## HYDRAULIC PERFORMANCE EVALUATION OF DRIP IRRIGATION SYSTEM WITH

## **DIFFERENT EMISSION DEVICES**

By

**Sandeep Kumar** 

[2003AE215M]

Thesis submitted to the Chaudhary Charan Singh Haryana Agricultural University, Hisar in the partial fulfillment of the requirements for the degree of

# Master of Technology in Soil & Water Engineering



COLLEGE OF AGRICULTURAL ENGINEERING & TECHNOLOGY CCS HARYANA AGRICULTURAL UNIVERSITY HISAR-125004





## **Acknowledgement**

With limitless humility, I would like to praise and thank 'GOD', the supreme and merciful, who blessed me with all favourable circumstances and supports to go through the gigantic task. He is the constant support for me to persue for excellence.

I am highly indebted to my esteemed advisor Dr. Pratap Singh, Dean, College of Agricultural Engineering & Technology, whose planning the experiment, sublime suggestions, support, dynamic guidance, constant encouragement, keen supervision, constructive criticism, magnaimous help, incessant, bearance, helped me immensely during the course of the investigation and preparation of this manuscript.

It is proud priviledge for me to express my profound regards and deep sense of gratitude to Dr. R.K. Jhorar, Asstt. Professor, Dept. of Soil and Water Engg., Dr. A.K. Kapoor, Professor, Dept. of Soil Science, Dr. S.D. Batra, Associate Professor, Dept. of Maths and Stats. and Dr. Balwan Singh, Associate Professor, Dept. of Soil Science, the revered members of my advisory committee for their ever willing help, sympathetic interest and exquisite suggestion given by them during the course of the investigation.

My thanks are also due to the entire staff and supporting staff of the Department of Soil & Water Engineering.

I owe a great sense of debt to my seniors Er. Vivek Balyan, Dr. Sushil Goyat, Dr. Satish Nara, Dr. Sandeep Antil, Dr. Kuldeep Taytia, Dr. Bunty, Dr. Santosh, Dr. Nana and Dr. Sudhir, for their kind co-operation consistent encouragement, advice and elp which made this otherwise difficult task distinctly easier to me to achieve.

The help extended by juniors, Monu, Choottu, Naresh, Golli and Ajay is gratefully acknowledged.

A special note of thanks goes to Guruprem, Rajkumar, Dandi, Gogi, Parvinder, Singla and Avnish for their support and help all throughout.

Again I thank the ALMIGHTY for giving me patience and strength to overcome the difficulties which crossed my way in the accomplishment of this endeavour.

Date: December, 2005 Place: Hisar Kumar

Sandeep

#### **CERTIFICATE - I**

This is to certify that this thesis entitled "**Hydraulic Performance Evaluation of Drip Irrigation System with Different Emission Devices**" submitted for the degree of **Master of Technology** in the subject of **Soil & Water Engineering** to Chaudhary Charan Singh Haryana Agricultural University, Hisar, is a bonafide research work carried out by **Mr. Sandeep Kumar** under my supervision and guidance and that no part of this thesis has been submitted for any other degree.

The assistance and help received during the course of investigation have been fully acknowledged.

DR. PRATAP SINGH Major Advisor DEAN College of Agricultrual Engineering & Technology CCS Haryana Agricultural University, Hisar-125 004

#### **CERTIFICATE - II**

This is to certify that this thesis entitled "**Hydraulic Performance Evaluation of Drip Irrigation System with Different Emission Devices**" submitted by **Mr. Sandeep Kumar** to Chaudhary Charan Singh Haryana Agricultural University, Hisar, in the partial fulfilment of the requirements for the degree of **Master of Technology** in the subject of **Soil & Water Engineering**, has been approved by the student's Advisory Committee after an oral examination on the same.

#### MAJOR ADVISOR

#### HEAD OF THE DEPARTMENT

#### **DEAN, POST GRADUATE STUDIES**

### **CONTENTS**

| Chapter No. | Description            | Pages   |  |  |
|-------------|------------------------|---------|--|--|
| Ι           | INTRODUCTION           | 1-3     |  |  |
| II          | REVIEW OF LITERATURE   | 4-12    |  |  |
| III         | MATERIAL AND METHODS   | 13-23   |  |  |
| IV          | RESULTS AND DISCUSSION | 24-74   |  |  |
| V           | SUMMARY AND CONCLUSION | 75-78   |  |  |
|             | LITERATURE CITED       | i-v     |  |  |
|             | APPENDICES             | I-XXXVI |  |  |

| Table<br>No. | Title                                                                                      | Page(s) |
|--------------|--------------------------------------------------------------------------------------------|---------|
| 3.1          | Reduce level of main line                                                                  | 15      |
| 3.2          | Reduced level of lateral lines                                                             | 19      |
| 4.1          | Uniformity coefficient of drippers with different spacing and operating pressure heads     | 25      |
| 4.2          | Uniformity coefficient of micro-tubes with different spacing and operating pressure heads  | 27      |
| 4.3          | Uniformity coefficient of drip-in with different spacing<br>and operating pressure heads   | 29      |
| 4.4          | Uniformity coefficient of drip tape with different spacing and operating pressure heads    | 31      |
| 4.5          | Emission uniformity of drippers with different spacing<br>and operating pressure heads     | 33      |
| 4.6          | Emission uniformity of micro-tubes with different spacing and operating pressure heads     | 35      |
| 4.7          | Emission uniformity of drip-in with different spacing<br>and operating pressure heads      | 37      |
| 4.8          | Emission uniformity of drip tape with different spacing and operating pressure heads       | 39      |
| 4.9          | Coefficient of variation of dripper with different spacing and operating pressure heads    | 41      |
| 4.10         | Coefficient of variation of micro-tube with different spacing and operating pressure heads | 43      |
| 4.11         | Coefficient of variation of drip-in with different spacing and operating pressure heads    | 45      |
| 4.12         | Coefficient of variation of drip tape with different                                       | 47      |

