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Reliability, as a human attribute, has long been applauded. The term reliability 

dates back to 1816. Prior to World War II the term meant repeatability, to be more 

precise, an experiment was treated reliable if the same result was obtained repeatedly. 

In the 1920s, the development of reliability engineering was in parallel with quality. 

In 1940s, the US military redefined reliability and it meant that a product would work 

when intended for fixed time.  Now a days, industries are upsetting to offer more 

robotisation in their industrial mechanism so as to meet the accelerating needs of the 

society and accordingly the complexity of industrial products and industrial system 

are expanding day by day. Due to the increased competition, complexity and 

development of technology, and increasing sophistication in manufacturing processes, 

the question of reliability has become one of concerns.  

For major engineering systems, design and reliability management is a 

challenging issue. If reliability is out of control, many complicated issues like 

manpower or maintainer’s shortages, availability of spare part, lack of repair facilities, 

and others may arise. Hence, reliability must be improved considering the availability 

and the overall cost owing to maintenance hours, cost of spare parts, transport cost, 

storage cost, etc. Effective reliability engineering needs knowledge, experience and 

vast engineering expertise. Reliability engineers must comply with the requirements 

for variety of reliability tasks and documentation at various stages like system 

development, production, testing, and operation. The aim of reliability engineering is 

to perform an assessment on reliability and determine the areas of improvement. This 

includes improving not only the design of the equipment, but also the manner in 

which it is used and maintained. 

1.1 Reliability engineering 

Reliability engineering is a division of engineering that aims at annihilating 

failure cost owing to system downtime, maintenance needs, repair equipments and the 

cost of spares, among other things. It is critical to note that reliability engineering is a 
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broad field to gain information while it is hard to combine its goals. However, some 

of the most important reliability engineering objectives are given below in order of 

preference: 

 Using technical expertise and unique approaches to avoid or reduce failures. 

 Detecting and repairing failure reasons that occur despite attempts to avoid 

them. 

 To figure out how to deal with failures that does occur, if their causes aren't 

corrected. 

 Applying the methodologies to assess the reliabilities of new layouts and 

analysing reliability data. 

1.2 Reliability theory 

Reliability engineering is dependent on reliability theory, which gives rise to 

all of the features of reliability engineering. Reliability engineers frequently have to 

handle systems with distinct configurations and determine their reliability 

characteristics. Reliability is the probability that a device will carry out its objective in 

an adequate manner for the period foreseen in the given operating conditions. 

Mathematically, if t is any time and T is the time of the system failure, then the 

reliability within the interval       can be defined as: 

              

Reliability can also be expressed in terms of cumulative distribution function 

       as: 

                

Reliability is basically partitioned into two parts: 

 Component reliability 

 System reliability 

Component reliability refers to the reliability of a single unit, whereas system 

reliability refers to the overall reliability of all system components. 
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1.2.1 Objectives of reliability theory 

Systems in the current times are turning more advanced and sophisticated day 

by day. The complexity of the systems is related to the huge number of 

subsystems/components required to construct them. The fundamental goal of 

reliability engineers is to design highly dependable systems under particular 

limitations such as system cost, environmental conditions, and so on. Reliability 

engineers can help in: 

 The system's proper operation. 

 Satisfactory performance for a predetermined time span. 

 Minimizing the chances of system failure. 

 Using numerous approaches to increase the system's reliability. 

 Achieving great reliability at a minimal cost. 

1.3 Fundamental concepts of reliability 

Reliability is one large concept. It is employed whenever we anticipate that 

something will behave in a particular way. If users of a system are seldom confronted 

with a failure, the system is regarded as more reliable than a system that fails more 

frequently. The key concepts to the reliability discussion include: 

1.3.1 Failure   

Failure is the state or condition of not achieving a desirable or anticipated 

goal. A failure is reported to occur if the observable result of a program execution 

differs from the expected result. 

1.3.2 Failure modes 

The term failure modes refer to the various ways in which something might 

fail. 

1.3.3 Fault   

The suspected cause of the failure is referred to as fault. One fault may be the 

cause of several failures. Depending on whether the fault is going to turn into a 

failure; we have three kinds of faults: 
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 Never executed faults, so they prevent failures. 

 Executed faults not converted to failure. 

 Executed faults converted to failure. 

1.3.4 Error  

It may be defined as a wrong or missing human action which results in a 

system/component to fail or contain a fault. An example includes misinterpreting a 

user's requirements in a product specification. 

1.3.5 Time 

Time is an important concept in formulating reliability. If the interval between 

two consecutive failures is short, the system is considered less reliable. Two forms of 

time are: 

(i) Execution time: It is the actual time spent in performing the desired functions 

of the system.  

(ii) Calendar time: It is the time experienced in years, days, etc. It is very useful 

in order to correspond to the reliability of the system. 

1.4 Reliability Metrics 

Reliability parameters serve to quantify reliability. They assess the 

performance of the system quite well. The following reliability parameters are utilized 

to quantify a system's reliability: 

1.4.1 Up-time 

It is the entire amount of time required for a system to perform its task 

correctly under specified operating circumstances. 

1.4.2 Downtime 

It is the entire amount of time system did not perform its task correctly under 

specified operating circumstances. 
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1.4.3 Failure rate 

The failure frequency of components is referred as hazard/failure rate and 

expressed by the Greek letter λ(t). Mathematically, failure rate is the limit of the 

probability that a failure occurs per unit time interval Δt given that no failure has 

occurred before time t.  It may also be defined in the two contexts listed below. 

 Failure rate in discrete environment 

The failure rate λ(t) is given by 

     
            

       
 

where R(t) is the system’s reliability at time t. 

 Failure rate in continuous environment 

     
    

    
 

where, f(t) is the failure density function and R(t) is the system’s reliability. 

1.4.4 Mean Time To Failure (MTTF)  

The MTTF is the average time it is expected that a component will be up and 

running. It is the mean time between two successive failures. An MTTF of 200 

implies that out of every 200-time units one failure can be expected. 

1.4.5 Mean Time To Repair (MTTR) 

It is a factor representing the mean corrective maintenance time required to 

restore a system to perform as desired. It includes replacement, restoration etc. 

1.4.6 Mean Time Between Failures (MTBF)  

It is the combination of MTTF and MTTR i.e., MTBF = MTTF + MTTR. 

Hence, MTBF of 600 hours implies that after the occurrence of first failure, the next 

failure is expected after 600 hours. 

1.4.7 Probability of Failure on Demand (POFOD) 

This is one of the very important measures, and it's used to analyze the 

likelihood of the system failing when a service request is made. It does not involve 
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any measurements of time explicitly. A  POFOD of 0.01 signifies that out of a 

hundred requests for services one of them might result in failure. It is anticipated to be 

as low as possible. 

1.4.8 Maintainability 

Maintainability is stated as the likelihood of completing a successful repair 

activity within a certain time frame. Otherwise stated, maintainability assesses how 

easily and quickly a system can be returned to operational state following a 

breakdown. 

1.4.9 Availability 

The availability is the probability of functioning of the system at any given 

instant. Availability can be classified as follows: 

(i) Point availability  

The system probability of being functional at any random time t is called point 

availability. Point availability A(t) is defined as: 

               

where X(t) denotes the system status as: 

     {
                            
                                  

 

(ii) Limiting availability 

The point availability function's limit as time t approaches infinite is called 

limiting availability. It is expressed as: 

     
   

     

(iii) Limiting average availability 

The limiting average availability is systems critical performance index and is 

given by: 

   
   

 

 
∫      
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1.4.10 Sensitivity analysis  

It tests the rate of change in a model outcome when a change is made to the 

model data. The model input is nothing but the parameters involved in the formulation 

of the model and the corresponding sensitivity analysis is known as parametric 

sensitivity analysis (PSA). It helps guide system optimization, assess reliability, and 

determine model parameters that could significantly impact modeling errors. If R and 

η are reliability and any parameter of the systems model respectively, then sensitivity 

corresponding to this parameter, denoted by S is given by: 

  
  

  
 

1.5 Reliability Improvement 

Reliability improvement is a process to enhance the availability and suppress 

the cost of the system. There are various ways to improve the system’s reliability. 

Some of them are discussed under: 

1.5.1 Maintenance  

In repairable system, actions frequently used to restore or renew the system 

are called maintenance. Generally, it affects the system’s reliability characteristics 

such as reliability, MTTF, availability etc. Maintenance can be classified into 

following two types:  

(i) Preventive maintenance (PM) 

Like by the name, it is clear that this maintenance prevents the system failure. 

It promotes the continuous system performance i.e., provides repair to the components 

before their failure. For the preventive maintenance one has to observe the system’s 

past behavior, mechanism of components wear out and knowledge of vital 

components within the system. Therefore, with the application of preventive 

maintenance cost of the system or product is very much fluctuated. 

(ii) Corrective maintenance (CM) 

As from its name, it is clear that this maintenance corrects the system failure 

i.e., corrective maintenance is linked with replacing or repairing the failed system. 

This maintenance involves three steps:  
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 Deciding the component responsible for system failure.  

 Replacing or repairing the failed component.  

 Verifying the repair or replacement once it’s done. 

1.5.2 Inspection  

An inspection means an organized or formal examination of a system. 

Inspection is used to search the hidden failure inside the system. Inspections can be 

divided on the basis of its frequency. 

(i) Continuous monitoring  

As the name suggests it means that the system is continuously/constantly 

monitored. In continuous monitoring, a continuous alarm system constantly monitors 

the system and triggers a warning whenever something goes wrong with it. It provides 

us the current condition of the system. 

(ii) Periodic inspection 

Periodic inspection means inspections are performed periodically.  

There are two main types of periodic inspections: 

 Age-based inspection policy: In age-based inspection policy, schedules 

inspections are carried out at fixed age intervals.  

 Calendar-based inspection policy: In calendar-based inspection policy, 

schedules inspections at fixed calendar intervals are performed, say, for 

example, every Monday (once a week).  

(iii)Non-periodic inspections 

Non-periodic inspections means inspections are carried out non-periodically.  

1.6 System 

A system is a group of interactive or interdependent entities or components 

that make up a united whole. Generally systems are of two types: Binary state system 

(BSS) and Multi state system (MSS). A system with two possible states namely 

working and complete failure is known as BSS while a system with more than two 
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states is called MSS. If component’s reliability is known then system’s reliability can 

be evaluated by applying the structure function associated with it. As a result, 

knowledge of the structure of the system becomes mandatory. Different types of 

system configurations are discussed below. 

1.6.1 Series system 

In regard to reliability, a system is referred a series system if all components 

operate to ensure system success and the single component failure is the cause of 

system failure. 

 

Figure 1.1: Series System 

1.6.2 Parallel system 

In regard to reliability, a system is referred a series system if only one 

component must operate to ensure system success and failure of all components is the 

cause of system failure. 

 

Figure 1.2: Parallel System  
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1.6.3 Series-parallel system 

A series-parallel system comprises of serially-connected subsystems such that 

each subsystem contains units arranged in parallel. The system failure occurs once 

any of the subsystem fails. 

 

Figure 1.3: Series-parallel system 

1.6.4 Parallel-series system 

A parallel-series system comprises of parallel-connected subsystems such that 

each subsystem contains units arranged in series. The system failure occurs only if all 

the subsystem fails. 

 

Figure 1.4: Parallel-series system 

1.6.5 k-out-of-n system 

This system is split into two kinds: k-out-of-n:G and k-out-of-n:F system. A             

k-out-of-n:G (F) system consists of n parallel components and works (fails) if and 

only if the total number of working (failed) components is at least k. This system is 
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same as series (parallel) system if it is in the form n-out-of-n:G (1-out-of-n:G) or                

1-out-of-n:F (n-out-of-n:F). 

1.6.6 Linear (circular) consecutive k-out-of-n system 

This system is an add-on to the k-out-of-n system. It is also partitioned into 

two types namely Linear (circular) consecutive k-out-of-n:G and Linear (circular) 

consecutive k-out-of-n:F system. Linear (circular) consecutive k-out-of-n:G (F) 

system comprises of n components ordered in linear (circular) manner and works 

(fails) if and only if overall number of successively working (failed) components is at 

least k. 

1.6.7 Weighted k-out-of-n system 

In some real-world systems, each component is important and this significance 

gives weight to the systems component. This concept added to the k-out-of-n system 

generates a new system named weighted k-out-of-n system. This system is also of two 

types: weighted k-out-of-n: G system and weighted k-out-of-n:F system. A weighted 

k-out-of-n:G (F) system contains of n components and works (fails) if and only if the 

overall weight of the working components is at least k. 

1.7 Lifetime distributions for reliability modeling 

Lifetime distributions are crucial statistical tools for reliability modeling. 

Some of the distributions which could be applied as lifetime distributions are given 

below. 

1.7.1 Exponential distribution  

It is a distribution that assumes a constant failure rate. If a random variable T 

is assumed to be exponentially distributed, then the PDF is as follows:  

                        

 where λ is the distribution parameter and    .  

The corresponding CDF and reliability function are obtained as  
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1.7.2 Weibull distribution  

 It is perhaps the most widely used probabilistic model to analyze the failure 

time behavior of components, systems, or equipment in a reliability community. A 

random variable T is said to follow a Weibull distribution if it possesses the following 

PDF:  

                         , for t ≥ 0 

where   and   are the scale and shape parameters, respectively.  

In general,     and       .  

It’s reliability function is expressed as R(t) =        . 

1.7.3 Gamma Distribution 

A continuous random variable is said to follow gamma distribution with 

parameters α and λ if its density function is given by  

     
          

      
, for        

In general,          . 

1.7.4 Log-normal distribution  

It is frequently used to model products in which physical fatigue significantly 

results in primary failure. A random variable X is said to follow log-normal 

distribution with parameters  and  , then the PDF f(x) is given by 

     
 

  √  
  

 

 
 
     

 
  

, for  , x > 0 and         . 

1.7.5 Normal distribution 

The PDF of normal distribution is given by: 

     
 

 √  
  

 
 
 
   
 

   

where parameters   and   are the mean and standard deviation of the distribution 

respectively.  
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1.8 Stochastic process 

A stochastic process is a mathematical concept that is often characterized as a 

set of random variables           , indexed using a mathematical set. In a 

stochastic process, each random variable is uniquely connected with an element in the 

set. The set employed to index random variables (T) is named as index set. Each 

variable in the set gets its values from the state space, which is a mathematical space. 

As the stochastic process evolves from a random variable hence, it is influenced by 

them over time t. 

Classification of stochastic process based on index set: 

 Discrete-time stochastic process: If the index set have a finite or countable 

number of elements. 

 Continuous-time stochastic process:  If the index set is some interval of the 

real line. 

Classification of stochastic process based on state space: 

 Discrete/integer-valued stochastic process: If the state space is the integers 

or natural numbers.  

 Real-valued stochastic process: If the state space is the real line.  

A stochastic process can also be written             as  to reflect that it is 

actually a function of two variables,     and    , where   represents sample 

space i.e., the stochastic process varies on the outcome of a random trial over time. 

1.9 Markov process 

A Markov process is one in which all of the information required to make 

predictions about the result at some point is provided by the most recent observation. 

Its outcome and the period since then are all we need to give a probability to a new 

observation. Whatever is obtained before the recent observation has no bearing on the 

goal we aim to achieve next. Precisely, a Markov process is a stochastic process with 

a memoryless property. 
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1.10 Optimization 

Optimization is the process of selecting the optimal element from a group of 

alternatives based on some criterion. All quantitative fields, from engineering and 

computer to economics and operations research, include optimization issues, and the 

discovery of solution techniques has been of concern in Mathematics for millennia. 

In its most basic form, an optimization problem is methodically selecting input 

values from within an authorized set and computing the function's value to minimize 

or maximize a real function. More broadly, optimization entails determining the "best 

available" values of some objective function provided a specific domain, which can 

encompass a wide range of objective functions and domains. 

As a result, there are three fundamental components to an optimization issue: 

 Variables: These are elements of the optimization model that may be 

altered to generate new possibilities. 

 Objective functions: The optimization's goal is defined by objective 

functions. 

 Constraints: These are the variables and objective function's restrictions. 

An optimization issue can be expressed as follows: 

Given       

Search     such that 

                  (minimization) 

or 

                 (maximization) 

Satisfying 
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1.11 Particle Swarm Optimization (PSO) 

PSO is a computational approach in computer science that optimizes a 

problem by iteratively attempting to enhance a candidate solution in relation to a 

certain level of quality. It solves a problem by generating a population of possible 

solutions, nicknamed particles in this context, and moving these particles about in the 

search-space using a simple mathematical formula based on the particle's velocity and 

position. The movement of each particle is controlled by its local best known position, 

but it is also steered toward the best known positions in the search-space, which are 

updated when better places are discovered by other particles. This is supposed to 

direct the swarm's attention to the optimal solution. 

Kennedy and Eberhart (1995) presented PSO. Sociobiologists think that a 

fish’s school or bird’s flock moving in a group "may benefit from the other group 

member’s experience". In other words, if a bird is flying about randomly looking for 

food, all of the birds in the flock may share their discoveries and assist the entire flock 

to have the greatest hunt. 

A study of flock behavior is provided to illustrate how the PSO inspired the 

design of an optimization method to handle complicated mathematical problems. A bird’s 

flock flying over a location must locate a site to land, and determining where the entire 

swarm should land is a complicated task since it depends on numerous factors, including 

maximizing food supply and reducing the danger of predators' existence. In this 

perspective, the birds move synchronously for a time period until the optimal spot to land 

is determined and the entire flock lands at once. The described movement occurs only 

when all the members are able to communicate among themselves; otherwise, they are 

most likely to land at different spots and at different times.  

The mentioned problem of determining the optimum landing spot defines an 

optimization problem. In order to maximize their survival circumstances, the flock 

must select the optimal place, such as longitude and latitude. To accomplish this, each 

bird flies about seeking for and assessing different spots while employing numerous 

survival criteria simultaneously. All of them have the benefit of knowing where the 

optimal placement point is until it is discovered by one of them. As a result, each 

member updates its individual and social knowledge. 
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In populations of species each individual seeks to attain the optimal solution 

within a multidimensional search space. Therefore, each particle designates a 

candidate solution. Individual particles by the virtue of their experience have the 

ability to modify their positions against their best positions. On constantly adjusting 

their directions, we can expect all particles to progressively arrive to their best 

positions. PSO’s advantage is that it is easy to perceive, simple to operate, and fast to 

search. In typical PSO, the initial population is produced randomly. Meanwhile, the 

velocity and position factors describe the particle status in the space, as follows: 

  
        

               
    

                   
   

  
      

    
    

where,   
      

  is the velocity/position vector of the     particle at the     iteration. 

   
       

    denotes the velocity/position vector of the     particle at the 

        iteration. 

      
  denotes the personal best of the     particle at the     iteration. 

       is the global best of the all the particles at the     iteration. 

   and    are acceleration coefficients, which control movement of particles. 

  is an inertia weight, which along with    and    controls the effect of prior 

velocities on the new one. 

    and    are arbitary numbers between 0 and 1. 

The velocity update equation’s first term is a product of inertia weight ( ) and 

the particle's prior velocity (  
 ), which is why it indicates the particle's past motion 

into the current one. The second term of the equation also called the cognitive term is 

the difference between particle’s individual best (      
 ) and the current solution 

(  
 ), drawing the particle to its best individual position. And, the third term also 

known as the social term is the difference between particle’s best point (      ) and 

the current solution (  
 ), attracting particle to its global best spot. Figure 1.5 

illustrates the update in particles position and velocity. 
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Figure 1.5: Particles position and velocity updates in PSO 

1.12 Overview of proposed work 

The basic needs of modern technology urge the engineers to design a 

methodological approach to investigate the problem of reliability. Engineers deal with 

the issue of designing and developing complex systems with greater reliability and 

profit. Reliability theory helps to compute several reliability characteristics like 

reliability, availability (point, limiting and limiting-average availability), MTTF, 

sensitivity analysis, expected cost rate of the various complex systems.  

        Reliability and availability are one of the major concerns for most of the 

complex systems. Different types of failure that system experiences during their life 

cycle cannot be ruled out. Also some systems need to be inspected so as to decrease 

their chances of failure and subsequently increasing the reliability, availability and 

profit of the system. So, keeping aforementioned facts in view the objectives of 

present research work are listed below: 

 To develop mathematical models for multi-component systems.  

 To derive methodical prepositions on point availability, limiting availability 

and maintenance cost rate for multi-component systems. 

 To evaluate reliability indices of the proposed systems incorporating different 

types of failure and inspection policies. 

 



 

 

Review 
of 

Literature 



18 

 

 

 

The reliability analysis have significant links with function examination, 

requirements specification, designing of system, manufacturing, testing, maintenance, 

technical documentation and many more. Considering the importance of the subject, a 

large number of researchers have focused on system reliability. Reliability and 

availability models provides a mathematical means of predicting and estimating the 

relationships based on the failure rates between different components of the system. 

Various parameters such as MTTF, MTTR etc. can aid to provide input for such 

models. The most fundamental causes of failures can be identified and estimated with 

the help of engineering tools. 

Some of the research works linked to the current study are briefly outlined and 

reviewed in this chapter. Based on the requirement, the chapter is further divided into 

two sections: 

Section 2.1: Review of literature related to reliability assessment of systems 

Section 2.2: Review of literature highlighting particle swarm optimization (PSO) 

2.1 Review of literature related to reliability assessment of systems 

Dhillon (1978) presented a repairable k-out-of-n three-state model with 

common-cause failures and developed the Laplace transforms of the state probability 

equations. 

Kenyon and Newell (1983) presented a computer program and solution for 

limiting availability of a k-out-of-n:G system with single repair.  

McGrady (1985) described a method to calculate the availability of a k-out-

of-n:G network analytically, where each unit may have distinct availability. Author 

also gave an algorithm and a FORTRAN subroutine to determine this kind of 

availability. 

Gupta and Gupta (1986) considered an electronic system comprising of two 

serially-connected subsystems. One subsystem had two parallel-joined identical units 
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while another had only one unit. The system had three states: good, degraded and 

failed; also, it had two types of failures: failure due to major human error and unit 

failure. The repair was supposed to occur only in case of unit failure following a 

general distribution. Time dependent probabilities were evaluated to forecast the 

operational availability and expected profit, making the system more applicable to 

real-world problems. 

Moustafa (1994) utilized Markov models to get closed form answers for the 

series-parallel systems reliability. The system was composed of two identical serially-

connected pieces of equipment. There was only one unit in each piece of equipment. 

An additional component was connected in parallel with the existing one to increase 

equipments reliability. As a result, each piece of equipment was regarded to be two-

component fault-tolerant. The unit had a Poisson failure and a constant repair rate. If 

at least one piece of equipment broke, the system failed. 

Barlow and Proschan (1996) presented several mathematical models useful 

in solving reliability problems. Certain life distributions and their use in determining 

maintenance policies were discussed, and topics such as the theory of increasing 

(decreasing) failure rate distributions, the theory of coherent systems, and optimum 

maintenance policies were also covered. 

Moustafa (1996a) presented Markov models for determining the availability 

of K-out-of-N systems undergoing M modes of failure. Author calculated the closed 

form solutions of the steady-state probabilities and consequently the availability of the 

system. 

Moustafa (1996b) provided Markov models for two failure mode K-out-of-

N:G systems, to present its transient reliability analysis with and without repair. In 

case of repairable systems, the simultaneous set of linear differential equations 

solution was utilized to calculate the reliability. Whereas, for non-repairable systems, 

closed form solutions of the transient probabilities were employed to determine 

reliability. 

Moustafa (1997) offered a Markov model for analyzing the reliability of K-

out-of-N: G systems with poor coverage due to dependent failures. The reliability and 
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MTTF were calculated using closed form probabilistic solutions. To demonstrate the 

outcomes, a numerical example was presented. 

Moustafa (1998) represented Markov models for analysis of transient 

reliability for M failure mode K-out-of-N :G system with and without repair. The 

reliability and the MTBF were calculated by virtue of simultaneous set of linear 

differential equations solution in case of repair. Although, to obtain the reliability and 

the MTBF of non-repairable system, closed form solutions of the transient 

probabilities were utilized. 

Levitin and Lisnianski (1999) expanded the joint replacement and 

redundancy schedule optimization issue to a multistate system with a variety of 

performance levels for the units and the system. The system elements were picked 

from a list of market-available items, and the quantity of such elements for each 

system unit was calculated. Each unit was distinguished by its capacity, cost, and 

reliability. The lifespan distribution of a system element with the hazard rate, which 

grows with time, defined its reliability. The number of element replacements and ideal 

system structure were defined as those that offer the required degree of system 

reliability while incurring the least amount of maintenance, unsupplied demand, and 

capital investment due to failures. The reliability of a multistate system was assessed 

using a universal generating function approach. As an optimization approach, a 

genetic algorithm was utilized. Examples of how to determine the best system 

structure and replacement timetable were provided. 

Pham and Wang (2000) studied the strategic maintenance of a k‐out‐of‐n:G 

system undergoing imperfect PM and partial failures. Two (τ, T) opportunistic 

maintenance models were proposed in regards of reliability requirements. In the two 

models, only minimal repairs were conducted on failed units ahead time τ and the CM 

of all failed units were combined with PM of all functional but degraded units after τ; 

if the system persist till time T with no perfect maintenance, it underwent PM at 

time T. System cost rate and availability were deduced considering maintenance time.  

Sarkar and Sarkar (2000) considered a periodically inspected system under 

perfect repair and determined its availability. They considered two different models, 
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viz. Model A and Model B. In Model A an unfailed system was treated as new on 

each inspection and the failed system was immediately perfectly repaired while in 

Model B nothing was done to an unfailed system but the failed one was repaired at the 

next inspection.  

Cui and Xie (2001) investigated the systems point availability undergoing 

periodic inspection using random walk models. Authors considered two cases; First 

case: the system underwent maintenance at periodic inspection and modified to be as 

good as new. Second case: the system did not undergo maintenance at periodic 

inspection. Few assumptions were made like: the failures were detected through 

inspection only, failed system was perfectly repaired but time taken to repair could be 

constant/ random length.  

Moustafa (2001) derived the availability and the steady-state probabilities 

of K-out-of-N:G systems subject to general repairs and constant failure rate. An 

imbedded Markov chain at repair completion epochs was used. Results were 

illustrated considering the special case of constant repair time, Erlang-2 and Coxian-2 

repair time. 

Frostig and Levikson (2002) derived formulas for the availability and the 

expected up‐time and down‐time of the R out of N repairable system using Markov 

renewal processes under the assumption that either the components repair times 

follow general distribution and the lifetimes are exponential or vice-versa. Numerical 

examples for various life time and repair time distributions were given.  

Klutke and Yang (2002) studied systems with hidden failures deteriorating 

owing to shocks as well as graceful degradation. Authors assumed that shocks occur 

based on Poisson process and deterioration occurred at a constant rate. Periodic 

inspections were performed. Expression for limiting average availability was derived, 

which helped in understanding the effect of system life distribution on availability, 

and suggested more effective inspection strategies. 

Levitin (2002) proposed a method for determining the best series–parallel 

configuration for systems with units of nominal performance rates and varying 

reliability. These systems were multi-state because their output performance varied 
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based on the combination of units available at any one time. A universal moment 

generating function (UMGF) for quick extraction of multi-state system reliability and 

a genetic algorithm (GA) for optimization were used in the technique devised to 

address this challenge. Fundamental UMGF method operators were created for two 

types of systems depending on processing time and transmitting capacity, 

respectively. Basic GA methods and parameters as well as solution encoding for GA 

implementation were determined for the given issue.  

Moustafa (2002) considered a Markov model to calculate the limiting 

availability of a system adopting several stages of degradation and capable of random 

failures at each phase of degradation. Partial repairs and minimal maintenance 

restored the system to operational state prior to failure and the previous degraded 

state, respectively. After degradation failure, overhaul repair returned the system to 

“as good as new”. The mean time to minimal maintenance was determined with 

respect to minimal unavailability. 

Bérenguer et al. (2003) considered a continuously monitored system subject 

to gradual and stochastic deterioration. For triggering a PM operation, an alarm 

threshold is set on the degradation level of the system. Authors developed a 

mathematical model to find the optimal value of the alarm threshold that helps to 

minimize the systems unavailability.  

Ramirez-Marquez and Coit (2004) posed a redundancy allocation issue with 

the goal of reducing design cost of a system displaying multi-state reliability 

behavior, given system-level performance limitations. This problem was looked using 

capacitated binary units that can give various levels of multi-state system 

performance. The multi-state character of the system was due to the various demand 

levels that must be met during the system's operational time. The heuristic allowed for 

faster and clearer analysis of the problem. Three distinct issues were solved, 

demonstrating the heuristic's simplicity and convenience of implementation without 

jeopardizing the intended optimization goals. 

Cui and Xie (2005) examined the availability of a system bearing periodic 

inspections. If the system is found to be failed, then the system will either be replaced 
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or perfectly repaired. They discussed two models: Model A and Model B. Model A 

treated a system as a new one after completing the inspection or repair while in Model 

B if during inspection the system was found to be in working state then no 

maintenance action was done.  

Levitin et al. (2006) presented a technique incorporating the Markov chain 

and universal generating function technique for analyzing a series-parallel safety-

critical system with two system states viz. failure-safe and failure-dangerous. The 

overall system safety function and state distributions were computed, considering 

periodic inspection and repair (perfect and imperfect) of system units. The proposed 

method could be applied for analyzing state distributions and decision-making in 

complex systems.  

Liao et al. (2006) considered a condition-based maintenance model for 

constantly deteriorating systems undergoing continuous monitoring. Authors 

investigated a maintenance policy, which helped in achieving the maximum 

availability level. Search algorithm was used to find the optimum threshold of 

maintenance.  

Wang and Pham (2006) examined the optimal maintenance, maintenance 

cost and availability of the series system with n constituting units under the common 

presumption that each unit was liable to correlated failure and repair, shut-off rule, 

imperfect repair and arbitrary distributions of times to failure and repair. Mean time 

between system failures, mean time between system repairs, and downtime of the 

system was also evaluated by them. They also studied the properties of maintenance 

cost rates and system availability. Optimum maintenance policies were discussed 

through a numerical example. 

Zhang et al. (2006) investigated the k-out-of-(m+n):G warm standby system, 

which had two types of units. One group of units in the system was type 1 and the 

other was type 2. There were m type 1 and n type 2 units in total. Type 1 units had a 

reduced hazard rate, and if one failed, it was preferable to fix it. There were r-repair 

shops in the area. The system state transition process was easily explained using a 

Markov model and solutions for system availability/reliability was also derived using 
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the model. To demonstrate the solutions for system availability/ reliability, an 

example of a power generation/transmission system was presented. 

Zheng et al. (2006) presented a new model for a one-unit Markov repairable 

system in which repair durations were sufficiently low that the system does not fail; 

i.e., the repair period wasn't recorded in the downtime log. Authors began by 

assuming that the crucial repair time is constant. The model was then modified to 

allow for a non-negative random variable for the crucial repair time. As a measure of 

reliability, system availability for these new models was calculated. To illustrate the 

findings, several numerical examples were provided. 

Zhou et al. (2006) developed a dynamic maintenance policy for a 

continuously monitored series system incorporating imperfect maintenance. The 

optimality was determined by maximizing the cost for the continuously monitored 

system.  

Nourelfath and Ait-Kadi (2007) found the least cost design of a multi-state 

series–parallel system under reliability constraints subject to a particular maintenance 

policy. The number of repairable units was more than the number of maintenance 

teams, and a maintenance policy set out the preferences amongst the system units. 

Dependencies as a result of maintenance teams were reflected by coupling the 

universal generating function with a Markov model.  

Chelbi et al. (2008) proposed and modeled a preventive maintenance and 

inspection policy for randomly failing systems having both revealed and non-revealed 

failure. The system was undergoing inspection on reaching age T. A general 

expression of the system limiting availability was being stated and conditions of 

existence and uniqueness of optimality were developed. Authors focused on 

determining the inspection age that maximizes the systems limiting availability. 

Juang et al. (2008) presented a genetic algorithm-based optimization 

approach to enhance design efficiency. The goal was to find the most cost-effective 

component MTBF and MTTR. Authors also created a knowledge-based interactive 

decision support system to help designers build up and save component parameters 

during the repairable series-parallel system's entire design process. 
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Xu and Hu (2008) determined the optimal limiting availability of a system 

having six states. Both PM and CM were considered. Availability was derived using 

the method of strong continuous semi-group theory. Furthermore, the optimal time to 

perform PM was analyzed. 

