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ABSTRACT 
Microorganisms are crucial life form present on earth, inhabiting all climatic zones including 

high altitude Himalayan niches. Microbes can thrive in harsh environmental conditions due to 

their ability to produce biomolecules such as enzymes and metabolites that perform 

specialised biological functions. Biomolecules produced by microbes are in minute quantities. 

Therefore, there is a need to increase the production for large scale applications through strain 

improvement. Hence, the current study was focussed on the strain improvement of unique 

bacterium Iodobacter sp. PCH194 through the application of chemical mutagens MMS, EMS, 

and NMU and physical mutagen in the form of UV radiation. The isolate PCH194 co-

produces PHA and violacein, which has wide industrial applications. Through systematic 

applications of mutagens on wild-type PCH194, mutants with desired features were obtained 

and designated as IN1, IN2, IN3, IN4, and IN5. Their growth kinetics at alleviated 

temperature were observed. It was found that their growth temperature increased from 20 to 

25C, and slow growth was also observed at 28C. However, the application of thermo 

protectants glycine betaine and glutamate could not significantly enhance the growth at 28C. 

There was a marked increase in growth, PHA and violacein production of the mutants at 

20C. The PHA production was 1.24 mg/ml for IN5 and violacein production was 1.63 mg/ml 

for IN2, whereas wild strain produced 0.42 mg/ml PHA and 0.20 mg/ml violacein, 

respectively. In conclusion, the present study successfully increased the growth temperature 

of Iodobacter sp. PCH194 from 20C to 25C and also enhanced the production of PHA and 

violacein. Hence, generated mutants can further be used for process optimisation and scale-up 

studies. 
Keywords: MMS, EMS, NMU, PHA, violacein, physical mutagen, chemical mutagen, 

thermoprotectants, Iodobacter sp., bacteria, industrial production 
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1. INTRODUCTION 

 

Microorganisms are important life form present on the earth. They inhabited all 

climatic zones, including extreme environmental niches such as hot springs, 

hydrothermal vents, acidic, alkaline soils and low temperature such as Arctic, 

Antarctic and high-altitude mountains regions. Himalaya is the largest and highest 

mountain range in the world and poses life form with extreme environment stresses. 

The Himalayan region provides a tremendous opportunity to understand the 

adaptability of microorganisms to an extreme environment that can be utilized for 

industrial applications (Thakur et al. 2018; Kumar et al. 2018; 2020; 2021). Microbes 

can thrive in such harsh environmental conditions due to their ability to produce 

unique enzymes and metabolites that perform specialized biological functions. 

Therefore, the study of microbial diversity of Himalaya is important to identify and 

characterize microbes for efficient novel genes/enzymes of industrial importance 

(Amico et al. 2006; Kumar et al. 2014). 

Most of the bacterial species produce biomolecules that are unique and are of 

commercial importance. The wild-type bacteria produce biomolecules to their 

physiological needs therefore, yields are usually low to meet industrial and 

commercial demands. Therefore, strain improvement is required to enhance the 

production of the biomolecules. Different approaches are available to improve the 

wild strain in terms of specific characteristics like yield, efficiency, stability, and 

specificity (Bapiraju et al. 2004; Upendra and Khandelwal 2016; Lim et al. 2018; 

Kamalambigeswari et al. 2018; Mehmood et al. 2019; Sayed et al. 2019). The basic 

mechanism of strain improvement is to alter the genomic DNA sequence, which can 

be achieved by random mutations, site specific mutations, genetic engineering, and 

genetic recombination. Many times, a trait is controlled by multigene factors. Hence, 

in vitro expression or site directed mutagenesis is not a profitable business. The 

classical genetic approach to improve the desirable trait(s) and make the organism 

more effective is by subjecting them to random mutations using mutagenic agents and 
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screening the survivor’s colonies for a desired trait(s) (Parekh 2009; Kumar et al. 

2015). 

Mutation brings about an alteration in the sequence of genes controlling the specific 

characters. A wild bacterial strain is subjected to physical (UV radiation) and 

chemical mutagens (ethyl methane sulfonate, methyl methane sulfonate etc.) that 

bring about alterations at the DNA level in a microorganism (Snustad and Simmons 

2012). UV rays give a high proportion of pyrimidine dimers, produce hydroxylated 

bases and cross linking of DNA strands. In contrast, chemical mutagens such as EMS 

and NMU are alkylating agents that donate alkyl group to the DNA bases resulting in 

altered base-pairing. In the past, mutation has been extensively used for enhanced 

production of biomolecules polyhydroxyalkanoates, penicillin, laccase, lactic acid 

etc.(Weenink et al. 2006; Adrio and Demain 2006; Hungund and Gupta 2010; Weber 

et al. 2012; Obruca et al. 2013; Derkx et al. 2014; Kumar et al. 2015; Fiedurek et al. 

2017; Lim et al. 2018; Sayed et al. 2019). 

A number of bacteria from the Himalayan region have been isolated, characterized 

and explored to produce bioplastic and lignocellulose degrading enzymes of necessary 

groups at CSIR IHBT (Thakur et al. 2018; Kumar et al. 2019; Kumar et al. 2018; 

2020; 2021;). The present study is focused on a unique bacterium Iodobacter sp. 

PCH194 isolated from high altitude region of western Himalaya in a laboratory at 

CSIR IHBT, Palampur. The bacterium can produce bioplastic and a violate colored 

pigment violacein at 20C (Kumar et al. 2021). Despite of good co-production of both 

the molecules in a single bioprocess, the bacterium has a growth optimum at 20C. 

Therefore, it requires lower temperature to maintain 20C during fermentation that 

may add additional cost to the developed process. In light of the above, chemical and 

physical mutagens are used in this study to create mutants that can grow above 

ambient temperature suitable for industrial-scale fermentation. Hence, the study has 

envisaged the following objectives: 

1. Generation of mutants using physical and chemical mutagenesis. 

2. Evaluation of mutants for their biological activity. 
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2.  REVIEW OF LITERATURE 

 

Microorganisms can thrive in almost any extreme habitat viz. cold, heat, radiation, 

pressure, salt, acidity and darkness via the usage of a variety of energy sources 

(Satyanarayana et al. 2013; Mehta and Satyanarayana 2013; Joshi et al. 2017; Kumar 

et al. 2018). Altitude is the crucial factor that has confounded effects on 

physiochemical properties and biodiversity of the niches. High altitude regions 

usually have low temperature, variable precipitation, and decreased atmospheric 

pressure .Such environment factor lead to variation in soil fertility characteristics like, 

organic carbon, pH, total nitrogen, phosphorus, and micronutrients thus creating a 

major impact on biodiversity (Turner et al. 2013; He et al. 2016). The majority of the 

biosphere on earth constitutes cold environments that have been colonized by cold-

adapted microorganisms. These microorganisms maintain their metabolic activity 

even at subzero temperature and can survive and thrive in the extreme environments 

(Nunn et al. 2015; Koh et al. 2016). There are reports of bacterial diversity in soil 

from Rohtang Pass’s altitudes (Yadav et al. 2015) and Pangi-Chamba (Kumar et al. 

2018; Thakur et al. 2018) situated in North-western Indian Himalaya. Proteobacteria 

was found the major phyla found followed by Firmicutes, Actinobacteria and 

Bacteroidetes (Ganwar et al. 2009; Kumar et al. 2018). These microorganisms 

exhibited remarkable plant growth promontory properties, antifreeze proteins, 

membrane fluidity, cold, and heat-shock responses (Feller and Gerdy 2003; 

Chintalapati et al. 2004; Amico et al. 2006). Similarly, microbial diversity from 

Sikkim Himalaya revealed the presence of bacteria and fungi, which decreased along 

the increasing altitude (Rai and Kumar 2015). 

2.1 Psychrophiles / Psychrotrophs 

Psychrophiles are microorganisms that flourish at low temperature, having an optimal 

growth temperature between 15 to 20C and minimal growth can be 0C or lower 

(Feller and Gerday 2003). Whereas, psychrotrophs have similar properties as 

psychrophiles except it can grow at a slightly higher temperature range of 20 to 25C 

(Moyer and Morita 2007). They have evolved by adjusting to these conditions 
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through various synergistic adaptations, including presence of various metabolic 

pathways for endurance and habitation in permafrost conditions (Kawahara 2017). A 

few specialized features such as cell envelope adapted to the external factors, 

cryoprotectants synthesized within the cells, new chaperones and novel metabolic 

capabilities are developed over the ontogeny of the microorganisms (Amico et al. 

