3007.0 2838.0 2838.0 3341.0 3319.0 3319.0 3242.0	792.7 840.8 748.4 722.4 776.1 776.1 776.1 776.1 778.1 778.1 778.1 778.1 777.9	792.7 444.1 792.7 444.1 840.8 490.4 748.4 377.0 722.4 401.0 776.1 428.1 776.1 428.1 776.1 428.1 776.1 428.1 776.1 428.1 776.1 428.1 776.1 428.1 776.2 336.7 890.3 497.8 633.9 346.4 757.9 422.7	792.7 444.1 792.7 444.1 748.4 377.0 722.4 491.0 722.4 401.0 776.1 428.1 776.1 428.1 776.3 396.7 890.3 497.8 890.3 497.8 890.3 497.8 757.9 422.7	Type Type

- 110 -

Table XLV that the water intake of the animals of groups II and III was about the same and was at least 25 per cent higher than that seen with the animals of the control group. Water outgo through urine followed a similar pattern, only that the outgo in the supplemented groups was almost 25 times that of the control group against an increase of 15 times in the free water consumption. The total solids excreted in urine in the supplemented groups were also much higher.

The ratio of water intake to the dry matter ingestion given in Table XLVI also has shown an increase in the potassium supplemented groups but between 3 and 4 per cent levels there was no difference.

SIMM ARY

The results obtained in the present experiment, for all practical purposes, corroborate the findings of the previous experiment except in some minor details.

- 114 -

GENERAL SUMMARY AND CONCLUSIONS

Page 116-117

- 115 ·

GENERAL SIMMARY AND CONCLUSIONS

An experiment was designed and conducted on twelve adult sheep, distributed in three groups of four animals each, to study the effect of feeding potassium in amounts present in many potassium rich pastures with sodium:potassium ratio varying from 1:3.5 to 1:19.2 on (a) the digestibility of organic nutrients, (b) the retention of nitrogen, calcium, phosphorus, magnesium, sodium and potassium, (c) their excretory pattern in urine and facces and (d) water metabolism. Its effect on (e) appetite and (f) body weight was also studied. TO feeding trials were conducted. In the first, the basal ration was made a low potassium one, so that potassium was mainly supplied in the form of potassium chloride to raise the sodium spotassium ratio even as high as 1:19.2. In the second experiment, the main source of potassium was the ration itself, the potassium chloride supplement was only fed when necessary, the maximum sodium:potassium ratio in the latter being only 1:10.3.

The results of the digestibility trials and balance studies of both the experiments were almost similar, irrespective of the level of potassium feeding or of the sodium:potassium ratio or even of the source of potassium either in the form of its salt or of natural feeding stuffs. The results of water metabolism and other studies conducted were also similar. They are as follows:

(a) The digestibility of crude protein, ether extract, crude fibre, nitrogen-free extract and dry matter was not affected by the nature or source of potassium nor by the level of potassium feeding (maximum 4 per cent and minimum 0.77 per cent)/sodium:potassium ratio (maximum 1:19.2 and minimum 1:3.5).

(b) The retention of nitrogen, calcium and magnesium was also not affected. But the retention of phosphorus was adversely affected as the sodium:potassium ratio widened up and this was highly significant at 1 per cent level. It is possible that had the levels of nitrogen, calcium and magnesium feeding were still lower than the low levels at which these were fed some significant result could have been obtained as in the case of phosphorus.

(c) The excretory pattern of nitrogen and the minerals by way of urine and faeces was also similar in both the experiments. The pattern in respect of urine remained the same in respect of nitrogen, calcium, - 117 -

phosphorus and magnesium, while that of sodium was different. The excretion declined as the level of potassium feeding rose, indicating that the latter by encouraging excretion in urine impoverished the body of the mineral. In faeces, on the other hand, phosphorus excretion was raised tremendously as a result of the widening of the sodium:potassium ratio.