### LIST OF TABLES

spacing and operating pressure heads

| 4.13 | Coefficient of manufacturing variation of different<br>emission devices at different operating pressure<br>heads | 49 |
|------|------------------------------------------------------------------------------------------------------------------|----|
| 4.14 | Head loss in different part of system for dripper at different operating pressure heads and spacing              | 51 |
| 4.15 | Head loss in different part of system for micro-tubes<br>at different operating pressure heads and spacing       | 54 |
| 4.16 | Head loss in different part of system for drip-in at different operating pressure heads and spacing              | 56 |

- 4.17 Head loss in different part of system for drip tape at 58 different operating pressure heads and spacing
- 4.18 Values of coefficients a and b and coefficient of 61 correlation (R<sup>2</sup>) of different equations for main line and lateral line for different emission devices.
- 4.19 Measured head loss and calculated head loss 68-69 combined for all emission devices at different spacing and different operating pressure head
- 4.20 Calculated values of different measures and head loss 70-71 by computer programme for different emission devices at different spacing and different operating pressure heads

| 4.21 | Results of analysis | 72 |
|------|---------------------|----|
|      | 5                   |    |

## **LIST OF FIGURES**

| <ul> <li>3.1 Layout of system</li> <li>3.2 Variation of Reduced Level in main line</li> <li>3.3 Variation of Reduced Level in lateral lines</li> <li>3.4 Different Emission Devices</li> <li>3.5 Measurement of Pressure Head</li> <li>3.6 Measurement of Discharge</li> <li>4.1 Uniformity coefficient for dripper at different operating pressure head and spacing</li> <li>4.2 Uniformity coefficient for micro-tube at different operating pressure head and spacing</li> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for micro-tube at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul> | 16<br>17<br>17<br>18<br>21<br>21 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| <ul> <li>3.2 Variation of Reduced Level in main line</li> <li>3.3 Variation of Reduced Level in lateral lines</li> <li>3.4 Different Emission Devices</li> <li>3.5 Measurement of Pressure Head</li> <li>3.6 Measurement of Discharge</li> <li>4.1 Uniformity coefficient for dripper at different operating pressure head and spacing</li> <li>4.2 Uniformity coefficient for micro-tube at different operating pressure head and spacing</li> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                  | 17<br>17<br>18<br>21<br>21       |
| <ul> <li>3.3 Variation of Reduced Level in lateral lines</li> <li>3.4 Different Emission Devices</li> <li>3.5 Measurement of Pressure Head</li> <li>3.6 Measurement of Discharge</li> <li>4.1 Uniformity coefficient for dripper at different operating pressure head and spacing</li> <li>4.2 Uniformity coefficient for micro-tube at different operating pressure head and spacing</li> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                       | 17<br>18<br>21<br>21             |
| <ul> <li>3.4 Different Emission Devices</li> <li>3.5 Measurement of Pressure Head</li> <li>3.6 Measurement of Discharge</li> <li>4.1 Uniformity coefficient for dripper at different operating pressure head and spacing</li> <li>4.2 Uniformity coefficient for micro-tube at different operating pressure head and spacing</li> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                | 18<br>21<br>21                   |
| <ul> <li>3.5 Measurement of Pressure Head</li> <li>3.6 Measurement of Discharge</li> <li>4.1 Uniformity coefficient for dripper at different operating pressure head and spacing</li> <li>4.2 Uniformity coefficient for micro-tube at different operating pressure head and spacing</li> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                                                        | 21<br>21                         |
| <ul> <li>3.6 Measurement of Discharge</li> <li>4.1 Uniformity coefficient for dripper at different operating pressure head and spacing</li> <li>4.2 Uniformity coefficient for micro-tube at different operating pressure head and spacing</li> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for micro-tube at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                                                                                               | 21                               |
| <ul> <li>4.1 Uniformity coefficient for dripper at different operating pressure head and spacing</li> <li>4.2 Uniformity coefficient for micro-tube at different operating pressure head and spacing</li> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for micro-tube at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                                                                                                                                     |                                  |
| <ul> <li>4.2 Uniformity coefficient for micro-tube at different operating pressure head and spacing</li> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for micro-tube at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      | 26                               |
| <ul> <li>4.3 Uniformity coefficient for drip-in at different operating pressure head and spacing</li> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for micro-tube at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28                               |
| <ul> <li>4.4 Uniformity coefficient for drip tape at different operating pressure head and spacing</li> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for micro-tube at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                               |
| <ul> <li>4.5 Emission uniformity for dripper at different operating pressure head and spacing</li> <li>4.6 Emission uniformity for micro-tube at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32                               |
| <ul> <li>4.6 Emission uniformity for micro-tube at different operating pressure head and spacing</li> <li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li> <li>4.8 Emission uniformity for drip tape at different operating</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34                               |
| <ul><li>4.7 Emission uniformity for drip-in at different operating pressure head and spacing</li><li>4.8 Emission uniformity for drip tape at different operating</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                               |
| 4.8 Emission uniformity for drip tape at different operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38                               |
| pressure head and spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40                               |
| 4.9 Coefficient of variation for dripper at different operating pressure head and spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                               |
| 4.10 Coefficient of variation for micro-tube at different operating pressure head and spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44                               |
| 4.11 Coefficient of variation for drip-in at different operating pressure head and spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46                               |
| 4.12 Coefficient of variation for drip tape at different operating pressure head and spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                               |
| 4.13 Coefficient of manufacturing variation for different emission devices at different operating pressure head and spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                               |
| 4.14 Head loss in main line for drippers at different operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52                               |