Peng et al. (2009) proposed a model codetermining inspection and preventive 

replacement policies for microengines prone to wear degradation. Optimal limits for 

inspection and replacement interval were demonstrated based on optimizing the 

quality and reliability of microengines. The proposed model was suitable for wider 

array of devices experiencing wear degradation. 

Wang and Watada (2009) looked at improving the reliability of a series-

parallel system with fuzzy random lifetimes. To maximize system reliability, a fuzzy 

random reliability model was created. To solve the problem, a fuzzy random 

simulation technique was developed first to calculate system reliability, and a theorem 

was established to assure the fuzzy random simulation's convergence. A hybrid binary 

PSO approach was also suggested, which incorporated the fuzzy random simulation. 

A numerical example of the suggested hybrid method was also presented. 

Cui et al. (2010) built a periodically inspected maintenance model taking into 

account the real situation for storage products. Authors presented the limiting average 

and the point availability for the storage products using the virtual age concept and 

several lemmas. Finally, an example was presented. 

Li et al. (2010) constructed the optimum model of a multi-state series–parallel 

system exposed to common cause failures in order to offer a desired level of 

reliability at a low cost. The universal generating function was used to assess the 

reliability of the system with components of various sorts mixed together, and a 

genetic algorithm was used to find the best model. To exemplify the suggested 

technique, a numerical example was provided. The findings demonstrate that the 

redundancy allocation approach differs due to common cause failures. Mixing 

components of various sorts to get the necessary degree of reliability at a low cost was 

a highly successful approach. 
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Ram and Singh (2010) discussed the availability, MTTF, and expected profit 

of a system comprised of serially-connected subsystems A (1‐out‐of‐2: F) and B 

(1‐out‐of‐n: F) with partial and catastrophic failures. The repair and failure time 

followed general and exponential distributions respectively. Analysis was being made 

under “preemptive‐repeat repair discipline” prioritizing subsystem A. 

Tian and Liao (2011) investigated multi-unit systems having dependency 

among units subject to condition monitoring. Authors proposed a policy based on 

proportional hazards model (PHM). An algorithm for the exact cost evaluation was 

developed. Real-world examples were also provided. 

Cheng and Li (2012) studied a degrading simple repairable system 

experiencing inspections. Authors assumed that the system failures are discovered by 

inspections only, repair not being as good as new, and the consecutive working 

(repair) times formed a decreasing (increasing) geometric process. They presented a 

bivariate mixed policy (T, N), respectively, predicated on the time between two 

consecutive inspections and the failure-number of the system. Authors determined an 

optimal policy (T, N)* such that the the average cost rate is minimized. Expression of 

the average cost rate, and the corresponding optimal mixed policy was derived. 

Finally, numerical example was provided to pursue some discussions and sensitivity 

analysis. 

Golmakani and Moakedi (2012) found the optimal periodic inspection 

interval for a two-component repairable system over a finite time horizon with failure 

interaction. First component has soft failure and the second has hard failure. First 

component’s failure does not affect the second component; meanwhile, second 

component’s failure increased the hazard rate of first component. First component 

increased the operating cost and was detected on inspection only. Repair/restoration 

of components was as good as new. Authors found the optimal inspection interval 

minimizing the expected total cost.  

Hu et al. (2012) designed a repairable failure dependent series-parallel system. 

A dependency function for determining the failure probability of units in each 

subsystem, as well as a Markov model for determining the subsystem's state 
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distribution was offered. Under the constraints of system availability, an optimum 

allocation issue was given with the goal of reducing the system cost, which included 

costs associated with the units and the repair teams. Because of its strong search 

capabilities and versatility in expressing discrete design variables, the genetic 

algorithm was utilized to discover the best allocation methods to solve the 

optimization issue. A numerical example was given to demonstrate how different 

dependencies lead to different allocation techniques. 

Berrade et al. (2013) considered a system with three likely states viz. good, 

defective and failed. Faults were revealed on their occurrence; the defective state was 

only revealed by inspection and did not affect the systems task performing ability. 

Imperfect periodic inspections were incorporated for revealing the systems state. The 

model was illustrated employing paradigm of railways. The system lifetime was 

supposed heterogeneous. Thus, the time spent in the defective state was a random 

variable. The circumstance under which the cost of maintenance was closely linked to 

its effectiveness was determined.  

El-Damcese and Shama (2013) investigated the reliability, MTTF and 

availability of a restoration system prone to degradation, following exponential 

distribution for failure and repair times. The system was repaired if it was in failed or 

degraded state. Several cases were analyzed to observe graphically the consequence 

of distinct system parameters on reliability characteristics. Sensitivity analysis for the 

system reliability was also investigated.  

Liu et al. (2013) developed an optimum maintenance policy for constantly 

monitored deteriorating systems with multiple modes of failure. The degradation is 

demonstrated with the help of a stochastic process. A maintenance alarm signalizes on 

degradation reaching a threshold level. Multiple sudden failures are assumed to occur 

during degradation. This model was utilized to obtain the optimum maintenance 

threshold maximizing the limiting availability or minimizing the long-run cost. 

Ram et al. (2013) investigated the reliability of a system comprising of a main 

unit and a standby unit incorporating waiting repair time. On the failure of main unit, 

the load is instantaneously transferred to the standby one by the means of a switching-
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over device. On its failure, the main unit had to wait for repair because of 

unavailability of repair facility. On failure of both the units, the system undergoes 

complete failure mode. The system was also considered to fail owing to systems 

incorrect start, as a result of an inexperienced/untrained operator. The repair of both 

the units followed general distribution, whereas repair in case of human error was 

obtained using Gumbel-Hougaard copula. The system was analyzed using Laplace 

transform and supplementary variable technique. Various measures like availability, 

MTTF and profit function were being evaluated and further justified using numerical 

examples.  

Singh et al. (2013) dealt with analyzing the availability of a system, consisting 

of two subsystems, viz. subsystem-1 (k-out-of-n: G) and subsystem-2 (1-out-of-2: G) 

under the assumption that hazard rates are constant but repairs obey general and 

exponential distributions. Authors evaluated the state probabilities; availability, 

MTTF, reliability, asymptotic behavior, and the cost effectiveness of the system using 

supplementary variable technique, copula methodology and Laplace transformations. 

Numerical example and particular cases were used to describe the model. 

Tang et al. (2013) evaluated the availability of a system prone to hidden 

failures, inspected periodically. Both the inspection and repair/replacement were 

considered to take non-negligible time. Two inspection policies were considered: 

Calendar-based and Age-based. Furthermore two assumptions were considered. 

Assumption A: Unfailed system being restored to as good as new on inspection. 

Assumption B: No intervention done on unfailed system. The point and limiting 

availability for all the cases were being derived. 

Khatab et al. (2014) dealt with imperfect PM optimisation problem. A 

production system was considered, and was continuously monitored and assumed to 

be prone to stochastic degradation. The system underwent PM as its reliability 

reached a desired value, however CM was performed at system failure. On reaching a 

fixed number of maintenance, the system was replaced with a new one. Both CM and 

PM were considered imperfect, i.e. the system was restored between as bad as 

old state and as good as new state. A PM optimisation model on examining the 
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optimal reliability threshold combined with optimal PM actions, maximizing the 

availability was proposed and an algorithm was provided.  

Munjal and Singh (2014) dealt with the reliability estimation of a system 

consisting of two rectifiable parallel-connected subsystems L and M. Both L and M 

were 2-out-of-3: G systems having 3 type-A and 3 type-B units respectively in 

parallel. Also, a hot spare of type-A to subsystem L and of type-B to subsystem M 

was connected. Supplementary variable technique was used to mathematically 

establish the model and Gumbel-Hougaard copula for reliability and cost estimation. 

Various measures such as MTTF, availability, long-run probability and cost were 

analyzed. Some specific cases were considered to highlight different chances. 

Li and Peng (2014) calculated the availability and the operation cost of multi-

state series–parallel system incorporating Markov process to examine the changing 

dynamics of component state and system phase. Operation cost was calculated using 

Markov reward model, and availability using universal generating function. Genetic 

algorithm was employed to solve the optimization problem to minimize the overall 

cost with availability being more than a desired value. The proposed model was 

illustrated using maritime oil transportation system. 

Aliyu et al. (2015) optimized the availability and the profit of a series-parallel 

system comprising of three subsystems A (linear consecutive k-out-of-n), B (single 

unit) and C (single unit) with A and B in cold standby. Authors maximized the 

limiting availability and profit. n = 2, 3, 4 and 5 was considered in order to solve the 

optimization problem. Definite expressions for limiting availability, repairmen busy 

period, and profit function were evaluated with the help of linear first order 

differential equations. The effects of system parameters on profit and availability were 

also analyzed graphically.  

Negi and Singh (2015) studied a non-repairable complex system which 

consists of two serially connected subsystems namely P (weighted m-out-of-n: G) and 

Q (weighted u-out-of-v: G) having linear (u, f, g): G and circular (v, f, g): G 

components respectively. The reliability, mean time to failure and sensitivity of the 

considered system were evaluated with the help of universal generating function.  
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Ye et al. (2015) used a random-effects Wiener process with measurement 

errors to describe the degradation data to account for the heterogeneous degradation 

rate and non-negligible measurement errors. A filtering method that predicted the 

joint distribution of the deterioration rate and the present degradation levels in an 

iterative manner was developed. The distribution of the remaining usable life was 

projected in real-time based on the estimates. The approach was both storage and 

computationally efficient. Simulation and real-world data were used to illustrate its 

usefulness. 

Zhao and Nakagawa (2015) optimized a random inspection policy as per 

random procedure times. They compared it with periodic scrutiny and computed 

checking cost to determine when to adopt such a random inspection. Three new 

inspection models named inspection first, last and overtime were also proposed, 

where inspections with deterministic rules were strategically timed, but their 

performance were regulated by operation process completion durations. The total 

expected downtime and inspection costs until failure detection were obtained, and 

optimal policies were derived minimizing costs. Furthermore, the inspection policies 

were compared with periodic inspection. Comparisons of first and last inspection 

models were done.  

Babishin and Taghipour (2016) studied a k-out-of-n system with its units 

following a non-homogeneous Poisson process with power law intensity function for 

failure. The system was inspected periodically, and if the number of failed units was 

less than n-k+1, the failed units were detected and corrected only at the inspection. 

Meanwhile, the system failed if number of failed units were n-k+1, and instantly all 

the failed units were detected and fixed. A model to collectively obtain the optimal 

periodic inspection interval and maintenance actions resulting in minimal overall 

expected cost of the system was formulated.  

Kumar and Singh (2016) discussed the reliability analysis of a system made 

up of two serially-connected repairable subsystems A (linear consecutive 2 out of 3:F) 

and B (1 out of n: F system). Two types of failure namely deliberate and critical 

failure were considered incorporating reboot delay. Sensitivity analysis, reliability, 
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transition state probabilities, cost analysis, availability, and MTTF were obtained in 

addition to the long-run behavior of the system.  

Li (2016) introduced a dormant k-out-of-n system incorporating periodic 

maintenance so as to reduce and prevent the undesired dormant failures, or costly 

repairs. Methodology on calculating the reliability parameter such as MTBF for the 

aforementioned redundant systems was introduced. The mathematical relationship 

between the effective MTBF and the periodic inspection/maintenance period was also 

elaborated. Case studies were presented so as to illustrate the application of developed 

model in the mass transit train reliability and safety design. 

Zhang et al. (2016) proposed an optimal policy for three-state mechanical 

units prone to competing failures. In order to describe the operation states, a double-

Wiener-process degradation model was set up. A PM policy comprising of 

degradation threshold, degradation control limit and age threshold were adopted. The 

effect of delayed detection of state-transition and degradation-level on PM policy was 

also modeled. Sensitivity analysis was carried out in the end based on numerical 

examples. The superiority of the proposed policy over two-state maintenance policy 

was also demonstrated. 

Zheng et al. (2016) investigated a maintenance model possessing two 

different failures, namely, repairable and unrepairable. They proposed a maintenance 

policy under which if the successive operating time was reached, preventive repair 

was done and if the nth repairable failure or an unrepairable failure occurred, the 

system was replaced. An algorithm was given to attain the optimal policy of the 

proposed model and the optimal policy introduced was such that the rate of average 

cost was minimized.  

Alaswad and Xiang (2017) provided an overview of the literature on 

condition-based maintenance (CBM), with a focus on optimization techniques and 

mathematical modeling. The study focused on key features of the CBM, such as 

degree of maintenance, inspection frequency, optimization criteria, solution 

technique, and so on. The research on CBM models was classified based on the 

fundamental degradation processes, such as continuous and discrete-state 
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deterioration, as well as the proportional hazard model. The CBM models for multi-

unit systems were also looked upon in the study. 

Mehta et al. (2017) determined the reliability/availability of a casting system. 

By changing the repair rates and maintaining the failure rates constant, the reliability 

of the system was calculated using Supplementary Variable Technique. Chapman-

Kolmogorov differential equations were generated from the transition diagram using 

the mnemonic rule, and then solved using Lagrange's technique. The system's 

transient state availability was calculated using the Runge-Kutta fourth order 

technique in MATLAB and the MTBF was estimated quantitatively. 

Mendes and Ribeiro (2017) presented a model to establish the optimal 

inspection period for a two-unit cold standby system subject to periodic inspection. 

Authors defined possible states, transition probabilities and MTTF in terms of 

inspection period using a Markov chain. The limiting availability was also 

determined; also the cost function was developed and optimized. Besides optimizing, 

the effect of repair time on availability and MTTF was revealed. 

Qiu et al. (2017) evaluated the availability and optimal maintenance policies 

of a system undergoing periodic inspections. System was considered having a 

working state and M modes of failure. Failure and repair times were considered to be 

random. Corrective repair was performed on each failure. Results on the limiting as 

well as point availability and cost rate were derived. At the end, optimal inspection 

period, maximizing the availability or minimizing the cost rate was obtained.  

Sharma and Kumar (2017) dealt with the availability evaluation of K-out-of-

N system based on standby and multiple working vacations. The system consisted of 

'S' standby and 'O' operating machines, each machine being characterized by its own 

repair and failures. For increasing the availability in the case of failure of any 

operating machine, the standby support was provided, i.e., on failure of an operating 

unit, it was instantly replaced by a standby one. Moreover, the transient state 

equations were provided by means of state transition diagram. The problem was 

analyzed using Runge-Kutta method.  
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Qiu et al. (2018) developed maintenance and availability models for one-unit 

systems prone to dependent soft and hard failures. A soft failure reduced the systems 

performance ability while, hard failure stopped the system immediately. Dependence 

between the two failures was reflected based on the conviction that the failure rate of 

hard failure was increased directly by each soft failure. Recursive equations for the 

availability and reliability functions of the system were derived. For the failure 

detection, inspections were executed periodically. Henceforth, the optimal inspection 

policy was investigated via the minimal expected cost. The models applicability was 

validated using an electrical distribution system. 

Yang et al. (2018) investigated a multi-level preventive maintenance approach 

for a three-state two-failure mode processes industrial system. The first was a 

continuous deterioration process that followed the general path model, while the 

second was a shock process that followed a non-homogeneous Poisson process. The 

system's degradation rate rose quickly once it entered the faulty condition, and the 

size of the damage produced by a shock load was proportional to two factors: 

degradation speed and operating age. A predetermined operating age was reached 

before the system was replaced, and a finite number of inspections were performed 

based on a two-stage interval partition. Their goal was to optimize the control limit, 

the replacement age, and two inspection intervals in order to reduce the projected 

cost. The use of the maintenance model was demonstrated by a study of a peristaltic 

pump. 

Li et al. (2019) proposed an availability model for periodical inspection 

system. Limiting average and point availability of aforementioned model under 

arbitrary lifetime and repair-time distributions were achieved. Three examples were 

presented, considering systems lifetime (repair-time) distribution to be exponential 

(exponential), Weibull (normal) and Weibull (lognormal). The relationship between 

inspection period and availability were analyzed.  

Park et al. (2019) developed an optimal policy for a k-out-of-n: G system 

undergoing both PM and CM. Authors investigated the optimal age of replacement 

for the case where detection of unit failure was not done until the system fails. The 
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optimal policy to minimize the expected overall system cost was determined when a 

generalized block replacement model using downtime period was developed. The 

downtime of each failed unit was investigated using order statistics. 

Qiu and Cui (2019a) investigated the repairable systems availability with 

repair time threshold. The system was considered working, if the repair period was 

less than a predefined threshold. Meanwhile, in the case of repair time being longer 

than the threshold, the system was considered working till the repair time exceeds the 

threshold. Both constant and random repair time thresholds were considered. The 

user-perceived availability was evaluated and demonstrated using example of a 

ventilator system.  

Qiu and Cui (2019b) studied the point and limiting availability of a 

competing-risk system incorporating periodic inspections. System was considered 

having a working state and M modes of failure. Failure and repair times were 

considered to be random. Corrective repair was performed on each failure. Two 

models were formulated; Model 1: System was restored to as good as new condition 

on each inspection. Model 2: No maintenance done on unfailed system. Results on the 

point and limiting availability of both models were derived.  

Qiu et al. (2019a) studied the optimal upkeep policy and availability for a 

two-component failure interactive system. Component 1 had soft failure and was 

detected by inspections only while component 2 had hard and self-announcing failure. 

Each hard failure acted as a shock to the first unit and resulted in its increased hazard 

rate. Component 1 failures were revealed using opportunistic and periodic inspections 

(given by component 2 failures) succeeded by replacement decisions. Henceforth, for 

the component 1 preventive age-based replacement were performed. A recursive 

method was developed to obtain availability measures and total maintenance cost of 

the component 1. The aim was to determine the optimal upkeep policy for the 

component 1 minimizing the total cost. The adopted approach was validated using an 

electrical distribution system.  

Qiu et al. (2019b) examined Markov systems with a downtime threshold, and 

the availability and best maintenance policy were explored. A down time threshold 
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was developed based on real usage. If the system's downtime was smaller than a 

certain threshold, the system was regarded to be operational throughout the downtime, 

and the downtime was ignored. Otherwise, if a down time exceeded the specified 

threshold, the system was deemed to remain operational from the start of the system 

failure until the down time exceeding the specified threshold, i.e. the down time was 

postponed. The system's immediate and limiting availabilities were calculated using 

the down time threshold. In addition, a maintenance model was developed to 

determine the best inspection interval, T*, for minimizing the cost rate. To show the 

applicability of the established technique, a numerical example for a ventilator system 

was provided. 

Gahlot et al. (2020) dealt with a complex system consisting of subsystem 1 

(2-out-of-3: G) and subsystem 2 (1-out-of-2: G) connected in series with a human 

operator. It was assumed that human failure damages the entire system; all failure 

followed exponential distribution, and repairs followed general and Gumbel–

Hougaard family copula distribution. Supplementary variable technique was 

employed to examine the system, and discussing various reliability measures. The 

availability, MTTF, reliability, and profit benefit was computed for distinct values of 

repair and failure rates. 

Hu et al. (2020) investigated the limiting availability of a repairable redundant 

dependence series-parallel system. The failure rate of the operational unit changes 

with the number of other failed units, whereas the repair rate of the failed unit remains 

constant in each parallel redundant subsystem. To assess the failure rate of the units in 

each subsystem, a modified failure dependence function is developed to quantify the 

redundant reliance. The steady-state probability vector of each subsystem and the 

limiting availability of the entire system were calculated using Markov theory and the 

matrix analysis technique. A numerical example was given to demonstrate the 

findings and to investigate the impact of duplicate dependence classes on system 

availability. 

Nautiyal et al. (2020) evaluated the reliability, MTTF and sensitivity of a k-

out-of-n network by first calculating the minimal cuts, and repairing of the failed 

nodes is done using Gumbel–Hougaard copula. 



36 

 

 

Ruiz-Castro (2020) modeled a multi-state k-out-of-n: G system in an 

algorithmic form. External shocks and internal failures with many repercussions were 

assumed. PM was introduced as a result of random inspections and unit was removed 

if a non-repairable internal and/or external failure occurred. Marked Markovian 

Arrival Processes was used to analyze the performance-profitable. 

Tian and Wang (2020) developed a method for condition-based maintenance 

optimization and reliability assessments of a wind power system taking into account 

both wind and turbine uncertainty. Optimization was done for minimizing cost or 

maximizing availability. In order to investigate optimal number of joint repairs, 

optimization was also done for minor repair activities.  

2.2 Review of literature highlighting particle swarm optimization (PSO) 

Kennedy and Eberhart (1995) introduced the notion of employing PSO to 

optimize nonlinear functions. The evolution of many paradigms was described, as 

well as one of the paradigm’s application was elaborated. The paradigm's benchmark 

testing was detailed, as well as applications such as neural network training and 

nonlinear function optimization was proposed. The connections between PSO, 

artificial life, and genetic algorithms were explored. 

Shi and Eberhart (1999) investigated the PSO's performance. As testing 

functions, four distinct benchmark functions with unequal beginning range settings 

were chosen. The experimental findings demonstrated the PSO's drawbacks and 

benefits. The PSO always converged fast towards the optimal locations in all of the 

testing scenarios. Nonetheless, the experimental findings demonstrated that the PSO is 

a promising optimization method, and a new strategy, such as utilizing an adjustable 

inertia weight, was recommended to increase PSO's performance towards the optima. 

Parsopoulos and Vrahatis (2002) investigated the PSO techniques 

performance in coping with constrained optimization problems. A non-stationary 

multi-stage assignment penalty function was utilized in the proposed technique, and 

numerous experiments were carried out on well-known and frequently used 

benchmark issues. The findings were presented and compared to those produced using 

other evolutionary algorithms, including genetic algorithms and evolution strategies. 
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He et al. (2004) presented a PSO with passive congregation (PSOPC) for 

improving the performance of standard PSO (SPSO). Using passive congregation 

(vital biological force maintaining swarm integrity), the swarm's members can share 

information. PSOPC was compared against a global version of SPSO (GSPSO), PSO 

with a constriction factor (CPSO) and a local version of SPSO (LSPSO), using a set 

of 10 standard functions with 30 dimensions. The PSOPC considerably increased the 

search performance on the standard functions, according to the findings of the 

experiments. 

Jarboui et al. (2007) proposed a novel clustering method based on the 

combinatorial PSO (CPSO) technique. Each particle was denoted as a string of length 

n, n representing number of data points. The i
th

 element of the string represented the 

group number given to item i. A possible solution to the clustering issue was 

represented by an integer vector. A swarm of particles was launched, which flied 

through the solution space in search of the best solution. Comparisons with genetic 

algorithm were used to test the effectiveness of the proposed CPSO method. The 

suggested CPSO method was extremely competitive and beaten the genetic algorithm, 

according to computational findings. 

Yin et al. (2007) presented a hybrid PSO technique for determining the near-

optimal task allocation in an acceptable amount of time. The hybrid PSO was robust 

to a variety of task interaction density, issue sizes, and network structure, according to 

the findings of the experiments. For the test-cases examined, the suggested technique 

was also more efficient and effective than a genetic algorithm. Both empirical and 

theoretical analysis were used to address the worst-case characteristics and hybrid 

PSO's convergence. 

Hsieh et al. (2008) presented the efficient population utilization strategy for 

PSO (EPUS-PSO), a variant on the conventional PSO algorithm that uses a 

population manager to greatly increase PSO efficiency. This was accomplished by 

employing varied particles in swarms to improve the seeking capabilities and more 

effectively drive particles. Furthermore, sharing concepts were designed to prevent 

particles from slipping into the local minimum and to make it simpler for particles to 



38 

 

 

find the global optimal solution. Experiments were done with and without coordinate 

rotation on multimodal and unimodal test functions like ackley, griewanks, quadric, 

rastrigin, and weierstrass. When compared to other contemporary PSO versions, the 

EPUS-PSO performed well in most benchmark issues. 

Ai and Kachitvichyanukul (2009) presented two solution representations and 

their decoding methods to solve the capacitated vehicle routing problem (CVRP) 

using PSO. For CVRP with m vehicles and n customers, the first solution was 

depicted as a (n + 2m)-dimensional particle. This representation's decoding technique 

began with the translation of each particle into a customer’s priority list to enter route 

and a priority matrix of vehicles to service each client. The vehicle priority matrix and 

customer priority list was then used to build the vehicle routes. The second 

representation was a 3m-dimensional particle. This representation's decoding 

technique began with the translation of particles into vehicle coverage radius and 

vehicle orientation points. Then, the vehicle routes were constructed relying on these 

radius and points. The suggested representations were tested using benchmark 

problems and GLNPSO, a PSO technique with various social learning components. 

The computational results demonstrate that the second representation was superior to 

the first one and moderate with other techniques for solving CVRP. 

Jiang et al. (2010) proposed a novel master–slave swarms shuffling evolution 

technique relying on PSO (MSSE-PSO). The feasible space was first sampled 

randomly for a population of points, which was then partitioned into one master 

swarm and other slave swarms. PSO or its variations were executed individually by 

each slave swarm, including the updating of particle velocity and position. The 

particles in the master swarm improved themselves depending on the slave and master 

swarm's social knowledge. All the swarms were pushed to mingle at regular intervals 

throughout the evolution, and points were then redistributed to numerous sub-swarms 

to guarantee information sharing. The procedure was repeated until the user specified 

a stop condition. The case study on a hydrological model and numerical simulation 

experiments indicated that MSSE-PSO significantly lowered computation time, 

increased calibration accuracy, and improved stability performance.  
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Wang and Li (2011) proposed a hybrid technique of PSO and LS (local 

search) for solving the redundancy allotment problem for series-parallel multi-state 

systems. The suggested algorithm was capable of designing the system structure at a 

low cost while maintaining the necessary degree of availability. Unlike most prior 

research, which only considered homogeneous redundancy, the suggested method 

considered heterogeneous redundancy. To assess system availability, the universal 

generating function technique was used. To respond to the redundancy allocation 

problem, the conventional PSO was changed and innovative LS methods were 

included. Case studies were presented to aid comparisons between the proposed 

technique and various non-hybrid and meta-heuristics. The findings showed that the 

suggested technique had advantages in terms of efficiency and solution quality. 

Pant et al. (2015) presented a particle swarm optimization algorithm. The 

proposed algorithm’s performance was tested on three optimization problems. The 

results obtained were compared with several well-known methods. In terms of 

solution quality and computation time, numerical experiments showed that the 

proposed method was promising, and the results obtained by the proposed algorithm 

were either comparable or superior to the previously best known ones. 

Yao et al. (2016) presented a carton heterogeneous vehicle routing problem 

with a collection depot. PSO was utilized to solve the issue with a collecting depot. A 

local search technique and self-adaptive inertia weight were employed to increase the 

PSO's performance. Finally, two test instances were used to demonstrate the method. 

The findings demonstrated that the suggested PSO can handle the multi-depot as well 

as the carton heterogeneous vehicle routing problem with a collecting depot 

effectively.  

Zhang and Chen (2016) dealt with the difficulties of reliability redundancy 

allocation in an interval context. From the basic crisp problem, an interval multi-

objective optimization problem was constructed, in which system cost and reliability 

were both evaluated. A dominance relation for interval-valued functions was 

developed using newly suggested order relations of interval-valued numbers to make 

the multi-objective PSO method capable of dealing with interval multi-objective 
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optimization issues. The crowding distance was then applied to the situation of multi-

objective interval-valued data. Finally, two numerical examples and a case study of a 

supervisory control and data acquisition system in water resource management were 

used to show the efficacy of the suggested technique. 

Kumar et al. (2017) investigated the applicability of multi-objective PSO 

incorporating crowding distance (MOPSO-CD) to solve a reliability optimization 

issue with the goals of maximizing reliability and lowering cost. They gave a 

thorough overview of multi-objective reliability optimization, PSO, and MOPSO-CD. 

The MOPSO-CD was applied to a series system at the end. The simulation findings 

demonstrated that MOPSO-CD can create a well-distributed Pareto optimum set for a 

decision maker to pick from in a single run. 

Sebt et al. (2017) used fully informed particle swarm (FIPS) and genetic 

algorithm to solve the MRCPSP (multi-mode resource-constrained project scheduling 

problem) with the goal of minimizing project makespan while taking into account 

resource and priority restrictions. FIPS was a common variation of the PSO technique 

in the proposed hybrid technique. Encoding techniques included associated mode list 

and random key representation schemes with the decoding procedure being the 

MSSGS (multi-modal serial schedule generation system). The findings revealed that 

the proposed mode enhancement process significantly reduces the project timeline. 

The efficacy of the proposed technique to solve the MRCPSP is validated by 

comparing its results to those of other methods using the well-known benchmark sets. 

Xu et al. (2018) presented intracluster cohesion (ICC), a new metric that 

measured the similarity of data inside a cluster. Authors presented an ATPSO 

(accelerated two-stage PSO), which used K-means to speed up particle convergence 

during population initialization. There were two steps to its clustering process. The 

first goal of reducing ICD (intracluster distance), by preliminary clustering; second, 

improving ICC to improve clustering accuracy. Extensive tests in diverse geometric 

distributions are carried out using 17 open-source clustering sets. In terms of 

accuracy, ATPSO surpassed PSO, chaotic PSO (CPSO), K-means PSO (KPSO), and 

accelerated CPSO, but its efficiency is similar to that of KPSO. Its convergence trend 
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suggested that using the intended ICC improved clustering accuracy. Surprisingly, 

when compared to the Pareto-based multi-objective PSO, ATPSO's suggested two-

stage search can locate clusters more correctly and rapidly. 

Sadeghi et al. (2020) used multi-objective PSO technique to explore the 

optimal size problem of the micro-resources grid's in two different modes in the 

presence of an electric car. Monte Carlo Simulation was used to represent the electric 

vehicle's unpredictable behavior. The optimal number of components and cost at 

various degrees of reliability were established in the first instance, referred to as 

PV/wind/battery. The electric car was then added to the system, and the chance of 

losing power was computed in both stochastic and deterministic modes. The findings 

suggested that using an electric car improved system reliability. The influence of 

stochastic and deterministic behavior of electric vehicles on the number of units and 

the possibility of power supply failure was examined for the first time in the second 

system (PV/wind/battery/EV). The findings showed that both systems were viable to 

construct, although the first was more efficient than the second. Furthermore, a 

sensitivity analysis was carried out to demonstrate the impact of load factors and wind 

speed on choice variables. 
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This chapter is divided into eight sections in which we examine the following 

models: 

Model [1]:  Availability of systems subject to multiple failure modes under calendar-

based inspection 

Model [2]:  Availability analysis and inspection optimization for a competing-risk k-

out-of-n:G system 

Model [3]:  Modeling periodically inspected k/r-out-of-n system 

Model [4]: Availability and cost assessment of systems with dormant failure 

undergoing sequential inspections 

Model [5]:  Modeling sequentially inspected system prone to degradation and shocks 

Model [6]:  Modeling systems with revealing and non-revealing failures undergoing 

periodic inspection 

Model [7]:  Markov process approach for analyzing periodically inspected competing-

risk system embodying downtime threshold 

Model [8]:  Particle swarm optimization strategy for design optimization of a series-

parallel system incorporating failure dependencies and multiple repair 

teams 

3.1  Model [1]: Availability of systems subject to multiple failure modes under 

calendar-based inspection 

Traditionally, emphasis is being made on designing of systems incorporating 

multiple failure modes as configuration of the systems and failure states of 

components are becoming more variant (can be seen in Ref. Dhillon, 1978; Klutke 

and Yang, 2002; Levitin et al., 2006; Zhang et al., 2016; Zheng et al., 2016). 

Competing failure may take place in the systems suffering with the multiple failure 

modes, and any of these failures can result in the failure of the system.  
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Availability has consistently remained a burning issue on the subject of 

reliability engineering as it is the principal characteristic of operation and design of all 

engineering systems. A lot of research is carried out on the availability of systems 

subject to single failure mode. Relevant writings can be accessed in Ref. Cui and Xie 

(2001), Cui and Xie (2005), Xu and Hu (2008), Tang et al. (2013) and Khatab et 

al. (2014). Despite the fact that a complex system may fail in lots of different ways, 

current availability models seldom take into account multiple failure modes. This 

encourages us to develop a good quality model in order to scrutinize the availability 

of competing-risk systems. 

It is supposed in large number of the existent maintenance models that the 

failures are identified in no time. Meanwhile, in some realistic systems like Integrated 

digital communication system (Liu et al., 2013), Remote power feeding systems (Qiu 

et al., 2017) and safety valves in protection systems (Tang et al., 2013) failures are 

hidden/ unrevealed. When the system experiences a hidden failure, inspection policy 

in general is employed to figure out if a failure has taken place or not (see Ref. Cui et 

al., 2010; Cheng and Li, 2012; Berrade  et al., 2013;  Qiu et al., 2017). Two kinds 

of inspections are mentioned in the literatures so far, namely: periodic and non-

periodic inspection. The customary exercise is to employ periodic inspection in 

applications since it is easier to schedule and more feasible.  