(d) Free water ingestion was found to increase enormously as the level of feeding or the sodium; potassium ratio increased. Its outgo through urine also increased simultaneously and the increase was at times four fold compared to that in the control.

(e) The potassium feeding (wide solium:potassium ratio) was also found to increase the water requirement per unit of dry matter ingested.

It is, therefore, concluded that high level of potassium feeling in relation to sodium raises the water intake and produces diuresis. It also considerably lowers the phosphorus retention in the body and impoverishes the body of sodium. But, otherwise, it has no adverse effect on the digestibility and rotention of common organic and inorganic nutrients.

BIRLIOGRAPHY

"age 118-122

BIBLIOGRAPHY

- 1. A.O. A.C. (1960). <u>Official methods of Analysis by the Association</u> <u>of official Agricultural Chemists</u>, <u>Washington</u>, D.C.
- 2. Babcock, S.M. and Carlyle (1905). vide Orr, J.B. (loc. cit.). Ref. No. 26 below.
- 3. Balch, C.C. and Johnson, V.W. (1950). Brit. J. Nutrition, 4, 389.
- 4. Birch, J.A. and Wolton, K.M. (1961). Vet. Rec., <u>73</u>, 1169.
- 5. Brouwer, E. (1961). <u>Digestive Physiology and Nutrition of the</u> <u>Ruminent</u>, p. 154. D. Lewis, Butterworth's, London.
- 6. Bunge (1873). (cited by Brouwer, <u>loc</u>. <u>cit</u>.) Z. Biol., <u>9</u>, 104.
- 7. Carbery, M., Chatterji, I.B. and Talapatra, S.K. (1937). Ind. J. Vet. Soi., 7, 185.
- 8. Chappel, C.D., Birny, R.J., Whitehair, C.K. and Mac Vicar, R. (1955). J. Mim. Sci., <u>14</u>, 153.
- 9. Du Toit, P.J., Malan, A.I. and Groenewald, J.W. (1934). Onderstepoort J. Vot. Sci., 2, 565.

- 10. Du Toit, P.J., Louw, J.G. and Malan, A.I. (1940). Onderstepoort J. Vet. Sci., 14, 123.
- 11. Glendening, B.L., Schrenk, W.G., Parrish, D.B. and Smith, E.F. (1952). J. Ani. Sci., <u>11</u>, 516.
- 12. Gupta, B.N. (1967). Personal communication.
- 13. Hamilton, T.S., Mitchell, H.H., Kick, C.H. and Carman, G.G. (1927-28). 41st Ann. Rep. III, Agri. Expt. Sta., p. 199.
- 14. Helfferich, B., Bauer, R. and Lenkeit, W. (1965). Ztschr. Tierphysicl. Elerernahrung Futtermittelk., 20, pp. 95-120
- 15. Hubbert, F., Jr. Cheng, E. and Burroughs, W. (1958). J. Anim. 3ci., 17, 576.
- 16. Hungate, R. E. (1966). The Rumen & its Microbes, Academic Press, London, p. 81.
- 17. Knox, K., Firestone, E.E. and Ward, G.M. (1965). J. Dairy Sci., <u>48</u>, 809.
- 18. Leitch, I., and Thomson, J.S. (1944). Nutr. Abstr. Revs., <u>14</u>, 197.
 - 19. Maynard, L.A. and Loosli, J.K. (1962). <u>Animal Nutrition</u>, McGraw-Hill Book Co., Inc., London, p. 148.
 - 20, Meyer and Cohn (1911). (cited by Richards <u>et al</u>. (<u>loc</u>. <u>cit</u>.) Ref. No. 30 below.