pressure head and spacing

| 4.15 | Head loss in lateral line for drippers at different operating pressure head and spacing   | 53 |
|------|-------------------------------------------------------------------------------------------|----|
| 4.16 | Head loss in main line for micro-tube at different operating pressure head and spacing    | 54 |
| 4.17 | Head loss in lateral line for micro-tube at different operating pressure head and spacing | 55 |
| 4.18 | Head loss in main line for drip-in at different operating pressure head and spacing       | 57 |
| 4.19 | Head loss in lateral line for drip-in at different operating pressure head and spacing    | 57 |
| 4.20 | Head loss in main line for drip-tape at different operating pressure head and spacing     | 59 |
| 4.21 | Head loss in lateral line for drip-tape at different operating pressure head and spacing  | 60 |
| 4.22 | Variation of head loss with discharge in main line of drippers                            | 62 |
| 4.23 | Variation of head loss with discharge in lateral line of drippers                         | 62 |
| 4.24 | Variation of head loss with discharge in main line of microtube                           | 63 |
| 4.25 | Variation of head loss with discharge in lateral line of micro-tubes                      | 63 |
| 4.26 | Variation of head loss with discharge in main line of drip-in                             | 64 |
| 4.27 | Variation of head loss with discharge in lateral line of drip-in                          | 64 |
| 4.28 | Variation of head loss with discharge in main line of drip-tape                           | 65 |
| 4.29 | Variation of head loss with discharge in lateral line of drip tape                        | 65 |
| 4.30 | The variation of head loss with discharge in main line combined of all emission devices   | 66 |
| 4.31 | Variation of head loss with discharge in lateral line combined of all emission devices    | 66 |

### LIST OF ABBREVIATIONS AND SYMBOL

|                    | • | inverage albeitarge rate                   |
|--------------------|---|--------------------------------------------|
| %                  | : | per cent                                   |
| Agril.             | : | Agricultural                               |
| ASAE               | : | American Society of Agricultural Engineers |
| BIS                | : | Bureau of Indian Standard                  |
| BM                 | : | Bench mark                                 |
| BS                 | : | Back sight                                 |
| CCS                | : | Choudhary Charan Singh                     |
| CD                 | : | Critical difference                        |
| CMV                | : | Coefficient of manufacturing variation     |
| CV                 | : | Coefficient of variation                   |
| Dept.              | : | Department                                 |
| Div.               | : | Division                                   |
| Drain              | : | Drainage                                   |
| Engg.              | : | Engineering                                |
| et al.             | : | <i>et al</i> ia (and others)               |
| etc.               | : | et cetera (and so forth)                   |
| EU                 | : | Emission uniformity                        |
| Fig.               | : | Figure                                     |
| FS                 | : | Fore slight                                |
| IS                 | : | Intermediate sight                         |
| J.                 | : | Journal                                    |
| Kg/Cm <sup>2</sup> | : | Killo gram per centimeter square           |
| KPa                | : | Kilo Pascal                                |
| KW                 | : | Killo walt                                 |
| l/h                | : | Litre per hour                             |
| LDPE               | : | Low density polyethylene                   |
| lps                | : | Litre per second                           |
| m                  | : | meter                                      |
| m/100m             | : | meter per hundred meter                    |
| No.                | : | Number                                     |
| PVC                | : | Polyvinyl chloride                         |
| RL                 | : | Reduced level                              |
| rpm                | : | Revolution per minute                      |
| Sq                 | : | Standard deviation                         |
| UC                 | : | Uniformity coefficient                     |

: Average discharge rate

#### **CHAPTER – I**

## Introduction

The demand of water resources is increasing due to the increase in the water requirement of growing population, agriculture production and industrialization. The rainfall is the main source of all the waters, either on the earth surface or below the earth surface. The rains are quite variable in time and space. In arid and semi arid region, sustainable agriculture production is not possible without supplemental irrigation. Different irrigation projects were developed to stabilize the agriculture production. But the overall efficiency of water utilization in conventional methods of surface irrigation varies from 30-35% (Singh, 1999) due to poor on farm water management. This leads to the wastage of huge quantity of precious water and causes problems of waterlodgging and/or salinization in canal command areas especially where ground water is brakish. Different innovations have been made in the irrigation methods for better water application to the crops.