2006; Joshi et al. 2017). In addition, these organisms have been reported to conserve 

energy for long term survival via accumulation and metabolism of reserve compounds 

(Medigue et al. 2005; Piette et al. 2011; Tribelli et al. 2015; Tribelli and Lopez 2018). 

The Himalayan region is replete with psychrophillic/psychrotrophic microbes that 

produce biomolecules of potential interest to human kind (Swarnkar et al. 2014; 

Yadav et al. 2016). Biomolecules exhibiting antifreeze, antibiotic, extracellular 

hydrolytic properties, and bioactive compounds with potential biotechnological 

applications in pharmaceuticals, medicine, food, and feed industry are the forte of 

these organisms (Gerday et al. 2000; Yadav 2015; Singh et al. 2016). These cold 

adapted microbes are also documented to produce biofuels, and biodiesel having 

possibility to implement in future energy systems (Kawahara 2017).  

2.2 Biomolecules from microbes 

The medley of microorganisms in the biosphere is responsible for global primary 

energy and element cycling (Beloqui et al. 2008). In terms of total biomass and cell 

numbers, they represent the most abundant source for biological activity (McHardy 

and Rigoutsos 2007; Ward et al. 2008). The biological interactions in nature are 

mostly associated with the discovery biomolecules from microbes (Shi et al. 2007). 

The complexities and interactions among the microbes and their environment, 

constitutes the core in understanding and finding effective solutions for industrial 

needs (Woodley 2006; Schmeisser et al. 2007; Beloqui et al. 2008; Venil et al. 2013). 

Since antiquity, microbes have been utilized by humans for a variety of purposes. 

Reports from 6000 BC suggest that Indus valley, Babylonians, and Sumerians people 

had used yeast to produce alcoholic beverages from Barley (Singh et al. 2016). The 

discovery of various novel antibiotics in the 1970s from microbes significantly 

increased academia and industry’s attention towards microbial biotechnology (Singh 

and Pelaex 2008). The beneficial microbes and their biomolecules of interest were 
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used as potential constituents for the wide‐range of natural product‐based preparations 

and formulations (Adrio and Demain 2006; 2008; 2014). Currently, microbes are used 

as a source for various drugs, vitamins, biofuels, enzymes, bulk organic compounds, 

polymers, amino acids and antibiotics, with tremendous application in biopharma, 

agriculture, food processing and preventing human diseases (Gupta et al. 2011; Li et 

al. 2012; Choi et al. 2015; Saxena 2015; Sharma et al. 2019). 

Out of all known natural products, it is estimated that bacteria are responsible for the 

majority of the produce of microbes. Of these, nearly 3/4
th

of the products are 

produced by Actinobacteria, consisting of the most prolific genus Streptomyces 

(Berdy et al. 2005).  A number of studies established that 75% of antibiotics are 

produced by Streptomyces and Actinomycetes (Omura 1992; Miyadoh 1993; Zedan 

1993; Lazzarini et al. 2000; Berdy 2005). The commercial production of amino acids, 

vitamins, ethanol and antibiotics are carried out either by fermentation or genetic 

engineering (Moniruzzaman and Ingram 1998; Demain et al. 2005; Survase et al. 

2006; Van et al. 2012; Sun et al. 2015). A large proportion of pharmaceutical agents 

viz. immunosuppressants, enzyme inhibitors, anti-cancer /antitumor agents, and drugs 

are produced by bacteria (Hopwood et al. 2000; Rodgers et al. 2012).  

For commercial-scale production, penicillin from Penicillium sp., alginates from 

Pseudomonas sp, Azotobacter sp; cellulase from E. coli, Bacillus sp. and hyaluronic 

acid from Bacillus sp., Streptococcus sp. and Staphylococcus sp., are being produced 

(Widner et al. 2005; Weber et al. 2012; Hay et al. 2013; Sadhu and Maiti 2013; 

Saranraj and Naidu 2013). However, the production and wide scale application of 

many other important biopolymers is still at infancy. Concerns over the environment 

pollution have opened up new frontiers on development of biodegradable 

biopolymers. The major world powers are scouring through resources to find an 

alternative to plastic that is the single most hazardous substance plaguing our planet. 

Biopolymers like polyhydroxyalkanoates (PHAs), that are deemed to be quite 

valuable for humanity and the environment; due to their plastic like properties. 

However, for the commercial feasibility researchers are still struggling for cost 

effective production at the industrial level. The majority of biomolecules, while 

having a great significance in different bio-sectors, are still in research and 

development or early commercialization phase in terms of their production process. 
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2.3 Polyhydroxyalkanoates 

Polyhydroxyalkanoates (PHA) are biologically synthesized polymers of 

hydroxyalkanoic acids through repeated ester bonds among the monomer units as 

shown in Fig. 1 (Sehgal and Gupta 2020). PHA was first discovered by Lemoigne in 

the Bacillus sp. (Lemoigne 1926). However, the production of PHA was explored 

truly in the 1960’s on a commercial scale (Philip et al. 2007).  PHA can be 

homopolymers, heteropolymers or co-polymers based on the number of carbon atoms 

in the chain and the type of monomer (Perez et al. 2019). The PHA are classified into 

two groups viz. short chain (scl- PHA) consisting of 3-5 carbon atoms in their 

monomer and medium chain (mcl- PHA) having 6-14 carbon atoms in their monomer 

(Taguchi and Doi 2004). The most common PHA monomers are hydroxybutyrate and 

hydroxyvalerate (Bengtsson et al. 2008). PHAs are relatively resistant to hydrolytic 

degradation and UV radiation but are poorly resistant to acids (Bugnicourt et al. 

2014). 

 

 

Fig. 2.1: Chemical structure of PHA. 

 

2.3.1 PHA biosynthesis 

Microbes produce PHA mainly via three metabolic pathways, involving either acetyl-

CoA or acyl-CoA as intermediate and finally polymerization by PHA synthases (Fig. 

2) (Philip et al. 2007). Pathway I utilize sugars as carbon sources and consist of three 

distinct enzymes PHA synthase, β-ketothiolase and acetoacetyl-CoA reductase 
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(Senior and Dawes 1973; Tsuge et al. 2003). Pathway II utilizes fatty acids as carbon 

sources and occurs in the presence of two main enzymes PHA synthases and enoyl-

CoA hydratase (Sehgal and Gupta 2020). Whereas, pathway III is of greatest interest 

as it utilizes simple and inexpensive sugars (glucose, fructose and sucrose) as carbon 

source and occurs in the presence of enzyme acyl-ACP-CoA transacylase (encoded by 

phaG) (Philip et al. 2007).  

 

Fig. 2.2: PHA metabolic biosynthesis pathways (Adopted from Philip et al. 2007) 

(PhaA: 3-ketothiolase; PhaB: (R)−3-ketoacyl-CoA reductase; PhaC: 

PHA synthase or polymerase; PhaG: (R)−3-hydroxyacyl ACP:CoA 

transacylase; PhaJ: (R)-specific enoyl-CoA hydratase). 

2.3.2 PHA biodegradation 

The property that distinguishes PHA from traditional petroleum-based plastics is their 

ability to biodegrade (Anjum et al. 2016). Various bacteria and fungi can degrade 

PHA (Mergaert and Swings 1996; Methe et al. 2005; Lopez et al. 2009; Ting et al. 

2010). PHA is biodegraded to carbon dioxide and water under aerobic conditions, 

while, under anaerobic conditions methane is produced instead of water (Shah et al. 

2008). Copolymers such as the Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 

(PHBV) and polyhydroxyvalerate (PHV) have been found to be degraded more 

rapidly than PHB (Bugnicourt et al. 2014). It was observed that in different 
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ecosystems landfill leachate, sewage sludge compost, sewage sludge supernatant, 

forest soil, etc. The aliphatic polymer-degrading microbes, degrades biopolymers in 

the following order: PHB = PCL > PBS > PLA (Nishida and Tokiwa 1993). 