Two kinds of periodic inspection policies have been discussed in the 

literatures till now, namely: age-based and calendar-based inspection policy. Some 

researchers studied the point and steady-state availability for a system inspected using 

calendar-based inspection policy (see Ref. Sarkar and Sarkar, 2000). Cui and Xie 

(2005) calculated the point and steady-state availability of a system inspected using 

age-based inspection policy by taking into account random time for repair. Tang et al. 

(2013) examined the limiting average and point availability of a system inspected 

using both the periodic inspection policies. Qiu and Cui (2019b) considered systems 

encountering multiple failure modes and studied their steady-state and point 

availability using age-based inspection policy.  
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Systems performance declines after successive usage, hence proper and 

adequate maintenance is required to prolong its operational duration. Thus, PR is used 

to enhance system performance/availability (see Ref. Qiu et al., 2017 and Qiu and 

Cui, 2019b). No study has yet been conducted to investigate the availability of 

competing-risk system under calendar-based inspection policy. Here, we propose to 

study the point and limiting average availability of a system encountering multiple 

failure modes undergoing inspections and perfect preventive repair (PR) at fixed 

calendar intervals. 

The outcomes on availability of the system extracted in this study can be 

implemented simply to most of the systems facing multiple failure modes. We 

consider wind turbine systems to demonstrate our established availability model of 

the systems experiencing multiple failure modes. As an important characteristic of the 

system performance, the availability of wind turbine system is examined and it plays a 

major role in many crucial applications. An important issue that wind turbine system 

has encountered is of multiple failure modes. Very little research has been carried out 

to examine the availability and maintenance policy for wind turbine system. Early 

studies have been indicated in Ozturk et al. (2018), wherein various results for direct-

drive and geared wind turbines were compared. 

3.1.1 Notations 

          Total failure modes  

          Failure time of      failure mode,              

  ( )   Distribution function of                  

  ( )    Density function of                   

  ( )    Hazard rate function of                  

 ( )     Survivor function of the system  

            Repair time of      failure mode,              

  ( )    Distribution function of                  

 ( )      Systems status at time    
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 ( )      Systems Point availability  

 ̅           Systems Limiting average availability 

            Inspection interval 

3.1.2 System description 

The precise assumptions used in determining the availability of our proposed 

model are summarized below.  

(1) Periodic inspection: Suppose a system is brought into operation at     

and inspected regularly at times           . While inspecting a system, if 

it is found working then a PR is carried out and the system is brought back 

almost to a new state. The time for PR is assumed to be negligible.  

(2) The system failure is categorized into   failure modes (FM) independent 

of each other. The failure time of each failure mode is denoted by    (  

         ) with distribution function   ( )  density function   ( ) and 

hazard rate function   ( ). 

(3) If the system failure occurs because of the     failure mode then a 

corrective repair (CR) is performed taking time      (           ) with 

distribution function   ( ).    (           ) are random variables 

independent of each other.  

Figure 3.1.1 gives a probable specimen of the system, where the inspection 

interval is of length  . As shown in the Figure 3.1.1, there is no system failure in the 

time interval ,    -; so two perfect PRs are carried out at each of the inspections. FM 

1 occurs between inspections second and third, resulting in the system failure and 

from then till the third inspection, system is at rest and no CR is performed and then at 

third inspection a CR is carried out taking time    . After completion of CR, the 

system is renewed. 

 

 

                                                            



46 

 

 

 

Figure 3.1.1: A probable specimen of the system under calendar-based inspection 

3.1.3 Systems point availability 

From Assumptions (1) and (2), the lifetime of the system, S, is clearly 

demonstrated as the minimum of (          ). As    (           ) are random 

variables independent of each other, hence, we get  ( ) as 

 ( )  ∏ (    )  ∏  ( )

 

   

 

   

 

Proposition 1: The point availability of the proposed system is obtained as 

 ( )

 

{
 
 

 
 

 ( )                               

 (    ) (  )  (   (  ))∑  (    )∫  ( )  ( )  

 

 

 

   

                           

                                                                 (   )                                 

 

Proof: We define a Markov process as follows 

 ( )  {
                                                                      
                                                                

  

(i) When          

Since availability simply equals reliability for a non-repairable system. As no 

inspection has taken place till time   i.e. system is not maintained till time T, it is 

obvious that  

                                                             ( )   ( )                                              (3.1.1) 
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(ii) When            

During the first inspection the system is either in a working condition or has 

failed because of the    (           ) failure mode and using the fact that all 

failure modes are independent,  ( ) can be given by  

 ( )   ( ( )   ) 

 ( )   ( ( )     ( )   )   ( ( )     ( )   ) 

                                   ( ( )   | ( )   ) ( ( )   )   ( ( )     ( )   ) 

             (   ) ( )  ∑ ( ( )     ( )       )

 

   

 

 

  (   ) ( )

 ∑ ( ( )   | ( )       )

 

   

 ( ( )       ) 

                            (   ) ( )  ∑  (   ) ( ( )   |   ) (   )

 

   

 

where I indicate the failure type and  (   ) indicate the probability of     (  

         ) failure mode. 

 ( )   (   ) ( )  ∑  (   )(   ( ))∫  ( )  ( )  

 

 

 

   

 

                                  (   ) ( )  (   ( ))∑   (   ) ∫  ( )  ( )  
 

 
 
    

(iii)When       (    )     

By the similar observation as above, during the     inspection the system is 

either in a working condition or has failed because of the    (           ) failure 

mode 

Hence,  ( ) can be given by  

 ( )   ( ( )     (  )   )   ( ( )     (  )   ) 

  ( ( )   | (  )   ) ( (  )   )   ( ( )     (  )   ) 
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     (3.1.2) 

Using equations (3.1.1) and (3.1.2), we get    

 ( )  

>

                              ( )                                                              

 (    ) (  )  (   (  ))∑   (    ) ∫  ( )  ( )   
 

 
 
                    

                              (   )                       

(3.1.3) 

 

Remark 1: Clearly, our model is an extension of the models taking single failure 

mode into account. If we consider single failure mode, i.e. when    , the resultant 

in equation (3.1.3) is reduced to 

 ( )  

{
 
 

 
 

 ( )                               

 (    ) (  )  (   (  )) (    )∫  ( ) ( )  

 

 

                          

                                                          (   )                                 

 

By considering the fact that each system has some lifespan i.e. probability of 

occurrence of system failure after certain amount of time is equal to 1. Hence, the 

above expression is equivalent to 

 ( )  

 8
 ( )                               

 (    ) (  )  (   (  )) (    )          (   )                   
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3.1.4 Systems limiting average availability 

The limiting average availability is also a critical performance index of system 

and can be obtained by the means of the formula       
 

 
∫  ( )  
 

 
 

Proposition 2: The limiting average availability of the proposed system is expressed 

by 

                  ̅  
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Proof: Letting   (   )  in equation (3.1.2), we have 
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Hence, limiting average availability is equal to 

      ̅  
 

 
:∫:  ( )  (   )∑  ( )∫  ( )  ( )  

 

 

 

   

;  

 

 

; 

              
 

 
: ∫ ( )   (   )∑∫  ( )  ( )  ∫  ( )

 

 

 

 

  

 

   

 

 

; 

3.2  Model [2]: Availability analysis and inspection optimization for a 

competing-risk k-out-of-n:G system 

Redundancy is a procedure through which systems availability and reliability 

can be improved. k-out-of-n: G system is most frequently used redundant system in 

which out of n components at least k must be active for working of the system. 

Because of its error tolerance potential, the k-out-of-n system is extensively employed 

in the many fields such as in nuclear and process industry, in hydroelectric plant, in 

hardware and software engineering, in hydraulic control system. Many studies are 

done on reliability of redundant systems. Barlow and Proschan (1996) deduced 

many results on reliability of a k-out-of-n:G system. Munjal and Singh (2014) 

studied reliability of a system embodying parallel-connected pair of 2-out-of-3:G 

subsystems. Negi and Singh (2015) studied reliability of a system with weighted 

subsystems coupled in series. Nautiyal et al. (2020) assessed reliability and traits of 

k-out-of-n mesh.  

The reliability of a k-out-of-n: G system with similar units is given by: 

∑.
 

 
/ (  ( ))

 

 

   

(    ( ))
    

 

(3.2.1) 

where   ( ) is the reliability of each component. 

Availability has consistently remained a burning issue in the subject of 

reliability engineering as it is the principal characteristic of operation and design of all 

engineering systems. A lot of research has been carried out for determining the 

availability of k-out-of-n systems. Related writings could be seen in Kenyon and 
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Newell (1983); McGrady (1985); Moustafa (2001); Frostig and Levikson (2002); 

Sharma and Kumar (2017). A lot of research is carried out on the availability of 

systems subject to single FM. Sarkar and Sarkar (2000) and Cui and Xie (2005) 

calculated point and limiting availability for a system with single FM under different 

policies. However, one can see that the systems can fail due to many mutually 

exclusive reasons, for example electrical components can fail because of short and 

open circuit. A fire alarm may fail due to a dead battery, defective detector or faulty 

wiring. Moustafa (1996a) analyzed a k-out-of-n:G system with multiple failure 

modes (FMs) and found its limiting availability. In Moustafa (1996b), author 

calculated the transient reliability for k-out-of-n:G systems encountering two FMs.  

In several existent maintenance models, it is supposed that the failures are 

identified in no time. Meanwhile, in some realistic systems like safety valves in 

protection systems (Tang et al., 2013), failures are found to be hidden/ unrevealed. 

When the system experiences a hidden failure, inspection policy in general is 

employed to figure out if a failure has taken place or not. Different types of 

inspections are mentioned in the literature like continuous monitoring (Liao et al., 

2006), periodic inspections (Li, 2016) and non-periodic inspections (Berrade et al., 

2013).  The customary exercise is to employ periodic inspection in applications since 

it is easier to schedule and more feasible.  

Maintenance policy plays important role in minimizing systems expected total 

costs or maximizing its reliability. If system’s performance is not found up to mark 

then, preventive repair (PR) is performed to achieve satisfactory reliability 

performance. In most of the systems like power plants, the cost of the system 

downtime/penalty cost might be significantly higher as compared to its maintenance 

costs. So, optimal inspection interval is chosen, which helps in reducing the total cost 

of maintenance. Pham and Wang (2000) gave maintenance policy which may help in 

reducing the frequency of unexpected CR activities at relatively low costs. Recently, 

maintenance service of k-out-of-n system is thoroughly taken into account by many 

investigators. Babishin and Taghipour (2016) provided the inspection and 

maintenance optimization of k-out-of-n system. Park et al. (2019) gave optimality 

rule for a maintained k-out-of-n system. 



52 

 

 

The earlier investigations on k-out-of-n:G system either considered a 

completely noticeable system or took negligible repair time. No research has yet been 

undertaken to figure out the availability and optimal inspection interval for a k-out-of-

n:G system with hidden failures and taking non-negligible time for repair of failures. 

Here, we propose to study the point and limiting availability of a periodically 

inspected k-out-of-n:G system encountering hidden failures and taking random time 

for their repairs. The long-run average cost rate (LRACR) is also obtained and a 

condition for an optimal inspection interval in order to reduce the expense of system 

maintenance is given. 

3.2.1 Notations 

  Total FMs 

  Inspection period 

  Total inspections till first failure in a renewal cycle 

   Failure time of      FM,              

  ( ) Hazard rate function of                  

   ( ) Distribution function of each component for     FM,            

  ( ) Reliability function of                   

 ( ) Survivor function of the system 

 ( ) Cumulative distribution function 

   Repair time of       FM,              

  ( ) Distribution function of                  

  ( ) Density function of                  

 ( ) Systems status at time   

 ( ) Systems Point availability 

  Systems Limiting availability 

  Systems uptime in a renewal cycle 



53 

 

 

  Systems downtime in a renewal cycle 

  Overall length of a renewal cycle 

   LRACR 

  Overall expense in a renewal cycle 

     Inspection cost 

    Cost of repair of     FM,              

   Penalty cost 

 

3.2.2 System description 

The precise assumptions employed in our proposed work are summarized below:  

(i)  System is k-out-of-n:G with all the n units being identical. 

(ii)  All units of system are either operational or are in down state. 

(iii)  System fails as soon as (n-k+1) units out of n units fail.  

(iv)  Failures are detected through inspections. 

(v)  Inspection interval is taken to be I. 

(vi)  Inspection policy is age-based, i.e. the time for repair is not included in I. 

(vii)  While inspecting a system, if it is found working then a PR is carried out 

and the PR is assumed to be instantaneous.  

(viii)  The system failure is categorized into   FMs independent of each other. 

The failure time of each FM is denoted by    (           ) with 

distribution function of each component being    ( ). 

(ix)  If the system failure occurs because of the     failure mode then a 

corrective repair (CR) is performed taking time      (           ) with 

distribution function   ( ), where    (           ) are random variables 

independent of each other. 

(x)  The repairs are assumed to be perfect. 
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(xi)  Time interval from setting up of a new system till first CRs termination or 

duration in the midst of two successive terminations of CRs is defined a 

renew cycle.  

3.2.3 Systems point availability 

From Assumptions (viii), the lifespan of the system, K, is clearly demonstrated 

as minimum of (          ). As    (           ) are random variables 

independent of each other, hence, we get  ( ) as:                                                      

 ( )  ∏ (    )  ∏  ( )

 

   

 

   

 (3.2.2) 

where,   ( ) is obtained using equation (3.2.1) and given by 
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/ (   ( ))

 

 

   

(     ( ))
    

Proposition 1: The proposed systems point availability is obtained as 
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Proof: We define a Markov process accordingly as 

 ( )  {
          when                                           
          when                                             

 

Based on Assumptions (v), (vii) and (x), the probability of working of system 

at every planned inspection is  ( ). Hence, Probability mass function of M satisfies 

 (   )  ( ( ))
 
 ( ) (3.2.3) 
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Point availability is the probability that a system will be operational at a 

specific time,  . Hence, it may be given as 

 ( )   ( ( )   ) 

By using total probability decomposition method, point availability could also 

be written as 

 ( )  ∑  ( ( )       )
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 (3.2.4) 

The first term of equation (3.2.4), represents the occurrence of first failure 

before time  . The second term represents that no failure takes place before time   and 

may be given as 
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 (3.2.5) 

Using the independence of FMs, equation (3.2.3) could also be expressed as 

 (   )  ∑ (       )
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Again applying independence of FMs and using equation (3.2.6), first term of 

equation (3.2.4) can be rewritten as 

∑  ( ( )       )
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(3.2.7) 

As type   failure occurs, respective CR taking random time    (           ) 

takes place. Therefore, 
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Hence, putting equation (3.2.8) in equation (3.2.7), we get  
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(3.2.9) 

Substituting equations (3.2.5) and (3.2.9) in equation (3.2.4), we get the point 

availability of the system to be 
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(3.2.10) 

3.2.4 Systems limiting availability 

Limiting availability is defined as the ratio of systems expected uptime in a 

renewal cycle to the expected overall length of a renewal cycle. 

Proposition 2: The limiting availability of the proposed system is obtained as:  

  
∫  ( )  
 

 

  ∑  (  ) ∫  ( )  ( )  
 

 
 
   

 

Proof: Let   demonstrate the systems uptime in a renewal cycle while   represent the 

total length of a renewal cycle. Then,                             
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 ( )

 ( )
 (3.2.11) 

Let system fails in the time period ,   (   ) - and assume Z to be the time 

of system operation after     inspection in a renewal cycle. Then, Z lies between 

  and  . 

Hence,   can be given by                   

       

Using equation (3.2.6), we can find  ( ) as 
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(3.2.12) 

Now, we find  ( ) 

 ( )  ∫(  
 ( )

 ( )
)   

 

 

 

                             
  ( )  ∫  ( )  

 

 

 ( )
 (3.2.13) 

Putting equation (3.2.13) in equation (3.2.12), we get 

         ( )  
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 (3.2.14) 
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Now, expected overall length of renewal cycle is presented by 
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Hence,  ( ) equals 
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 (3.2.15) 

Hence, using equations (3.2.11), (3.2.14) and (3.2.15), we get limiting 

availability in this case as 
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 (3.2.16) 

 

3.2.5 Systems long-run average cost rate 

The LRACR is expressed as the ratio of expected total expense in a renewal 

cycle to that of the expected length of a renewal cycle. 
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Proposition 3: The LRACR of the proposed system is obtained as: 
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Proof: Let   be the overall expense in a renewal cycle which includes the inspection 

cost, cost of CR and penalty cost at the time of system down time. 

Then, LRACR,    equals 
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Since, it is presumed that     inspections are conducted in a renewal cycle. 

Hence,  ( ) will be given as 
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The expected downtime by using equations (3.2.14) and (3.2.15) is obtained as 
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Hence, using equations (3.2.17) and (3.2.18), we have 
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Hence, using equations (3.2.15) and (3.2.19), LRACR is obtained to be 
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 (3.2.20) 

For obtaining the optimal inspection period, we solve for distinct values of    

the LRACR and estimate the value of   for which the cost rate is minimum. This can 

be done numerically or graphically using an online tool. 

3.3 Model [3]: Modeling periodically inspected k/r-out-of-n system 

Redundancy is a procedure through which systems availability and reliability 

can be improved. k-out-of-n:G system is most frequently used redundant system, 

which is active if at least k of its n units are working. Many studies are done on k-out-

of-n:G system. Munjal and Singh (2014) studied reliability of a system embodying 

parallel-connected pair of 2-out-of-3:G subsystems. Negi and Singh (2015) studied 

reliability of a system with weighted subsystems coupled in series. Here, we introduce 

a new redundant k/r-out-of-n configured system.  

The proposed system is based on the realistic condition: Some units of a 

system being unavailable at some point do not mandatorily mean that the system is 

down at that point. Even if some units fail the system could fulfill some 
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functions/missions to certain extent. To illustrate, we take an example of a cell phone, 

carrying out numerous operations such as, making voice and video calls, internet 

surfing, clicking pictures and many more. For instance, the calling operation doesn’t 

work but, at the same time the internet surfing is responding, in such case the phone is 

said to be in a defected state. If both the mentioned operations are non-functioning, 

then the cell phone is said to be completely failed. Other examples are- motor vehicles 

are drivable with one punctured tire, a large structure propped by welded joints; the 

structure fails only after the failure of a series of supporting joints, pumps in boiler 

feed system, gear system (Li et al., 2017). 

Availability has consistently remained a burning issue on the subject of 

reliability engineering as it is the principal characteristic of operation and design of all 

engineering systems. Maintenance cost also plays an important role in system 

engineering. A lot of research is carried out on the analysis of cost and availability of 

systems with multiple states. Related literatures could be viewed in Gupta and 

Gupta (1986) where both expected profit and availability of the system composed of 

two subsystems coupled in series was calculated. Moustafa (2002) discussed 

minimization of unavailability of multistage degraded system. El-Damcese and 

Shama (2013) studied availability and reliability of a system incorporating 

degradation. 

In several existent maintenance models, it is supposed that the failures or 

system states are identified in no time. Moreover, in some realistic systems like safety 

valves in protection systems (Tang et al., 2013), failures/system states are found to be 

hidden/unrevealed. To figure out the state of the system, inspection policy in general 

is employed in such cases. Different types of inspections are mentioned in the 

literature like continuous monitoring (Liao et al., 2006), periodic inspections (Li, 

2016) and non-periodic inspections (Berrade et al., 2013).  Out of several inspection 

policies the customary exercise is to employ periodic inspection in applications since 

it is more convenient and feasible.  In this study, periodic inspection is proposed to 

disclose the state of the system. 
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Maintenance policy plays important role in minimizing systems expected total 

costs or maximizing its reliability. It is worth noting that optimal maintenance 

modeling has been considered in many multiple failure states systems (Xu and Hu, 

2008; Golmakani and Moakedi, 2012; Liu et al., 2013; Zhang et al., 2016). In most 

of the systems like power plants, the cost of the system downtime/penalty cost might 

be significantly higher as compared to its maintenance costs. So, optimal inspection 

interval is chosen, which helps in reducing the total cost of maintenance. Related 

studies could be accessed in Nourelfath and Ait-Kadi (2007), Peng et al. (2009) and 

Li and Peng (2014).Whereas, for systems like satellite systems and nuclear 

powerhouse, availability plays important role compared to the service cost. Optimal 

maintenance policy based on availability can be accessed in Berenguer et al. (2003) 

and Khatab et al. (2014). Cost and availability analysis have been conducted on 

multi-state system with its units having multiple states (Ruiz-Castro, 2020) but no 

such analysis has been performed on systems having multiple states based on number 

of its units failed.  In this study, we consider optimal inspection based on both 

availability and cost. 

The current study introduces a k/r-out-of-n configured system having three 

states and defined as: The system works normally till failure of units is less than r 

whereas the system degrades upon failure of r units and it fails completely as soon as 

k units fail.  

In particular system has three states defined as:  

1.  Normal state: System works properly if number of failed units < r.  

2.  Degraded state: System works/fails partially if r ≤ number of failed units              

< k.  

3.  Complete failure state: System fails completely if k ≤ number of failed 

units. 

If system has n identical units then, the probability of occurrence of 

partial/complete failure   ( )   ( ) are given by 
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  ( )  ∑.
 

 
/ (   )     

   

   

 (3.3.1) 

  ( )  ∑.
 

 
/ (   )     

 

   

 (3.3.2) 

where p is the reliability of each unit. 

Here, we propose to study the point and limiting availability of periodically 

inspected k/r-out-of-n system and find its long-run average cost rate (LRACR) and 

thus give a condition for an optimal inspection interval so as to reduce the expense of 

system maintenance and maximize its availability. 

3.3.1 Notations 

  Inspection period 

  Total inspections till first failure in a renewal cycle 

  Hazard rate of  each unit  

      Repair rate if system is in degraded/completely failed state 

  ( )   ( ) Probability of occurrence of partial/complete failure  

  ( )   ( ) Density function for repair  of  degradation/complete failure 

      Repair time of degraded/completely failed state 

 ( ) Systems status at time   

 ( ) Systems point availability 

 ( ) Systems reliability function 

  ( ) Probability of the system being in normal state 

  Systems limiting availability 
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  Systems uptime in a renewal cycle 

  Systems downtime in a renewal cycle 

  Total length of a renewal cycle 

    LRACR 

  Overall expense in a renewal cycle 

     Inspection cost 

      Cost of repair of  a degradation/complete failure 

   Penalty cost 

 

3.3.2 System description 

The precise assumptions employed in our proposed work are summarized below:  

(1) System is k/r-out-of-n with all the n units being identical. 

(2) All units of system are either operational or are in a down state. 

(3) System has three states: Normal, Degraded and Completely failed. 

(4) Failure of each unit is independent and follows exponential distribution. 

(5) Failures are detected through inspections only. 

(6) Inspection interval is taken to be I. 

(7) Inspection policy is age-based i.e., the time for repair is not included in I. 

(8) If the system is found degraded or completely failed then a perfect corrective 

repair (CR) is performed following exponential distribution. 

(9) Time interval from setting up of a new system till first CRs termination or 

duration in the midst of two successive terminations of CRs is defined a 

renew cycle.  
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3.3.3 Systems point availability 

Proposition 1: The proposed systems point availability is obtained as 

 ( )   ( )  ∑  (     ) ∫  (  (   )   )   
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 (     )    ((   ) )    (  ) 

and 

 (     )    ((   ) )    (  ) 

Proof: We define a Markov process as 

 ( )  {

     when                                                            
       when                                                                  
      when                                                                   

 

The systems point availability for the case     will be clearly equal to 

reliability since no maintenance is taking place till time  .  

i.e.,   ( )   ( ) for     

The systems point availability may be given as 

 ( )   ( ( )   )   ( ( )   ) 

   ( )    ( ) (3.3.3) 

Now, firstly we derive   ( ) 
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(3.3.4) 

The third term of equation (3.3.4) represents that no degradation or complete 

failure takes place before time   and hence it is equivalent to 

     ∑  ( ( )       )

 

  ⌊
 
 
⌋

      ( )    ( ) (3.3.5) 

Since,   (     )  (     ) denotes the probability of the event that the 

system is in the normal state before time    and a degradation/complete failure 

occurred during time interval ,   (   ) - hence, we have 

 (     )    ((   ) )    (  ) 

where   (  ) denotes the probability of occurrence of complete failure before time 

  , and 

 (     )    (  )    ((   ) )   (     ) 

where   (  ) is probability that system is in normal state till time   . So,   (  )  

  ((   ) ) denotes that a degradation/complete failure occurred in the time 

interval ,   (   ) -. So,   (  )    ((   ) )   (     ) gives the 

probability that system was in a normal state till time      and degradation occurred 

in the time interval ,   (   ) -.  
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Also,   ( )      ( )    ( ). Hence, 
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(3.3.7) 

Using equations (3.3.5), (3.3.6) and (3.3.7), we have 
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Similarly,  
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Hence, putting equations (3.3.8) and (3.3.9) in equation (3.3.3), we get 
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(3.3.10) 

 

3.3.4 Systems limiting availability 

The limiting availability is a critical performance index of any system and can 

be defined as the ratio of systems expected uptime in a renewal cycle to the expected 

total length of a renewal cycle. 

Proposition 2: The limiting availability of the proposed system is obtained as 
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Proof: Let    and    be time for first inspected complete failure/ degradation in a 

renewal cycle and    
       

 
 be the exact time of first complete failure/ degradation 

in a cycle. 

Let U be the uptime then, 
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Clearly,    (   )  so, 
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(3.3.12) 

Using equations (3.3.11) and (3.3.12), limiting availability equals 
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Remark 1: If A of equation (3.3.13) be expressed as  

  
 ( )

 ( )   ( )
 

 which could also be rewritten as  

  
 

   ( )  ( )
 

So, in order to maximize the limiting availability we need to minimize  ( ), where  

 ( )  
 ( )

 ( )
 (14) 

i.e., we have to find    such that H(I) is minimum where    denotes the optimal 

interval. 

3.3.5 Systems long-run average cost rate 

The LRACR is expressed as the ratio of expected total expense in a renewal 

cycle to that of the expected length of a renewal cycle. 

Proposition 3: The LRACR of the proposed system is obtained as 
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Proof: Let   be the overall expense in a renewal cycle which includes the inspection 

cost, cost of CR and penalty cost at the time of system down time. 

Then, LRACR,    equals 

   
 ( )

 ( )
 (3.3.15) 

Here, the expected total cost is presented as  

 ( )       (   )   (  )     ( ) (3.3.16) 
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Since, it is considered that     inspections are conducted in a cycle, so 
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 (3.3.17) 

The repair takes place in case of degraded and failed state hence the expected 

CR cost can be given by 
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 (3.3.18) 

The expected downtime using equations (3.3.11) and (3.3.12) is obtained as 
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 (3.3.19) 

Hence, using equations (3.3.12), (3.3.16), (3.3.17), (3.3.18), (3.3.19) and 

(3.3.15), LRACR is obtained to be 
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(3.3.20

) 

 

Remark 2: For obtaining the optimal inspection period (I
*
), we solve for distinct 

values of    the LRACR and estimate the value of   for which the cost rate is 

minimum. This can be done either numerically or graphically using some online tool. 
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3.4  Model [4]: Availability and cost assessment of systems with dormant failure 

undergoing sequential inspections 

In large number of the existent maintenance models, the failures are identified 

in no time. Meanwhile, in some realistic systems like Integrated digital 

communication system (Liu et al., 2013), Remote power feeding systems (Kojima 

and Asakawa, 2004) and safety valves in protection systems (Tang et al., 2013), 

failures are not self-announcing or are unrevealed. Such failures are termed 

dormant/hidden failures. Dormant failures mainly occur in the systems which rarely 

operate or in the systems with one or more units aligned in parallel with no indication 

of failure of each unit. Like, the identical boiler feed water pumps connected in 

parallel in order to receive a steady discharge. 

When the system experiences dormant failures, inspection policy in general is 

employed to figure out if a failure has taken place or not. Different types of 

inspections are mentioned in the literature like continuous monitoring (Liao et al., 

2006; Zhou et al., 2006), periodic inspections (Chelbi et al., 2008) and 

sequential/non-periodic inspections (Berrade et al., 2013; Zhao and Nakagawa, 

2015). For the systems which require less inspections in early stage of working and 

more inspections as the system ages, continuous and periodic inspections generally 

result in higher inspection cost. Sequential inspection is feasible in such cases. 

Availability has consistently remained a burning issue on the subject of 

reliability engineering as it is the principal characteristic of operation and design of all 

engineering systems. A lot of research is conducted on the availability of the systems 

subject to dormant failures undergoing inspections. Sarkar and Sarkar (2000) 

calculated limiting and point availability for a system with hidden failure inspected at 

determined calendar times. Cui and Xie (2005) also did identical work under age-

based inspection policy by taking into account random time for repair. Xu and Hu 

(2008) investigated the limiting availability of the system undergoing both condition 

and time based maintenance. Qiu and Cui (2019b) also derived the limiting and point 

availability of a system with dormant failures inspected at constant age intervals. In 

our study sequential inspection is applied, i.e. it could be applied to the systems which 
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are likely to fail with aging like systems which are subject to consumption (brakes, 

tyres), corrosion (pipelines) or erosion (hydraulic structures). 

Most literatures on maintenance modeling assume negligible downtime due to 

repairs, replacements or inspections (Ram et al., 2013; Qiu et al., 2019b). However, 

in some cases, the time for repair and maintenance is non-negligible. Since, most 

systems are kept inoperable for various maintenance actions and repairs (Qiu and 

Cui, 2019a). In this model we assume the time for repair to be non-negligible. 

Maintenance cost has been vastly used in government agencies and industries 

varying from simple tools to complex designs like large-scale telecommunication 

networks. For these applications, some cost parameters are customary while others are 

not. For example, repairable systems generally include the repair cost. Maintenance 

cost is considered as a significant element by many authors in their work (Qiu et al., 

2018). Wang and Pham (2006) investigated the maintenance cost of a series system 

incorporating imperfect repair. Nourelfath and Ait-Kadi (2007) found optimal cost 

of multi-state series–parallel system, in accordance with the reliability constraints. 

Tian and Liao (2011) calculated cost for a conditionally monitored system inspected 

at fixed intervals. Golmakani and Moakedi (2012) found overall cost of a system 

with soft and hard failure. Singh et al. (2013) calculated the cost rate of a series-

parallel system. Qiu et al. (2017) found the LRACR of the system subject to dormant 

failure undergoing inspection at constant time differences. Tian and Wang (2020) 

found the optimal repairs of a wind turbine device on the basis of cost or availability. 

Although, a lot of investigation is being done to evaluate the availability and 

cost rate of systems with dormant failure; undergoing periodic inspections. But no 

such research has yet been conducted on such systems undergoing sequential 

inspections. So, here we consider a perfectly repaired system with dormant failure and 

undergoing inspections at time                               , in 

each cycle. Since perfect repair results to a good/new state and again inspection in 

new cycle is conducted in a similar manner, i.e. initial inspection is after time   then 

at time      and so on. Here, we propose to study the point and limiting availability 

of the system undergoing aforementioned inspection and find its long-run average 
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cost rate (LRACR). The outcome on systems cost rate and availability extracted in 

this study can be implemented simply to most of the systems facing dormant failures.  

3.4.1 Notations 

  Initial inspection time 

  Total inspections till first failure in a renewal cycle 

 ( ) Repair density function  

 ( ) Reliability 

 ( ) Systems status at time   

 ( ) Systems point availability 

  Systems limiting availability 

  Systems uptime in a renewal cycle 

  Systems downtime in a renewal cycle 

  Overall length of a renewal cycle 

   LRACR 

  Overall expense in a renewal cycle 

     Inspection cost 

   Repair cost 

   Penalty cost due to system downtime 

 

3.4.2 System Description 

A single-unit system subject to dormant failures is considered in the present 

study. The considered system may be either operational or in down state. Since, 
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failures are dormant or we can say failures are not self-revealing, so inspections are 

conducted to reveal the failure. Inspections are considered to be perfect, i.e. they 

correctly reveal whether a failure occurred or not. The system is modeled under 

following presumptions: 

(i) Inspections are assumed to be conducted at time             

      till its failure detection, and after repairs again it is inspected in the 

same manner.  

(ii) Inspections are supposed to take negligible/very less time.  

(iii) The time for repair is not included in the inspection interval. 

(iv) At inspection if the system is found failed then a perfect corrective repair 

(CR) is performed otherwise no action is performed. 

(v) Time interval from setting up of a new system till first CRs termination or 

duration in the midst of two successive terminations of CRs is defined a 

renew cycle.  