Drip irrigation is one of the innovation in the irrigation methods, which is becoming popular for wide spaced crops grown in light sandy soils with water scarcity. In this method, irrigation is accomplished by small diameter plastic lateral lines with different types of emission devices, at selected spacing to deliver water to the soil surface near the plants. It is a method of watering plants frequently and with a volume of water approaching the consumptive use of plants, thereby minimizing deep percolation and runoff losses. The frequent water application in drip irrigation results better moisture conditions in the crop root zone. It is found that drip irrigation results in 40-70% water saving and as high as 100% increase in crop yield for most of the horticultural and vegetable crops (Singh, 1999). The main limitation in the use of the drip irrigation system is its initial cost.

The hydraulic performance of drip irrigation system is indicated by water distribution uniformity which is measured by uniformity coefficient, emission uniformity, coefficient of variation and coefficient of manufacturing variation. The different measures for hydraulic performance of drip irrigation system are very useful for effective design and operation of the system. The water distribution uniformity in drip irrigation system varies due to variations in operating pressure, variation in manufacturing process, field topography, water quality and temperature variations. For a given drip irrigation system, operating pressure is one of the most important parameter, which influences the system performance. The pressure variation in a drip irrigation system for a given set of field and climatic conditions is mainly due to variations in head loss in different components of the system, such as header, main and sub-main line and lateral lines with different emission devices. The most common emission devices for drip irrigation system are on-line dripper, micro-tube, drip-in and drip tape. Therefore, it was decided to study the hydraulic performance of the drip irrigation system with different emission devices with the following objectives:

1. To identify the appropriate hydraulic performance evaluation measures.

-2-

- 2. To study the effect of operating pressure on water distribution uniformity and head loss in main line and lateral lines for following emission devices.
  - a. On-line dripper
  - b. Micro-tube
  - c. Drip-in
  - d. Drip tape
- 3. To develop computer software for hydraulic performance evaluation and calculation of head loss in drip irrigation system.

# **Review of Literature**

Attempts have been made by many scientists in India and abroad to study the hydraulic performance of drip irrigation system based on different measures. The most commonly used measures for evaluation of hydraulic performance of drip irrigation are uniformity coefficient, emission uniformity, coefficient of variation and coefficient of manufacturing variation. In the present study the work done by different workers to study the effect of different operating conditions on water distribution uniformity has been reviewed under these hydraulic performance evaluation measures. Similarly, the work done by different workers for the head loss under different operating conditions has been reviewed under head loss and the work done for software developed by different workers has been reviewed under software for drip irrigation. Some of important work done related to the present study is as under.

#### 2.1 Uniformity Coefficient

Jonas *et al.* (1975) performed hydraulic test to calculate the uniformity coefficient for choosing the best dripper out of given types of dripper and to design the drip irrigation system by developing empirical equations.

Singh *et al.* (1990) compared the performance of various plastic drip irrigation system (TABE, Turbotape and Bi-wall). Underground tubing with TABE, TABE on ground, Bi-wall and

microtube emitter were studied. It was found that the uniformity coefficient improved with increase in operating pressure up to 2.11 Kg/cm<sup>2</sup>. Maximum uniformity was achieved by Bi-wall and minimum by TABE. Even at 60% plugging level, the variation in discharge was less than 22% at the operating pressure of 1.55 Kg/cm<sup>2</sup> for Bi-wall.

Oguzer and Yilmaz (1991) tested three types of emitters for measuring uniformity coefficient and coefficient of variation. The results indicated that coefficients of variation ranged from 0.10 to 0.20, thus, 33% of emitters were classified as well designed, 9% as acceptable and 55% as poor. The uniformity coefficient of 97.5% was required for an emitter to be classified as acceptable, 33% of emitter satisfied this condition.

Mastafazadeh *et al.* (2000) found that emitter clogging increased with increase in pH and mineral concentration of irrigation water. Emitter clogging reduced the discharge rate and uniformity coefficient of emitters.

Buendia *et al.* (2004) conducted a field experiment in Guaaguato, Maxico to evaluate the irrigation systems and to determine their performance and the effect on crop yield. Three types of irrigation system were evaluated:- portable sprinkler, side roll and drip irrigation. The Christiansen uniformity coefficient for portable and side role were found 75.70% and 74.57% respectively. The uniformity coefficient for drip irrigation system was found 80.77%. Water and land productivity was low in sprinkler irrigation system and high in drip irrigation system. The crop yields increased as uniformity coefficients increased.

Qui-Yang Feng *et al.* (2004) developed a model for designing a drip irrigation system by assuming uniformity coefficient equal or more than 70 percent. With the help of this model, the total

-5-

yield affected by total water application for different uniformity of irrigation application could be determined.

#### 2.2 Emission Uniformity

Al-Karaghouli and Minasian (1992) determined the crop yield on the basis of emission uniformity of a drip irrigation system. Six common types of drip irrigation system were investigated to select the most efficient drip irrigation system on the basis of their emission uniformity. Emission uniformity of the systems decreased with time due to clogging but emitters manufactured by injection moulding possessed higher emission uniformity values with relatively low reduction rate as compared with extruded emitter. Consequently, injected type emitters gave a higher crop yield than extruded type emitters.