2.3.3 Applications of PHA 

The applications of PHA have increased exponentially along with time in drug 

delivery, medical implants, printing materials, nutritional supplements in addition to 

packaging materials (Bucci et al. 2007; Darani and Bucci 2015; Kalia et al. 2019; 

Singh et al. 2019). PHA has also been used as a type of biofuel (Chen 2009). PHA 

acts as a gas barrier which deems it suitable for its usage as a packaging material in 

the food and beverage industry (Fu et al. 2014; Prasad and Kochhar 2014; 

Albuquerque and Malafaia 2018). Recently, polymer films with desirable features 

such as high flexibility, nontoxicity, odorless, antioxidant and antimicrobial activities 

have been developed (Reis et al. 2016; 2017; Kiran et al. 2017). In the medical 

industry, PHA polymers are used in orthopedic as scaffolds and for engineering 

diverse mammalian tissues (Lobler et al. 2002; Qu et al. 2006; Chen 2010; Ching et 

al. 2016; Shishatskaya et al. 2016; Contreras et al. 2017; Dalal and Lal 2019). In the 

quest to make agriculture sustainable, PHA has been used as mulching material, plant 

growth promoter and nano-herbicide (Hassan et al. 2006; Vinet and Zhedanov 2010; 

Grillo et al. 2010; Lobo et al. 2011). 

2.3.4 Challenges in commercializing PHAs 

A major limiting factor for the commercial production of such biopolymers, 

especially PHA is their high production cost contributed majorly by the cost of 

feedstock such as carbon source and efficiency of carbon to PHA conversion rate 

(Valappil et al. 2008; Castilho et al. 2009; Singh et al. 2015; Kalia et al. 2019). In 

order to minimize cost, one strategy is to use a cheaper substrate. Minimizing the 

energy consumption during fermentation can also add to the cost reduction. Another 

unique approach is the expansion of the varieties of valuable products obtained from a 

single batch. Hence, a desirable aspect is the simultaneous production of two or more 

microbial products via the same process. This encapsulates a simplistic approach 

where there is a potential to reduce the cost whilst rendering a simple operation 
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(Sukan et al. 2015). Thus, for the commercial viable production of PHA, utilizing of 

low cost substrates, and generating mutants with high PHA-yields are most desirable.  

2.4 Violacein 

Violacein is purple-colored bis-indole pigment (Fig 2.3) produced by some bacteria of 

the genus Chromobacterium, Iodobacter, Janthinobacterium, Alteromonas, 

Pseudoalteromonas, Duganella, and Collimonas (Duran et al. 2016; Vishnu and 

Palaniswamy 2016; Kumar et al. 2021). Violacein exhibits maximum UV absorbance 

at 258, 372, and 575 nm, whereas the fluorescence emission spectrum shows an 

emission band at 675 nm at an excitation wavelength of 575 nm (Duran et al. 2007). 

Its melting point is above 290C. 

 

 

 

 

 

 

Fig. 2.3: Chemical structure of violacein. 

2.4.1 Violacein Biosynthesis 

Violacein biosynthesis pathway was first studied by Pemberton et al.  (1991) and then 

was further investigated by Balibar et al. and Sanchez et al. in 2006. They concluded 

that violacein biosynthesis involves joint action of five enzymes (VioA, VioB, VioC, 

VioD and VioE) on the substrate L-tryptophan in the presence of oxygen (Fig. 2.4). 

The carbon and nitrogen atoms in violacein are derived from L-tryptophan, while one 

of the oxygen atoms comes from molecular oxygen (Balibar and Walsh 2006; Fang et 

al. 2015). 
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Fig. 2.4 Illustration of the violacein biosynthesis (Adopted from Hoshino 2011). 

2.4.2 Biological activities of violacein 

Violacein exhibits several biological activities with clinical importance that include 

antimicrobial, antioxidant, photoprotective and antitumor activities, leishmanicidal, 

trypanocidal, and immunomodulatory potential (Duran and Menck 2001; Duran et al. 

2007; 2010; 2012; Soliev et al. 2011; Choi et al. 2015). It has an antimicrobial effect 

against gram positive bacteria and a weaker against gram negative bacteria (Cazoto et 

al. 2011; Kumar et al. 2021). The fungicidal activity was established by Shirata et al. 

(1997) and it was found effective against pathogenic fungi and yeast (Sasidharan et al. 

2015). Violacein was also found to be effective against virus (HSV and poliovirus) 

and parasites (Duran et al. 2007). In addition, it was found to possess antioxidative 

(Rettori et al. 1998; Azevedo et al. 2000; Konzen et al. 2006; Duran et al. 2007) and 

antitumour properties and has been extensively studied on Myeloid Leukaemia and 

TF1 Leukaemia cells (Ferreira et al. 2004; Queiroz et al. 2012). In recent years, its 

toxicity towards eukaryotic cells was studied, which led to the understanding of its 

anti-helminthic property (Ballestriero et al. 2014). The findings from different 

researchers led to the understanding of the immunomodulatory potential of violacein 

(Antonisamy and Ignacimuthu 2010; Antonisamy et al. 2014; Verinaud et al. 2015). 

Hence, as a biomolecule, tremendous benefits that it imparts might be a game changer 

in future biomolecule applications. 
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2.4.3 Potential industrial applications of violacein 

Violacein has many potential industrial applications in biotechnological and 

pharmaceutical fields. Violacein and its derivatives trans-hydroxyviolacein and 

deoxyviolacein are used in cosmetic industries in combination with lipophilic or 

hydrophilic substances (Duran et al. 2016). It is also being tested as a food colorant in 

yogurts and jellies. Violacein and its derivatives are used to color the fibers and silk 

fabric (Duran et al. 2012). The violacein-colored fabrics showed antimicrobial activity 

to phytopathogenic fungus (Shirata et al. 1997; 1998). The commercial applications of 

violacein can also include protecting human skin from sun light since it has 

antioxidant and antimicrobial activities (Suryawanshi et al. 2015). In the agricultural 

field, violacein derived from C. violaceum, A. violacea or J. lividum is mainly used 

for plant pathogens control (Baek et al. 2007; Duran et al. 2016). Natural pigments are 

being employed in the toy, food, and textile industries (Tan et al. 2011). Violacein has 

great potential in various domains of the life most of which have not yet been fully 

exploited. This can be attributed mainly to the low microbial production which in turn 

leads to higher cost. This problem can be solved through the application of strain 

improvement techniques in microorganisms. 

2.5 Strain improvement 

Microorganisms tend to produce metabolites of industrial value in low quantities. 

Therefore, industrially relevant microbes are subjected to various strain improvement 

techniques to enhance their synthetic capabilities. The manipulation of microbial 

strains and their improvement for the purpose of enhanced metabolic capacities for 

biotechnological applications constitutes strain improvement (Gonzalez et al. 2003). 

To improve the microbial strains, the gene sequence must be altered and/or 

manipulated. Thus, reprogramming and altering the DNA sequence to bypass the 

regulatory controls in a desired fashion constitutes the core of microbial strain 

improvement (Demain and Adrio 2008). 

The development in strain improvement started in the 1940s when the production of 

penicillin became a necessity. These studies were based on the generation of mutants 

via application of physical and chemical mutagens. In the late 1980s and early 1990s, 

genes were mutated randomly through mutagens or error prone PCR, and 
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subsequently screened for improved functions. This approach gradually turned out to 

be a major step to routinely improve the functioning of biological macromolecules 

(Gonzalez et al. 2003; Cardayre 2005). The three main approaches that have been 

used to improve microbial strains are mutagenesis, recombination and recombinant 

DNA technology (Parekh et al. 2000). In recent years, with the advancements in 

manipulative genetic techniques, more targeted approaches are now used viz., 

transposon mutagenesis, protoplast fusion, genetic engineering, etc. (Adrio and 

Demain 2006; Saxena 2015; Fiedurek et al. 2017).  

In present times, the large-scale production of antibiotics, enzymes, and other 

biomolecules serve as a testimony towards strain improvement in shaping the 

pharmaceutical and fermentation industries (Demain and Davis 1998). The major goal 

of strain improvement is the volumetric production of natural products. Other criteria 

are purity of the product, tolerance to optimal conditions, etc. If this goal is not 

achieved at the genomic level, then optimization of its external environment can be 

done either by using thermo-protectants or osmo-protectant (Caldas et al. 1999; 

Holtmann et al. 2003). Hence, to proliferate the optimum level of growth in the 

microorganisms, strain improvement should be carried out in conjunction with the 

application of growth additives and stress protectants.  