Figure 3.4.1 gives a probable specimen of the system, where the initial 

inspection time is  . As shown in the Figure 3.4.1, there is no system failure in the 

time interval ,      -. First failure occurs between inspections second and third, 

and from then till the third inspection, system is at rest and no CR is performed and 

then at third inspection a CR is carried out taking some random time. After 

completion of the CR, the system is renewed and new cycle started. 

 

Figure 3.4.1: A probable specimen of the system under sequential inspection 
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3.4.3 Systems point availability 

Proposition 1: The proposed systems point availability is obtained as 
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Proof: We define a Markov process as follows  

 ( )  {
                                                                       
                                                                 

  

Then, the point availability will be given by 

 ( )   ( ( )   ) (3.4.1) 

Since, no inspection has taken place till time  . Hence, 

 ( )   ( )           (3.4.2) 

Now, for any   in a cycle such that 

                                                

i.e., for 
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5     4

      

   
5          

There are two cases either no failure would have occurred till time τ or it 

would have been failed before time τ. Hence, equation (3.4.1) becomes 
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 (   ) (3.4.3) 

*   + represents that first failure occurred during 0 .
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/1 
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Let   denotes time for system failure. Then, the frequency function of μ satisfies 
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Also, as the failure occurs, CR takes place with repair density function  ( ). 
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Hence, on substituting equations (3.4.4) and (3.4.5) in equation (3.4.3), we get                                                                                   
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(3.4.6) 
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Remark 1: Evidently, our model is the extension of model considering system with 

dormant failure undergoing periodic inspections. Since     implies inspections are 

carried out at time           which is the case of periodic inspection. 

For    , we get the point availability as 
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Special case: In the case of exponential repair times, i.e. putting  ( )        in the 

above remark, we get availability for periodic inspections subject to exponential 

repair time as 
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3.4.4 Systems limiting availability 

The limiting availability is defined as the ratio of systems expected uptime in a 

renewal cycle to the expected overall length of a renewal cycle. 

Proposition 2: The limiting availability of the proposed system is obtained as 
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where         ( .
    

   
/). 

Proof: Let   demonstrate the systems uptime in a renewal cycle while   represent the 

overall cycle length. Then,                             

  
 ( )

 ( )
 (3.4.7) 
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It is evident that, the systems expected uptime in a cycle equals 
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Now, expected total length of renewal cycle is presented by 
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(3.4.9) 

Hence, using equations (3.4.7), (3.4.8) and (3.4.9), we get limiting availability in this 

case as 
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(3.4.10) 
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Remark 2: For periodic inspection i.e. when    , limiting availability equals  
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4. Systems long-run average cost rate 

The LRACR is expressed as the ratio of expected overall expense in a renewal 

cycle to that of the expected overall length of a renewal cycle. 

Proposition 3: The LRACR of the proposed system is obtained as 

   

    8∑ (
      

   
)6 4 (

    

   
)5  4 (

      

   
)57 

   9    ( )∑ 6 4 (
    

   
)5  4 (

      

   
)57 

   

   8 ∑ (
      

   
)6 4 (

    

   
)5  4 (

      

   
)57 

    ∫  ( )  
 
 

9

 ∑ (
      

   
)6 4 .

    

   
/5  4 (

      

   
)57 

     ( )∑ 6 4 .
    

   
/5  4 (

      

   
)57 

   

  

Proof: Let   be the overall expense in a renewal cycle which includes the inspection 

cost, cost of CR and penalty cost at the time of system down time. 

Then, LRACR,    equals 
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 (3.4.11) 

Here, the expected total cost is presented as  
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Since, it was assumed that     inspections were conducted in a cycle. So, 
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The expected CR cost can be given by 
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The expected downtime using equations (3.4.8) and (3.4.9) is obtained as 
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Therefore, putting equations (3.4.13), (3.4.14) and (3.4.15) in equation 

(3.4.12), we get 
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(3.4.16) 

Hence, using equations (3.4.9), (3.4.11) and (3.4.16), LRACR is obtained to be  
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(3.4.17
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Remark 3: For periodic inspection (   ), the LRACR is reduced to 
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3.5  Model [5]: Modeling sequentially inspected system prone to degradation 

and shocks 

With the complexity of systems/machines, the possibility of economic loss 

due to failures/degradation of the system/machine increases. For most of the systems, 

like aircrafts, medical instruments, oil/gas pipeline systems, power generating 

systems, their quality generally undergoes continuous degradation with time owing to 

various factors like, corrosion, erosion, fatigue, wear etc. (Shafiee and Finkelstein, 

2015). Meanwhile, in several practical cases, the degradation rates are not constant, 

but depend on the condition/state of the system. A standard example is the 

propagation of cracks in metal components, where there is sharp rise in the rate of 

crack propagation on crack length reaching a definite level (and then the system/unit 

becomes defective) (Zhang et al., 2016). Zhang et al. (2016) developed a 

maintenance model, where maintenance is triggered based on the degradation level 

and age-threshold. 

Industrial systems generally experiences two modes of failure: Degradation-

based failure and abrupt/sudden failure (Qiu et al., 2018; Zhai and Ye, 2018). 

Numerous systems undergo failure on receiving a shock. For example, optical fiber 

could break through a transient strain (Castilone et al., 2000). While modeling health 

of human, a hip might fracture by falling (He et al., 2015). Jiang et al. (2015), Peng 

et al. (2010) and Rafiee et al. (2015) studied micro-electro-mechanical system prone 

to sudden debris and progressive wear. Zhou et al. (2016) proposed imperfect 

maintenance of a rented device undergoing shocks and degradation. 

However, most of the complex systems like oil pipelines and wind turbines are 

subjected to haphazard environmental pressures such as severe climate, stress, 

temperature and voltages (Nakagawa, 2007), which simultaneously affect their 

transition rates (Levitin and Finkelstein, 2018; Zhao et al., 2013). Less significance 

has been made on the effect on degraded state by deadly shocks. This encouraged us 

to examine the effect of deadly shocks and degradation on system states.  

Most complex systems experience hidden failures, i.e. system states are 

unrevealed and can be uncovered only through inspections. Inspection policies 
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generally used are: continuous inspection (Liao et al., 2006), periodic inspection 

(Chelbi et al., 2008) and sequential/non-periodic inspection (Berrade et al., 2013). 

While discussing inspection policy, considering only normal and failed state is not 

enough. Since inspections not only identifies the working or failed state but also 

determines if the system is degraded or not (Okumura et al., 1996).  

For the systems which require less inspections in early stage of working and 

more inspections as the system ages, continuous and periodic inspections generally 

result in higher inspection cost. However, sequential inspection is feasible in such 

cases (Alaswad and Xiang, 2017). Lam and Yeh (1994) reviewed and contrasted a 

sequential strategy to several continuous methods based on a Markov model. Jiang 

(2010) developed a sequential inspection system for identifying an item's status in 

order to avoid functional failure, in which the alert threshold inspection intervals were 

optimized utilizing two cost models. Zhao et al. (2015) created various 

approximation models for optimum strategies for inspection, maintenance and 

replacement; sequential maintenance plans were also created. Zhu et al. (2017) 

proposed a sequential inspection approach for stochastically degraded systems. Zhao 

et al. (2020) considered the sequential and periodic inspection optimization with 

mission failure probabilities.   

Meanwhile, inspections should be carried out carefully; since cost usually 

depends on inspection, i.e. upkeep cost plays a major role when modeling a system 

(Mahmoodi et al., 2020). Wang and Pham (2006) investigated the maintenance cost 

of a series system incorporating imperfect repair. Singh et al. (2013) calculated the 

cost rate of a series-parallel system. Qiu et al. (2017) examined the long-run average 

cost rate (LRACR) of the system subject to dormant failure undergoing inspection at 

constant time differences.  

The current model is engrossed on a single-unit system prone to degradation 

and deadly shocks. System can be in any of the following three states: Normal, 

degraded and failed. Nonetheless, the systems multistate structure complicates 

reliability assessment and system modeling. Lisnianski (2007) utilized the block 

diagram strategy for reliability assessment of a multi-state system. Dui et al. (2015) 
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employed stochastic process for evaluating multi-state systems reliability. Jafary and 

Fiondella (2016) used universal generating function for assessing the reliability of 

multi-state system with correlated failures. Meanwhile, multilevel inspection data was 

used by Liu and Chen (2017) for reliability assessment of a non-repairable multistate 

system.  

A newer inspection policy is proposed for the above defined three-state single-

unit system with the purpose of minimizing the loss incurred by degradation and deadly 

shocks. Inspections are done at times                   where      .  

The purposes of inspections are:  

a) Checking the state in which system lies.  

b) Disclosing the failure-type (owing to shock/degradation). 

If system is found partially/completely failed at inspection, the system is 

immediately renewed. The theoretical/research contribution of the current model 

involves:  

(iv) Newer model of maintenance/inspection policy is developed based on 

minimizing the loss due to system degradation and deadly shocks.  

(v) The effect of degradation along with shocks on the system state is 

examined.  

(vi) Concise results on reliability, availabilities (point and limiting) and 

LRACR of the proposed model are presented considering both the cases of 

random and constant repair time.  

3.5.1 Notations 

  Initial inspection period 

  Total inspections till first failure in a renewal cycle 

  ( )   ( ) Probability of occurrence of partial/complete failure  

      Constant repair time of degraded/completely failed state 
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      Random repair time of degraded/completely failed state 

  ( )   ( ) Density function of       

     ( ) Systems reliability of staying in normal state 

   ( ) Systems reliability 

 ( ) Systems status at time   

 ( ) Systems point availability 

  Systems limiting availability 

  Systems uptime in a renewal cycle 

  Systems downtime in a renewal cycle 

  Overall length of a renewal cycle 

  Overall expense in a renewal cycle 

     Cost per inspection 

      Cost of repair of  a partial/complete failure 

   Penalty cost 

 

3.5.2 Model Description 

(i) A repairable single-unit system is considered. 

(ii) System is prone to both degradation and shocks. 

(iii) The system can be in any of three states: Normal, Degraded and failed. 

(iv) If system enters degraded state it is said to be partially failed. 

(v) System states are detected through inspections only. 
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(vi) Inspections are presumed to be perfect and considered to take negligible/very 

less time. 

(vii) The system is inspected at times                   where a is 

assumed to lie in the interval (0,1]. 

(viii) System is repaired when it is found degraded or failed, i.e., in the case of 

partial or complete failure. 

(ix) Repairs are assumed to be perfect i.e. system becomes new on repair.  

(x) The time for repair is not included in the inspection interval. 

(xi) Time interval from setting up of a new system till first repair termination or 

duration in the midst of two successive terminations of repair is defined a 

renew cycle.  

(xii) Failure owing to degradation:  

Let the system enters the degraded state from normal state with rate   . Since, 

the degraded state generally quickens the speed of deterioration so the rate 

with which system enters failed state from degraded state is assumed to be 

  (     ). 

(xiii) Failure owing to shock:  

The system is also prone to deadly shocks, which may lead to the failure of the 

system. Deadly shocks means system fails instantly on arrival of shock. Let 

the rate at which system enters failed state from normal state be   . Since, the 

degraded system is more prone to shocks hence the system is assumed to enter 

the failed state from degraded state due to shocks at rate   (     ). 

3.5.3 Reliability Modeling 

Proposition1: The reliability of above defined system is obtained to be 

   ( )  (       )(           )             
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Proof: We define a Markov process as 

 ( )  {

     when                                                       
      when                                                     
      when                                                

 

Reliability of the system staying in normal state, denoted by     ( ) is equal 

to the probability that system has neither degraded nor failed till time  . 

i.e.      ( )   (                                                           )  

Since, the event of entering state 1 and state 2 from state 0 are mutually 

exclusive. Therefore, 

     ( )   (                                                       )

  (                                                        ) 

 ∫    
      

 

 

∫    
      

 

 

 

                                           (3.5.1) 

The probability of occurrence of partial failure before time   denoted by   ( ) is 

given by 

  ( )

  (                                                   )

  (                                                                          )

  (                                                   )

  (                                                                    ) 

 ∫   
      

 

 

∫    
      

 

 

 ∫   
      

 

 

∫    
      

 

 

 

 (       )      (       )       

       (       )(           )    (3.5.2) 

Let probability of occurrence of complete failure before time   be given by   ( )   
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Then,  

     ( )      ( )    ( ) 

So,   ( )  becomes 

  ( )      ( )       ( )                                                          

                    (       )(           )             (3.5.3) 

Hence, Reliability of the system, i.e. probability that system is operational till 

time   equals 

  ( )      ( ) 

             (       )(           )             (3.5.4) 

 

3.5.4 Systems Point-availability ( ( )) 

3.5.4.1 Systems point-availability under constant repair times 

Proposition 2: The point availability of the aforementioned system given that it takes 

constant time       if system is found partially/completely failed is obtained as 

 ( )    ( )           and 

 ( )    ( )  ∑  (     ) 4   4
      

   
5    5

   

   

 ∑  (     ) 4   4
      

   
5    5

   

   

 

     4
    

   
5     4

      

   
5          

where  

 (     )    ( 4
      

   
5)    ( (

    

   
)) 
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and 

 (     )    ( 4
      

   
5)    ( (

    

   
))  

Proof: System is operational at any time   means either it is in normal state or 

degraded state. Hence, the systems point availability may be given as 

 ( )   ( ( )        ( )   ) 

Since, the events {  ( )   } and {  ( )   } are mutually exclusive so, 

 ( )   ( ( )   )   ( ( )   ) 

Let us denote  ( ( )   ) by   ( ) and  ( ( )   ) by   ( ). So, 

 ( )    ( )    ( ) (3.5.5) 

Since, no inspection has taken place till time  . Hence, 

 ( )    ( )           (3.5.6) 

Now, for any   in a cycle such that 

                                                

i.e., for 

 4
    

   
5     4

      

   
5          

Firstly we derive   ( ) 

  ( )   ( ( )   ) 

             ∑  ( ( )       )

 

   

 

Here, *   + represents that total m inspections were conducted before a 

failure occurred and first failure (complete/partial) occurred during the time 

0 .
    

   
/   .

      

   
/1 
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   ( )  ∑  ( ( )       )

   

   

 ∑  ( ( )       )

 

   

  

            ∑  ( ( )   |     )

   

   

 (     )

 ∑  ( ( )   |     )

   

   

 (     )

 ∑  ( ( )       )

 

   

 

 

 

 

(3.5.7) 

The third term of equation (3.5.7) represents that no degradation/complete 

failure takes place before time   and hence it is equivalent to 

∑  ( ( )       )

 

   

      ( )    ( ) (3.5.8) 

Now we derive the first and second term of equation (3.5.7). First failure can 

be a partial/ complete failure. Hence, we have 

 (     )    ( 4
      

   
5)    ( (

    

   
)) 

and 

 (     )    ( 4
      

   
5)    ( (

    

   
)) 

Since, perfect repair taking constant time       is carried out if system is 

found partially/completely failed. Hence, we have 

  ( ( )   |     )     4   4
      

   
5    5 (3.5.9) 

and 

  ( ( )   |     )     4   4
      

   
5    5 

(3.5.10) 

 



93 

 

 

Therefore, using equations (3.5.7), (3.5.8), (3.5.9) and (3.5.10), we have 

  ( )      ( )    ( )

 ∑  (     )  4   4
      

   
5    5

   

   

 ∑  (     )

   

   

  4   4
      

   
5    5 

 

 

(3.5.11) 

Similarly,   ( ) is obtained to be 

  ( )    ( )  ∑  (     )  4   4
      

   
5    5

   

   

 ∑  (     )

   

   

  4   4
      

   
5    5 

 

 

(3.5.12) 

Hence, putting equations (3.5.11) and (3.5.12) in equation (3.5.5), we get the point 

availability as 

 ( )    ( )  ∑  (     ) 4   4
      

   
5    5

   

   

 ∑  (     ) 4   4
      

   
5    5

   

   

 

     4
    

   
5     4

      

   
5          

 

(3.5.13) 

 

3.5.4.2 Systems point-availability under random repair times 

Proposition 3: The point availability of the above defined system given that it takes 

random time       if system is found partially/completely failed is obtained as 

 ( )    ( )           and 
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 ( )    ( )  ∑  (     ) ∫  4   4
      

   
5   5  ( )  

   (
      

   
)

 

   

   

 ∑  (     ) ∫  4   4
      

   
5   5  ( )  

   (
      

   
)

 

   

   

 

     4
    

   
5     4

      

   
5          

Proof: Since, perfect repair taking random time       is carried out if system is found 

partially/completely failed. Hence, equation (3.5.9) is modified to 

 ( ( )   |     )  ∫  ( ( )   |          )

   (
      

   
)

 

  ( )   

                                    ∫  4 4   4
      

   
5   5   5

   (
      

   
)

 

  ( )   

                                              

 ∫   4   4
      

   
5   5  ( )  

   (
      

   
)

 

 

(3.5.14) 

Similarly, equation (3.5.10) becomes 

 ( ( )   |     )  ∫  ( ( )   |          )

   (
      

   
)

 

  ( )   

                                    ∫  4 4   4
      

   
5   5   5

   (
      

   
)

 

  ( )   
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 ∫   4   4
      

   
5   5  ( )  

   (
      

   
)

 

 

     

(3.5.15) 

Hence, using equations (3.5.7), (3.5.8), (3.5.14) and (3.5.15), we have 

  ( )      ( )    ( )

 ∑  ( 

   

   

    ) ∫   4   4
      

   
5   5  ( )  

   (
      

   
)

 

 ∑  ( 

   

   

    ) ∫   4   4
      

   
5   5  ( )  

   (
      

   
)

 

 

 

 

(3.5.16) 

Similarly,   ( ) is obtained to be 

  ( )    ( )

 ∑  ( 

   

   

    ) ∫   4   4
      

   
5   5  ( )  

   (
      

   
)

 

 ∑  ( 

   

   

    ) ∫   4   4
      

   
5   5  ( )  

   (
      

   
)

 

 

 

 

(3.5.17) 
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Now, putting equations (3.5.16) and (3.5.17) in equation (3.5.5), we get the 

point availability as 

 ( )    ( )  ∑  ( 

   

   

    ) ∫  4   4
      

   
5   5  ( )  

   (
      

   
)

 

 ∑  ( 

   

   

    ) ∫  4   4
      

   
5   5  ( )  

   (
      

   
)

 

 

     4
    

   
5     4

      

   
5          

 

(3.5.18) 

 

Remark 1: Evidently, our model is the extension of model considering periodically 

inspected single-unit system prone to degradation and shock. Since     implies 

inspections are carried out at time           which is the case of periodic 

inspection. 

For    , 

 (     )    ((   ) )    (  ) 

and 

 (     )    ((   ) )    (  ) 

Hence, we get the point availability as: 

 In case of  constant repair time, point-availability equals 

 ( )    ( )           and 
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 ( )    ( )  ∑  (     ) (  (   )    )

   

   

 ∑  (     ) (  (   )    )

   

   

 

         (   )          

 In case of  random repair time, point-availability equals 

 ( )    ( )           and 

 ( )    ( )  ∑  (     ) ∫  (  (   )   )  ( )  

  (   ) 

 

   

   

 ∑  (     ) ∫  (  (   )   )  ( )  

  (   ) 

 

   

   

 

         (   )          

3.5.5 Systems Limiting availability ( ) 

3.5.5.1 Systems limiting availability under constant repair times 

Proposition 4: The limiting availability of the proposed system given that system 

takes constant time       if system is found partially/completely failed is obtained as 

  
 ∑ (

      

   
) (     ) 

    ∑  (     ) 
   ∫   ( )  

 
 

 ∑ (
      

   
)( (     )  (     )) 

      ∑  (     ) 
      ∑  (     ) 

   

  

where         ( .
    

   
/). 

Proof: Limiting availability is the ratio of expected uptime to expected overall length 

of a cycle. So, we find both the length and uptime expectation. 

Let    and    be time for first inspected degradation/complete failure in a renewal 

cycle and    
          

  be the exact time of first degradation/complete failure in a 

cycle. 

Clearly,     .
      

   
/   
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Then, uptime(U) of the system equals 

  

{
 
 

 
  4

      

   
5            (

    

   
)    

   4
      

   
5 

    
                                (

    

   
)    

   4
      

   
5

 

So, expected uptime equals 

 ( )  ∑  ( |     (
    

   
)    

   4
      

   
5) ( 

 

   

    (
    

   
)    

   4
      

   
5)

 ∑  ( |     (
    

   
)    

   4
      

   
5) ( 

 

   

    (
    

   
)    

   4
      

   
5) 

 ∑  ( 4
      

   
5) (     )

 

   

 ∑  (    
 ) (     )

 

   

 

  ∑ 4
      

   
5 (     )

 

   

 ∑  (     )

 

   

∫  ( )  

 

 

              (3.5.19) 

where         ( .
    

   
/).  

Now, we derive the expression for expected length of a cycle. Let L denotes the cycle 

length. Then, 

  

{
 
 

 
  4

      

   
5            (

    

   
)    

   4
      

   
5 

 4
      

   
5            (

    

   
)    

   4
      

   
5
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Hence, expected length equals 

 ( )  ∑  ( |     (
    

   
)    

   4
      

   
5) ( 

 

   

    (
    

   
)    

   4
      

   
5)

 ∑  ( |     (
    

   
)    
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    (
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   4
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 ∑  4 4
      

   
5    5 (     )

 

   

 ∑  4 4
      

   
5    5 (     )

 

   

 

     ∑ 4
      

   
5 ( (     )   (     ))

 

   

   ∑  (     )

 

   

   ∑  (     )

 

   

 

 

(3.5.20) 

Now, using equations (3.5.19) and (3.5.20), limiting availability equals 

  
 ∑ (

      

   
) (     ) 

    ∑  (     ) 
   ∫   ( )  

 
 

 ∑ (
      

   
)( (     )  (     )) 

      ∑  (     ) 
      ∑  (     ) 

   

  (3.5.21) 

 

3.5.5.2 Systems limiting availability under random repair times 

Proposition 5: The limiting availability of the proposed system given that system 

takes random time       if system is found partially/completely failed is obtained as 

  
 ∑ (

      

   
) (     ) 

    ∑  (     ) 
   ∫   ( )  

 
 

 ∑ (
      

   
)( (     )  (     )) 

    ∑  (  ) (     )
 
    ∑  (  ) (     )
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where         ( .
    

   
/). 

Proof: The expression for length of a cycle changes in this case and is equivalent to 

 

  

{
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5            (
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5 

 4
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Therefore, expected length equals 

 ( )  ∑  ( |     (
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5) ( 

 

   

    (
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 ∑  ( |     (
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    (
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5    5 (     )
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          ∑ 4
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 ∑  (  ) (     )

 

   

 ∑  (  ) (     )

 

   

 

 

(3.5.22) 
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Hence, using equations (3.5.19) and (3.5.22), limiting availability for random 

repair time equals 

  

 ∑ (
      

   
) (     ) 

    ∑  (     ) 
   ∫   ( )  

 
 

 ∑ (
      

   
)( (     )  (     )) 

    ∑  (  ) (     )
 
    ∑  (  ) (     )

 
   

  
(3.5.23) 

Remark 2: For periodic inspection i.e., when    ,         ( .
    

   
/) tends 

to  . 

Hence, limiting availability is obtained as 

 In case of constant repair time, limiting availability of the system using equation 

(3.5.21) equals 

  
 ∑ (   ) (     ) 

    ∑  (     ) 
   ∫   ( )  

 
 

 ∑ (   ), (     )  (     )-
 

   
   ∑  (     ) 

      ∑  (     ) 
   

  

 In case of random repair time, systems limiting availability using equation 

(3.5.23) is equal to 

  
 ∑ (   ) (     ) 

    ∑  (     ) 
   ∫   ( )  

 
 

 ∑ (   ), (     )  (     )-
 

   
 ∑  (  ) (     )

 
    ∑  (  ) (     )

 
   

  

 

3.5.6 Systems LRACR (  ) 

3.5.6.1 Systems LRACR under constant repair times 

Proposition 6: The LRACR of the proposed system under the condition that system 

undergoes repair of constant times is obtained as 

   

 

    ∑ (
      

   
)( (     )  (     )) 

         ∑  (     ) 
         ∑  (     ) 

   

   ( ∑ (
      

   
)( (     )  (     )) 

     ∑ (
      

   
) (     ) 

    ∑  (     ) 
   ∫   ( )  

 
 

)

 ∑ (
      

   
)( (     )  (     )) 

      ∑  (     ) 
      ∑  (     ) 

   

    

Proof: The LRACR is the ratio of expected overall expense in a cycle to expected 

overall length of a cycle. 
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Let   be the overall expense in a renewal cycle which includes the inspection cost, 

cost of repair and penalty cost due to system down time. 

Then, LRACR (  ) equals 

   
 ( )

 ( )
 (3.5.24) 

Here, the expected total cost is expressed as  

 ( )       (   )   (  )     ( ) (3.5.25) 

Since, it is considered that     inspections are conducted in a cycle, so 

            (   )  ∑ 4
      

   
5 ( (     )   (     ))

 

   

 (3.5.26) 

The repair takes place in case of degraded and failed state taking times    and    

respectively. Hence, the expected repair cost can be given by 

 (  )       ∑  (     )

 

   

      ∑  (     )

 

   

 (3.5.27) 

The expected downtime using equations (3.5.19) and (3.5.20) is obtained as 

 ( )   ∑ 4
      

   
5 ( (     )   (     ))

 

   

  ∑ 4
      

   
5 (     )

 

   

 ∑  (     )

 

   

∫  ( )  

 

 

 

 

 

(3.5.28) 
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Finally, using equations (3.5.15), (3.5.17), (3.5.18), (3.5.19), (3.5.20) and (3.5.21), 

LRACR is obtained to be 
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)( (     )  (     )) 

         ∑  (     ) 
         ∑  (     ) 
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(3.5.2

9) 

 

3.5.6.2 Systems LRACR under random repair times 

Proposition 7: The LRACR of the proposed system undergoing repairs of random 

times is expressed as 
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)( (     )  (     )) 

       ∑  (  ) (     )
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    ∑  (  ) (     )

 
   

    

Proof: Since, the repair taking random time    and    is conducted in case of 

degraded and failed state. Hence, the expected repair cost can be given by 

 (  )     ∑  (  ) (     )

 

   

    ∑  (  ) (     )

 

   

 (3.5.30) 

The expression for expected downtime and  (   ) are same as obtained in 

above case. Hence, LRACR using equations (3.5.22), (3.5.24), (3.5.25), (3.5.26), 

(3.5.28) and (3.5.30) is obtained to be 
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(3.5.31

) 
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Remark 3: For periodic inspection (   ), the LRACR is reduced to the following 

 For the case of constant repair times.  

LRACR using equation (3.5.29) will be obtained as 

   

 

    ∑ (   ), (     )  (     )- 
         ∑  (     ) 

         ∑  (     ) 
   

   . ∑ (   ), (     )  (     )- 
     ∑ (   ) (     ) 
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      ∑  (     ) 
   

  

 

 In case of random repair times. 

 LRACR is obtained using equation (3.5.31) as follows 

   

    *∑ (   ), (     )  (     )- 
   +    ∑  (  ) (     )

 
       ∑  (  ) (     )

 
   

   2 ∑ (   ), (     )  (     )- 
     ∑ (   ) (     ) 
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3

 ∑ (   )( (     )  (     )) 
    ∑  (  ) (     )

 
    ∑  (  ) (     )

 
   

  

 

3.6  Model [6]: Modeling systems with revealing and non-revealing failures 

undergoing periodic inspection 

Numerous studies are being conducted on randomly failing systems 

undergoing inspections (Valdez‐Flores and Feldman, 1989; Sarkar and Sarkar, 

2000). A vast number of inspection models aim at finding the inspection times during 

which the systems need to be inspected, optimizing the overall cost or the availability 

of the system (Tian and Liao, 2011; Qiu et al., 2017). 

Inspection models are classified based on: Effect of inspection on system 

(whether inspection affects the degradation process of unit or not (Chou and Butler, 

1983)), inspection quality (whether inspections are perfect  or imperfect), inspection 

frequency (whether inspections are periodic or non-periodic), the system structure 

(whether system is single-unit or multi-unit) and systems failure type (whether failure 

is revealing or non-revealing) and lastly the evaluation criteria chosen (overall 

expected cost or availability). 

The type of failure plays a crucial role while dealing with the inspection 

models. There are situations where the unit may have some invisible malfunction but 
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the same is not revealed to the server during the operation. These are called non-

revealing failures. While, the revealing failures are abundantly clear. Speaking in 

terms of the performance, the system might seem to work correctly in case of non-

revealing failure but the system is having some hidden defect which is discovered by 

some special testing only. For example, in the event of an instrument measuring high 

pressure of a security monitoring system, sometimes the pressure might exceed its 

limit due to the hidden failure of the instrument, which will be disclosed only by some 

proof-test (Smith, 2017). 

For revealing failures, i.e. for failures that are detected on their occurrence; in 

such cases repair is initiated immediately. While for non-revealing failure, the failure 

is not discovered unless the system is inspected and repair is initiated on their 

detection only. The non-revealing failure usually occurs in standby units or those 

equipments which rarely operate like the flat backup tire in a truck is noticed only 

when it is needed for operation (Keles et al., 2017).  Another example is of a pressure 

switch, which is used to spot if oil pressure reaches a hazardous point. In order to 

detect the failure of switch, oil pressure is dropped below unsafe level and then it is 

detected there may be the case that pressure switch is failed (revealing failure) or 

might not show correct result (non-revealing failure). Most authors took systems with 

non-revealing failures into account in their studies (Wortman et al., 1994). Chelbi 

and Ait-Kadi (2000) calculated the limiting availability of the system with non-

revealing failures inspected at some predetermined intervals. Tang et al. (2013) 

evaluated the availability for systems with non-revealing failures undergoing 

inspections periodically.  

Meanwhile, some authors examined both revealing and non-revealing failures 

in their work (Adachi and Nishida, 1981; Phillips, 1981). Gertsbakh (1977) 

considered a situation where failures are at times revealing and at some instances 

failures are non-revealing. As in the case of a computer, the computational results 

might seem reasonable, despite the fact that they are wrong because of the hidden 

defect, which is revealed through special checking. Goel and Mumtaz (1994) 

analyzed a two-unit system undergoing revealing and non-revealing failures with 
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correlated failure and repair times. Baohe (2002) considered a multi-mode system 

undergoing periodic inspections having both revealing and non-revealing failures.  

Several works have been done on imperfect inspections resulting in undetected 

failure or false alerts (Kaio and Osaki, 1986; Sahraoui et al., 2013). Badia et al. 

(2001) presented an inspection policy for a one-unit system with non-revealing 

failures undergoing imperfect inspections. Bukowski (2001) considered both perfect 

and imperfect repairs and inspections in his study. Closed-form solutions for average 

availability, MTTF, and mean probability of failing dangerously were derived. 

Gertsbakh (2013) presented a fault sensing device that may result in imperfect 

signaling.  

An efficient inspection/maintenance policy holds a very important role in 

reducing the chances of system failure. For various complex systems, like satellite 

systems, availability holds larger importance than the upkeep cost (Berenguer et al., 

2003; Khatab et al., 2014). In many cases, achieving the extra availability could 

result in extra spending. However, it should be noted that over-spending in achieving 

higher availability may not always be beneficial and can also result in net losses. So, 

for such cases the optimization is done based on cost. The optimization work based on 

the cost could be viewed in Peng et al. (2009) and Pant et al. (2015). Badia et al. 

(2002) determined an imperfect inspection policy for a one-unit system undergoing 

both revealing and non-revealing failures incorporating maintenance irrespective of 

failure status. In this study, authors dealt only with the cost function of the system. 

Chelbi et al. (2008) evaluated the availability function of the one-unit system 

undergoing both revealing and non-revealing failures under the imperfect inspection 

policy incorporating maintenance at each inspection.    

As done in Badia et al. (2002) and Chelbi et al. (2008), the repair was 

conducted even if the system was working, such type of actions result in utilization of 

time and resources resulting in greater cost. Above discussions reveal that no work 

has yet been undertaken to calculate both the availability and cost function of one-unit 

system undergoing both revealing and non-revealing failure, subject to imperfect 

inspections including maintenance only when system is detected failed. To bridge this 



107 

 

 

gap, an inspection policy for a one-unit system under aforementioned conditions is 

proposed in this model. An optimal inspection strategy based on minimizing the cost 

or maximizing the availability for such systems is also developed here. 

The key contribution of the current model involves:  

 Newer inspection model is developed based on revealing and non-

revealing failures of single-unit system.  