- 21. Mitchell, H.H., Hamilton, T.S., McClure, E.J., Hains, W.T., Boadles, J.R. and Morris, H.F. (1932). J. Agri. Res., <u>45</u>, 163.
- 22. Negi, S.S. (1955). Ph.D. Thesis, Bombay University.
- 23. Negi, S.S. and Mullick, D.N. (1959). J. Sci. Ind. Res., <u>19 C</u>, 195.
- 24. N.R.C. Report (1957). <u>'Nutrient requirements of sheep</u>', U.S.A.
- 25. Orr, J.B. (1924). Brit. Med. J. ii, 504; J. State Med., <u>32</u>, 421.
- 26. Orr, J.B. (1929). '<u>Minerals in pasture and their relation to Animal</u> <u>Nutrition</u>', Lewis, H.K., London.
- 27. Oser, B.L. (1965). <u>Hawk's Physiological chemistry</u>, Mc Graw-Hill Book Co., London.
- 28. Pandittesekere, D.G. (1952). Tropical Agri. Ceylon, <u>58</u>, 166.
- 29. Ray, S.C., Zubairy, A.W. and Kehar, N.D. (1947). <u>vide</u> Proceedings of the Indian Science Congress.
- 30. Richards, M.B., Godden, W. and Husband, A.D. (1927). Biochem. J., 21, 971.
- 31. Ritzman, K.C. and Benedict, F.G. (1924). New Hamp. Agri. Exptl. Sta. Tech. Bull. No. 26 (cited by Negi, S.S. and Mullick, D.N., <u>loc. cit</u>.).

- 32. Robbins, W.W., Weir, T.E. and Stocking, C.R. (1961). BOTANY, An Introduction to Plant Science, John Wiley and Sons, Inc., New York, p. 180.
- 33. Roberts, W.K. and St. Omer, V.V. (1965). J. Anim. Sc1., <u>24</u>, 902. (Abstract).
- 34. Russel, F.C. and Duncan, D.L. (1956). <u>Minerals in pasture</u>. Commonwealth Bureau of Animal Mutrition, Rowett Instt., Tech. Comm. No. 15, pp. 133-135.
- 35. Sen, K.C., Ray, S.C. and Talapatra, S.K. (1942). Ind. J. Vet. Sci., 12, 263.
- 36. Snedecor, G.W. (1961). Statistical Methods. Published by the Iowa State College Press, Iowa.
- 37. Steplos, G.E. and Dinusson, W.E. (1951). J. Ani. Sci., <u>10</u>, 244.
- 38. Talapatra, S.K., Ray, S.C. and Sen, K.C. (1940). Ind. J. Vety. Sci. & Ani. Husb., <u>10</u>, 255.
- 39. Talapatra, S.K., Ray, S.C., Kehar, N.D. and Sen, K.C. (1942). Science and Cult., 8, 209,
- 40. Talap tra, S.K., Ray, S.C., Kohar, N.D. and Sen, K.C. (1948). J. Agri. Sci., <u>38</u>, 163.
- 41. Telle, P.P., Preston, R.L., Kintnor, L.C. and Pfander, W.W. (1964). J. Anim. Sci., 23, 59.

- 42. Theiler, A., Green, H.H. and Du Toit, P.J. (1927). J. Agri. Sci., 17, 291.
- 43. Thomas, B., Thompson, A., Oyenuga, V.A. and Armstrong, R.H. (1952). Empire J. Exp. Agri., 20, 10.
- 44. Tyler, C. (1966). <u>Animal Nutrition</u>, Chapman & Hall, London.
- 45. Wallace, T. (1951). <u>The Diagnosis of Mineral Deficiencies in Plants</u>. Published by His Magesty's Stationery Office, London.
- 46. Ward, G.M. (1966). J. Dairy Sci., <u>49</u>, 268.
- 47. Warth, F.J. (1923). Agri. J. Ind., <u>18</u>, 467.
- 42. Warth, F.J. (1926). Mon. Dopt. Agri., India, Chem. Series, <u>9</u>, 37.
- 49. Wilson, A.D. (1966). Austral. J. Agri. Res., 17, 165.
- 50. Wright, S. (1956). <u>Mplied Physiology</u>, Oxford University Press.
- 51. Juntz (1912). (cited by Russel and Duncan, <u>loc</u>. <u>cit</u>.). Ref. No. 34 above.

湖棠寺本市市