2.5.1 Mutagenesis 

The mutation for strain improvement has been the preferred choice mainly due to its 

simplicity. Random mutagenesis requires no molecular or genetic tools or genomic 

information, except an effective mutagen and an accurate screen for the desired 

phenotype. However, this classical strain improvements approach is unpopular at the 

commercial level because of its time and labor-intensive nature (Demain and Adrio 

2008). 

2.5.2 Genetic engineering 

Genetic engineering is the process involving recombinant DNA technology to alter 

the genetic makeup of an organism. This approach has been applied in industrial 

microbiological interests, as it can create multiple beneficial mutations, and allows 

specific control between beneficial and unwanted genes (Han and Parekh 2005). The 

first proof of genetic engineering for strain improvement came from the studies of 

https://scholar.google.co.in/citations?user=DkmuTd0AAAAJ&hl=en&oi=sra
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Thompson et al. (1982) on Streptomyces that used plasmid from S. lividans and S. 

coelicolor as cloning vehicles. This study discovered that genes conferring antibiotic 

resistance to strains are transferred to infective bacteria via plasmids. Since then, it 

has been used for production of enzymes, antibiotics, and other secondary metabolites 

(Chiang 2004; Adrio and Demain 2005; 2010; Pickens et al. 2011). Due to its 

precision and versatility, it would have been an ideal technology for enhancing 

microbial performance. However, it is difficult to know the target gene locations, and 

all the characters are not influenced by a single gene. Thus, to improve strains for 

industrial application, the natural strategy of physical and chemical mutagenesis is of 

significant interest (Derkx et al. 2014). 

2.6 Mutagenesis 

Modification of genes through spontaneous or induced mutation constitutes 

mutagenesis, which in turn causes sudden heritable change known as mutation. The 

strain harboring the mutation is called a mutant, and the agent causing the mutation is 

called a mutagen (Saunders and Saunders 1987). Therefore, a mutagen can be 

described as a chemical or physical agent that increases the rate of mutation beyond 

the spontaneous rate, and the three main mutagens used are physical, chemical, and 

biological mutagens. A detailed description of physical and chemical mutagens and 

their mode of action to alter the DNA are listed in the Table 1.  
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Table 2.1: Commonly used mutagens and their impact for strain improvement 

(Adopted from Parekh 2009). 

Mutagen Mutation induced Impact on DNA Relative effect 

Physical 

Ionizing radiation 

X rays, Gamma 

rays 

Single- or double-strand 

breakage of DNA 

Deletions, structural 

changes 

High 

Short wavelengths 

UV rays Pyrimidine dimerization 

and cross links in DNA 

Transversion, deletion, 

frameshift, GC>AT 

transitions 

Medium 

Chemicals 

Base analogues 

5- Chlorouracil             

5-Bromouracil 

Faulty base pairing AT->GC, GC->AT 

transition 

Low 

2-Aminopurine Errors in DNA 

replications 

 Low 

Deaminating agents 

Hydroxylamine Deamination of cytosine GC->AT transitions Low 

Nitrous acid Deamination of A, C and 

G 

Bidirectional 

translation, deletion, 

AT->GC, and/or GC-

>AT transition 

Medium 

Alkylating agents 

NTG Methylation, high pH GC->AT transitions High 

EMS Alkylation of C and A GC->AT transitions High 

NMU Alkylation AT->GC transitions Low 

Mustards, di-(2-

chloroethyl) 

Sulphide 

Alkylation of C and A GC->AT transitions High 

Intercalating agents 

Ethidium 

bromide, acridine 

dyes 

Intercalation between two 

base pairs 

Frameshift, loss of 

plasmids, 

microdeletions 

Low 

Biological 

Phage, plasmid, 

DNA transposons 

Base substitution, 

breakage 

Deletion, duplication, 

insertion 

High 

 

2.6.1 Physical mutagens 

Radiations are the high-energy levels of the electromagnetic spectrum that dislodge 

the electrons from the nuclear orbits of the atoms that they impact upon. Radiation 

was the first mutagenic agent known and its effects on genes were first reported in the 

1920s. When passing through tissue it causes ionization leading change in DNA, 

membranes, lipids, and enzymes, etc. viz. formation of activated molecules i.e., free 
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radicals (Erixon and Ahnstrom 1977). The electromagnetic spectrum is divided into 

ionizing and non-ionizing radiation. Ionizing radiation constitutes X-rays, gamma 

rays, and cosmic rays while the non-ionizing radiation constitutes UV light (Mba et 

al. 2012). 

Ionizing radiations 

These are high energy rays that create positively charged ions or free radicals when 

colliding with atoms (Massey et al. 1953). Thus create a chain reaction which 

generates a series of ions as they pass through living tissues (Criswell et al. 2003). 

Some examples are X rays, protons, neutrons, alpha, beta, and gamma rays released 

by radioactive isotopes such as Uranium238. 

Non-ionizing radiations- 

In contrast to ionizing radiations, UV rays having lower energy penetrate only the 

surface layer of the cells, hence is unable to cause ionization. UV rays transfer their 

energy to the outer orbitals raising the energy levels called excited state. The increase 

in reactivity of the atoms present in DNA results in mutagenicity (Demain and Adrio 

2008; Oladosu et al. 2016). The maximum absorption of UV radiation by DNA is at 

254 nm wavelength (Saxena 2015). The fact that maximum mutagenicity occurs at 

this wavelength also suggests that directly mediates the mutation process the 

absorption of UV by purines and pyrimidines which results in pyrimidine hydrates 

and pyrimidine dimers (Fig. 5) (Snustad and Simmons 2012). Specific mutations viz. 

cytosine (C) →thymine (T) and CC → TT occur. The former occurs at dipyrimidine 

sites and the latter occurs in a tandem manner which occurs rarely. These two types of 

mutation are also called UV signatures (Tessman and Kennedy 1991; Tessman et al. 

1992). The mutability of UV radiation has been studied extensively due to its 

ubiquitous nature and ease of handling. Bridges et al. (1968) have postulated that 

application of UV causes DNA lesions with single-strand gaps or DNA break. Thus, 

UV has widespread usage in clinical microbiology labs and evolution engineering in 

biotechnology. 
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Fig. 2.5: Conversion of thymine into thymine dimer on exposure to UV. 

2.6.2 Chemical mutagens 

Chemical mutagens are the chemicals that induce changes in the DNA. Amongst, 

alkylating agents can mutate both the replicating and non-replicating DNA. The base 

analogues induced mutation only to replicating DNA and exhibit their effects during 

replication by increasing the frequency of mis-pairing (Saxena 2015; Oladosu 2016). 

Some of the most commonly used base analogues are 2-aminopurine and 5-

bromouracil. On the other hand, a special type of mutagens, called acridine dyes 

intercalate into the DNA strand, increasing the probability of mistakes during the 

replication process (Anderso 1995). 

Alkylating agents 

These are chemicals that carry out mutation by donating alkyl groups to DNA bases. 

Some of the chemicals used as alkylating agents are ethyl methane sulfonate (EMS), 

methyl methane sulfonate (MMS) and nitrogen mustard (Singer and Kusmierek 

1982). Alkylating agents are also classified as radiomimetic agents since their effects 

are similar to ionizing radiations (Drake and Baltz 1976; Kodym and Afza 2003). As 

chemical mutagens EMS, MMS and N-nitroso-N-methyurea (NMU) are known to be 

effective and efficient and are quite popular chemical mutagens. To their functional 

groups, chemical mutagens are mono, bi or polyfunctional alkylating agents (Kodym 

and Afza 2003). For many year MMS and EMS have been used as a DNA damaging 

agent for induction of mutagenesis and for recombination experiments. All types of 

mutations (transition, transversion, frameshift, chromosomal aberration) are exhibited 

by alkylating agents. They transfer the methyl or ethyl group to the bases which result 
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in altered base pairs e.g., EMS causes ethylation of bases in DNA at 7-N and 6-O 

positions which results in G:C → A:T transition. Some of them cross links DNA 

strands. Hence, as a whole, they are generating fewer specific mutagens (Oladosu et 

al. 2016). 

2.7 Microbial strain improvement using mutagenesis 

Physical and chemical mutagens have been used extensively to increase the biological 

activities of bacteria and other industrially significant microorganisms (Sauer 2001). 