 Concise results on availability (limiting) and long-run average cost rate 

(LRACR) of the proposed model are presented considering significant 

inspection and repair time. 

 Optimal inspection scheme is also developed relative to availability and 

LRACR.  

 A descriptive example of an electric motor is considered to explain the 

derived results. 

3.6.1 Notations 

X Systems failure time 

 ( ) Density function of X 

 ( ) Systems survivor function 

a Probability of the non-revealing failure 

α Probability of getting a false alert 

β Probability of unobserved failure 

   Mean inspection duration 

   Mean corrective maintenance duration 

   Mean system downtime duration because of false alerts 

   Number of inspections prior to failure 

   Number of inspections post-failure until detection 

   Number of false alerts 
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  Periodic inspection period 

   Optimal inspection period 

 ( ) Systems limiting availability 

 ( )  ( ) Systems mean uptime/downtime in a renewal cycle 

  ( )   ( )  Systems mean uptime/downtime in case of revealing failure 

   ( )    ( ) Systems mean uptime/downtime in case of non-revealing failure 

H Duration between occurrence and detection of failure 

 ( ) Mean overall expense in a cycle 

  ( )    ( )  Mean overall expense in a cycle for revealing/non-revealing failure 

   Cost per inspection 

   Cost of  corrective maintenance 

   Cost due to false alarm 

   Cost due to down-time 

 ( ) LRACR 

 

3.6.2 Model Description 

(1) A single-unit system is considered which has either revealing or non-revealing 

failure. 

(2) Non-revealing failure occurs with probability a and are detected by 

inspections only. 

(3) Inspections are conducted at times ƝI, Ɲ=1,2,3,… i.e. periodically. 

(4) Inspections need not be perfect, i.e. erroneous results may be given: it may 

wrongly claim that failure has taken place or, contrarily, a failure may persist 

undetected. 

(5) If the system breakdown is discovered at inspection, corrective maintenance is 

performed. It brings the system back to a new one. 
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(6) Time of inspection and maintenance is assumed to be non-negligible and 

known. 

(7) The lifetime probability distribution of the system is supposedly known.   

(8) Renewal cycle is the time in the midst of two consecutive corrective repairs. 

Figure 3.6.1 and Figure 3.6.2 describe the considered model. Figure 3.6.1 is 

plotted for the case when the system is prone to revealing failures, i.e. as soon as 

failure occurs corrective repair is conducted. However, Figure 3.6.2 illustrates that in 

the case of non-revealing failure, repair action is conducted only when the failure is 

revealed by the inspection.  

 

 

 

 

 

Figure 3.6.1: Renewal cycle in the case of revealing failure 

 

 

Figure 3.6.2: Renewal cycle in the case of non-revealing failure 
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3.6.3 Availability modeling 

Here the objective is to obtain the general expression for limiting availability. 

Limiting availability,  ( ), is defined as the proportion of expected up time to 

expected overall cycle length. 

i.e.,  ( ) is given by 

 ( )  
 ( )

 ( )   ( )
 

Considering two failure classes: non-revealing failure with probability a and 

revealing failure with probability    ,  ( ) is obtained to be 

 ( )  
(   )  ( )      ( )

,(   )  ( )      ( )-  ,(   )  ( )      ( )-
 (3.6.1) 

 

Case of revealing failure 

In this case, the system is subject Ɲ times to inspection and fails between ƝI 

and (Ɲ+1)I for Ɲ=1,2,3,… Hence, mean uptime in this case (  ( )) is given by  

  ( )  ∑ ∫  ( )  

(   ) 

  

 

   

 ∫  ( )  

 

 

 (3.6.2) 

The mean downtime for this case (  ( )) is given by 

  ( )     (  )        (  ) 

where 

 (  )  
 

 
∑   (     (   ) )

 

   

 ∑ , (  )   ((   ) )-

 

   

 (3.6.3) 

The number of false alerts, corresponding to the case when    inspections are 

performed, comply a binomial distribution having    and α as the parameters. Hence, 

we have 
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 (  )    (  ) (3.6.4) 

Thus,   ( ) is obtained to be 

  ( )  (      )∑ , (  )   ((   ) )-

 

   

    (3.6.5) 

 

Case of non-revealing failure 

For the instant case, the system fails between ƝI and (Ɲ+1)I for Ɲ=1,2,3,… 

(Figure 3.6.2). Hence, the mean up-time (   ( )) is equivalent to 

   ( )  ∫  ( )  

 

 

 (3.6.6) 

In addition to down-time because of inspections, repair and false alerts, the 

system stays down for the duration H, i.e. duration post-failure until detection after 

(     ) inspections. Hence, the mean down-time (   ( )) in this case is given by 

   ( )    ( (  )   (  ))        (  )   ( ) (3.6.7) 

where  

 ( )   ( (  )   (  ))     ( ) (3.6.8) 

As, the number of inspections post-failure to detection (  ) is a random 

geometric variable. Therefore, the expected value of    is given by 

 (  )  
 

   
 (3.6.9) 

Putting equations (3.6.3), (3.6.4), (3.6.8) and (3.6.9), in equation (3.6.7), we 

obtain    ( ) as 
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   ( )  (        )∑ [ (  )   ((   ) )]

 

   

   

 
 

   
(    )     ( ) 

(3.6.10) 

Substituting equations (3.6.2), (3.6.5), (3.6.6) and (3.6.10) in equation (3.6.1) 

results the expression of the limiting availability as 

 ( )  
∫  ( )  
 
 

(   )∫  ( )  
 
 

 (         )∑  [ (  )  ((   ) )] 
    

 

   
(    )   

  (3.6.11) 

3.6.4 Cost modeling 

General expression for LRACR is obtained here. LRACR is defined as the 

proportion of overall expense in a cycle to overall cycle length. 

 ( )  
 ( )

 ( )   ( )
 

Again on considering two failure classes: non-revealing failure and revealing 

failure with probability a and 1-a respectively,  ( ) is obtained to be 

 ( )  
(   )  ( )      ( )

,(   )  ( )      ( )-  ,(   )  ( )      ( )-
 (3.6.12) 

 

Case of revealing failure 

For the case of revealing failure, the cost of a cycle is based on cost due to 

inspections, cost due to false alerts and the corrective maintenance cost. Hence, the 

expected overall expense in a cycle for revealing failure is given by 

  ( )     (  )        (  ) 

Using equation (3.6.3) and equation (3.6.4),   ( ) is obtained to be 

  ( )  (      )∑ , (  )   ((   ) )-

 

   

    (3.6.13) 
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Case of non-revealing failure 

For the present case, the costs of a cycle is based on cost due to inspections, 

cost due to false alerts, cost of corrective maintenance and down-time cost while the 

failure remains undiscovered. Hence, the expected overall expense for this case is 

given by 

   ( )    ( (  )   (  ))        (  )     ( ) 

Using equations (3.6.3), (3.6.4), (3.6.8) and (3.6.9) we get    ( ) as 

   ( )  (          )∑ [ (  )   ((   ) )]

 

   

 (      )
 

   
      ∫  ( )  

 

 

 

(3.6.14) 

Both cases result in the expression of the LRACR as 

 ( )  
(           )∑  [ (  )  ((   ) )] 

    
 

   
(      )       ∫  ( )  

 
 

(   )∫  ( )  
 
  (         )∑  [ (  )  ((   ) )] 

    
 

   
(    )   

  (3.6.15) 

 

3.6.5 Optimization Strategy 

Maximizing the availability 

The systems limiting availability has been established in equation (3.6.11). As 

periodic inspection is performed and limiting availability is obtained in terms of I, we 

consider the inspection interval (I) to be the decision variable.  

In real-life applications, a minimum inspection period (i) exists as a result of 

the practical issues and cost concerns, i.e. the inspection period shall not be smaller 

than i. For instance, in Taghipour and Banjevic (2012), authors presumed that the 

inspection period of a medical device will not be lower than one month.  
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Therefore, the optimal problem is framed as follows: 

{
   
 

∫  ( )  
 

 

(   ) ∫  ( )  
 

 
 (         )∑  [ (  )   ((   ) )] 

    
 

   
(    )    

  

                                                                                                                                                        

 

To maximize the above term we only need to minimize the denominator. This is 

done by calculating  ( ) for certain values of I and then determining the value of   .  

Minimizing the cost 

Evidently, on one hand, the smaller value of I suggests that the inspections are 

conducted more often, which helps to minimize the number of failures whereas it 

increases the cost of inspections. On the contrary, high value of I means inspections 

are conducted less often, resulting in the lesser cost of inspections but will increase 

the chances of failure and consequently, the cost induced by corrective repair 

increases. In order to maintain the tradeoff between the two, the purpose of 

optimizing inspection here is minimizing the overall cost rate.  

The optimization problem formulated in the aforementioned situation is: 

{
 

 
   
 

(           ) ∑  [ (  )   ((   ) )] 
    

 
   

(      )        ∫  ( )  
 

 

(   ) ∫  ( )  
 

 
 (         )∑  [ (  )   ((   ) )] 

    
 

   
(    )    

 

                                                                                                                                                                    

 

With the purpose of achieving the optimal inspection period, the LRACR is 

calculated for certain values of I and the value of    is determined.  

3.7  Model [7]: Markov process approach for analyzing periodically inspected 

competing-risk system embodying downtime threshold 

In practice, a repairable system working under unpredictable situation might 

be subject to deterioration, breakdown or certain repairs. In most instances, the states 

of repairable systems could be categorized as functional or up state and breakdown or 

down state, on the basis of their condition.  A Markov process holds an important role 

in the analysis of repairable systems. Studies suggesting the application of Markov 

process in repairable systems could be found in Arnold (1973), Cao (1989), Wu et 

al. (2007) and Cui et al. (2014). 
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In various studies, the investigated models concentrate more on single failure 

mode (FM) (Sarkar and Sarkar, 2000; Cui and Xie, 2005; Li et al., 2019). 

However, practically as the system structure and failure of units are turning 

increasingly complex and diverse; the need for investigating models with multiple 

FMs is gaining more popularity right now. Reviews of models with multiple FM can 

be seen in Moustafa (1996), Takamori et al. (2005), Zhang et al. (2006) and Hajeeh 

(2011). For systems experiencing multiple FMs, competing failure may happen and 

any of the possible breakdowns would result in the overall breakdown of the system.  

As in the case of an electronic unit (Zhang, 2004), which might fail due to open or 

closed circuit failure, the time distribution for relative corrective repair (CR) may not 

be same. Many systems also undergo soft and hard failure, in such cases the repair 

implication of these FMs are distinct (Qiu et al., 2018). 

Availability analysis has always been a crucial index in terms of the systems 

performance and hence in reliability engineering it is significant so much and for so 

long. Numerous works have been published to evaluate the availability of single FM 

system. Associated works could be noted in Cui and Xie (2001), Xu and Hu (2008), 

Tang et al. (2013) and Khatab et al. (2014). However, the system may fail because 

of more than one possible ways, which is rarely considered in the presently existing 

models. Upshot of the above discussion and disparity between existing and the 

proposed models motivated us to analyze a competing-risk system. 

In the majority of the existent models, the breakdown of the system is 

supposed to be noted instantly. Meanwhile for the systems like valves in protection 

devices (Tsai et al., 2017), power feeding systems (Kojima and Asakawa, 2004), 

micro engine systems (Peng et al., 2010) and wind turbines (Liu and Zhang, 2020), 

breakdown is unrevealed. So, with the motive of revealing the breakdown, improving 

the availability and preventing the unwanted breakdown, inspection policies are 

generally adopted. One of the most common policies to do so is to employ a periodic 

inspection because it is easily implementable. 

In some practical instances, the breakdown of the system is either ignored or 

deferred. For example, as in the case of a water supply system (Zheng et al., 2006; 
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Bao and Cui, 2010), if any kind of breakdown is revealed and repaired during a short 

time span, the system may be considered functional during that period since the water 

in the reserve tank will be enough for the usage. However if the downtime due to the 

breakdown is more than a given pre-specified threshold, the system may be thought 

functional from commencement of the breakdown till that threshold limit, i.e. till the 

water in the reservoir clear ups. Furthermore, after that time till the termination of 

repair, the system is considered to be in the breakdown state. Consider another 

example of an electricity supply system (Du et al., 2017); if the repairing of the 

system takes time no longer than a preset limit, the breakdown has lesser effect on the 

system, i.e. the breakdown can be neglected while estimating its availability. 

A more comprehensive model is proposed in this research article by taking 

into account all the three aforementioned conditions, i.e. considering multiple FM, 

downtime threshold and periodic inspections. To be more specific, a repairable 

system undergoing periodic inspections and experiencing M modes of failures, in 

which the breakdown can be either deferred or ignored, is proposed. Corresponding 

CR is carried out if the system is discovered failed because of the any FM. If the 

downtime, i.e. time from start of the breakdown till its repair takes time lesser than τ, 

the system is assumed functional. If the downtime takes more time than τ, then the 

system is assumed functional from commencement of breakdown till downtime 

exceeding time τ and after that time till the completion of repair, the system is taken in 

the breakdown state.  

The major contributions of the ongoing article are: 

 Newer model is developed based on periodic inspection, multiple FM and 

ignored/deferred failures.  

 The model is divided into two types namely the initial one and the new one 

based on ignoring or postponing the failures. 

 Concise results on point and limiting availability and long-run average cost 

RATE (LRACR) of the proposed model are presented. 

 A descriptive example of a protection device is considered to explain the 

derived results.  
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3.7.1 Notations 

  Systems lifetime 

  ( )
   ( ) 

Markov process of the initial/new system 

 ( ) Systems reliability function 

  Total FMs  

  Inspection time 

  Inspections till first failure in a cycle 

   Failure time of      FM,              

   Hazard rate of                 

  ( ) Distribution function of                 

  ( ) Reliability function of                 

   Repair time of      FM,              

  ( ) Distribution function of   (         ) 

  ( ) Density function of   (         ) 

τ Downtime threshold 

  ( )    Point/Limiting availability of the initial system 

  ( )    Point/Limiting availability of the new system 

  
  Downtime of initial system in a cycle for the case of     FM,   

           

   
 ( ) Reliability function of   

 ,              

      Uptime/Downtime of the new system in a cycle 

  Duration of a cycle 

       
  LRACR of the new/initial system 

  Overall cost in a cycle 
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   Cost per inspection 

    CR cost of the     FM,              

   Penalty cost 

 

3.7.2 Model Description 

The current model analyzes a scrutiny-based competing-risk system with 

ignored/deferred failures. The precise assumptions used in this study are: 

Assumption 1: At the outset, a fully operable system is brought into use. The 

breakdown of the system can be characterized into M distinct FMs. As, in the case of 

a wind turbine system, blade failure and generator failure are its common FMs (Pant 

et al. (2021)).  

Assumption 2:  Each FM is assumed to have independent breakdown time designated 

by   (         ) with distribution function   ( )     
        . 

Assumption 3: Failures are presumed to be revealed at inspection only, which is 

conducted at every I unit. Furthermore, inspections are supposed to be non-

detrimental, perfect and take insignificant time.  

Assumption 4: When the breakdown due to     FM is revealed, the perfect CR 

taking random time   (         ) is conducted having distribution function 

  ( ) and density function   ( ).  

Assumption 5: The cost of each inspection is denoted by   . Moreover, the CR cost of  

    FM is assumed to be    (         ) and penalty cost as a result of 

downtime is expressed as   . 

Assumption 6: A renewal cycle is defined as the duration between the 

commencement of system till the termination of first CR or duration in between the 

termination of two successive CRs. 

Assumption 7: Relying on the practical utilization, a downtime threshold is preset, 

denoted by τ. Based on this limit, the actual system is classified as the initial system 

and the new system. Where, the so called new system is demonstrated as follows: 
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 The new system will be in functional state if the initial system is functional. 

 On the failure of the initial system, if the downtime (the duration between the 

outset of failure till its repair) is not more than τ, then the new system will be 

considered having functional state. 

 Meanwhile, if the downtime of the initial system is more than τ, then the new 

system shall be regarded in functional state from commencement of failure till 

the downtime reaches τ units. 

A possible specimen of the initial and new system is demonstrated in Figure 

3.7.1. As visible in Figure 3.7.1, system experiences a breakdown in the time period 

(    ) because of the FM1, which is revealed at time     and a CR is conducted 

immediately. Since, the total downtime was not more than τ hence, the new system was 

considered being functional for the time ,       -. After that, the system breakdown 

happens in the time period (           ) due to FM2 and a CR was conducted on 

its revelation. In this case, the downtime exceeded τ units as a result of which, the new 

system was considered to be functional during the time (                 ) 

and in the breakdown state in (                   ). Additionally, Cycle 1 

is the time from where the system was commenced till first CRs termination and Cycle 

2 is the time in the midst of completion of first CR and second CR.  

 

Figure 3.7.1: Possible specimen of (a) Initial system (b) New system 
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3.7.3 Point availability analysis 

For discussing the point availability of the new system we firstly need to find 

the point availability of the initial system. 

3.7.3.1 Point availability of the initial system 

In the present section, the point availability of the initial system will be 

obtained. Based on Assumptions 1 and 2, the lifespan of the system (L) will naturally 

be minimum of (          ). Using the independence of     , systems reliability 

function is obtained as 

 ( )  ∏ (    )

 

   

      (3.7.1) 

where               

Proposition 1: The point availability of the initial system is given by 

  ( )   
    ∑ ∑

  
 
(     

 

   

⌊   ⌋  

   

    (   ) ) ∫   (  (   )   )  ( )  

  (   ) 

 

 

where ⌊ ⌋ provides the greatest integer less than a. 

Proof: For deriving the point availability let us define a stochastic process as 

  ( )  {
                                                         
                                                           

 

Since, Markov analysis provides an interface between possible states of a 

system where the transition rates between these states are determined by the failure 

and repair rates.  Clearly, any transition can only occur from the current state of the 

system so the transition rates are only effective from the current state at any given 

time, i.e. Markovian property is satisfied.  
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Clearly, the point availability of the initial system will be expressed as 

  ( )   (  ( )   ) 

The systems lifespan (L) and the number of inspections in a cycle (N) are related as 

(   )       

This relation results in the frequency function of   as given below 

 (   )   (  )   ((   ) )           (   )  (3.7.2) 

Furthermore, on utilizing the decomposition method of probability, availability could 

also be given as 

  ( )  ∑ (  ( )       )

 

   

 

            ∑  (  ( )       )

⌊   ⌋  

   

 ∑  (  ( )       )

 

  ⌊   ⌋

 (3.7.3) 

The former and later terms of equation (3.7.3) relatively represents that first 

breakdown occurred ahead of time t and no breakdown is experienced before time t. 

Clearly, the later term of equation (3.7.3) can be written as 

∑  (  ( )       )

 

  ⌊   ⌋

  ( )       (3.7.4) 

Utilizing the independence of FMs, former term of equation (3.7.3) could also be 

expressed as 

∑  (  ( )       )

⌊   ⌋  

   

 ∑ ∑  (  ( )   |       ) (       )

 

   

⌊   ⌋  

   

 

(3.7.5) 
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Here, the event {         } means that the first system breakdown in a cycle 

happened due to     FM in the interval ,   (   ) -, whose probability is given as 

 (       )  ∫    ( )  

(   ) 

  

 
  
 
(         (   ) ) (3.7.6) 

Now, as the     FM is experienced, the CR is performed on system taking random 

time             . Hence, we obtain 

 (  ( )   |       )

 ∫  (  ( )   |            )   ( )  

  (   ) 

 

 

                           ∫   (  (   )   )  ( )  

  (   ) 

 

 (3.7.7) 

On utilizing the obtained results of equations (3.7.6) and (3.7.7), equation (3.7.5) is 

modified to 

∑  (  ( )       )

⌊
 
 
⌋  

   

 

 ∑ ∑
  
 
(     

 

   

⌊   ⌋  

   

    (   ) ) ∫   (  (   )   )  ( )  

  (   ) 

 

 

(3.7.8) 

Finally, on putting equations (3.7.4) and (3.7.8) in equation (3.7.3), the point 

availability of the initial system is obtained as 
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  ( )       ∑ ∑
  
 
(     

 

   

⌊   ⌋  

   

    (   ) ) ∫   (  (   )   )  ( )  

  (   ) 

 

 

(3.7.9) 

 

Remark 1: Clearly, this model is an extension of works taking single FM into 

consideration. Taking only single FM, i.e. M=1, the point availability as acquired in 

equation (3.7.9) will be simplified as 

  ( )   
    ∑ (         (   ) ) ∫   (  (   )   ) ( )  

  (   ) 

 

⌊   ⌋  

   

 

 

3.7.3.2 Point availability of the new system 

The current section aims at finding the point availability expression for the 

new system by utilizing the results of previous section. 

Proposition 2: The point availability of the new system is given by 

  ( )  {

                                                                             

  ( )  ∑
  
 
∫  (   )     

 ( )  

 

 

 

   

    
 

where    
 ( )  ∫ ∑ (    (   )      (      )) 

      ( )
 

    (  (   ))
 

(    ( ))  

Proof: As done in the previous section, let us define the Markov process in the similar 

manner as 

  ( )  {
                                                     
                                                       

 

Then, the point availability of the new system will be 

  ( )   (  ( )   ) 



124 

 

 

              (  ( )      ( )   )   (  ( )      ( )   ) (3.7.10) 

Since, the new system will be functional if the initial system is functional. Hence, we 

have 

 (  ( )      ( )   )    ( ) (3.7.11) 

Now, the later term of equation (3.7.10) demonstrates that at time t, the new 

system is in a functional state and the initial system is in a breakdown state. Let us 

denote this term by  ( ), i.e. 

 ( )   (  ( )      ( )   ) 

When     

 ( )   (  ( )   |  ( )   ) (  ( )   ) 

                ( ) (3.7.12) 

When     

 ( )  ∑   ∫  (   )     
 ( )  

 

 

 

   

 (3.7.13) 

The term,     (   )     gives the probability of movement of the initial 

system from functional state to the breakdown state in the time (          ) 

due to     FM. Here,    is the probability of system breakdown due to     FM in 

each cycle, i.e.,    is given by 

   ∫    ( )  

 

 

 
  
 

 (3.7.14) 
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Since, the initial system undergoes repair so, the downtime   
  should be 

more than x but not more than  . Hence,    
 ( ) will be given by 

   
 ( )   (  

   ) 

  (          ) 

 ∫ (         )   ( )

 

 

 ∫  (         )   ( )

 

 

 

 ∫ (         )   ( )

 

 

 (    ( )) 

 ∫ ((   )           )   ( )

 

 

 (    ( ))              

 ∫ ∑(  ((   ) )    (      ))

 

   

   ( )

 

    (  (   ))

 ( 

   ( )) 

 ∫ ∑(    (   )      (      ))

 

   

   ( )

 

    (  (   ))

 (    ( ))    (3.7.15) 

Using equation (3.7.10) to equation (3.7.15),   ( ) is obtained to be 

  ( )  {

                                                                              

  ( )  ∑
  
 
∫  (   )     

 ( )  

 

 

 

   

    
 (3.7.16) 

Remark 2: As we can observe from equation (3.7.16), the probability that new 

system is functional in the time     is 1 because of the delayed failure effect. If we 

take    , the point availability of the new system will be equal to that of the initial 

system (i.e.,   ( )    ( )), which matches our insight. 

Remark 3: In the case of single FM, the point availability of the new system given in 

equation (3.7.16) will be simplified to 
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  ( )  {

                                                           

  ( )  ∫  (   )    ( )  

 

 

    
 

where    ( )  ∫ ∑ (   (   )     (      )) 
     ( )

 

   (  (   ))
 (   ( ))  

3.7.4 Limiting availability analysis 

In this section, the limiting availability of the new system (  ) is given, which 

is stated as the ratio of mean up-time in a cycle ( (  )) to mean duration of a cycle 

( ( )), i.e. 

   
 (  )

 ( )
 (3.7.17) 

 

Proposition 3: The limiting availability of the new system is given by 

   

 
  

∑
  
 ∫    

 ( )  
 

 
 
   

 
      

 ∑
  
  (  )

 
   

 

Proof: The up-time in a cycle for the case of new system is given as 

     ∑       (  
   )

 

   

 

Then, the mean uptime equals: 

 (  )   ( )  ∑   ∫   
 ( )  

 

 

 

   

 

                        
 

 
 ∑

  
 
∫   

 ( )  

 

 

 

   

 (3.7.18) 

Obviously, the mean duration of a cycle may be given as 

 ( )   ((   ) )  ∑    (  )
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 ∑(   ) , (  )   ((   ) )-

 

   

 ∑
  
 
 (  )

 

   

 

 ∑(   ) ,         (   ) -

 

   

 ∑
  
 
 (  )

 

   

 

 
 

      
 ∑

  
 
 (  )

 

   

                     (3.7.19) 

Utilizing equations (3.7.17), (3.7.18) and (3.7.19), limiting availability of the new 

system equals 

   

 
  

∑
  
 ∫    

 ( )  
 

 
 
   

 
      

 ∑
  
  (  )

 
   

 (3.7.20) 

 

Remark 4: For the case of single FM, i.e.    , the limiting availability expression 

becomes 

   

 
  ∫     

( )  
 

 

 
      

  ( )
 

Remark 5: Clearly, large value of τ comply a low mean downtime resulting in high 

limiting availability. This suggests that    is a growing function of τ. The same could 

also be viewed from equation (3.7.20). Hence, the lower and upper bounds of    can 

relatively be given as 

(  )    (  |   )  

 
 

 
      

 ∑
  
 
 (  )

 
   

 

(  )   (  |   )  

 
  

∑
  
 ∫    

 ( )  
 

 
 
   

 
      

 ∑
  
  (  )
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Also, according to our intuition, the value of     at     corresponds to the 

point availability of the initial system. Hence, the point availability of the initial 

system (  ) becomes 

   

 
 

 
      

 ∑
  
  (  )

 
   

 (3.7.21) 

 

3.7.5 Cost analysis 

The LRACR, denoted by     for the new system is calculated in this section, 

given by the proportion of mean overall cost incurred in a cycle ( ( )) to mean 

duration of a cycle ( ( )), i.e.  

    
 ( )

 ( )
 

Proposition 4: The LRACR of the new system is given by 

    

  
 

      
 ∑    

  
  (  )

 
   

   (
 

      
 
 
  

∑
  
 ∫    

 ( )  
 

 
 
   )

 
      

 ∑
  
  (  )

 
   

 

Proof: In a cycle, the mean overall cost is given as 

 ( )     (   )  ∑       (  )

 

   

    (  ) (3.7.22) 

where,  (   ) is written as 

 (   )  ∑(   ), (  )   ((   ) )-

 

   

 

 ∑(   ),         (   ) -
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            (3.7.23) 

and  (  ) denotes mean downtime for the new system (excluding the downtime of 

repair) and is given using equation (3.7.18) and equation (3.7.19) as 

 (  )  
 

      
 
 

 
 ∑

  
 
∫   

 ( )  

 

 

 

   

 (3.7.24) 

Based on equations (3.7.22), (3.7.23) and (3.7.24), mean overall cost in a cycle is 

given as 

 ( )  

  
 

      
 ∑    

  
 
 (  )

 

   

   :
 

      
 
 

 
 ∑

  
 
∫   

 ( )  

 

 

 

   

;

 (3.7.25) 

Using equation (3.7.19) and equation (3.7.25), LRACR is found to be 
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(3.7.26) 

 

Remark 6: In the instance of single FM (   ), the LRACR of the new system will 

be 
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Remark 7: Obviously, large value of τ results in greater penalty cost. Hence,     is a 

decreasing function of τ. Using equation (3.7.26), we can get both the lower and upper 

bounds of      as 
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Moreover, the value of      at     corresponds to the LRACR of the initial system. 

Hence, the LRACR of the initial system (   
 ) equals 
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(3.7.27) 

 

3.8  Model [8]: Particle swarm optimization strategy for design optimization of 

a series-parallel system incorporating failure dependencies and multiple 

repair teams 

Systems optimal design and reliability are an important aspects of design 

engineering and successfully been implemented to improve performance (Wang and 

Watada, 2009).  A repairable system indicates that in any instance of failure, the 

system can be fixed such that it can continue to function normally. System availability 

is a term highly connected to reliability and cites to the range of possibilities for 

accessing the repairable systems reliability (Juang et al., 2008). Availability is a 

particularly significant measure for repairable systems, and attaining a high or 

necessary degree of availability is a must. Generally, repair teams and redundant units 

are employed to ensure that the system operates at the appropriate degree of 
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availability. Also, as the repair teams and redundant units, continues to grow, so does 

the expense. As a result, decision-makers and system designers generally attempt to 

decide how many units and repair personnel’s must be utilized so as to reduce system 

cost while meeting the system availability requirement. 

A series-parallel configuration is made up of a few serially-connected 

subsystems, and each subsystem is made up of a few components that are connected 

in parallel. If all of the subsystem's components fail, the subsystem is considered to be 

failed. The breakdown of any subsystem leads to the failure of the entire system. As 

an effective design technique, increasing redundant components in parallel can 

improve the availability or reliability of the series-parallel system. As a result, 

redundancy allocation must be addressed at the original design phase. The redundancy 

allocation problem (RAP) entails selecting components or system 

configuration/design in order to concurrently optimize various objective functions 

given certain design restrictions (Zhang and Chen, 2016). Lot of research has been 

conducted in the realm of RAP for series-parallel systems appertaining to numerous 

assumptions. According to Ramirez-Marquez and Coit (2004), optimization 

techniques for determining optimum or excellent solutions include integer, dynamic, 

mixed and non-mixed programming and heuristics. Kuo and Prasad (2000) and Gen 

and Yun (2006) provided comprehensive overviews on this issue. 

Repairable series-parallel configurations are widely utilized in reality, such as 

power systems, production systems, telecommunication, industrial systems etc. For 

repairable series-parallel systems, redundancy optimization has gotten a lot of 

attention recently, both in terms of problem and solution approaches (Levitin and 

Lisnianski, 1999). For a repairable series-parallel configuration, the repair resources 

are considered to be infinite in conventional RAP. In Nourelfath and Ait-Kadi 

(2007), the RAP of the system study suggested the more general situation when repair 

facilities were restricted. Because it takes into consideration a restricted amount of 

maintenance teams, this issue is more practical than the traditional RAP. It was 

assumed in the research of Mehta et al. (2017) that in each subsystem, the component 

breakdowns happen independently. This independence assumption, however, is not 

applicable in a number of scenarios.  
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Because of the increased loading caused by the other failed units, the hazard 

rate of the running unit may rise in some systems. Pecht (2009) suggested three kinds 

of failure dependencies: common-mode, multi-mode, and additional failure 

dependencies. Li et al. (2010) addressed the optimization challenge for series-parallel 

configuration with common-mode failures. Levitin (2002) explored the optimization 

issue for multi-state two failure mode series-parallel system. Barros et al. (2003) 

investigated systems comprising of two units, in which the hazard rate of the 

operational unit rises as a result of the increased stress caused by the other failed unit. 

Yu et al. (2007) looked into a redundant system embodying N components and 

devised a dependency function to measure the reliance. Hu et al. (2020) examined the 

long-run availability of a repairable series-parallel configuration, taking into 

consideration the various types of units and repairmen. The hazard rate of the 

operational component varied with the failed components and a dependence function 

was also introduced.  

Despite the fact that the RAP of repairable series-parallel configuration and 

the failure dependence problem for certain systems were documented in the preceding 

studies, relatively few intellectuals investigated the topic of allotting redundant units 

and repair teams in a repairable series-parallel configuration with failure reliance. Due 

to its complexity, failure dependence is frequently overlooked, and repair teams are 

frequently believed to be infinite in some models (Malik and Anand, 2010). This 

drives and motivates us to examine a repairable series-parallel system with restricted 

number of repair teams and failure dependencies. Furthermore, an optimum allocation 

problem is outlined, with the goal of reducing the system cost, which includes 

expenses associated with components as well as with repair teams, subject to the 

availability restriction. Because of its versatility in expressing discrete design 

variables and its strong/rapid optimization capacity, the PSO strategy is utilized to 

identify the best solutions.  

PSO techniques support the fundamental processes of fish schooling and bird 

flocking. This approach evolved from Kennedy’s and Eberhart's modeling of social 

behavior in 1995. Because of its ease of implementation, low computing costs and 
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minimal memory needs, PSO is a useful approach for optimization issues. Unlike 

other methods, conventional PSO does not employ crossover or mutation. Numerous 

applications of PSO in the field of combinatorial optimization issues, such as shop 

scheduling problems (Shao et al., 2018), project scheduling problems (Sebt et al., 

2017), partitional clustering problem (Jarboui et al., 2007; Xu et al., 2018), 

optimization problems (Pant et al., 2015; Kumar et al., 2017) and vehicle routing 

problem (Yao et al., 2016) have been presented in the past.  