Capra *et al.* (1995) developed an emission uniformity index to describe distribution uniformity in local drip irrigation system. Emission uniformity in such a system varied with time, mainly due to emitter clogging. The results showed that the minimum number of emitter needed for testing was 16 and there was no relationship between clogging and the position of microjets. Although dripper clogging increased along lateral.

Halsambre (1996) conducted emission uniformity tests to study the status of drip irrigation systems in Maharashtra, India. Farmers were questioned about planning and design of pipe network, suitability of pump set, sand and screen media filters and maintenance of system components. Properly planned, designed and maintained system had 88-95 percent emission uniformity but only 25 percent of responding farmers had such system.

-6-

Gogen and Hakgoren (2000) conducted a drip irrigation experiment in green house to examine the water distribution uniformity, irrigation application efficiency and soil-plant-water relationship in Kumluca region, Antalya and Turkey. The irrigation system was re-planned according to emission uniformity. Emitter flow variation and Christiansen uniformity coefficient in greenhouse conditions were compared with the system used by local formers. Problems related to system and any necessary precautions were pointed out. Suggestions were made to the farmers in order to make the drip irrigation system in their greenhouses work more efficiently.

Kale *et al.* (2000) studied that the flow rate and emission uniformity of microjet irrigation system increased with an increase in operating pressure but decreased with increase in stake height. Wetting diameter, uniformity coefficient and distribution uniformity increased with an increase in operating pressure and the decrease in stake height.

Hassanli and Sepaskash (2001) conducted experiments in seven citrus gardens in different parts of Darab, Iran to evaluate the drip irrigation system. The evaluation procedure was based on Merrian and Keller Model (1978). The field experiments indicated that emission uniformity varied from 31% to 82% i.e. poor to good.

Bhatnagar and Shrivastava (2003) designed a drip irrigation system for hill terraces. They found that the system worked efficiently with field emission uniformity above 90 percent.

Jadhav and Firake (2003) carried out a field experiment with groundnut in Maharashtra to investigate the suitability of drip irrigation scheduling approaches, in comparison to surface irrigation method. They found that the emission uniformity of drip irrigation

-7-

system was more than 90% indicating the excellent performance of the system.

Senzanje *et al.* (2004) conducted an experiment to assess the technical performance and determine the operational limits of low cost drip irrigation system with three types of low cost emitter (sponge, string, steeve). The system had 16 mm diameter drip lines. The operational head tested were 1, 1.5 and 2m, whereas the drip line length varied from 5 to 45m in the steps of 5m. The results indicated that for all emitter types discharge varied from 2 to 10 liter/hour for drip line length of 10 to 35 m respectively. The emission uniformity of the system was found 79%. The most appropriate drip line length was 25m and operating head of 1.5 m for the system with string and sleeve type emitter, and 2 m for the system with sponge type emitter.

#### 2.3 Coefficient of Variation

Keller *et al.* (1974) introduced the coefficient of variations as a statistical measure for dripper manufacturing variation. The coefficient of manufacturing variation was then included in design equations for emission uniformity.

Nakayama *et al.* (1979) developed a method for showing the uniformity of water application by trickle drippers based on coefficient of variation. The inter-relationship between computed design uniformity coefficient and coefficient of variation for drippers was used as a guide for selecting number of drippers per plant.

Braltz *et al.* (1981) developed a nomograph in which coefficient of variation was used to measure the effect of emitter plugging on uniformity of emitter flow along single and dual chamber drip irrigation lateral lines. The number of emitters per plant was shown to be important when calculating uniformity considering emitter plugging. Braltz and Kesner (1983) proposed a method of estimating field uniformity based on statistical uniformity coefficient using coefficient of variation which was determined from a randomly sampled dripper flow rates.

Shrivastava *et al.* (1990) calculated the coefficient of variation to determine emitter flow variation along a lateral line for 15 commercially available drippers. The maximum possible length of a lateral for a particular diameter tube was worked out, considering 18 percent variation in average discharge.

#### 2.4 Coefficient of Manufacturing Variation

Solomon (1979) observed that coefficient of manufacturing variation in emission devices was an important factor influencing emission uniformity in drip irrigation system. He proposed that coefficient of manufacturing variation must be considered when selecting drippers for a system.

Madaramootoo and Khatri (1988) observed that the coefficients of manufacturing variation were higher for pressure compensating drippers than non-pressure compensating drippers.

Correia (1990) evaluated the pressure discharge relationship and other parameters for 6 Indian companies marketing drip irrigation systems. The exponents of emitter flow equation varied from 0.14 to 0.70 at rated discharge of 4 liter/hour with an exception of 0.078 at 2 liter/hour. The deviation of discharge from mean varied from +51% to -80%. The values of coefficient of manufacturing variation ranged from 0.016 to 0.375.

Ozekiei and Sneed (1990) computed the coefficient of manufacturing variation, emitter, exponent and discharge coefficient to determine flow regime for non-pressure compensating emitters and pressure compensating emitters. The values of coefficient of manufacturing variation were found to be higher for pressure compensating emitters than non-pressure compensating emitters.