Several studies have been carried out to improve the bacterial strains along with their 

associated properties and biological activities via the application of chemical and 

physical mutagens. They have been employed successfully for strain improvement 

particularly in the antibiotics and brewing industries e.g., production of antibiotics 

penicillin and cephalosporins (Elander 1967; Elander et al. 1976). Subjecting UV 

radiations to Rhizopus sp. BTS-24 enhanced its lipase production by 164% than its 

parent strain and 180% times higher than the wild strain (Bapiraju et al. 2004). Singh 

et al. (2016), improved the saprophytic capabilities of Trichoderma sp. through the 

use of chemical mutagen viz. NTG. Strain improvement of Aspergillus niger through 

its treatment with EMS has been carried out by Kamalambigeswari et al. (2018), 

indicating a 12% increase in enzyme production. Saini et al. (2020) concluded that 

treatment of MMS, EMS and NMU to Saccharomyces cerevisiae led to 46-fold, 39-

fold and a 12-fold increase in mutation frequencies, respectively. Chauhan et al. 

(2020) developed a patent using a robust mutant, exhibiting enhanced xylanase 

activity through the application of EMS, wherein it was envisioned to be suitable for 

industrial applications. Several examples of effect of mutagen on the production of 

biomolecules are listed in the Table 2. 
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Table 2.2: Effect of mutagen on the production of biomolecules using bacterial 

system. 

Organism Mutagen used Biomolecules Improvement Reference 

Bacillus 

licheniformis 

N-methyl-N-

nitro-N-

nitrosoguanidine 

Lipopeptide 

biosurfactant 

12 fold Lin et al. 1998 

 

Aspergillus sp. UV, Colchicine 

EMS 

Verbenol 15, 2 and 

8-fold 

Agrawal et al. 

1999 

Penicillium sp. UV, Colchicine 

EMS 

Verbenol 8, 1.5 and 

2-fold 

Agrawal et al. 

1999 

Penicillium 

janthinellum 

EMS and UV Cellulase 2 fold Adsul et al. 2007 

Gluconacetobacter 

xylinus 

UV, EMS Cellulose 30 and 98% Hungund and 

Gupta 2010 

Bacillus 

licheniformis 

UV, N-methyl-

N'-nitro-N-

nitrosoguanidine 

Polyhydroxybutyrate 3.18- fold Sangkharak and 

Prasertsan 2013 

 

Bacillus 

megaterium 

UV Polyhydroxybutyrate 2 fold Girdhar et al. 

2014 

Gordonia terrae EMS, MMS 

ENU 

Nitrilase 2.5-fold Kumar et al. 

2015 

Phellinus igniarius He-Ne Laser 

UV 

Endo polysaccharides 40.31 and 

56.58 % 

Zhang et al. 2016 

Synechocystis sp. 

PCC 6714 

UV Polyhydroxybutyrate 2.5-fold Kamravamanesha 

et al. 2018 

 

2.7 Thermo-protection 

Temperature affects membranes, RNA, DNA, ribosomes, protein, and enzyme 

activities of microbes incurring profound effects on their structural and physiological 

properties (Russell 2003). In order to negate this, many bacteria release some 

chemicals to maintain their growth and survival. Thermo-protectants elevate the 

temperature withstanding capacity of the bacteria by compaction of its molecular 

packaging. The most effective thermo-protectant used commonly for E. coli and 

Bacillus sp. are proline, glycine betaine, glutamate, and choline (Caldas et al. 1999; 

Holtmann and Bremer 2004). The growth of Bacillus subtilis JH642 was enhanced by 

applying glycine betaine and glutamate in low concentrations (Holtmann et al. 2004; 
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Holtmann and Bremer 2004). The thermal stability and specific activity of lipase from 

Psychrobacter sp. in the presence of betaine and trimethylamine-N-oxide enhanced 

the activity of lipase (Santi et al. 2012). Thermo-protectants, thus, are a remarkable 

option to maintain the viability of the microbes in hostile environment, i.e., 

proliferation of psychrophiles at room temperature which would pave way for their 

industrial applications. 

Conclusions 

Microbes are the cornerstone for producing biomolecules through their inherent 

metabolism, fast growth, and ease of scale-up. Still, there is a gap between lab scale 

synthesis and industrial-level production of biomolecules. The primary hurdle in 

commercializing the biomolecules from microbes is their economical production. 

Thus, strain improvement for enhanced and improved biomolecule production has 

gained significant interest worldwide in the past decades. Strain improvement 

dramatically alters the metabolic pathway, enzyme production and affects the enzyme 

properties, ultimately lead to the desired production. The primary approach for strain 

improvement is mutagenesis, genetic engineering, and genome engineering. Amongst 

these, random mutagenesis is very simple, efficient, and required no prior genomic 

knowledge, though its labor intensive and time consuming. However, this can be 

overpowered with a strong selective pressure. Strain improvement techniques as 

discussed in this review were implemented in the present study aiming to increase the 

production of biomolecules i.e., PHB and violacein pigment using psychotropic 

bacterium Iodobacter sp. PCH194 was isolated from high-altitude Himalayan niches. 

Further, efforts are to enhance the growth temperature of the bacterium for making the 

bioprocess more economical and sustainable for industrial production. 
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3.  MATERIALS AND METHODS 

 

 

3.1 Bacterial strain 

Bacterial strain Iodobacter sp. PCH194 was already isolated at Molecular and 

Microbial Genetics laboratory, CSIR-IHBT, Palampur, India.  Originally, the strain 

PCH194 was isolated from a sediment sample of a kettle lake situated at high-altitude 

region (4200 meters above sea level) in Himachal Pradesh, India. The strain was 

already characterized and studied for its potential to co-produce PHA and violacein 

pigment (Kumar et al. 2018; 2021). 

3.2 Preparation of bacterial culture  

Bacterial isolate Iodobacter sp. PCH194 from glycerol stock was streaked on nutrient 

agar (NA, Himedia, India) plate and kept at 20°C for 48 to 72 h until single isolated 

colonies were observed. Single colony from NA plate was inoculated in 100 ml flask 

with 10 ml nutrient broth (NB, Himedia, India) media and was incubated at 20C, 150 

rpm for 24 h. Composition of media is listed in Table 5. 

Table 3.1: Composition of Nutrient Agar media. 

Nutrient Agar 

Components               mg/ml 

Peptone 5.0 

Sodium Chloride 5.0 

Beef extract 1.5 

Yeast extract 1.5 

Agar 20 
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3.3 Strain maintenance and storage 

The strains were maintained at 4C on NA plate. Sub-culturing was carried out once a 

month by taking a loop full of culture and streaking it onto NA plate. This was 

performed to maintain pure culture and avoid any possible contamination. The strains 

were cryopreserved in 30% glycerol at - 80C. 

3.4 Sterilization of the media and glass wares  

Media used for various experiments were sterilized in flasks/tubes plugged with non-

absorbent cotton at 121C and 15 lbs steam pressure for 15-20 min. Heat sensitive 

media components were sterilized with 0.22 µm filters. Glass wares were sealed with 

autoclavable polypropylene bags before sterilization. 

3.5 Standardization of mutagen concentration  

The mutagens used were ethyl methane sulfonate (EMS, Sigma Aldrich, USA), 

methyl methane sulfonate (MMS, Sigma Aldrich, USA), and nitroso methyl urea 

(NMU, Sigma Aldrich, USA). All the stock solutions were prepared with 10 mg/ml 

concentration. They were dissolved in Milli-Q water and filter sterilized. The stock 

solutions were further diluted to required concentrations using the formula given 

below: 

N1 V1=N2 V2 

 Where, N1 = Normality of stock solution  

 V1= Volume of stock solution.  

  N2 = Normality of desired solution.  

  V2= Volume of desired solution 

Final working concentrations of mutagens used were 50, 100, 120, 150, 500 and 1000 

µg/ml. 

3.5.1 Preparation of bacterial cells for mutagenesis 

The growth of bacterial culture was monitored at absorbance of 460 nm using 

microplate spectrophotometer (Synergy, BioTek, USA). 1ml of cell culture with 

OD460 0.8-1.0 was transferred to 1.5 ml autoclaved micro centrifuge tubes (MCTs) 

and were centrifuged at 5000 g for 5 min. The supernatant was discarded and pellet 

was suspended in 1ml of normal saline (0.8% NaCl) to make homogenous suspension. 
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Different concentrations of chemical mutagens were added to the bacterial 

suspensions and further incubated at 20C for 3 h with shaking (150 rpm). After 3 h, 

the bacterial suspensions were again centrifuged at 5000 g and the supernatant was 

carefully discarded. The pellet was washed twice with normal saline to remove traces 

of mutagen. Finally, the pellet was suspended in normal saline and serial dilutions 

(10
-2

, 10
-4 

and 10
-6

) were made. 100 µl of appropriate dilutions was spread on NA 

plates and incubated at 20, 25, and 28C for two days, until visible colonies observed. 