In this work, a PSO strategy with dynamic parameters is used to tackle the 

optimal design problem discussed in Hu et al. (2012). PSO algorithm replaced the 

GA in quest for the optimal computation of the components and repair teams, 

additionally reducing the systems cost of a series-parallel configuration having failure 

dependency. A comparison is made between the results provided by both algorithms 

(PSO in the proposed model and GA in Hu et al. (2012)) based on cost evaluation. 

3.8.1 Notations 

  : Total subsystems 

   : Total components in subsystem   

   : Total repair teams in subsystem   

  
  : Unit component cost in subsystem   

  
  : Unit repair team cost in subsystem   

   : Systems cost 

   : Penalty Cost 

   : Availability of subsystem   

   : Systems availability 

   : Availability constraint value 

   : Inherent hazard rate of components of subsystem   

   : Repair rate of components of subsystem   



134 

 

 

 ( ) : Dependence function 

        : Maximum/Current iteration 

      : Velocity/Position of the     particle 

  : Population size 

  : Inertia weight 

  /   : Initial/Final value of interia weight 

  ,   : Acceleration coefficients 

        : Initial/Final value of     

        : Initial/Final value of     

 

3.8.2 Problem description 

The model is built upon the work of Hu et al. (2012) as follows 

A series-parallel system of   serially-connected subsystems with each 

subsystem having    (         )components connected in parallel is considered. 

Clearly, the system works on the successful operation of all of its subsystem and a 

subsystem works if even one of its component work. An illustration of the 

configuration is given in Figure 3.8.1. 

 

Figure 3.8.1: An illustration of the series-parallel configuration 
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The suppositions of the model are specified as under  

(1) The system and all the units possess two states, either fully working or completely 

failed.  

(2) All the components of a subsystem are assumed to be alike. 

(3) Failure dependency: The hazard rate of the component in each subsystem relies 

on the load i.e., the hazard rates of the functioning components rises with the 

increase of failed units.  

The hazard rate of the component in subsystem   is given by 

  
 ( )

 

where,    is the inherent hazard rate,  ( ) suggests the dependence function and   is 

the total functioning components in subsystem  . 

Then, the transition rate from state   to     for the subsystem   is given by 

  
   

  
 ( )

 

(4)    repair teams are supposed to be available in the subsystem   (         ). 

(5) The repair rate of each unit is constant in any subsystem and, given by   . Then, 

the transition rate from state     to   for the subsystem   will be given as 

  
  {

                                                                  
(    )                           

 

(6) A failed unit is restored to as good as a new one.  

(7) Each repair team repairs only one failed unit at a time. 

Now, our goal is to minimize the systems construction cost while meeting the 

availability requirements of the system. The construction cost comprises of the repair 

teams costs and the components costs. Hence, the problem of design optimization to 

be debated is as follows 
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where, the systems availability (  ) is given  as 
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(3.8.2) 

The detailed proof of    could be found in Hu et al. (2012).    

Clearly, the availability    relies on the following elements: Total number of 

subsystems ( ); Each subsystem’s total units (  ) and repair teams (  ); Each 

components inherent hazard rate (  ) and repair rate (  ) ; Dependence function, 

 ( ).  

Total subsystems,  , is mainly decided depending on the system function 

required (Liu et al., 2003). Each components inherent hazard and repair rates, 

   and    respectively, are supposed to be known. The four types of the dependencies 

are considered: Independence ( ( )   ); Linear Dependence ( ( )   ); Weak 

Dependence (   ( )   ); Strong Dependence ( ( )   ). 

Additionally, to solve the optimization problem given by equation (3.8.1), the 

dependence function  ( ) is determined using particular forms. Subsequently, the 

availability expressions are given as follows 
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1) Independence ( ( )   ) 
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2) Linear Dependence ( ( )   ) 
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3) Weak and Strong dependence ( ( )                          
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(3.8.5) 

 

Thus, the design optimization problem is focused on determining the optimal 

values of                        so as to minimize the systems cost conditional on 

the systems availability constraint. 

3.8.3 PSO Strategy 

With the intention of solving the optimization problem given by equation 

(3.8.1), we implement PSO. In typical PSO, the initial population is produced 

randomly. Meanwhile, the velocity and position factors describe the particle status in 

the space, as follows 
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        (      
    

 )        (     
    

 ) (3.8.6) 

 

  
      

    
    (3.8.7) 

where,   
      

  is the velocity/position vector of the     particle at the     iteration. 

   
       

    denotes the velocity/position vector of the     particle at the 

(   )   iteration. 

      
  denotes the personal best of the     particle at the     iteration. 

       is the global best of the all the particles at the     iteration. 

   and    are acceleration coefficients, which control movement of particles. 

  is an inertia weight, which along with    and    controls the effect of prior 

velocities on the new one. 

    and    are arbitary numbers between 0 and 1. 

3.8.3.1 Penalization 

PSO has been used extensively to solve problems like optimization, neural 

network training and scheduling (He et al., 2004; Yin et al., 2007; Ozcift et al., 

2009). In spite of its advantages, PSO has some drawbacks that need to overcome. 

While tackling optimization problem, the severe difficulty is that the solution might 

reach an infeasible space, which causes the PSO’s inefficiency. When the next 

position reaches an infeasible location, El-Gallad et al. (2001) developed an approach 

in which particles stay behind. This technique works well for a variety of problems, 

but it severely limits particle search space, reducing the PSO's ability to find 

solutions. To address this obstacle, Parsopoulos and Vrahatis (2002) used a penalty 

function for transforming a constrained optimization problem into an unconstrained 

one. This method necessitates the subjective predetermination of a penalty coefficient. 

To be brief, the problem of particles moving into an infeasible area is solvable.  
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In this model, a penalty cost is introduced for ensuring that the ultimate 

optimal solution is feasible while providing a competent search across the infeasible 

region. In case of reaching an infeasible region, the cost will be updated as 

   ∑(    
      

 )

 

   

    (3.8.8) 

where,    is the penalty cost. 

3.8.3.2 Dynamic weight and acceleration coefficients  

Furthermore, the PSO parameters might have a significant impact on the 

optimum solution. Despite the fact that Kennedy and Eberhart (1995) advocated an 

optimum fixation of 2 for learning variables, other researchers (Hseih et al., 2008; Ai 

and Kachitvichyanukul, 2009; Jiang et al., 2010) have chosen a best setting of 0.5–

2. Conclusively, the optimum PSO parameter setting may change depending on the 

problem attributes. Dynamic weight and acceleration coefficients are chosen here to 

deal with this problem. 

It was discovered that linearly varying the inertia weight ( ) improves the 

performance of a PSO algorithm (Shi and Eberhart, 1999). A time-varying inertia 

weight, given by Shi and Eberhart (1999) is adopted here, which is defined as 

follows  

  (     )
       
    

    (3.8.9) 

where,   /   denotes the initial/final value of the inertia weight. 

   is the present iteration number. 

     is the maximum number of iterations.  

In addition to this inertia weighting method, time-dependent acceleration 

factors are used to balance exploitation and exploration abilities. As described by 

Limbourg & Aponte (2005), this may be accomplished by altering the coefficients    

and    linearly over time 
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where,     /    stands for the initial value of    /   . 

    /     is the final values of    /   . 

3.8.3.3 Discretization 

In addition to all the above-mentioned changes, the position and velocity 

vector must be upgraded at each step/iteration to integer domain (Wang and Li, 

2011) as follows 

  
         |  

   | (3.8.12) 
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 (3.8.13) 

 

This velocity restriction ensures that the search step size is modest enough to 

avoid sudden jumps in the solution space. 
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3.8.3.4 Algorithm 

Figure 3.8.2 shows a flow chart describing the PSO algorithm comprehensively.  

 

Figure 3.8.2: PSO Algorithm’s Flowchart 

 



 

 

Results                        

and                     

Discussion 
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The various outcomes suggested in Chapter 3 are illustrated in this chapter. 

This chapter's major goal is to discuss the outcomes of the proposed models. 

4.1  Model [1]: Availability of systems subject to multiple failure modes under 

calendar-based inspection 

To illustrate the model with real life, an example of a wind turbine system is 

considered. Wind turbine systems are used to convert kinetic energy in the wind into 

electrical energy. It can be used in many practical fields such as in making 

contribution in domestic power supply.Wind turbine system can fail because of 

multiple factors like blade failure (FM 1) and generator failure (FM 2). It is not 

economical to inspect the wind turbine system continuously, so to investigate the 

failure, periodic inspections are performed at regular intervals. If the wind turbine is 

found working during the inspection, a perfect PR is carried out. If the system is 

found failed during the inspection because of any of the above defined failure modes, 

respective CR is carried out taking a random time. The distributions of repair time for 

these FM may be dissimilar. Thus, the model proposed in this study is employed to 

determine the availability of wind turbine system.  

Let us assume that FM 1 and FM 2 have failure times expressed by   ( )  

          and   ( )            respectively. Let     and      be mutually 

independent. Suppose that the CR times for blade failure and generator failure are 

    and      respectively with distribution function   ( )    ( )          . Let 

the inspection time in this case be 50 unit. 

4.1.1 Point availability 

By using equation (3.1.3), we can get the point availability of the system,  ( ) 

which is graphed in Figure 4.1.1.  
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        Figure 4.1.1: Point availability of the wind turbine system 

 

4.1.2 Limiting average availability 

The relation amongst the systems limiting average availability and the 

inspection interval is given by the Table 4.1.1 and Figure 4.1.2.  

Table 4.1.1: Limiting average availability versus inspection time 

T Ᾱ  

50 0.71091 

 

Figure 4.1.2:   Limiting average availability versus inspection 

time for wind turbine system 
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4.1.3 Sensitivity analysis 

The systems point availability differs for various values of the inspection 

intervals. The point availability for                      respectively are 

shown in Figure 4.1.3.  

 

Figure 4.1.3: Point availability of the wind turbine system for different  values of   

4.1.4 Interpretation of results and discussions 

As we can see from the Figure 4.1.1 that in the time period       ,  ( ) 

decreases as system is not maintained during this time. At     ,   ( ) increases 

since either a perfect PR or a CR will be carried out if the system is found to be 

working or failed respectively. 

It could be viewed from Figure 4.1.2, that limiting average availability reduces 

speedily with the increase in inspection period ( ). Since larger value of   mean 

lesser inspections are performed hence resulting in worse availability. 

Also, from Figure 4.1.3 we can observe that despite the fact that the 

distribution of each failure modes and the repair time distributions are same, the 

availability fluctuates in different life stages for different values of the inspection time 

( ). So it is very crucial to make a choice of reasonable inspection time for the sake of 

improvement of availability and lowering the maintenance cost of the system. For the 

systems with short life, we can choose the reasonable time for inspection in 

accordance with the point availability and for the systems with long life, we can 

decide on the basis of limiting-average availability. 
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4.2  Model [2]: Availability analysis and inspection optimization for a 

competing-risk k-out-of-n:G system 

To demonstrate the proposed model, example of a Boiler feed water pumps, 

which is used in steam power plants is considered. These pumps control the amount 

of water fed to the boiler and then boilers convert heat energy into steam under 

pressure to produce power.  Let for receiving a steady discharge, 2 identical boiler 

feed water pumps are connected in parallel (1-out-of-2:G system, i.e. Assumption (i) 

is enforced) into a common header. Excessive corrosive effect of fluid (FM 1) and 

excessive pressure on the shaft (FM 2) cause failure of the boiler feed water pumps 

(i.e. Assumption (viii) can be enforced). If any of the pump is found working during 

the inspection, a perfect PR is carried out (i.e. Assumptions (vii) and (x) can be 

enforced). If both the pumps are found failed during the inspection because of any of 

the above defined FMs, respective perfect CR is carried out taking a random time. 

The distributions of repair time for these FMs may be dissimilar (i.e. Assumption (ix) 

can be enforced).Thus, the model proposed in this study is utilized to determine the 

availability and LRACR of the system composed of 2 identical boiler feed water 

pumps connected in parallel. 

Let us assume that failure distribution for each component corresponding to 

FM 1 and FM 2 be    
( )           and    

( )           respectively. Let, 

failure time     and      are mutually independent. Suppose that the CR times for FM 

1 and FM 2 are     and      respectively with distribution function   ( )    ( )  

     . Let the inspection time in this case be 5. 

4.2.1 Reliability 

The reliability of this example can be calculated using equation (3.2.2) and is 

plotted in Figure 4.2.1.  
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Figure 4.2.1: Reliability versus time 

4.2.2 Point availability 

By using equation (3.2.10), we can get the point availability of the system, 

 ( ) which is graphed in Figure 4.2.2.  

 

Figure 4.2.2: Systems point availability 

4.2.3 Sensitivity analysis 

In order to observe the consequence of   on  ( ), sensitivity study is carried 

out, which is given in Figure 4.2.3.  
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Figure 4.2.3: System point availability for distinct values of I 

4.2.4 Limiting availability 

Evidently, inspections help to reduce the system failure and consequently help 

to improve the system availability. Using equation (3.2.16), we calculate the limiting 

availability, which is plotted in Figure 4.2.4.  

 

Figure 4.2.4: Limiting availability versus inspection time 

4.2.5 LRACR 

Let us estimate the cost parameters to be           
      

          

   . The LRACR is calculated using equation (3.2.20) and given by Figure 4.2.5.  

 

Figure 4.2.5: LRACR against inspection period 
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4.2.6 Interpretation of results and discussions 

It is observable from Figure 4.2.1 that system becomes less reliable with 

increasing time. As we can see from the Figure 4.2.2 that in the time period [0,5], 

 ( ) decreases as system is not maintained during this time.  ( ) increases in the 

interval [5,6.9] since either a perfect PR/CR will be carried out if system is found to 

be working/failed. Further, the point availability is found to be decreasing in the time 

interval [6.9,10]. Again at   10 as the repair action is taken here so the availability 

started increasing. 

More often the system is inspected; sooner the failures are resolved and hence 

surging systems availability, i.e. a higher value of   results in worst availability of the 

system. Taking every other parameters same,   is steadily increased from 5 to 15 with 

step size 5 and the availability is calculated for each   respectively which is then 

plotted in Figure 4.2.3.  

It could be viewed from Figure 4.2.4, that limiting availability reduces 

speedily with the increase in inspection period. Since larger value of I mean lesser 

inspections and hence worse availability. 

Generally, smaller inspection interval increases the inspection cost and large 

value of inspection interval results in greater penalty cost on systems down time. 

Hence, an optimal period must be selected in order to balance the spending on 

inspections and the penalty cost. As we can see from Figure 4.2.5, increasing the 

value of I first compels the LRACR to deplete and then it increases. 

Also, we see that minimum cost is obtained at I=1.464. Hence, optimal 

inspection period for minimum LRACR is I=1.464. 

4.3 Model [3]: Modeling periodically inspected k/r-out-of-n system 

Consider a power supply used to supply electric power of specified current, 

voltage and frequency to an electrical load. Power supplies consist of a power 

input terminal, receiving energy in form of electric current and at least one power 

output terminal, delivering current to the load. Let there are 4 power output terminals. 

In order to get the specific output, it is considered that, if two terminals fail then the 
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system is considered to enter a degraded state whereas if three fail then system is said 

to be failed. That means            ,  i.e. we considered a 3/2-out-of-4 

system. Let hazard rate ( ) of each terminal be 0.2. 

Now, we demonstrate the numeric results for reliability, point and limiting 

availability and LRACR for the power supply system. 

4.3.1 Reliability  

Systems reliability( ( )) is given by  ( )      ( ) which is calculated 

using equation (3.3.2) and is plotted in Figure 4.3.1. 

 

Figure 4.3.1: Reliability for power supply system 

Reliability of the system being in normal state (  ( )) is given by   ( )  

    ( )    ( ) and can be calculated using equations (3.3.1) and (3.3.2). Figure 

4.3.2 is the graph of   ( ). 

 

Figure 4.3.2: Reliability of the system being in normal state 
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4.3.2 Point Availability  

Let,                    Using equation (3.3.10), we can get the point 

availability of the system,  ( ) which is graphed in Figure 4.3.3.  

 

Figure 4.3.3: Point availability of the power supply system 

4.3.3 Sensitivity analysis 

In order to observe the consequence of   on  ( ), sensitivity study is carried 

out. Taking every other parameters same,   is steadily increased from 5 to 15 with 

step size 5 and the availability is calculated for each   respectively and plotted in 

Figure 4.3.4.  

 

Figure 4.3.4: Point availability for distinct values of I 

 

0

0.3

0.6

0.9

1.2

0 5 10 15

A
(τ

) 

τ 

0

0.4

0.8

1.2

0 5 10 15

A
(τ

) 

τ 

I=5

I=10

I=15



151 

 

 

4.3.4 Limiting Availability  

Using equation (3.3.13), one can calculate the limiting availability, which is 

plotted in Figure 4.3.5.  

 

Figure 4.3.5: Limiting availability versus inspection time 

 

Also, we plot the function  ( ), calculated using equation (3.3.14) and given by 

Figure 4.3.6.  

 

Figure 4.3.6: Plot of  ( ) 

4.3.5 LRACR 
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             . The 
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Figure 4.3.7: LRACR against inspection period 

4.3.6 Interpretation of results and discussions 

 The objective here is to discuss the numerical results and observe the impact 

of inspection period on both the availabilities and the cost rate, thus obtaining optimal 

inspection period. 

From Figure 4.3.1 and Figure 4.3.2 we can clearly observe that system 

becomes less reliable with increasing time. 

From Figure 4.3.3, we can see that in the time period [0,5],  ( ) decreases as 

system is not maintained during this time.  ( ) increases in the interval [5,6.9] since a 

CR would have been conducted if system is found to be partially/completely failed. 

Further, the point availability is found to be decreasing in the time interval [6.9,10]. 

Again at   10 as the repair action is taken here so the availability started increasing. 

Evidently, inspections help to reduce the system failure and consequently help 

to improve the system availability. Frequently the system is inspected; sooner the 

failures are detected/resolved and hence systems availability surges, i.e. a higher value 

of I means lesser inspections; leading to worse availability. From Figure 4.3.4 we 

observe that availability is worse when      compared to      and 10. 

It could be viewed from Figure 4.3.5, that limiting availability firstly increases 

attains maximum at I=2.054 then reduces speedily with the increase in inspection 

period. Also, from Figure 4.3.6 we can see that minimum of  ( ) is obtained at 
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I=2.054. Hence, optimal inspection time which maximizes availability is obtained to 

be I=2.054 corresponding to maximum limiting availability of 0.7843. 

Figure 4.3.7 reveals that increasing the value of I first compels the LRACR to 

deplete and then allows it to increase. Generally, smaller inspection interval increases 

the inspection cost and large value of inspection interval results in greater penalty cost 

on systems down time. Hence, an optimal period must be selected in order to balance 

the spending on inspections and the penalty cost. From Figure 4.3.7, one can observe 

that minimum cost is obtained at I=2.19.  

Hence, on the basis of our analysis (maximizing availability and minimizing 

cost) the optimal inspection period can be considered to be 2. 

4.4  Model [4]: Availability and cost assessment of systems with dormant 

failure undergoing sequential inspections 

Consider a pressure switch, employed in various technical and industrial 

processes to demonstrate the proposed model. Pressure switch helps automatically 

control the switch contact, if a preset pressure is reached. For example, a self-adhesive 

mat is used to automatically open/close doors on commercial buildings; Hydraulic 

pressure switches are used in vehicles, to alert if the engine’s oil pressure reaches an 

unsafe level. Here, we consider a pressure switch, which is used to spot if oil pressure 

reaches a hazardous point. In order to detect the failure of switch, oil pressure is 

dropped below unsafe level and then it is detected if it responds accurately or not. 

Here, dropping the pressure and its detection corresponds to an inspection.  

Let reliability of the switch be  ( )     . Let its repair density function be 

given by  ( )     . Let initially inspection be conducted at 1 time unit, i.e.    . 

Now, we acquire the numeric results for point and limiting availability and LRACR 

for the proposed example. The objective here is to observe graphically the impact of 

inspection period on both the availabilities and the cost rate. 

4.4.1 Availability analysis 

By using equation (3.4.6), we can get the point availability of the system,  ( ) 

which is graphed for different values of ‘a’ in Figure 4.4.1. Also, the limiting 

availability is also graphed, which was found on the basis of equation (3.4.10). 
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                     (a)                                                                 (b) 

 

(c) 

Figure 4.4.1: Systems point availability 

(a) For a=1 (b) For a=1/2 (c) For a=1/4 

The limiting availability calculated using equation (3.4.10) for different values 

of ‘a’ is plotted in Figure 4.4.2.  

 

Figure 4.4.2:  Limiting availability versus inspection time for different values              
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4.4.2 Cost analysis 

To estimate the cost rate of the system, consider                    

  . The LRACR is calculated for   1, 1/2 and 1/4 using equation (3.4.17) and given 

by Figure 4.4.3(a).  

Figure 4.4.3(b) is plotted by keeping the inspection cost same and decreasing 

the penalty cost to 5.  

                  

 (a) 

 

(b) 

Figure 4.4.3: LRACR against inspection period 
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4.4.3 Interpretation of results and discussions 

As we can see from Figure 4.4.1 that for each ‘a’,  ( ) decreases in the time 

period       as the system is not maintained during this time. At     ,   ( ) 

increases since a CR would have been conducted if system is found to be failed. This 

process of failure and repair results in the decrease and increase in value of  ( ) 

respectively and after some time the availability becomes steady/constant which is the 

limiting availability. It can be seen from Figure 4.4.1 that limiting availability 

corresponding to     for                     are 39%, 40% and 42% 

respectively. 

It could be viewed from Figure 4.4.2, that limiting availability reduces 

speedily with the increase in inspection period. Since, inspections help to improve the 

availability so it is evident that more often the system is inspected; sooner the failures 

are resolved and hence systems availability increases, i.e. a higher value of   results 

in worse availability of the system. Also low value of ‘a’ suggest that inspections are 

conducted frequently compared to higher value of ‘a’ thus increasing availability. It is 

also evident from the Figure3, that availability increases as ‘a’ decreases; availability 

is highest when   1/4, lowest when     and lies somewhere in between for 

      . 

Generally, smaller inspection interval increases the inspection cost and large 

value of inspection interval results in greater penalty cost on systems down time. 

Hence, an optimal period must be selected in order to balance the spending on 

inspections and the penalty cost. As we can see from the Figure 4.4.3(a), increasing 

the value of T first compels the LRACR to deplete and then it increases hence, we get 

optimal value of T.  

It is evident from Figure 4.4.3(b) that on keeping the inspection cost same, as 

the penalty cost is decreased, the cost rate for   1, 1/2 and 1/4 becomes almost 

similar. Since, downtime was more for higher value of ‘a’ but low penalty cost 

resulted in small variation between the cost rates. But if the penalty cost will be higher 

then there will be large variation between the cost rates for different values of ‘a’ as 

seen in the Figure 4.4.3(a). 
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4.5  Model [5]: Modeling sequentially inspected system prone to degradation 

and shocks 

The practical contribution of this model is motivated by the descriptive 

example of an oil pipeline system, which is subject to leakages and sudden burst. Oil 

pipelines are extremely economical, energy-efficient, environment friendly and safest 

way to transport refined/crude oil across great distances from oil fields/terminals to an 

oil device/refinery. During the transportation process, pipelines may undergo several 

failures, like leakages (owing to corrosion or crack) and sudden shock/burst/fracture 

(owing to earthquake, thunder or wind). As the crack defects emerge because of 

corrosion, pipelines are more subjected to shock damages and the possibility of 

occurrence of burst increases sharply. So, as per our model, as the crack arises in 

pipeline, it enters degraded state. 

Let the pipeline corrosion rate be 0.1 i.e.        and after a crack let it be 

equivalent to 0.2, i.e.       . Let the rate at which pipeline burst being at normal 

state, i.e. without any cracks be 0.2 i.e.        and with the cracks it burst with rate 

0.3, i.e.       . Let the pipeline in degraded and failed state be repaired with 

density function   ( )    ( )       . 

4.5.1 Reliability Analysis 

The reliability of the oil pipeline and reliability of oil pipeline being in normal 

state is obtained using equation (3.5.4) and equation (3.5.1) respectively and is given 

by Figure 4.5.1.  

 

Figure 4.5.1: Different Reliabilities of the system versus time 
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4.5.2 Availability Analysis 

Let our system be inspected initially at time    , and let      . Then, the 

point availability of our sequentially inspected oil pipeline system could be obtained 

using equation (3.5.18) and is plotted in Figure 4.5.2. 

 

Figure 4.5.2: Point availability of the system versus time 

 

Limiting availability of the oil pipeline for different values of I is calculated 

using equation (3.5.23) and plotted in Figure 4.5.3.  

 

Figure 4.5.3: Limiting availability of the system for different values of I 
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           . 
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Figure 4.5.4: LRACR of the system for different values of I 

4.5.4 Interpretation of results and discussions 

Clearly, as we can see from the Figure 4.5.1, the reliability of oil pipeline is 

greater than reliability of it being in normal state. Since, probability of degradation is 

excluded from the reliability of the pipeline for finding reliability of it being in normal 

state.  

As we can see from the Figure 4.5.2,  ( ) decreases in the time period       

as the system is not maintained during this time.  ( ) increases in the interval [2,3.2] 

since a repair would have been conducted if system is found to be failed 

(partially/completely). Further, the point availability is found to be decreasing in the 

time interval [3.2, 4]. This process of failure and repair will repeat and result in the 

decrease and increase in value of  ( ) respectively. After some time, the availability 

will become constant/steady called the limiting availability.  

As we can see from the Figure 4.5.3, limiting availability firstly increases 

attains maximum at       then reduces speedily with the increase in value of I. 

Hence, the optimal value of   corresponding to       is      . 

Figure 4.5.4 reveals that increasing the value of I first compels the LRACR to 

deplete and then allows it to increase. Generally, smaller inspection interval increases 

the inspection cost and large value of inspection interval results in greater penalty cost 

on systems down time. Hence, an optimal period must be selected in order to balance 

the spending on inspections and the penalty cost. From the Figure 4.5.4, one can 

0

1

2

3

4

5

0 2 4 6 8 10

L
C
 

I 



160 

 

 

observe that minimum cost is obtained at      . Hence, optimal value of I 

corresponding to a=1/2 is obtained to be I=2.4. 

4.6  Model [6]: Modeling systems with revealing and non-revealing failures 

undergoing periodic inspection 

The proposed approach could be applied to systems like electric motors 

wherein Megger test helps in revealing the age and health of the motor. During 

inspection sometime it may happen that while applying Megger test, the actual 

existence failure is not detected, i.e. a motor may show positive result on applying the 

Megger test even when though motor itself is not visibly properly functioning. 

Some distributions corresponding to systems life are considered in the numeric 

examples below to demonstrate the proposed approach. In the considered system 

(electric motor), two life distributions (Normal and Weibull) with rising hazard rates 

and one life distribution (Exponential) with constant hazard rate along with three 

probability values of non-revealing failures (                     ) are taken 

into account.  

Meanwhile, the input parameters are considered to be           

                              .  Additionally, the costs parameters are 

assumed to be:                        .  

The availability and cost is calculated using equation (3.6.11) and equation 

(3.6.15) respectively, corresponding to each value of p. The optimal    is determined 

in each case corresponding to maximal availability and minimal cost. 

 (a) Normal Distribution (   ):  ( )  
 

 √  
  

 

 
(
   

 
) 

 

The availability and cost is calculated for            , which is graphed 

in Figure 4.6.1 and Figure 4.6.2 respectively. Corresponding optimal values are given 

in Table 4.6.1 and Table 4.6.2. 
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Figure 4.6.1:  ( ) for normally distributed lifetime with              

Table 4.6.1:  Optimal strategy based on availability for normal distribution with 

            

a 0.1 0.5 0.9 

   2 0.9 0.7 

 (  ) 0.723519 0.654417 0.614832 

 

 

Figure 4.6.2:  ( ) for normally distributed lifetime with             

Table 4.6.2: Optimal strategy based on cost for normal distribution with 

            

a 0.1 0.5 0.9 

   3.4 1.9 1.5 
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(b) Weibull Distribution (   ):  ( )           (  )  

The availability and cost is evaluated for parameters              , 

which is further plotted in Figure 4.6.3 and Figure 4.6.4 respectively, with optimal 

values given in Table 4.6.3 and Table 4.6.4 correspondingly. 

 

Figure 4.6.3:  ( ) for lifetime following Weibull distribution with  

               

 

Table 4.6.3:  Optimal strategy based on availability for weibull distribution with 

               

a 0.1 0.5 0.9 

   3 0.9 0.9 

 (  ) 0.837441 0.777407 0.752839 

                          

           

Figure 4.6.4:  ( ) for lifetime following Weibull distribution with  
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Table 4.6.4: Optimal strategy based on cost for weibull distribution with 

               

a 0.1 0.5 0.9 

   4.8 2.2 1.7 

 (  ) 1.828595 2.212197 2.438828 

 

 (c) Exponential distribution ( ):  ( )        

The availability and cost is obtained corresponding to       and is given by 

Figure 4.6.5 and Figure 4.6.6 with optimal values in Table 4.6.5 and Table 4.6.6 

respectively. 

 

Figure 4.6.5:  ( ) for exponentially distributed lifetime with       

Table 4.6.5: Optimal strategy based on availability for exponential distribution 

with       
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Figure 4.6.6:  ( ) for exponentially distributed lifetime with       

 

Table 4.6.6:  Optimal strategy based on cost for exponential distribution with 

      

a 0.1 0.5 0.9 

   4.3 2.2 1.7 

 (  ) 1.699135 2.069946 2.290845 

 

4.6.1 Interpretation of results and discussions 

Generally, smaller inspection interval (i.e. more number of inspections) results 

in the higher inspection cost and large value of inspection interval (i.e. lesser number 

of inspections) results in greater penalty cost due to systems down time. Hence, an 

optimal period must be selected in order to balance the inspection and the penalty 

cost. As seen from Figure 4.6.2, Figure 4.6.4 and Figure 4.6.6, increasing the value of 

I first compels the LRACR to deplete and then it increases providing us the optimal 

inspection interval in each case.  

Initially, the system availability increases monotonically since the system 

failure rate is low but after some time, the larger value of I (i.e. lesser number of 

inspections) would result in worse availability. As we can see from Figure 4.6.1, 
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Figure 4.6.3 and Figure 4.6.5, the availability firstly increases and then keeps on 

decreasing with increasing value of I providing us the maximal availability.  

It is worthwhile to see from the above cases that as the probability a of non-

revealing failure increases, the system needs to be inspected more often, since    

decreases with the increasing value of a (See Table 4.6.1 to 4.6.6).  

4.7  Model [7]: Markov process approach for analyzing periodically inspected 

competing-risk system embodying downtime threshold 

Numerical example of a protection device is considered here to illustrate the 

model. Protection devices hold a very vital role in power systems. In order to 

safeguard the power system from breakdown, protection devices are required. 

Protection devices protect the power system by disconnecting the faulty parts from the 

remaining electric network. The typical failures of protection devices are: Circuit 

breaker failure (FM1) and Protection relays failure (FM2). In the case of failure of 

protection devices, back-up protection is used to remove the faults of the power 

system. The protection device is believed to be in functional state if the device is 

repaired within a critical time, i.e. the failure is ignored or deferred. Assume that 

periodic inspection is conducted on the protection device system. Definitely, 

enormous loss is brought up on the failure of protection devices. In the following 

section, protection device under the assumption of delayed failure is used to illustrate 

the findings of prior sections.  

Let us consider the hazard rate of FM1 and FM2 to be 1 and 2 respectively. 

Let the distribution function corresponding to CR time of FM1 and FM2 be   ( )  

  ( )       . Furthermore assume       and    . 

4.7.1 Point availability analysis for protection device 

Using equation (3.7.9) and equation (3.7.16), the point availability for the 

initial and new system is evaluated, which is given by Figure 4.7.1.  
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Figure 4.7.1: Point availability of the initial and new system corresponding to  

      

 

4.7.2 Limiting availability analysis for protection device 

From equation (3.7.20) and equation (3.7.21), the limiting availability of the 

new and the initial system is obtained and further graphed in Figure 4.7.2.   