Mostatazadeh *et al.* (2002) found that emitter discharge was affected by parameters such as pressure, irrigation water temperature, coefficient of manufacturing variation and emitter clogging. They evaluated that coefficients of manufacturing variation at water temperature of about 20°C for double chamber tube, in-line dripper and pressure compensating emitter were equal to 5, 7 and 22 percent respectively.

Karnak *et al.* (2004) compared the manufacturer's reported discharge rates and the coefficients of manufacturing variation with test results for various types of in-line emitters manufactured by 4 different companies in Turkey. Seven non-pressure compensating and 2 pressure compensating emitters were tested at 50, 100, 200 and 250 KPa pressures. Pressure compensating emitters exponents ranged from 0.02 to 0.05 while non-pressure compensating emitters exponents varied from 0.60 to 0.85. The results showed that only 1 of the 7 non-pressure compensating emitter and both pressure compensating emitters had flow rate with in -10% to +10% of manufacturer's reported values.

#### 2.5 Head Loss

Wu and Giltin (1974) estimated the head loss at any point along drip line by knowing total friction drop and total length. They proposed the use of curve for calculating head loss pattern along a drip line.

Keller and Karmeli (1975) suggested that the head losses across dripper connections should also be considered in lateral design procedure besides lateral length, pipe size, drippers spacing, ground slop and dripper flow rate.

1980 Howell *et al.* (1980) calculated the head loss across on-line dripper. The head losses were expressed in term of equivalent length of pipe. They proposed that these losses also be taken into account in lateral design procedures.

Ahmed (1995) conducted an experiment to measure the effect of on-line emitters on pressure losses in trickle irrigation laterals. He used 8 types of emitter with various barb areas installed into five commonly used polyethylene pipes of different diameters. The result showed a significant pressure losses due to emitter connections. These losses were a function of area of emitter barb protrusion and lateral pipe diameter. A simple procedure was suggested to incorporate the emitter barb losses in the design of trickle irrigation losses.

Bagarello *et al.* (1997) conducted an experiment to deduce an evaluating procedure of local losses due to protrusion of emitter barbs into flow in drip irrigation lines. Local losses were measured for different Reynolds number value. Each pipe emitter system was characterized by an obstruction index. A relationship between local losses and corresponding obstruction index was deduced. Two evaluating procedures of obstruction index were also compared.

Reddy *et al.* (2000) evaluated the pressure variation in pipelines using a modified form of Bernoulli's equation. Head loss due to friction was evaluated using Darcy's Weisbash equation. Newton Raphson technique was used to solve equations and to determine pressure head at various nodes of pipe network.

Yuredem and Demir (2003) conducted an experiment to determine the effect of design faults of the domestic screen type filters used in drip irrigation system on head losses and to provide solutions for their deduction. Screen filters with 2.5 inches and 3 inches were used. They found that some changes on outlet and inlet area, the head losses for 2.5 inches filters were reduced to approximately 60% while some changes for 3 inches filter resulted in 40% reduction in head losses. The change made on 3 inches filter body reduced the head losses for approximately 81 percent.

#### 2.6 Software for Drip Irrigation

Camp *et al.* (1997) developed a software for irrigation scheduling of table grapes under drip irrigation. The main objectives of the software were to control daily irrigation procedures implemented by grower last week and to provide daily irrigation recommendations for next week.

Charles *et al.* (2000) developed a software to estimate distribution uniformity, causes and relative importance of various factors influencing the non-unformity of drip irrigation system. This software provided suggestions to improve the distribution uniformity. The software provided only an approximate value of irrigation efficiency.

Krishan and Ravi Kumar (2002) developed a software named as Drip System Simulation Programme. The software was developed for design drip irrigation sub unit. An equation to determine pressure distribution in pipelines with equally spaced multiple outlets and with outflow at downstream end was derived.

Rajput and Patel (2003) developed a software named as "DRIPD". This software was designed for drip irrigation system under all agro climatic conditions of fruits, vegetables as well as for close spaced field crops. An overview of the development of drip irrigation components and the design of drip irrigation system was presented.

# **Material and Methods**

The present study on, "Hydraulic performance evaluation of drip irrigation system with different emission devices" was conducted in Soil and Water Engineering field Laboratory, College of Agricultural Engineering and Technology, CCS Haryana Agricultural University, Hisar. Material and Methods include location and climate, drip irrigation system, emission devices, pressure head measurement equipment, discharge measurement equipment and measurement of water distribution uniformity. Brief description of the material and methods is as under:

#### 3.1 Location and Climate

Hisar is located at 29°10'N Latitude and 75°46'E Longitudes, with an evaluation of 215 meter above mean sea level. The area is characterized by semi-arid type of climate with an average annual rainfall of 450 mm which is scanty and erratic. The average annual evaporative demand is 2323 mm. The average minimum temperature during month of January is about 5°C and average maximum temperature during months of May and June is about 45°C.