3.5.2 Standardization of physical mutation 

Physical mutagenesis was done by irradiation of bacterial culture using UV rays for 

various time intervals. Cells from fresh bacterial culture (OD460 0.8-1.0) were 

harvested and transferred to sterilized MCTs. The tubes were centrifuged at 5000 g 

for 5 min and supernatant was discarded. Pellet obtained was suspended in 1 ml of 

normal saline to make homogenous suspension.  The suspension was spread on NA 

plates, and kept in UV chamber with 30 Jm
-2

 intensity of UV radiation. The plates 

were exposed for different time intervals ranging from 30 secs to 10 min, with UV 

dosage ranging from 15 to 300 Jm
-2

min. The plates were incubated at 25, and 28C 

for two days until colonies were visible. UV dosage of the bacterial cells was 

calculated using the following formula: 

UV dose = UV intensity × time 

3.6 Screening of mutants for enhanced production of biomolecules at 20
o
C 

The mutant strains were inoculated in different 125 ml volumetric flasks containing 

10 ml NB each and were further used as inoculum for production media. The seed 

flasks were kept at 20C for 42-48 h until OD460 reached 1.5 to 2.0. 1 ml of seed 

culture was added to 250 ml flasks containing 50 ml of production media. The flasks 

were incubated at 20C for a period of four days and were harvested after every 24 h 

time interval.  

3.6.1 Determination of biomass or dry cell weight  

Biomass was routinely quantified gravimetrically (Williamson and Wilkinson, 1958). 

To determine the dry cell weight, at the end of respective incubation time period, 2 ml 

of culture broth was transferred to pre-weighed MCTs and centrifuged at 5000 g for 
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10 min. The cell pellet was dried at 60°C in hot air oven. The dry cell weight (DCW) 

was used as a reference for the dried PHA weight using following formula:  

DCW (mg/ml) = Amount of biomass (mg)/ml  

3.6.2 Extraction and quantification of violacein  

At various time intervals, the cultures were centrifuged (5000 g, 10 min) to obtain cell 

pellet whereas the supernatant was discarded.  2 ml ethanol was added to the pellet 

obtained for extraction of pigment. The suspension formed was centrifuged (5000 g, 5 

min) and the pigment was extracted, leaving the colorless pellet behind. The 

absorbance of the pigment was checked at OD570 and pellet was used for PHA 

analysis. The violacein pigment production was estimated using the following 

formula: 

 

Violacein (mg/ml) = OD570 × 1.2 (Violacein standard curve factor) × Volume of 

pigment extracted (ml) 

 

3.6.2 Extraction and quantification of PHA  

The pellet after violacein extraction was resuspended in sodium hypochlorite and 

chloroform (1:1) and kept at 37C overnight.  Next, on formation of two layers, the 

lower layer containing PHA was pipetted out to another MCT. Chilled methanol was 

added to precipitate PHA and was further kept at -20C for increased precipitation. 

After 15 to 25 min PHA granules were observed. The tubes were centrifuged and 

methanol was carefully pipetted out, leaving the PHA granules behind. PHA granules 

were left undisturbed for complete drying and their yield was calculated using the 

following formula:  

 

PHA yield (mg/ml) = Amount of PHA formed (mg) / Volume of culture broth 

(ml)  

 

 



24 
 

 

2
4

 

3.7 Growth profile study of wild and mutant bacteria 

Fresh bacterial cultures of wild and mutant strains were prepared and used as seed 

culture to study growth profile. 250 ml flasks containing 50 ml of NB were inoculated 

with 1ml of the bacterial cultures (with OD460 1.5-2.0) and kept at 25, and 28C for 33 

h. Their absorbance (OD460) was checked at 3 h interval for estimation of their overall 

growth. 

  For quantification of bacterial growth, three 250 ml flasks containing 50 ml NB were 

inoculated with the mutant strain as previously described and were kept at three 

different temperatures viz. 20, 25, and 28C for 6 h. Before incubation 100 µl of 

bacterial culture was taken as control and spread on NA plate. After 6 h 100 µl from 

each flask was taken and spread on NA plate. All the plates were kept at 20C for two 

days and their growth was compared.  

3.8 Effect of thermo protectants on growth of mutant 

The thermo protectants used were glycine betaine (Sigma Aldrich, USA) and 

glutamate (Sigma Aldrich, USA) with concentration of stock solution, 100 mM and 1 

M respectively. 

3.8.1 Effect of glycine betaine 

Bacterial culture of mutant was grown in 250 ml flasks containing 50 ml NB. 

Different concentrations of glycine betaine (0, 100, 300, 600, and 900 M) were 

added to the flasks and kept at 28C for incubation. Growth of mutants was monitored 

at OD460 for 56 h and was compared for different concentrations of glycine betaine. 

3.8.2 Effect of glutamate 

Bacterial cultures of mutant were prepared and used as inoculum. Different 

concentrations (1, 10, 50, and 100 mM) of glutamate were added to the flasks; with 

initially one flask kept as a control. The flasks were further inoculated with the 

bacterial culture and were incubated at 28C. Growth of mutants was monitored at 

OD460 for 56 h and were compared for different concentrations of glutamate. 
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4.  RESULTS AND DISCUSSION 

 

4.1 Bacterial growth 

In the present study, the bacterial strain PCH194 was used for all experiments. The 

bacterium can grow well at a low temperature of 4C with optimum growth at 20°C 

and co-produces PHB and violacein pigment (Kumar et al. 2021). However, it was 

noticed that bacterium hardly grow at 25°C, and no growth was observed at 28C and 

above temperature. Bioprocess using the strain for co-production of PHB and 

violacein pigment required low temperature for growth, which is energy demanding 

and can add to its production cost. Therefore, strain improvement of PCH194 is 

sought to enhance the growth optima toward ambient temperature while improving 

the yields for PHA and violacein pigment. 

4.2 Generation of mutants using chemical and physical mutagens 

Random mutagenesis i.e., physical and chemical mutagenesis were applied to enhance 

the growth temperature and production of PHA and violacein of Iodobacter sp. 

PCH194. Therefore, the strain was treated with chemical mutagens i.e., nitroso methyl 

urea (NMU), ethyl methane sulfonate (EMS), and methyl methane sulfonate (MMS), 

and physical mutagens i.e., the various dosage of UV radiation. In the literature, 

earlier studies have also reported mutant generation by treating microbes with 

physical or chemical mutagens (Brown 2000; Kumar et al. 2015).  

4.2.1 Tolerance of bacterial strain PCH194 against chemical mutagen  

Before proceeding to mutant generation, a lethal dose of mutagen for the bacterial 

survival was evaluated. For this purpose, the bacterial isolate PCH194 was treated 

with different concentrations of mutagen NMU, i.e., 100, 500 and 1000 µg/ml. The 

treated culture was spread on NA plates and was incubated at 20°C for two-three 

days. Colonies were observed at a concentration of 100 µg/ml at 20°C along with 

positive growth in the control for the different dilutions spread on the plates. Whereas 

no colonies were found at higher mutagen concentrations of 500 and 1000 µg/ml 

(Table 4). Therefore, for further standardization and treatment, mutagen concentration 

of 100 µg/ml was used. 
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Table 4.1: Presence (+) or absence (-) of bacterial colonies at 20°C with respect to 

different dilutions and varying concentrations of mutagen NMU used. 

Conc. (µg/ml) Dilutions 

 10
-0

 10
-2

 10
-4

 10
-6

  

0 + + + + 

100 + + + + 

500 - - - - 

1000 - - - - 

4.2.2 Optimization of different dilutions for countable colonies 

Optimization of serial dilutions was carried out to obtain evenly spread and countable 

colonies to assess the lethal effect of the mutagen on bacterial culture. Two sets of the 

bacterial culture were prepared. The first set was treated with NMU (100 µg/ml) for 

3h at 20°C, whereas the NMU untreated second set was kept as a control.  Both the 

sets were diluted to different dilutions (10
-0

,
 
10

-2
,
 
10

-4
,
 
and 10

-6
), evenly spread on NA 

plates. The plates were further incubated at 20°C for two-three days until good growth 

of colonies were observed. It was found that plates with 10
-4 

dilution were easily 

countable (Figure 4.1). Hence, the 10
-4 

dilution was chosen for further experiments on 

treatment with different mutagens. 