 

Figure 4.7.2: Limiting availability of the initial and new system for       

 

A sensitivity analysis is being done to see the consequence of downtime 

threshold on the limiting availability of the new system. Figure 4.7.3 gives the 

limiting availability for different values of τ.  
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Figure 4.7.3: Limiting availability of the new system for distinct values of τ 

4.7.3 Cost availability for protection device 

For performing the cost analysis, cost parameters are assumed to be    

     
      

   and     . The LRACR of the new and the initial system is 

estimated using equation (3.7.26) and equation (3.7.27) respectively. Figure 4.7.4 

shows the LRACR of the new and the initial system.  

 

Figure 4.7.4: LRACR of the initial and new system for       
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A sensitivity analysis is being conducted for analyzing the effect of downtime 

threshold on the LRACR of the new system and plotted in Figure 4.7.5.  

 

Figure 4.7.5: LRACR of the new system for distinct values of τ 

4.7.4 Interpretation of results and discussions 

From the Figure 4.7.1, it is clearly observable that the point availability of the 

new system for       equals 1 due to delayed breakdown effect. Evidently, because 

of downtime threshold, availability for the new system is more than that of the initial 

system. However, the availability for both the initial and new systems goes down in 

the time period       as no inspection or maintenance is conducted during that period. 

Then, at time    , availability goes up as CR may have been done if system is 

found in breakdown state. 

It is evident that if the system is inspected more often, the availability will 

improve, i.e., if I is large the availability will be worse but if I is small, the availability 

will be more. The same is observable from Figure 4.7.2. Also, from Figure 4.7.3, we 

can see that for a fixed inspection time, the limiting availability of the system surges 

with the surge in value of τ. 

If the frequency of inspections is more, the addressing and rectification of the 

failure will be done earlier consequently lowering the downtime/penalty cost and 

incrementing the inspection cost. However, low frequency of inspections mean lesser 

inspection cost but greater penalty cost. Henceforth, an optimal period is obtained 

which corresponds to the balance of the inspection and the penalty cost 
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simultaneously. Additionally, because of the delayed breakdown effect, the downtime 

of the new system is reduced as compared to that of the initial system (can be viewed 

from Figure 4.7.4) thereby resulting in lesser LRACR. 

As depicted in Figure 4.7.5, as τ increases, the LRACR decreases due to 

decreased penalty cost. 

4.8  Model [8]: Particle swarm optimization strategy for design optimization 

of a series-parallel system incorporating failure dependencies and 

multiple repair teams 

The PSO technique mentioned in section 3.8 is applied at the same data set as 

considered by Hu et al. (2012) for the purpose of checking the feasibility of the 

proposed approach. A system with serially-connected six parallel subsystems is 

considered, where each subsystem can have a maximum of 15 components. The 

inherent hazard rate, repair rate and cost of unit components and repair teams of each 

subsystem are given in Table 4.8.1.  

Table 4.8.1: Each subsystems data 

Subsystem( ) 1 2 3 4 5 6 

   0.03 0.04 0.05 0.06 0.07 0.09 

   0.10 0.13 0.14 0.20 0.18 0.27 

  
  40 50 30 70 65 80 

  
  15 20 10 30 25 35 

 

Furthermore,   is fixed to be 0.5 and 1.5 for weak and strong dependence case, 

i.e. the dependence function for weak dependence will be  ( )       and for strong it 

will be  ( )      .  

Moreover, the PSO parameters are set as follows: 

                                                 and  =1000. 

Our goal is minimizing the construction cost of the system while also meeting 

the availability requirement as defined in equation (3.8.1). Allocation strategies i.e. 

the vector (                     ) are then investigated considering various 

dependencies (independence, linear, weak and strong) and availability requirements.  
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4.8.1 Working of PSO 

The working of PSO is explained considering following assumptions: 

Redundant dependency is taken to be strong. The availability constraint of 

         is considered. Furthermore, only 5 particles were taken so as to 

understand and scrutinize the PSO’s functioning. 

Now, we initialize the particle position randomly and calculate the 

corresponding fitness value as illustrated in Table 4.8.2.  

Table 4.8.2: Initial positions/personal best positions of the particles 

 Positions Fitness value 

Particle 1 [8, 10, 10, 3, 1, 6, 5, 10, 10, 3, 1, 6] 2575 

Particle 2 [3, 7, 3, 14, 2, 12, 2, 7, 3, 7, 2, 1] 3125 

Particle 3 [2, 14, 8, 2, 15, 14, 2, 7, 3, 2, 10, 3] 3870 

Particle 4 [11, 2, 3, 12, 7, 7, 9, 2, 3, 1, 7, 7] 3140 

Particle 5 [15, 10, 6, 6, 11, 10, 3, 4, 6, 6, 11, 8] 4135 

 

Now, we move to the first iteration. Firstly, the particle velocity is updated and 

new position vectors are calculated for each particle using equation (3.8.6) and 

equation (3.8.7). Next, the fitness value is calculated corresponding to each particle, 

which could be seen from Table 4.8.3.  

Table 4.8.3: Second positions of the particles 

 Positions Fitness value 

Particle 1 [8, 10, 10, 3, 1, 6, 5, 10, 10, 3, 1, 6] 2575 

Particle 2 [4, 8, 4, 13, 2, 11, 3, 8, 4, 6, 2, 2] 3145 

Particle 3 [3, 13, 8, 2, 14, 13, 3, 8, 4, 2, 9, 4] 3770 

Particle 4 [10, 3, 4, 11, 6, 7, 8, 3, 4, 2, 6, 7] 3065 

Particle 5 [14, 10, 7, 5, 10, 9, 4, 5, 7, 5, 10, 7] 3865 

Further, each particle’s present position is compared with the particle’s 

previous best position and based on the best fitness value, the best position of the 

particle is updated. The second personal best of the particle is given in Table 4.8.4. 
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Table 4.8.4: Second personal best positions of the particles 

 Positions Fitness value 

Particle 1 [8, 10, 10, 3, 1, 6, 5, 10, 10, 3, 1, 6] 2575 

Particle 2 [3, 7, 3, 14, 2, 12, 2, 7, 3, 7, 2, 1] 3125 

Particle 3 [3, 13, 8, 2, 14, 13, 3, 8, 4, 2, 9, 4] 3770 

Particle 4 [10, 3, 4, 11, 6, 7, 8, 3, 4, 2, 6, 7] 3065 

Particle 5 [14, 10, 7, 5, 10, 9, 4, 5, 7, 5, 10, 7] 3865 

 

4.8.2 Best Solution 

Firstly, the availability constraint is set to          and several allocations 

with various forms of redundant dependencies are obtained on the basis of 20 PSO 

algorithm runs. Table 4.8.5 shows the best optimal allocations for each of the 

dependencies, where number of units (  ) and repair teams (  ) are presented for each 

subsystem  .  

Table 4.8.5: Best optimal solution for          

 Subsystem( ) 1 2 3 4 5 6 

Independence 

   3 3 4 3 3 3 

   3 2 3 2 3 2 

   1355 

   0.9025 

Linear 

Dependence 

   3 3 3 2 3 2 

   2 2 2 2 2 2 

   1125 

   0.9020 

Weak 

Dependence 

   3 3 4 2 3 3 

   2 2 2 2 2 2 

   1230 

   0.9012 

Strong 

Dependence 

   3 2 2 2 2 2 

   1 2 2 2 2 2 

   1060 

   0.9031 
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Then, availability constraint value is raised to 0.95 and 0.99, and the optimal 

problem is investigated for each redundant dependencies. The respective best optimal 

findings are listed in Table 4.8.6 and Table 4.8.7.  

Table 4.8.6: Best optimal solution for          

 Subsystem( ) 1 2 3 4 5 6 

Independence 

   4 4 4 3 4 3 

   3 3 3 3 3 3 

   1595 

   0.9506 

Linear 

Dependence 

   3 3 3 3 3 3 

   3 2 3 1 2 2 

   1270 

   0.9513 

Weak 

Dependence 

   4 3 4 3 3 3 

   2 3 2 2 3 2 

   1390 

   0.9503 

Strong 

Dependence 

   3 3 3 2 3 3 

   2 2 3 2 2 1 

   1180 

   0.9511 

 

 

 

 



173 

 

 

Table 4.8.7: Best optimal solution for          

 Subsystem( ) 1 2 3 4 5 6 

Independence 

   5 5 6 4 5 5 

   4 3 5 4 4 3 

   2130 

   0.9901 

Linear 

Dependence 

   4 4 4 3 4 4 

   3 2 3 2 2 2 

   1565 

   0.9902 

Weak 

Dependence 

   4 4 5 4 4 4 

   3 3 3 2 4 3 

   1770 

   0.9901 

Strong 

Dependence 

   3 3 4 3 4 3 

   2 2 2 2 2 3 

   1405 

   0.9901 

 

Henceforth, in Table 4.8.8 the outcomes of this model are compared with 

those obtained by Hu et al. (2012).  
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Table 4.8.8: Results of the proposed study and Hu et al. (2012) 

       

 Independence 
Linear 

Dependence 

Weak 

Dependence 

Strong 

Dependence 

Proposed 1355 1125 1230 1060 

Hu et al. 

(2012) 
1355 1125 1285 1060 

        

 Independence 
Linear 

Dependence 

Weak 

Dependence 

Strong 

Dependence 

Proposed 1595 1270 1390 1180 

Hu et al. 

(2012) 
1615 1275 1410 1185 

        

 Independence 
Linear 

Dependence 

Weak 

Dependence 

Strong 

Dependence 

Proposed 2130 1565 1770 1405 

Hu et al. 

(2012) 
2135 1590 1810 1410 

 

4.8.3 Solution Deviations 

The optimal solution is found for each proposed dependencies corresponding 

to availability constraint values 0.75, 0.80 and 0.85, as given in Table 4.8.9. 
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Table 4.8.9:  20 PSO runs for different availability constraints corresponding to 

each kind of dependency 

                        

Indepe

ndence 
Linear Weak Strong 

Indepe

ndence 
Linear Weak Strong 

Indepe

ndence 
Linear Weak Strong 

1050 905 975 860 1125 975 1040 905 1230 1035 1125 970 

1045 905 975 855 1150 985 1040 905 1230 1055 1125 980 

1050 905 990 855 1125 970 1035 895 1235 1035 1125 975 

1050 915 970 860 1150 970 1035 915 1230 1035 1125 985 

1045 905 970 850 1125 975 1035 925 1230 1040 1155 970 

1045 925 980 850 1125 970 1035 905 1230 1045 1125 970 

1050 925 970 850 1125 995 1040 925 1230 1050 1180 975 

1050 910 970 865 1140 970 1035 905 1230 1035 1125 970 

1045 905 970 860 1150 990 1035 895 1230 1035 1125 975 

1050 905 970 850 1145 970 1050 910 1230 1055 1125 980 

1045 905 975 865 1125 970 1035 895 1240 1055 1125 985 

1045 915 970 850 1125 985 1040 915 1230 1035 1125 975 

1045 905 975 850 1150 975 1035 910 1240 1045 1125 975 

1050 905 975 855 1125 980 1040 895 1230 1050 1170 975 

1045 905 970 860 1125 970 1035 905 1230 1035 1125 975 

1050 910 975 850 1150 970 1040 905 1240 1040 1125 970 

1045 905 970 850 1125 975 1040 905 1230 1055 1140 970 

1050 905 970 850 1150 970 1055 895 1230 1035 1125 985 

1050 905 970 850 1155 970 1035 895 1230 1035 1125 975 

1045 930 970 855 1125 970 1040 930 1230 1045 1125 995 

 

The fundamental statistical indexes of the above given data is presented in 

Figure 4.8.1–4.8.3 in order to assist the algorithms performance evaluation. For the 20 

PSO runs of each kind of dependency (labeled on the horizontal axis), the lowest, 
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average, and highest costs are represented as the bottom bound, in between circle and 

the top bound respectively. 

 

 

 

 

 

 

 

 

 

Figure 4.8.1: Statistical results of 20 PSO runs for         

 

                                             

 

 

 

 

 

 

 

Figure 4.8.2: Statistical results of 20 PSO runs for         
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Figure 4.8.3: Statistical results of 20 PSO runs for         

 

4.8.4 Interpretation of results and discussions 

For the initial case, the particle position is the personal best position. As seen 

from Table 4.8.2, the minimum fitness value is obtained corresponding to particle 1. 

So, particle 1 will be set as the global best particle.  

From Table 4.8.2 and Table 4.8.3, we can see that the particle 1 has same 

fitness. So, particle 1 will not be updated and remains the same. But, for particle 2 the 

fitness value corresponding to particle’s current position is less than the previous best 

position. Hence, particle 2 is updated. In the same way, we can update each particle. 

From Table 4.8.4, we can see that the minimum fitness value is again for particle 1. 

Hence, it will be set as the global best particle. 

In the similar manner, the personal and global best of each particle could be 

obtained corresponding to different assumptions, i.e. different availability constraint 

and redundancies. 

It can also be viewed from Table 4.8.5 that when different forms of 

dependencies are taken into account, the optimum solutions change. The ideal system 

comprises 19 (16, 18 and 13) units and 15 (12, 12 and 11) repair teams for the 

independence (linear dependence, weak dependence and strong dependence) type, and 

the cost employed is 1355 (1125, 1230 and 1060). The findings reveal that the strong 
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dependence type produces the most cost-effective system and requires the fewest 

units and repair teams.  

From the findings listed in Tables 4.8.5-4.8.7, it's clear that when the 

availability constraint value rises, more units and repair teams need to be utilized, and 

the system cost rises as well. Also, for stronger dependency types, fewer units and 

repair teams will be needed, and a more cost-effective system will be built. As a 

result, dependent characters must be included so as to obtain a more economic 

system. 

From the Table 4.8.8, it could be clearly viewed that the findings of the 

current model are slightly better than those obtained by Hu et al. (2012). 

Sometimes meta-heuristics might experience premature convergence because 

of their stochastic character due to the usage of random operators. As a result, the 

outcome of a single run might not fully demonstrate the achievement of a meta-

heuristic algorithm. To avoid the aforementioned situation, several trials must be 

carried out so that the assessed computed findings are reliable. The PSO was run 20 

times and the corresponding findings are given in Table 4.8.9. 

Based on the Table 4.8.9 and Figures 4.8.1-4.8.3, it is clear that in most 

situations, more than 10 PSO runs out of 20 intersected with their best solutions. This 

suggests that the PSO algorithm in this work may requires just two runs to approach 

the best solution. 
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Conclusions 
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The unsafe failure of the majority of complex systems has given rise to the 

Reliability theory and its analysis. In recent years, technology has advanced at a rapid 

speed, increasing the complexity of systems and, as a result, the susceptibility of 

breakdowns. Due to this, the importance of reliability assessment has got new ground 

and has become an integral part for achieving high performance and life cycle cost of 

the product. As a result, it is critical to develop items in such a manner that they result 

in the ideal combination of reliability and cost-effective system. The current study 

covers specific challenges for complex systems in general, includes an analysis of 

reliability characteristics, and shows some results in the context of reliability and 

availability to explain and address the overall consequences. 

The present work is focused to derive propositions to estimate reliability 

characteristics of systems incorporating maintenance and inspection policies. It is 

anticipated that the proposed research study shall be of great significance to deduce 

optimal availabilities and feasible period of inspection through various analysis and 

comparatives. The concept of Markov processes has been applied to discuss and solve 

the real time models mathematically. Also, various case studies and numerical 

examples have been presented to show the practical implementation of the developed 

models. 

Present research work comprises of following four chapters. 

Chapter 1 presents the general overview of reliability theory and includes elementary 

point of concepts and techniques which are used in this study. It gives the brief 

description on various maintenance and inspection policies along with Markov 

process.  

Chapter 2 entitled “Review of Literature” encapsulates the wide amount of research 

work that has been done in the past related to reliability theory, multi-component 

system availabilities, inspection optimization policy and particle swarm optimization.  
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Chapter 3 is “Materials and Methods”, involving analytical propositions and 

complete methodology used to evaluate the reliability and availability indices of the 

considered models and their mathematical formulation. The models considered in this 

research work are as follows: 

Model [1]:  Availability of systems subject to multiple failure modes under calendar-

based inspection 

Model [2]:  Availability analysis and inspection optimization for a competing-risk k-

out-of-n:G system 

Model [3]:  Modeling periodically inspected k/r-out-of-n system 

Model [4]:  Availability and cost assessment of systems with dormant failure 

undergoing sequential inspections 

Model [5]:  Modeling sequentially inspected system prone to degradation and shocks 

Model [6]:  Modeling systems with revealing and non-revealing failures undergoing 

periodic inspection 

Model [7]:  Markov process approach for analyzing periodically inspected 

competing-risk system embodying downtime threshold 

Model [8]:  Particle swarm optimization strategy for design optimization of a series-

parallel system incorporating failure dependencies and multiple repair 

teams 

Model 1 analyses an availability model for a maintained system encountering 

multiple failure modes undergoing periodic inspection incorporating calendar-based 

inspection policy. If the system is found to be working during inspection, the system 

is renewed. The theorems on the limiting average and point availability for the 

proposed model are derived. Theorems derived will be useful in finding the 

probability of system being available at any point (point availability) and the 

availability after it becomes steady (Limiting-average availability) of any system 

subject to multiple failures undergoing inspections at fixed calendar-intervals. 

Analysis is being made on the relations amongst availability and inspection period. 

Different inspection period can affect the systems limiting average and point 
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availability. The model comprises the results obtained in Li et al. (2019) as the special 

case of our model. The derived results are demonstrated with the help of the example 

of a wind turbine system.  

Model 2 proposes an availability and cost model for a maintained k-out-of-n:G 

system encountering multiple FMs undergoing periodic inspection. When the system 

is found to be working/failed during inspection, the renewal of system takes place. 

The theorems on the limiting and point availability for a competing-risk k-out-of-n:G 

system are derived and analysis is being made on the relations amongst availability 

and inspection period. Different inspection period can affect the systems limiting and 

point availability. Derived theorems could be used to find the availability at any 

instant of time (point availability), availability for the long-run could also be 

evaluated (limiting availability). For systems with short life, point availability is 

reasonable and for systems with long life, limiting availability is more concise. The 

theorem on LRACR is also derived in this model and an optimality condition for 

inspection period based on LRACR is stated. A numerical example of boiler feed 

water pump is taken into consideration with a view to explain the application of the 

derived results.  

Model 3 presents an availability and cost model for a periodically inspected three-

state (viz. normal, degraded and completely failed) and newly introduced k/r-out-of-n 

system with a repair policy. The theorems on LRACR, limiting and point availability 

for the proposed model are derived. Optimality conditions for inspection period based 

on availability and LRACR are also discussed. A numerical illustration of a power 

supply system is taken into consideration with a view to explain the applications of 

the derived results. The effect of inspection period on the systems limiting and point 

availability is also analyzed graphically. 

Model 4 studies a system encountering hidden failure undergoing sequential 

inspection. Perfect repairs taking random times are carried out on detection of system 

failure. Inspections are conducted at time                   where     

 , till its failure detection, and repairs result in a new state so again it is inspected in 

the same manner. It is seen that     results into periodic inspection. Propositions on 
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point availability, limiting availability and LRACR of proposed system are obtained. 

Example of a pressure switch is considered to explain the results. Analysis is being 

made on the relations amongst availability and inspection period for different values 

of „a‟. Effect of inspection time on cost rate is also analyzed. 

Model 5 considers a single-unit system prone to degradation and shocks. The system 

is expected to have three states viz. normal, degraded and failed. The degraded state 

incurs higher degradation and is more prone to shocks in contrast to normal state. In 

order to determine the state and failure-type of the system, inspections are conducted 

sequentially at time                   where      , till the detection of 

degradation/failure. Perfect repairs are conducted immediately after the 

complete/partial failure is detected. Reliability, availability (both point and limiting 

availability) and LRACR of a sequentially inspected single-unit system prone to 

degradation and shocks is modeled herein subject to cases that repair takes constant 

times and random times. Numerical example of an oil pipeline system is given so as 

to justify the obtained results. 

Model 6 proposes the inspection policy for a single-unit randomly failing system with 

alternating operating and inactivity periods. Failures are detected instantly for the 

former case whereas in the latter case inspections are required for failure detection. 

This study focuses on evaluating the general expressions for limiting availability and 

LRACR of the system undergoing periodic inspections. The distinctive characteristic 

of the proposed model is that the inspections are not perfect.  Furthermore, it is 

supposed that inspection and maintenance time is non-negligible and corrective 

maintenance results in as good as new unit. The optimal inspection problem is 

developed predicated on maximizing the availability and minimizing the cost. 

Numerical example of electric motor corresponding to different life distributions is 

also presented to justify the obtained results. 

Model 7 conducts availability and cost analysis on a periodically surveyed system 

incorporating multiple failure modes and downtime limit concept. Investigation is 

being done by classifying the system on the grounds of downtime limit as the initial 

and the new one.  Precisely, analytical results on point and limiting availability are 
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proposed for the aforesaid model. Furthermore, the LRACR is also investigated for 

the current model. This model consists of the results procured in Qiu et al. (2019b) as 

particular case of this study. Finally, the acquired study is demonstrated using a 

protection system. The influence of the inspection time and the downtime limit on the 

cost rate and limiting availability is also explained graphically. 

Model 8 investigates an optimal design problem for the repairable series-parallel 

system adopted in Hu et al. (2012). The system‟s components are subject to failure 

dependency, with each of its subsystem having multiple repair teams. Four types of 

dependencies were considered: Independence, Linear, Weak and Strong dependence. 

The problem focuses on finding the optimal vector comprising of system components 

and repair teams,                        , such that the system cost (attributed to 

the components and repair personnel‟s cost) is minimized. The PSO strategy 

incorporating dynamic parameters is being utilized to find the optimal vector for each 

type of the dependence. The calculations were made for three availability constraint 

values:                            . A comparison between GA (Hu et al. 

(2012)) and PSO (proposed study) is made by virtue of the respective costs. It was 

found that the most economical system is obtained in the case of strong dependency, 

and utilizes the fewest components and maintenance teams. 

Chapter 4 entitled “Results and Discussions” deals with the findings of discussed 

models along with the reliability measures such as reliability, availability (point 

availability, limiting average and limiting availability), sensitivity, maintenance cost 

analysis and optimum interval inspection along with the illustration. The analytical 

results have been represented in graphical forms. 

5.1 Future scope 

Obviously, as a preliminary investigation, there are many potential expansions 

worth investigating. For example, our most of the results have so far been confined to 

the circumstance where inspections are perfect. It would be interesting to look at 

several reliability indices and the best maintenance strategy for a multiple failure 

mode (FM) system with imperfect inspections. It may be important to characterize the 

nature of FMs in a more realistic scenario in which FMs are reliant. Because most 
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systems feature mutually dependent FMs, such a model would be quite useful. 

Furthermore, the condition-based inspection schedule should be more effective due to 

the rapid development of sensing technology. Furthermore, the failure time of various 

FMs is believed to be exponentially distributed, which may be investigated by looking 

at general distributions. 

 

 

 

 

 

 

 

 

 



 

 

Literature 

Cited  



 

 

Adachi, K. and Nishida, T. 1981. An inspection policy for one-unit system subject to 

revealed and unrevealed failures. Microelectron. Reliab., 21(1): 51-62. 

Ai, T. J. and Kachitvichyanukul, V. 2009. Particle swarm optimization and two 

solution representations for solving the capacitated vehicle routing 

problem. Comput. Ind. Eng., 56(1): 380-387. 

Alaswad, S. and Xiang, Y. 2017. A review on condition-based maintenance 

optimization models for stochastically deteriorating system. Reliab. Eng. Syst. 

Safe., 157: 54-63. 

Aliyu, M. S., Yusuf, I. and Ali, U. A. 2015. Availability and profit optimization of 

series-parallel system with linear consecutive cold standby units. Appl. 

Math., 6(02): 332. 

Arnold, T. F. 1973. The concept of coverage and its effect on the reliability model of 

a repairable system. IEEE Trans. Comput., 100(3): 251-254.  

Babishin, V. and Taghipour, S. 2016. Joint optimal maintenance and inspection for 

ak-out-of-nsystem. Int. J. Adv. Manuf. Technol., 87(5): 1739-1749. 

Badia, F. G., Berrade, M. D. and Campos, C. A. 2001. Optimization of inspection 

intervals based on cost. J. Appl. Probab., 38(4): 872-881. 

Badıa, F. G., Berrade, M. D. and Campos, C. A. 2002. Optimal inspection and 

preventive maintenance of units with revealed and unrevealed failures. Reliab. 

Eng. Syst. Safe., 78(2): 157-163. 

Bao, X. and Cui, L. 2010. An analysis of availability for series Markov repairable 

system with neglected or delayed failures. IEEE Trans. Reliab., 59(4): 734-

743. 

Baohe, S. 2002. An optimal inspection and diagnosis policy for a multi-mode system. 

Reliab. Eng. Syst. Safe., 76(2): 181-188.  



 

Barlow, R. E. and Proschan, F. 1996. Mathematical Theory of Reliability (Vol. 17). 

SIAM, Philadelphia. 

Barros, A., Bérenguer, C. and Grall, A. 2003. Optimization of replacement times 

using imperfect monitoring information. IEEE Trans. Reliab., 52(4): 523-533. 

Bérenguer, C., Grall, A., Dieulle, L. and Roussignol, M. 2003. Maintenance policy 

for a continuously monitored deteriorating system. Probab. Eng. Inf. 

Sci., 17(2): 235-250.  

Berrade, M. D., Scarf, P. A., Cavalcante, C. A. V. and Dwight, R. A. 2013. 

Imperfect inspection and replacement of a system with a defective state: A 

cost and reliability analysis. Reliab. Eng. Syst. Safe., 120: 80-87. 

Bukowski, J. V. 2001. Modeling and analyzing the effects of periodic inspection on 

the performance of safety-critical systems. IEEE Trans. Reliab., 50(3): 321-

329. 

Cao, J. 1989. Stochastic behaviour of a man-machine system operating under 

changing environment subject to a Markov process with two states. 

Microelectron. Reliab., 29(4): 529-531. 

Castilone, R. J., Glaesemann, G. S. and Hanson, T. A. 2000. Extrinsic strength 

measurements and associated mechanical reliability modeling of optical fiber. 

‘In: National Fiber Optics Engineers Conference’. pp. 1-9. 

Chelbi, A. and Ait-Kadi, D. 2000. Generalized inspection strategy for randomly 

failing systems subjected to random shocks. Int. J. Prod. Econ., 64(1-3):                

379-384. 

Chelbi, A., Ait‐Kadi, D. and Aloui, H. 2008. Optimal inspection and preventive 

maintenance policy for systems with self‐announcing and non‐self‐announcing 

failures. J. Qual. Maint. Eng., 14(1): 34-45. 

Cheng, G. Q. and Li, L. 2012. A geometric process repair model with inspections 

and its optimisation. Int. J. Syst. Sci., 43(9): 1650-1655. 

Chou, C. K. and Butler, D. A. 1983. Assessment of hazardous‐inspection policies. 

Nav. Res. Logist. Q., 30(1): 171-177. 



 

Cui, L. and Xie, M. 2001. Availability analysis of periodically inspected systems 

with random walk model. J. Appl. Probab., 38(4): 860-871. 

Cui, L. and Xie, M. 2005. Availability of a periodically inspected system with 

random repair or replacement times. J. Stat. Plan. Inference., 131(1): 89-100. 

Cui, L., Du, S. and Zhang, A. 2014. Reliability measures for two-part partition of states 

for aggregated Markov repairable systems. Ann. Oper. Res., 212(1): 93-114. 

Cui, L., Zhao, X., Shen, J. and Xu, Y. 2010. An availability model for storage 

products under periodical inspections. Int. J. Reliab. Qual. Safe. Eng., 17(02): 

89-103. 

Dhillon, B. S. 1978. A k-out-of-N three-state devices system with common-cause 

failures. Microelectron. Reliab., 18(5): 447-448. 

Du, S., Zeng, Z., Cui, L. and Kang, R. 2017. Reliability analysis of Markov history-

dependent repairable systems with neglected failures. Reliab. Eng. Syst. 

Safe., 159: 134-142.  

Dui, H., Si, S., Zuo, M. J. and Sun, S. 2015. Semi-Markov process-based integrated 

importance measure for multi-state systems. IEEE Trans. Reliab., 64(2):              

754-765. 

El-Damcese, M. A. and Shama, M. S. 2013. Reliability and availability analysis of a 

standby repairable system with degradation facility. Int. J. Res. Rev. Appl. 

Sci., 16(3): 501-507. 

El-Gallad, A. I., Sallam, A. A. and El-Hawary, M. E. 2001. Swarming of intelligent 

particles for solving the nonlinear constrained optimization problem. Int. J. 

Eng. Intell. Syst. Elec. Eng. Comm., 9(3): 155-164. 

Frostig, E. and Levikson, B. 2002. On the availability of R out of N repairable 

systems. Nav. Res. Logist.(NRL), 49(5): 483-498. 

Gahlot, M., Singh, V. V., Ayagi, H. I. and Abdullahi, I. 2020. Stochastic analysis 

of a two units’ complex repairable system with switch and human failure using 

copula approach. Life Cycle Reliab. Safe. Eng., 9(1): 1-11. 



 

Gen, M. and Yun, Y. 2006. Soft computing approach for reliability optimization: 

State-of-the-art survey. Reliab. Eng. Syst. Safe., 91(9): 1008-1026. 

Gertsbakh, I. 2013. Reliability Theory: With Applications to Preventive Maintenance. 

Springer, Berlin Heidelberg. 

Gertsbakh, I. B. 1977. Models of preventive maintenance (Vol. 23). Elsevier Science 

and Technology. 

Goel, L. R., & Mumtaz, S. Z. 1994. An inspection policy for unrevealed failures in a 

two-unit cold standby system subject to correlated failures and repairs. 

Microelectron. Reliab., 34(7): 1279-1282. 

Golmakani, H. R. and Moakedi, H. 2012. Periodic inspection optimization model 

for a two-component repairable system with failure interaction. Comput. Ind. 

Eng., 63(3): 540-545. 

Gupta, P. P. and Gupta, R. K. 1986. Cost analysis of an electronic repairable 

redundant system with critical human errors. Microelectron. Reliab., 26(3): 

417-421. 

Hajeeh, M. A. 2011. Reliability and availability of a standby system with common 

cause failure. Int. J. Oper. Res., 11(3): 343-363.  

He, S., Wu, Q. H., Wen, J. Y., Saunders, J. R. and Paton, R. C. 2004. A particle 

swarm optimizer with passive congregation. Biosystems, 78(1-3): 135-147.  

He, X., Whitmore, G. A., Loo, G. Y., Hochberg, M. C. and Lee, M. L. T. 2015. A 

model for time to fracture with a shock stream superimposed on progressive 

degradation: the Study of Osteoporotic Fractures. Stat. Med., 34(4): 652-663. 

Hsieh, S. T., Sun, T. Y., Liu, C. C. and Tsai, S. J. 2008. Efficient population 

utilization strategy for particle swarm optimizer. IEEE Trans. Syst. Man 

Cybern. B Cybern., 39(2): 444-456. 

Hu, L., Yue, D. and Li, J. 2012. Availability analysis and design optimization for a 

repairable series-parallel system with failure dependencies. Int. J. Innov. 

Comp. Info. Cont., 8(10): 6693-6705. 



 

Hu, L., Yue, D. and Ma, Z. 2020. Availability Analysis of a Repairable Series-

Parallel System with Redundant Dependency. J. Syst. Sci. Complex, 33(2): 

446-460. 

Jafary, B. and Fiondella, L. 2016. A universal generating function-based multi-state 

system performance model subject to correlated failures. Reliab. Eng. Syst. 

Safe., 152: 16-27.  

Jarboui, B., Cheikh, M., Siarry, P. and Rebai, A. 2007. Combinatorial particle 

swarm optimization (CPSO) for partitional clustering problem. Appl. Math. 

Comput., 192(2): 337-345. 

Jiang, L., Feng, Q. and Coit, D. W. 2015. Modeling zoned shock effects on 

stochastic degradation in dependent failure processes. IIE Trans., 47(5):              

460-470. 

Jiang, R. Y. 2010. Optimization of alarm threshold and sequential inspection 

scheme. Reliab. Eng. Syst. Safe., 95(3): 208-215. 

Jiang, Y., Liu, C., Huang, C. and Wu, X. 2010. Improved particle swarm algorithm 

for hydrological parameter optimization. Appl. Math. Comput., 217(7): 3207-

3215. 

Juang, Y. S., Lin, S. S. and Kao, H. P. 2008. A knowledge management system for 

series-parallel availability optimization and design. Expert Syst. Appl., 34(1): 

181-193. 

Kaio, N. and Osaki, S. 1986. Optimal inspection policy with two types of imperfect 

inspection probabilities. Microelectron. Reliab., 26(5): 935-942.  