#### 3.2 Drip Irrigation System

Drip irrigation system used in the present study included water source, pump set, filter, main line, lateral lines, different emission devices and accessories. The layout of the drip irrigation system used in the present study is shown in Figure 3.1. The different components of the drip irrigation system used are described as under:

#### 3.2.1 Water Source

A groundwater storage tank of size 8.4m x 8.4m x 2m was used as water source. The storage tank was filled by a tube-well with a electric operated monoblock centrifugal pump of 10cm x 10cm size, 5.5 KW, 2900 rpm, head of 12/24m with discharge of 28/14 lps. A constant water level of 1.5m was kept in the tank.

#### 3.2.2 Pumping Set

An electric operated centrifugal monoblock pump of 1.5 KW, 5cm x 5cm size, 11.4cm impeller diameter, 7.0 to 18.0m head range, 45% overall efficiency, 9.0 lps maximum capacity was used to pump the water from underground reservoir to drip irrigation system.

#### 3.2.3 Filter

A screen filter was installed between drip irrigation system main line and delivery pipe of the pumping set. Nominal size and pressure of the filter was 50mm and 2 Kg/cm<sup>2</sup>. The aperture size of the filter was 103 microns.

#### 3.2.4 Main Line

Polyvinyl chloride (PVC) plastic pipe of 5cm, diameter was used for the main line. The length of the main line was 50m. The ground profile along main line was measured with the help of dumpy level at 2m interval. The measured values of Reduce Level (RL) are given in Table 3.1 and shown in Figure 3.2.

#### 3.2.5 Lateral Line

Low density polyethylene (LDPE) plastic pipes of 16mm diameter were used for lateral lines. There were three lateral lines

-14-

| Distance<br>(meter) | BS (meter) | IS (meter) | F.S. (meter) | R.L. (meter) |
|---------------------|------------|------------|--------------|--------------|
| BM                  | 1.10       |            |              | 100          |
| 0                   |            | 1.16       |              | 99.94        |
| 2                   |            | 1.26       |              | 99.84        |
| 4                   |            | 1.24       |              | 99.86        |
| 6                   |            | 1.21       |              | 99.89        |
| 8                   |            | 1.43       |              | 99.67        |
| 10                  |            | 1.38       |              | 99.72        |
| 12                  |            | 1.39       |              | 99.71        |
| 14                  |            | 1.36       |              | 99.74        |
| 16                  |            | 1.38       |              | 99.72        |
| 18                  |            | 1.35       |              | 99.75        |
| 20                  |            | 1.23       |              | 99.87        |
| 22                  |            | 1.26       |              | 99.84        |
| 24                  |            | 1.30       |              | 99.80        |
| 26                  |            | 1.31       |              | 99.79        |
| 28                  |            | 1.33       |              | 99.77        |
| 30                  |            | 1.31       |              | 99.79        |
| 32                  |            | 1.29       |              | 99.81        |
| 34                  |            | 1.28       |              | 99.82        |
| 36                  |            | 1.28       |              | 99.82        |
| 38                  |            | 1.27       |              | 99.83        |
| 40                  |            | 1.27       |              | 99.83        |
| 42                  |            | 1.34       |              | 99.76        |
| 44                  |            | 1.34       |              | 99.76        |
| 46                  |            | 1.35       |              | 99.75        |
| 48                  |            | 1.38       |              | 99.72        |
| 50                  |            | 1.32       |              | 99.78        |
| 52                  |            |            | 1.37         | 99.73        |

#### Table 3.1: Reduce level of main line



mounted on the main line. The spacing between lateral lines were 6m, 1m and 0.5m. The selected length of the lateral line was 60m for all emission devices except micro-tubes at 1m x 1m and 0.5m x 0.5m spacing. The selected length of lateral line for micro-tubes at 1m x 1m and 0.5m x 0.5m spacing was 24 m and 18 m respectively. The ground profile along the lateral lines was measured with the help of dumpy level at 3m interval. The measured values of Reduce Level (RL) are given in Table 3.2 and is show in Figure 3.3.

#### 3.2.6 Accessories

Different accessories were used to pump water to control the water flow rate, to connect the main line and lateral line etc. One PVC valve of 5cm diameter was used to control the water flow from delivery pipe to the main line. The end plugs were used to close the downstream end of main line and laterals. The laterals were connected to main line with grommets. The drip tape laterals were connected to the main lines with drip tape connector. Specially fabricated punch was used to make holes in laterals to mount emitters and/or micro-tubes. The main line was connected with PVC sockets and elbows. The micro-tubes were connected to laterals by connectors.

#### 3.3 Emission Devices

The emission devices used in the present study were drippers, micro-tubes, drip-in and drip tape (Figure 3.4). The emission

devices were mounted on lateral lines at 6m, 1m and 0.5m spacing for drippers and micro-tubes. However, the spacing of the emission devices on the lateral lines for drip-in and drip tape was fixed at 60cm and 30cm respectively.