 
 

 

Figure 4.1: The serial dilution of bacterial culture treated with mutagen (NMU 100 

µg/ml) along with untreated culture (control). 
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4.2.3 Optimization of chemical mutagens and their concentrations  

Based on a previous experiment of mutagen lethality on a bacterium PCH194, three 

mutagens (NMU, EMS, and MMS) with different concentrations (50, 100, and 150 

µg/ml) and a serial dilution of 10
-4

 were used. The suspensions were evenly spread on 

NA plates and kept at 20, and 28°C for two-three days until a single colony were 

observed. It was found that at a concentration of 150 µg/ml, the number of colonies 

were reduced to near half of the untreated cells (Table 5). There was no colony 

observed at 28°C, which might be due to a drastic shift in temperature for isolate PCH 

194 that grows optimally at 20C. Therefore, chose a comparatively lower 

temperature (25°C) and lower mutagen concentrations of 100 and 120 µg/ml for 

further experiments. 

Table 4.2: The number of bacterial colonies obtained for PCH194 at different 

concentrations of mutagens on different temperatures.  

 20C 28C 

Mutagen/ 

Conc.   

(µg/ml) 

NMU MMS EMS NMU MMS EMS 

0 442 398 438 - - - 

50 273 291 318 - - - 

100 221 215 234 - - - 

150 198 187 209 - - - 

Note: -, indicates absence of bacterial colonies. 

The bacterial cultures were treated with three different mutagens (NMU, EMS, and 

MMS) at concentrations 100, and 120 µg/ml and incubated for 3 h at 20°C. The 

suspensions were further spread on NA plates and were kept at 20 and 25°C for two 

days.  At 20°C, many colonies were observed (Table 6) and a few colonies were 

found on treatment of mutagen NMU (120 µg/ml) at 25°C (Figure 4.2). On treatment 

of PCH194 with other mutagens (EMS and MMS), we could not obtain any colony on 

the plates. Hence, mutants obtained with NMU were further re-streaked on the NA 

plate and incubated at 25°C. The mutant colonies were successfully regrown at 25C 

with subculturing. Therefore, finally, five colonies from the above experiment were 

selected as mutants of PCH194 and were denoted as IN1, IN2, IN3, IN4, and IN5.
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Table 4.3: The number of bacterial colonies obtained for PCH194 at different 

concentrations of mutagens on different temperatures.  

 20C 25C 

Mutagen/ 

Conc. 

(µg/ml) 

NMU MMS EMS NMU MMS EMS 

0 447 447 447 - - - 

100 221 214 199 - - - 

120 201 212 178 7 - - 

Note: -, indicates absence of bacterial colonies. 

 

Figure 4.2: Generation of bacterial mutants at 25°C by mutagen NMU (120 µg/ml).  

4.2.4 Generation of mutant using physical mutagen 

Our study's prime focus was to increase the growth temperature from 20 to 25 and 

then to 28°C. Therefore, the mutants generated with chemical mutagens were treated 

again with the physical mutagen. The physical mutagens are mainly different types of 

irradiations i.e., X-ray, gamma rays, and ultraviolet rays. UV rays are comparatively 

easier to handle and less harmful than non-ionizing radiations such as X-rays. 

Therefore, we used UV rays as a physical mutagen for further experiments. The 

bacterial culture was spread over NA plates and exposed to UV radiation for different 

time intervals i.e., 2.5, 5, and 10 min that produces a varying dose of 75, 150, and 300 

Jm
-2

minof UV, respectively. A control plate (no UV treatment) was also processed 

following a similar procedure. The plates were incubated at 25, and 28°C temperature. 

At 25°C very slow-growing colony was observed, whereas no colony formation was 

observed at 28°C (Figure 4.3).  
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From the above experiments, it was realized that the dose of UV was high.  

Therefore, a time of UV exposer was reduced to 1, 2, and 3 min corresponding to 30, 

60, and 90 Jm
-2

min, respectively. Comparatively, found a visible number of colonies 

at 25°C, but no colony formation was observed at 28°C (Figure 4.4). A very high UV 

dose causes the cell death; therefore, no mutant was generated at 28°C. On the other 

hand, upon low UV dose treatment, the mutants obtained at 25°C were grow on a 

higher temperature of 28C. Since, Iodobacter sp. PCH194 is an innate psychotroph 

and inhabitant of high-altitude facing higher UV radiations; thus, probably have an 

inherent tolerance to UV. Microbes of higher altitudes are established for the UV-

induced DNA damage repair systems (Hirsch et al. 2004; Obertegger et al. 2011; 

Maayer et al. 2014; Dziewit and Bartosik 2014). Psychrophiles/psychrotrophs 

contains numerous genes for UV tolerance and other features such as biofilm were 

conferring UV tolerance (Dzewit et al. 2013; Dziewit and Bartosik 2014; Elasri and 

Miller 1999; Carvalho 2017; Yin et al. 2019). Therefore, UV-based mutagenesis of 

the bacterial strain PCH194 did not show improvement in the present study growth’s 

temperature.  

 

Figure 4.3: Comparison of bacterial growth in untreated (control) and treated with 

varying UV dosages. 
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Figure 4.4: Comparison of bacterial growth in untreated (control) and treated with 

varying UV dosages.  

4.3 Screening for enhanced production of biomolecules at 20C 

More than 2000 mutants were generated after treatment with mutagens. Finally, five 

mutants (IN1, IN2, IN3, IN4, and IN5) were selected on the basis of their ability to 

grow at 25C compared to wild type PCH194 that grows at 20C. Simultaneous 

production of PHB and violacein was carried out in 50 ml shake flask using the NB in 

the presence of 1.0 % glucose. The production media was inoculated with seed culture 

and kept at 20C for 96 h. Samples from the production media were extracted at time 

interval of 24 h and used to estimate violacein and PHA. The mutants were screened 

for growth and biomolecule production using the wild-type strain as the reference. All 

mutants showed a higher amount of PHA and violacein pigment production than the 

wild type strain. The increased yield for PHA and violacein are discussed in the 

following subheads. 

4.3.1 Screening of mutants for PHA synthesis 

The mutants and wild-type PCH194 were screened for PHA synthesis at first. The 

mutants IN1, IN2, IN3, IN4, and IN5 showed production of 0.88, 0.98, 0.70, 1.12, and 

1.24 mg/ml respectively; whereas wild-type strain showed 0.42 mg/ml PHA 

production (Figure 4.5). Among the mutants, IN5 showed highest PHA production, 

comparatively two times (195 %) more than the wild- type strain. Therefore, it was 

concluded that mutant strain IN5, IN4, and IN2 are high PHA yielding mutants 

generated in the current study.  
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Enhancing PHA production by the use of chemical and physical mutagens has been 

done previously. Pal et al. (2009) reported 5.4 fold increase in PHA production on 

treatment with UV rays in B. thuringiensis. Similar experiments were conducted using 

ethyl methane sulphonate on C. necator and reported 35 % increase in PHA 

production compared to the wild-type strain (Obruca et al. 2013). Aravind and 

Sangeetha (2014) studied the effects of UV radiation, acridine, and 5-bromouracil on 

C. necator and K. intermedia. They concluded that treatment with acridine orange is 

most promising, as it increases PHA production by 20, and 40 % in C. necator and K. 

intermedia respectively. Similarly, many other researchers have reported increased 

production of PHA through treatment with physical or chemical mutagens (Sreeju et 

al. 2011; Sangkharak and Prasertsan 2013; Bashir et al. 2014; Girdhar et al. 2014).  

 

Figure 4.5: Production of PHA (mg/ml) by the mutants and wild-type strain PCH194 

at different time intervals. 

4.3.2 Screening of mutants for violacein pigment synthesis 

Further, all selected mutant strains were evaluated for pigment production. The data 

obtained showed that increased pigment production at 96 h of incubation (Figure 4.6). 