Keles, B., Tekin, S. and Bakır, N. O. 2017. Maintenance policies for a deteriorating 

system subject to non-self-announcing failures. IEEE Trans. Reliab., 66(1): 

219-232. 

Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. ‘In: Proceedings 

of ICNN'95-International Conference on Neural Networks’. IEEE. Vol. 14, pp. 

1942-1948. 



 

Kenyon, R. L. and Newell, R. J. 1983. Steady-state availability of k-out-of-n: G 

system with single repair. IEEE Trans. Reliab., 32(2): 188-190. 

Khatab, A., Ait-Kadi, D. and Rezg, N. 2014. Availability optimisation for stochastic 

degrading systems under imperfect preventive maintenance. Int. J. Prod. 

Res., 52(14): 4132-4141. 

Klutke, G. A. and Yang, Y. 2002. The availability of inspected systems subject to 

shocks and graceful degradation. IEEE Trans. Reliab., 51(3): 371-374. 

Kojima, J. and Asakawa, K. 2004. Simulation of power feeding system for the 

mesh-like scientific underwater cable network ARENA. ‘In: Proceedings of 

the 2004 International Symposium on Underwater Technology (IEEE Cat. No. 

04EX869)’. IEEE. pp. 375-380. 

Kumar, A., Pant, S., Ram, M. and Singh, S. B. 2017. On solving complex 

reliability optimization problem using multi-objective particle swarm 

optimization. ‘In: Mathematics Applied to Engineering’ Academic Press. pp. 

115-131.  

Kumar, D. and Singh, S. B. 2016. Stochastic analysis of complex repairable system 

with deliberate failure emphasizing reboot delay. Commun. Stat. Simul. 

Comput., 45(2): 583-602. 

Kuo, W. and Prasad, V. R. 2000. An annotated overview of system-reliability 

optimization. IEEE Trans. Reliab., 49(2): 176-187. 

Lam, C. T. and Yeh, R. H. 1994. Comparison of sequential and continuous 

inspection strategies for deteriorating systems. Adv. Appl. Probab., 26(2):     

423-435.  

Levitin, G. 2002. Optimal series–parallel topology of multi-state system with two 

failure modes. Reliab. Eng. Syst. Safe., 77(1): 93-107. 

Levitin, G. and Finkelstein, M. 2018. Optimal mission abort policy for systems in a 

random environment with variable shock rate. Reliab. Eng. Syst. Safe., 169: 

11-17. 



 

Levitin, G. and Lisnianski, A. 1999. Joint redundancy and maintenance optimization 

for multistate series–parallel systems. Reliab. Eng. Syst. Safe., 64(1): 33-42. 

Levitin, G., Zhang, T. and Xie, M. 2006. State probability of a series-parallel 

repairable system with two-types of failure states. Int. J. Syst. Sci., 37(14): 

1011-1020. 

Li, C. Y., Chen, X., Yi, X. S. and Tao, J. Y. 2010. Heterogeneous redundancy 

optimization for multi-state series–parallel systems subject to common cause 

failures. Reliab. Eng. Syst. Safe., 95(3): 202-207. 

Li, C. Y., Chen, X., Yi, X. S. and Tao, J. Y. 2010. Heterogeneous redundancy 

optimization for multi-state series–parallel systems subject to common cause 

failures. Reliab. Eng. Syst. Safe., 95(3): 202-207. 

Li, J. 2016. Reliability calculation for dormant k-out-of-n systems with periodic 

maintenance. Int. J. Math. Eng. Mngmnt. Sci., 1(2): 68-76. 

Li, J., Chen, Y. and Hung, H. 2019. Availability modeling for periodically 

inspection system with different lifetime and repair-time distribution. Chinese 

J. Aeronaut., 32(7): 1667-1672. 

Li, M., Xie, L. and Ding, L. 2017. Load sharing analysis and reliability prediction for 

planetary gear train of helicopter. Mech. Mach. Theory, 115: 97-113. 

Li, Y. F. and Peng, R. 2014. Availability modeling and optimization of dynamic 

multi-state series–parallel systems with random reconfiguration. Reliab. Eng. 

Syst. Safe., 127: 47-57. 

Liao, H., Elsayed, E. A. and Chan, L. Y. 2006. Maintenance of continuously 

monitored degrading systems. Eur. J. Oper. Res., 175(2): 821-835. 

Limbourg, P. and Aponte, D. E. S. 2005. An optimization algorithm for imprecise 

multi-objective problem functions. ‘In: 2005 IEEE Congress on Evolutionary 

Computation’. IEEE. Vol. 1, pp. 459-466.  

Lisnianski, A. 2007. Extended block diagram method for a multi-state system 

reliability assessment. Reliab. Eng. Syst. Safe., 92(12): 1601-1607.  



 

Liu, P. X., Zuo, M. J. and Meng, M. Q. H. 2003. Using neural network function 

approximation for optimal design of continuous-state parallel–series 

systems. Comput. Oper. Res., 30(3): 339-352. 

Liu, X., Li, J., Al-Khalifa, K. N., Hamouda, A. S., Coit, D. W. and Elsayed, E. A. 

2013. Condition-based maintenance for continuously monitored degrading 

systems with multiple failure modes. IIE Trans., 45(4): 422-435. 

Liu, Y. and Chen, C. J. 2017. Dynamic reliability assessment for nonrepairable 

multistate systems by aggregating multilevel imperfect inspection data. IEEE 

Trans. Reliab., 66(2): 281-297. 

Liu, Z. and Zhang, L. 2020. A review of failure modes, condition monitoring and 

fault diagnosis methods for large-scale wind turbine bearings. Measurement, 

149, 107002.  

Mahmoodi, S., Hamed Ranjkesh, S. and Zhao, Y. Q. 2020. Condition-based 

maintenance policies for a multi-unit deteriorating system subject to shocks in 

a semi-Markov operating environment. Qual. Eng., 32(3): 286-297. 

Malik, S. C. and Anand, J. 2010. Reliability and economic analysis of a computer 

system with independent hardware and software failures. B. Pure Appl. Sci. 

Math. Stat., 29(1): 141-154.  

McGrady, P. W. 1985. The availability of a k-out-of-n: G network. IEEE Trans. 

Reliab., 34(5): 451-452. 

Mehta, M., Singh, J. and Singh, M. 2017. Reliability and availability evaluation of a 

series-parallel system subject to random failure. Indian J. Sci. Technol., 

10(31): 1-11. 

Mendes, A. and Ribeiro, J. L. 2017. The establishment of the time interval between 

inspections for a cold standby system with component repair. Production, 27, 

e20170049. 

Moustafa, M. S. 1994. Reliability model of series-parallel systems. Microelectron. 

Reliab., 34(11): 1821-1823. 



 

Moustafa, M. S. 1996a. Availability of K-out-of-N: G systems with M failure 

modes. Microelectron. Reliab., 36(3): 385-388. 

Moustafa, M. S. 1996b. Transient analysis of reliability with and without repair for 

K-out-of-N: G systems with two failure modes. Reliab. Eng. Syst. Safe., 53(1): 

31-35. 

Moustafa, M. S. 1997. Reliability analysis of K-out-of-N: G systems with dependent 

failures and imperfect coverage. Reliab. Eng. Syst. Safe., 58(1): 15-17. 

Moustafa, M. S. 1998. Transient analysis of reliability with and without repair for K-

out-of-N: G systems with M failure modes. Reliab. Eng. Syst. Safe., 59(3): 

317-320. 

Moustafa, M. S. 2001. Availability of K-out-of-N: G systems with exponential 

failures and general repairs. Stoch. Qual. Cont., 16(1): 75-82. 

Moustafa, M. S. 2002. Optimal minimal maintenance of multistage degraded system 

with repairs. Stoch. Qual. Cont., 17(1): 5-12. 

Munjal, A. and Singh, S. B. 2014. Reliability analysis of a complex repairable 

system composed of two 2-out-of-3: G subsystems connected in parallel. J. 

Reliab. Stat. Stud., 89-111. 

Nakagawa, T. 2007. Shock and damage models` in reliability theory. Springer 

Science and Business Media. 

Nautiyal, N., Singh, S. B. and Bisht, S. 2020. Analysis of reliability and its 

characteristics of a k-out-of-n network incorporating copula. Int. J. Qual. 

Reliab. Mngmnt., 37(4): 517-537. 

Negi, S. and Singh, S. B. 2015. Reliability analysis of non-repairable complex system 

with weighted subsystems connected in series. Appl. Math. Comput., 262:                

79-89. 

Nourelfath, M. and Ait-Kadi, D. 2007. Optimization of series–parallel multi-state 

systems under maintenance policies. Reliab. Eng. Syst. Safe., 92(12): 1620-

1626. 



 

Okumura, S., Jardine, A. K. S. and Yamashina, H. 1996. An inspection policy for 

a deteriorating single-unit system characterized by a delay-time model. Int. J. 

Prod. Res., 34(9): 2441-2460. 

Ozcift, A., Kaya, M., Gülten, A. and Karabulut, M. 2009. Swarm optimized 

organizing map (SWOM): a swarm intelligencebased optimization of self-

organizing map. Expert Syst. Appl., 36(7): 10640-10648.  

Ozturk, S., Fthenakis, V. and Faulstich, S. 2018. Failure modes, effects and 

criticality analysis for wind turbines considering climatic regions and 

comparing geared and direct drive wind turbines. Energies, 11(9): 2317. 

Pant, S., Kishor, D. A. A. and Singh, S. B. 2015. A particle swarm algorithm for 

optimization of complex system reliability. Int. J. Perf. Eng., 11(1): 33. 

Park, M., Lee, J. and Kim, S. 2019. An optimal maintenance policy for a k-out-of-n 

system without monitoring component failures. Qual. Technol. Quant. 

Mngmnt., 16(2): 140-153. 

Parsopoulos, K. E. and Vrahatis, M. N. 2002. Particle swarm optimization method 

for constrained optimization problems. Intell. Technol. Theory Appl., 76(1): 

214-220. 

Pecht, M. (Ed.). 2009. Product Reliability, Maintainability and Supportability 

Handbook. CRC Press. 

Peng, H., Feng, Q. and Coit, D. W. 2009. Simultaneous quality and reliability 

optimization for microengines subject to degradation. IEEE Trans. 

Reliab., 58(1): 98-105. 

Peng, H., Feng, Q. and Coit, D. W. 2010. Reliability and maintenance modeling for 

systems subject to multiple dependent competing failure processes. IIE 

Trans., 43(1): 12-22. 

Pham, H. and Wang, H. 2000. Optimal (τ, T) opportunistic maintenance of a 

k‐out‐of‐n: G system with imperfect PM and partial failure. Nav. Res. Logist. 

(NRL), 47(3): 223-239. 



 

Phillips, M. J. 1981. A preventive maintenance plan for a system subject to revealed 

and unrevealed faults. Reliab. Eng., 2(3): 221-231. 

Qiu, Q. and Cui, L. 2019a. Availability analysis for general repairable systems with 

repair time threshold. Commun. Stat. Theory Methods, 48(3): 628-647. 

Qiu, Q. and Cui, L. 2019b. Availability analysis for periodically inspected systems 

subject to multiple failure modes. Int. J. Syst. Sci. Oper. Log., 6(3): 258-271. 

Qiu, Q., Cui, L. and Gao, H. 2017. Availability and maintenance modelling for 

systems subject to multiple failure modes. Comput. Ind. Eng., 108: 192-198. 

Qiu, Q., Cui, L. and Kong, D. 2019a. Availability and maintenance modeling for a 

two-component system with dependent failures over a finite time 

horizon. Proc. Inst. Mech. Eng. OJ. Risk Reliab., 233(2): 200-210. 

Qiu, Q., Cui, L. and Shen, J. 2018. Availability and maintenance modeling for 

systems subject to dependent hard and soft failures. Appl. Stoch. Models Bus. 

Ind., 34(4): 513-527. 

Qiu, Q., Cui, L. and Shen, J. 2019b. Availability analysis and maintenance 

modelling for inspected Markov systems with down time threshold. Qual. 

Technol. Quant. Mngmnt., 16(4): 478-495. 

Rafiee, K., Feng, Q. and Coit, D. W. 2015. Condition-based maintenance for 

repairable deteriorating systems subject to a generalized mixed shock 

model. IEEE Trans. Reliab., 64(4): 1164-1174. 

Ram, M. and Singh, S. B. 2010. Availability, MTTF and cost analysis of complex 

system under preemptive‐repeat repair discipline using Gumbel‐Hougaard 

family copula. Int. J. Qual.Reliab.Mngmnt.,27(5): 576-595. 

Ram, M., Singh, S. B. and Singh, V. V. 2013. Stochastic analysis of a standby 

system with waiting repair strategy. IEEE Trans. Syst. Man Cybern. 

Syst., 43(3): 698-707.  

Ramirez-Marquez, J. E. and Coit, D. W. 2004. A heuristic for solving the 

redundancy allocation problem for multi-state series-parallel systems. Reliab. 

Eng. Syst. Safe., 83(3): 341-349. 



 

Ruiz-Castro, J. E. 2020. A complex multi-state k-out-of-n: G system with preventive 

maintenance and loss of units. Reliab. Eng. Syst. Safe., 197, 106797. 

Sadeghi, D., Naghshbandy, A. H. and Bahramara, S. 2020. Optimal sizing of 

hybrid renewable energy systems in presence of electric vehicles using multi-

objective particle swarm optimization. Energy, 209, 118471.  

Sahraoui, Y., Khelif, R. and Chateauneuf, A. 2013. Maintenance planning under 

imperfect inspections of corroded pipelines. Int. J. Pres. Ves. Pip., 104: 76-82. 

Sarkar, J. and Sarkar, S. 2000. Availability of a periodically inspected system under 

perfect repair. J. Stat. Plan. Inference, 91(1): 77-90. 

Sebt, M. H., Afshar, M. R. and Alipouri, Y. J. E. O. 2017. Hybridization of genetic 

algorithm and fully informed particle swarm for solving the multi-mode 

resource-constrained project scheduling problem. Eng. Optim., 49(3): 513-

530. 

Shafiee, M. and Finkelstein, M. 2015. An optimal age-based group maintenance 

policy for multi-unit degrading systems. Reliab. Eng. Syst. Safe., 134: 230-

238. 

Shao, Z., Pi, D. and Shao, W. 2018. Estimation of distribution algorithm with path 

relinking for the blocking flow-shop scheduling problem. Eng. Optim., 50(5): 

894-916. 

Sharma, R. and Kumar, G. 2017. Availability improvement for the successive k-

out-of-n machining system using standby with multiple working 

vacations. Int. J. Reliab. Safe., 11(3-4): 256-267. 

Shi, Y. and Eberhart, R. C. 1999. Empirical study of particle swarm optimization. 

‘In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 

(Cat. No. 99TH8406)’. IEEE. Vol. 3, pp. 1945-1950.  

Singh, V. V., Singh, S. B., Ram, M. and Goel, C. K. 2013. Availability, MTTF and 

cost analysis of a system having two units in series configuration with 

controller. Int. J. Syst. Assurance Eng.Mngmnt.,4: 341–352. 



 

Smith, D. J. 2017. Reliability, maintainability and risk: practical methods for 

engineers. Butterworth-Heinemann. 

Taghipour, S. and Banjevic, D. 2012. Optimum inspection interval for a system 

under periodic and opportunistic inspections. IIE Trans., 44(11): 932-948. 

Takamori, K., Nakase, I., Takemoto, Y. and Arizono, I. 2005. System availability 

analysis with two failure modes of random failure and wear-out failure. J. Jpn. 

Indust. Mngmnt. Assoc., 56(2): 101-108.  

Tang, T., Lin, D., Banjevic, D. and Jardine, A. K. 2013. Availability of a system 

subject to hidden failure inspected at constant intervals with non-negligible 

downtime due to inspection and downtime due to repair/replacement. J. Stat. 

Plan. Inference, 143(1): 176-185. 

Tian, Z. and Liao, H. 2011. Condition based maintenance optimization for multi-

component systems using proportional hazards model. Reliab. Eng. Syst. 

Safe., 96(5): 581-589. 

Tian, Z. and Wang, H. 2020. Wind power system reliability and maintenance 

optimization considering turbine and wind uncertainty. J. Qual. Maint. Eng. 

Tsai, H. N., Sheu, S. H. and Zhang, Z. G. 2017. A trivariate optimal replacement 

policy for a deteriorating system based on cumulative damage and 

inspections. Reliab. Eng. Syst. Safe., 160: 74-88. 

Valdez‐Flores C. and Feldman R.M. 1989. A survey of preventive maintenance 

models for stochastically deteriorating single‐unit systems. Nav. Res. 

Logist.,36(4):419-46. 

Wang, H. and Pham, H. 2006. Availability and maintenance of series systems 

subject to imperfect repair and correlated failure and repair. Eur. J. Oper. 

Res., 174(3): 1706-1722. 

Wang, S. and Watada, J. 2009. Reliability optimization of a series-parallel system 

with fuzzy random lifetimes. Int. J. Innov. Comp. Info. Cont., 5(6): 1547-1558. 

Wang, Y. and Li, L. 2011. Heterogeneous redundancy allocation for series-parallel 

multi-state systems using hybrid particle swarm optimization and local 

search. IEEE Trans. Syst. Man Cybern. A Syst. Humans, 42(2): 464-474. 



 

Wortman, M. A., Klutke, G. A. and Ayhan, H. 1994. A maintenance strategy for 

systems subjected to deterioration governed by random shocks. IEEE Trans. 

Reliab., 43(3): 439-445. 

Wu, Z. L., Guo, C. and Zhao, H. 2007. Reliability-modeling for the repairable 

system based on Markov process. J. Dalian Maritime Univ., 33(1): 13-16. 

Xu, H. and Hu, W. 2008. Availability optimisation of repairable system with 

preventive maintenance policy. Int. J. Syst. Sci., 39(6): 655-664. 

Xu, X., Li, J., Zhou, M., Xu, J. and Cao, J. 2018. Accelerated two-stage particle 

swarm optimization for clustering not-well-separated data. IEEE Trans. Syst. 

Man Cybern. Syst., 50(11): 4212-4223. 

Yang, L., Zhao, Y. and Ma, X. 2018. Multi-level maintenance strategy of 

deteriorating systems subject to two-stage inspection. Comput. Ind. Eng., 118: 

160-169. 

Yao, B., Yu, B., Hu, P., Gao, J. and Zhang, M. 2016. An improved particle swarm 

optimization for carton heterogeneous vehicle routing problem with a 

collection depot. Ann. Oper. Res., 242(2): 303-320. 

Ye, Z., Chen, N. and Tsui, K. L. 2015. A Bayesian approach to condition monitoring 

with imperfect inspections. Qual. Reliab. Eng. Int., 31(3): 513-522. 

Yin, P. Y., Yu, S. S., Wang, P. P. and Wang, Y. T. 2007. Task allocation for 

maximizing reliability of a distributed system using hybrid particle swarm 

optimization. J. Syst. Soft., 80(5): 724-735. 

Yu, H., Chu, C., Châtelet, Ė. and Yalaoui, F. 2007. Reliability optimization of a 

redundant system with failure dependencies. Reliab. Eng. Syst. Safe., 92(12): 

1627-1634. 

Zhai, Q. and Ye, Z. S. 2018. Degradation in common dynamic environments. 

Technometrics, 60(4): 461-471.  

Zhang, E. and Chen, Q. 2016. Multi-objective reliability redundancy allocation in an 

interval environment using particle swarm optimization. Reliab. Eng. Syst. 

Safe., 145: 83-92. 



 

Zhang, J., Huang, X., Fang, Y., Zhou, J., Zhang, H. and Li, J. 2016. Optimal 

inspection-based preventive maintenance policy for three-state mechanical 

components under competing failure modes. Reliab. Eng. Syst. Safe., 152:            

95-103. 

Zhang, T., Xie, M. and Horigome, M. 2006. Availability and reliability of k-out-of-

(M+ N): G warm standby systems. Reliab. Eng. Syst. Safe., 91(4): 381-387. 

Zhang, Y. L. 2004. An optimal replacement policy for a three-state repairable system 

with a monotone process model. IEEE Trans. Reliab., 53(4): 452-457. 

Zhao, X. and Nakagawa, T. 2015. Optimal periodic and random inspections with 

first, last and overtime policies. Int. J. Syst. Sci., 46(9): 1648-1660. 

Zhao, X., Al-Khalifa, K. N. and Nakagawa, T. 2015. Approximate methods for 

optimal replacement, maintenance and inspection policies. Reliab. Eng. Syst. 

Safe., 144: 68-73.  

Zhao, X., Jia, X., Chen, M., Qian, C. and Nakagawa, T. 2020. Periodic and 

sequential inspection policies with mission failure probabilities. ‘In: 2020 

Asia-Pacific International Symposium on Advanced Reliability and 

Maintenance Modeling (APARM)’.IEEE. pp. 1-6.  

Zhao, X., Qian, C. and Nakagawa, T. 2013. Optimal policies for cumulative 

damage models with maintenance last and first. Reliab. Eng. Syst. Safe., 110: 

50-59. 

Zheng, Z., Cui, L. and Hawkes, A. G. 2006. A study on a single-unit Markov 

repairable system with repair time omission. IEEE Trans. Reliab., 55(2):           

182-188. 

Zheng, Z., Zhou, W., Zheng, Y. and Wu, Y. 2016. Optimal maintenance policy for 

a system with preventive repair and two types of failures. Comput. Ind. 

Eng., 98: 102-112. 

Zhou, X., Wu, C., Li, Y. and Xi, L. 2016. A preventive maintenance model for 

leased equipment subject to internal degradation and external shock 

damage. Reliab. Eng. Syst. Safe., 154: 1-7. 



 

Zhou, X., Xi, L. and Lee, J. 2006. A dynamic opportunistic maintenance policy for 

continuously monitored systems. J. Qual. Maint. Eng. 

Zhu, Z., Xiang, Y., Alaswad, S. and Cassady, C. R. 2017. A sequential inspection 

and replacement policy for degradation-based systems. ‘In: 2017 Annual 

Reliability and Maintainability Symposium (RAMS)’. IEEE. pp. 1-6.  



CURRICULUM VITAE 
 

Name : Himani Pant Phone Number : 8377890003 

Mailing 

Address 

: Himani Pant  

Raj Vihar Colony, Phase-2, Bari 

Mukhani, Haldwani, Uttarakhand, 

263139 

Permanent 

Address 

: Himani Pant  

Raj Vihar Colony, Phase-2, Bari 

Mukhani, Haldwani, Uttarakhand, 

263139 

E-mail : himanipant.0006@gmail.com  

Career Objective: : To join a renowned institution which allows me to utilize and enhance my 

extensive education and skills and impart knowledge and facilitate interactive and 

research-oriented learning. 

 

Educational Qualification:  

S. No. Examination Passed Institution Year 
Percentage/ 

CGPA 

1. Ph.D. (Mathematics) 
G.B. Pant University of Agriculture and 

Technology, Pantnagar (Uttarakhand) 
2022 Pursuing  

2. M.Sc. (Mathematics) University of Delhi, Delhi 2017 64.44% 

3. B.Sc. (Hons) Mathematics University of Delhi, Delhi 2015 90.62% 

4. Intermediate CBSE 2012 92.6% 

5. High School CBSE 2010 
8.6 CGPA 

(81.7%) 

 

 Specialization: Major: Mathematics                                            Minor: Computer Science 
 

 Thesis Title: MARKOV MODELS FOR RELIABILITY AND COST ANALYSIS OF REPAIRABLE 

SYSTEMS INCORPORATING MAINTENANCE AND INSPECTIONS 

 

 Publications: 

Papers published from thesis:  

1. Pant, H., Singh, S. B., and Chantola, N. (2021). Availability of systems subject to multiple failure modes 

under calendar-based inspection. International Journal of Reliability, Quality and Safety Engineering, 28(03), 

2150022. (Doi: 10.1142/S0218539321500224) 

2. Pant, H., and Singh, S. B. (2021). Availability and cost assessment of systems with dormant failure 

undergoing sequential inspections. Journal of Quality in Maintenance Engineering. (Doi: 10.1108/JQME-10-

2020-0112) 

3. Pant, H., Singh, S. B., Pant, S., and Chantola, N. (2020). Availability analysis and inspection optimisation for 

a competing-risk k-out-of-n: G system. International Journal of Reliability and Safety, 14(2-3), 168-181. 

(Doi: 10.1504/IJRS.2020.113315) 

4. Pant, H., and Singh, S. B. (2021). Modeling a sequentially inspected system prone to degradation and 

shocks. International Journal of Quality and Reliability Management. (Doi: 10.1108/IJQRM-06-2021-0187) 

5. Pant, H., and Singh, S. B. (2021). Markov process approach for analyzing periodically inspected competing-

risk system embodying downtime threshold. Quality Technology and Quantitative Management, 1-16. (Doi: 

10.1080/16843703.2021.1972516) 

6. Pant, H., and Singh, S. B. (2021). Modeling periodically inspected k/r-out-of-n system. Communications in 

Statistics-Theory and Methods, 1-15. (Doi: 10.1080/03610926.2021.1982982) 

 

Papers communicated from thesis:  

1. Pant, H., and Singh, S. B. Modeling systems with revealing and non-revealing failures undergoing periodic 

inspection, Communications in Statistics-Simulation and Computation.  

2. Pant, H., and Singh, S. B. Particle swarm optimization strategy for design optimization of a series-parallel 

system incorporating failure dependencies and multiple repair teams, International Journal of Quality and 

Reliability Management.  
 

 Conferences/Seminars/Workshops/Trainings Attended: 

1. Training on Artificial Intelligence Concepts and Applications organized by G.B. Pant University of 

Agriculture and Technology, Pantnagar during December 26-28, 2019.  

https://doi.org/10.1142/S0218539321500224
https://doi.org/10.1108/JQME-10-2020-0112
https://doi.org/10.1108/JQME-10-2020-0112
https://doi.org/10.1108/IJQRM-06-2021-0187
https://doi.org/10.1080/16843703.2021.1972516
https://doi.org/10.1080/03610926.2021.1982982


2. International workshop on Numerical Methods in Scientific Computing (IWNMSC-2020) organized by South 

Asian University, New Delhi during February 21-22, 2020.  

3. International e-Conference on “Recent Trends in Advancement of Mathematical and Physical Sciences” 

organized by Deva Nagri College, Meerut (C.C.S University, Meerut U.P. India)  during May 22-23, 2020. 

4. National Conference on “Recent Trends in Mathematics” organized by National Institute of Technology, 

Manipur (Langol, Imphal, India) during November 27-28,2020. 

5. Three-Day International Conference on “Recent Advances in Computational Mathematics & Engineering” 

organized by B K Birla Institute of Engineering & Technology, Pilani, Rajasthan during March 19-21, 2021. 

6. 5th International Conference on Mathematical Techniques in Engineering Applications (ICMTEA2021) 

organised by Graphic Era Deemed to be University, Dehradun, India during December 3-4,2021. 

7. Five day‟s virtual lecture series “ANVESHAN” on the occasion of „National Mathematics Day‟ organized by 

Department of Mathematics, SRMS College of Engineering and Technology, Bareilly during December 20-

24, 2021. 

8. International Conference on Mathematical Techniques in Application of Science & Technology (ICMTAST-

21) organized by Dr. C. V. Raman University, Kargi Road, Kota, Bilaspur(C.G.), India during December 22-

23, 2021. 

 

 List of papers presented in conference/seminar during degree programme: 

1. Pant, H., Singh, S. B., and Chantola, N.  (2020). Availability of periodically maintained system subject to 

multiple failure modes. In International e-Conference on “Recent Trends in Advancement of Mathematical 

and Physical Sciences” organized by Deva Nagri College, Meerut (C.C.S University, Meerut U.P. 

India) (May 22-23, 2020). 

2. Pant, H., and Singh, S. B. (2020). Availability and cost modelling of a series-parallel system inspected 

periodically. In National Conference on “Recent Trends in Mathematics” organized by National Institute of 

Technology, Manipur (Langol, Imphal, India) (November 27-28,2020). 

3. Pant, H., and Singh, S. B. (2021). Cost and availability modeling of sequentially inspected systems with 

hidden failure. In Three-Day International Conference on “Recent Advances in Computational Mathematics 

& Engineering” organized by B K Birla Institute of Engineering & Technology, Pilani, Rajasthan (March 19-

21, 2021).  

4. Pant, H., and Singh, S. B. (2021). Modeling periodically inspected systems subject to revealing and non-

revealing failures. In 5th International Conference on Mathematical Techniques in Engineering Applications 

(ICMTEA2021) organised by Graphic Era Deemed to be University, Dehradun, India (December 3-4,2021).  

5. Pant, H., Singh, S. B., and Pant, S. (2021). Design optimization of a series-parallel system with failure 

dependencies and multiple repair teams using a particle swarm optimization technique, presented in 

International Conference on Mathematical Techniques in Application of Science & Technology (ICMTAST-

21) organized by Dr. C. V. Raman University, Kargi Road, Kota, Bilaspur(C.G.), India (December 22-23, 

2021). 

 

 Software Skills: C++, C, Fortran, Python, R 

 

 Professional Skills: Team Work, Communication 
 

 Professional Memberships:  

1. Operational Research Society of India (ORSI) 

2. The Indian Mathematical Society (IMS) 
 

 Awards/Honors/Achievements: 

1. Joint CSIR-UGC NET JUNE 2018, A.I.R. 47 (JRF). Being awarded the fellowship for the same during Ph.D. 

degree programme. 

2. Joint CSIR-UGC NET DEC 2017, A.I.R. 26 (Lectureship) 

3. GATE 2018, A.I.R. 211 (97.59 percentile) 

4. Awarded Science Student Award by Department of Science and Technology, Govt. of Uttar Pradesh for 

Highest marks in Mathematics in Class 10th. 

5. Awarded for Highest marks in Mathematics (in school) in Class 12th. 

 

 

 

Place: Pantnagar  

Date: January, 2022 (Himani Pant) 

 



Name  : Himani Pant Id. No. : 54239 

Sem. & Year of 

Admission 

: 2
nd

 Sem., 2018-2019 Degree  : Ph.D. 

Department :Mathematics, Statistics and Computer Science 

Major : Mathematics Minor : Computer Science 

Thesis Title : MARKOV MODELS FOR RELIABILITY AND COST ANALYSIS 

OF REPAIRABLE SYSTEMS INCORPORATING MAINTENANCE 

AND INSPECTIONS 

No. of Pages : 184 Advisor : Dr. S.B. Singh 

 

ABSTRACT 

 

The present research is based on the development of reliability models incorporating 

maintenance and inspection policies and studying them utilizing a Markov process approach. In 

this study, eight different models have been developed. Model 1 examines a maintained system 

with numerous failure modes that is subjected to periodic inspection using a calendar-based 

inspection strategy. The system is renewed at each of the inspection. The limiting average and 

point availability theorems for the model are deduced. Model 2 provides a model for a 

maintained k-out-of-n:G system with several failure modes that must be inspected on a periodic 

basis. During the inspection, the system is renewed if discovered to be operating or failed. 

Theorems on limiting and point availability and long-run average cost rate (LRACR) for the 

system are developed. Model 3 presents a three-state (normal, degraded, and entirely failed) 

and newly introduced k/r-out-of-n system with a repair strategy that is periodically examined. 

For the suggested model, theorems on LRACR and limiting and point availability are derived. 

Model 4 investigates a system with hidden defects that is subjected to sequential examination. 

When a system breakdown is detected, perfect repairs are carried out at random times. 

Propositions on point and limiting availability and system's LRACR are obtained. Model 5 

examines a single-unit system that is susceptible to degradation and shocks. The system has 

three states: normal, degraded, or failed. Inspections are undertaken progressively at sequential 

times. When a total or partial failure is identified, perfect repairs are done. The reliability, 

availability (point and limiting) and the LRACR of the system are computed. Model 6 looks at 

broad expressions for limiting availability and LRACR of a single-unit randomly failing system 

with alternating phases of operation and rest. System undergoes imperfect periodic inspections. 

Furthermore, it is assumed that inspection and maintenance time is non-negligible, and that 

corrective repairs are perfect. Model 7 analyses the availability (point and limiting) and cost of 

a system examined on a periodic basis and incorporating numerous failure modes and a 

downtime limit concept. Model 8 looks into an optimal design problem for a repairable series-

parallel system. The system's components are prone to breakdown, with various repair teams 

assigned to each subsystem. Four types of interdependence are explored. The goal of the task 

was to identify the ideal number of system components and repair teams that minimises the 

system cost. The PSO technique with dynamic parameters is used to find the ideal structure.  

All the presented models are demonstrated by appropriate illustrative examples. 
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