Whereas IN1 led a higher pigment production at 72 h. earlier than 96 h. On screening 

for violacein, mutants IN1, IN2, IN3, IN4, and IN5 showed production of 0.88, 1.63, 

0.53, 1.04 and 1.15 mg/ml, respectively. While, wild type strain showed 0.20 mg/ml 

production (Figure 4.6).  The highest production was showed by mutant IN2 that was 
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eight times (715 %) better than the wild-type strain.  Hence, mutant IN2, along with 

mutant IN5 and IN4 are the high violacein pigment yielding mutants.  

A few studies have been carried out to enhance the production of pigment by the 

application of mutagens. One of the earliest works was done by Yongsmith et al. 

(1994). They demonstrated a ten-fold increase in the production of yellow pigment 

through the application of UV radiation. Prodigiosin production was increased eight 

times of the parent strain by EMS treatment (Elbialy et al. 2015). Similarly, many 

other researchers have used chemical mutagens combined with UV for enhancing 

pigment production (Issa et al. 2016; Yolmeh and Khomeiri 2016; Yolmeh et al. 

2017). There are no records in the literature to enhance violacein pigment production 

by using chemical and physical mutagens. 

 

Figure 4.6: Production of violacein (mg/ml) pigment by the mutants and wild-type 

strain PCH194 at different time intervals. 

A comparative yield of PHA and violacein production by selected mutants was 

summarized in Table 9. Interestingly, mutant IN4 and IN5 produced a high yield of 

both the biomolecules simultaneously in comparison to wild-type PCH194. It was 

observed that maximum production of PHA resulted after 96 h and maximum 

violacein production was achieved in 72 h. The major advantage inferred from the 

present study was the prospect of simultaneous and enhanced production of PHA and 

violacein through a common fermentation process. Additionally, these generated 
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mutants can be further re-treated with mutagens to enhance the temperature optima at 

28°C without losing their high yielding capabilities.  

Table 4.4: Comparison of production of PHA and violacein by the mutants and wild 

strain PCH194  

Strains Biomolecules 

PHA (mg/ml) Violacein (mg/ml) 

Wild 0.42 ± 0.04 0.20 ± 0.00 

Mutant IN1 0.88 ± 0.11 0.63 ± 0.07 

Mutant IN2 0.98 ± 0.04 1.63 ± 0.08 

Mutant IN3 0.70 ± 0.01 0.53 ± 0.08 

Mutant IN4 1.12 ± 0.04 1.04 ± 0.03 

Mutant IN5 1.24 ± 0.05 1.15 ± 0.01 

 

4.4 Screening of mutants for enhanced growth at 25C 

Other than increasing the biomolecule production, we aimed to increase the growth 

temperature of the bacterial strain PCH194 to make them suitable for industrial 

fermentation. For this purpose, bacterial cultures of mutants as well as wild-type 

strain were kept at 25, and 28°C and their absorbance were checked at OD460.  

4.4.1 Screening of mutants for enhanced growth at 25°C 

The absorbance of wild and mutant strains were checked at 25°C for 96 h. All the five 

selected mutants showed a significantly higher growth (approximately 10-fold higher) 

in comparison to the wild-type PCH194. Among the mutants, IN2 showed maximum 

increase followed by mutant IN3, IN4, IN5, and IN1 at 48 h (Figure 4.7). 
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Figure 4.7: Spectroscopic absorbance data of the growth of mutants and wild-type 

PCH194 at 25C. 

 

4.4.2 Screening of mutants for enhanced growth at 28°C 

At 28°C, the absorbance of wild and mutant strains was checked for a period of 30 h. 

Maximum growth was observed in mutant IN1 (2-fold) followed by IN4, IN5, IN2, 

wild-type, and IN3 (Figure 4.8). However, the growth of all mutants at 28°C was 

significantly lower than 25°C. The results suggested that the mutants' bacterial cells 

can tolerate 28°C, but with a reduced growth rate. 

 

Figure 4.8: Spectroscopic data of the growth of mutants and wild-type PCH194 at 

28C. 
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4.4.3 Comparison of mutant cell growth at different temperatures 

To confirm that the mutant (IN1) bacterial strain was able to sustain even at 28°C, a 

subsequent experiment was performed. Three flasks were inoculated with equal cell 

mass of bacterial culture grown for more than 20 h and were kept at 20, 25, and 28°C 

for 6 h period. Bacterial culture from each flask was taken and spread on three NA 

plates. Control was also kept at 20C that has bacterial spread taken at 0 h, before 

incubating flasks. These plates were kept at 20°C for two days and their growth was 

monitored. It was observed that at 20, and 25°C the number of colonies increased, 

showing the multiplication of bacterial cells. However, the plate containing culture at 

28°C showed almost an equal number of colonies and growth to 0 h plate (Figure 

4.9). Hence, it can be concluded that the bacterial cells were alive at 28°C, but could 

not able to multiply.  

 

Figure 4.9: Comparison of cell growth of mutant strain IN1 at different temperatures. 
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4.5 Application of thermo-protectants to enhance the growth of mutants at 28°C 

Glycine betaine and glutamate were found to be the most commonly used thermo-

protectants for the enhancement of growth in microorganisms (Paleg 1981; Alia et al. 

1998; Caldas et al. 1999; Holtmann and Bremer 2004; Adamczak et al. 2018). 

Therefore, we used different concentrations of glycine betaine and glutamate to 

enhance the growth of mutants at 28°C. Since mutant IN1 showed increase growth 

than other strains at 28C, hence was selected for further experiments. NB was 

supplemented with different concentrations of glycine betaine viz., 50, 100, 300, 600, 

and 900 M. This mixture was inoculated with the bacterial culture of mutant IN1 and 

kept at 28°C for 56 h and their absorbance was checked at OD460. It was observed that 

there was no significant difference in the growth of IN1 in the presence of different 

concentrations of glycine betaine (Figure 4.10). 

 

Figure 4.10: Effect of glycine betaine on the growth of mutant IN1 at 28°C. 
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impact on the growth of mutant IN1 at 28°C. The different concentrations of 
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inferred that the thermo-protectants (glycine betaine and glutamate) used were not 

effective in restoring the mutant's growth ability.  

 

 

Figure 4.11: Effect of glutamate on the growth of mutant IN1 at 28°C. 
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5. SUMMARY AND CONCLUSIONS 

 

Microbes are one of the largest sources of commercially important biomolecules i.e., 

enzymes, antibiotics, biopolymers, pigments and other chemicals are some examples. 

However, the industrial-scale production of biomolecules from microbes suffered 

from high production cost and low yields of the bioproducts. Therefore, strain 

improvement is inevitable for industrial biotechnology.     

Our study focused on the improvement of Iodobacter sp. PCH194 makes it more 

compatible for industrial biotechnology.  It increases the growth temperature and 

enhances the production of PHA and violacein. The physical and chemical 

mutagenesis method was selected for strain improvement owing to the simplicity and 

high efficiency. Mutants generated by chemical mutagens i.e., IN1, IN2, IN3, IN4, 

and IN5 showed an increase in growth temperature from 20 to 25C. Further 

experiments were performed to enhance the growth temperature to 28C using 

physical mutagen viz., UV radiation, but no mutants were obtained at 28C.   

Mutants were screened for enhanced production of PHA and violacein pigment. The 

mutants IN5 and IN2 showed significantly higher PHA production and violacein as 

compared to wild strain (0.42 mg/ml PHA at 72 h and 0.20 mg/ml violacein at 96 h). 

The mutant IN5 was found to have higher PHA (1.24 mg/ml) and violacein (0.86 

mg/ml) production after 72 h of incubation. Mutant IN2 showed the highest amount of 

violacein pigment (1.63 mg/ml) production, whereas, PHA production is 

comparatively higher (0.58 mg/ml). The growth of mutant IN2 was nearly ten times 

higher to the wild strain at 25C. At 28C, the growth of mutant IN1 was two times 

higher than wild strain. Thus, the mutants seem to be adapted to grow at 25C, but 

had difficulty growing at 28C. Thermo-protectants i.e., glycine betaine and 

glutamate, were used to increase and mutant IN1 at 28C, but no significant 

enhancement in growth was observed.    
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In conclusion, the present study successfully increased the growth temperature of 

Iodobacter sp. PCH194 from 20C to 25C and also enhanced the production of PHA 

and violacein. Further studies could focus on the multiple rounds of mutagenesis to 

enhance the growth temperature and biomolecules production along with growth 

medium optimization for up-scale studies. 
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