**Figure 3.4: Different Emission Devices** 

#### 3.3.1 Drippers

On-line non-pressure compensating orifice type drippers of 4 liter/hour capacity at the recommended operating pressure of 10m head were used.

| Distance<br>(meter) | B.S.<br>(meter) | I.S. of<br>first later<br>(meter) | FS for<br>first<br>lateral<br>(meter) | R.L. for<br>first<br>lateral | I.S. for<br>second<br>laterl<br>(meter) | F.S. for<br>second<br>lateral<br>(meter) | R.L. for<br>second<br>lateral<br>(meter) | I.S. for<br>third<br>lateral<br>(meter) | F.S. for<br>third<br>lateral<br>(meter) | R.L. for<br>third<br>lateral<br>(meter) |
|---------------------|-----------------|-----------------------------------|---------------------------------------|------------------------------|-----------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
| BM                  | 1.10            |                                   |                                       | 100                          |                                         |                                          | 100                                      |                                         |                                         | 100                                     |
| 0                   |                 | 1.44                              |                                       | 99.66                        | 1.32                                    |                                          | 99.78                                    | 1.28                                    |                                         | 99.82                                   |
| 3                   |                 | 1.42                              |                                       | 99.68                        | 1.36                                    |                                          | 99.74                                    | 1.30                                    |                                         | 99.80                                   |
| 6                   |                 | 1.39                              |                                       | 99.71                        | 1.35                                    |                                          | 99.75                                    | 1.35                                    |                                         | 99.75                                   |
| 9                   |                 | 1.40                              |                                       | 99.70                        | 1.40                                    |                                          | 99.70                                    | 1.32                                    |                                         | 99.78                                   |
| 12                  |                 | 1.38                              |                                       | 99.72                        | 1.37                                    |                                          | 99.73                                    | 1.47                                    |                                         | 99.63                                   |
| 15                  |                 | 1.43                              |                                       | 99.67                        | 1.41                                    |                                          | 99.69                                    | 1.41                                    |                                         | 99.69                                   |
| 18                  |                 | 1.43                              |                                       | 99.67                        | 1.39                                    |                                          | 99.71                                    | 1.33                                    |                                         | 99.77                                   |
| 21                  |                 | 1.39                              |                                       | 99.71                        | 1.35                                    |                                          | 99.75                                    | 1.34                                    |                                         | 99.76                                   |
| 24                  |                 | 1.24                              |                                       | 99.86                        | 1.38                                    |                                          | 99.72                                    | 1.25                                    |                                         | 99.85                                   |
| 27                  |                 | 1.33                              |                                       | 99.77                        | 1.27                                    |                                          | 99.83                                    | 1.13                                    |                                         | 99.97                                   |
| 30                  |                 | 1.39                              |                                       | 99.71                        | 1.12                                    |                                          | 99.98                                    | 1.42                                    |                                         | 99.68                                   |
| 33                  |                 | 1.42                              |                                       | 99.68                        | 1.25                                    |                                          | 99.85                                    | 1.36                                    |                                         | 99.74                                   |
| 36                  |                 | 1.38                              |                                       | 99.72                        | 1.39                                    |                                          | 99.71                                    | 1.32                                    |                                         | 99.78                                   |
| 39                  |                 | 1.33                              |                                       | 99.77                        | 1.47                                    |                                          | 99.63                                    | 1.33                                    |                                         | 99.77                                   |
| 42                  |                 | 1.30                              |                                       | 99.80                        | 1.46                                    |                                          | 99.64                                    | 1.16                                    |                                         | 99.94                                   |
| 45                  |                 | 1.30                              |                                       | 99.80                        | 1.39                                    |                                          | 99.71                                    | 1.17                                    |                                         | 99.93                                   |
| 48                  |                 | 1.27                              |                                       | 99.83                        | 1.30                                    |                                          | 99.80                                    | 1.12                                    |                                         | 99.98                                   |
| 51                  |                 | 1.25                              |                                       | 99.85                        | 1.22                                    |                                          | 99.88                                    | 1.18                                    |                                         | 99.92                                   |
| 54                  |                 | 1.19                              |                                       | 99.91                        | 1.18                                    |                                          | 99.92                                    | 1.15                                    |                                         | 99.95                                   |
| 57                  |                 | 1.31                              |                                       | 99.79                        | 1.13                                    |                                          | 99.97                                    | 1.17                                    |                                         | 99.93                                   |
| 60                  |                 |                                   | 1.25                                  | 99.85                        |                                         | 1.21                                     | 99.89                                    |                                         | 1.13                                    | 99.97                                   |

#### Table 3.2: Reduced level of lateral lines

-21-

#### 3.3.2 Micro-tubes

2mm diameter and 40cm long micro-tubes of 80 liter/hour capacity at the recommended operating pressure of 15m head were used.

#### 3.3.3 Drip-in

Drip-in having outlets at 60m spacing and capacity of 1.5 liter/hour at the recommended operating pressure head of 5m were used.

#### 3.3.4 Drip tape

Drip tape having outlets at 30cm spacing and capacity of 1 liter/hour at the recommended operating pressure head of 5m were used.

#### 3.4 Pressure Head Measurement Equipment

The higher values of pressure head were measured with the mercury manometer and the lower values of the pressure head were measured with the water manometer (Figure 3.5). The pressure head measurement were made at four locations in the system as given below:

- i) Upstream end of main line
- ii) Downstream end of main line
- iii) Upstream end of first lateral
- iv) Downstream end of first lateral

The measured values of the pressure head at different locations of the system for different emission devices are given in Appendix-I.



Figure 3.5: Measurement of pressure head

#### 3.5 Discharge Measurement Equipment

The discharge of different emission devices was measured at 6m interval along the lateral line with the help of 1 liter plastic containers and measuring flask (Fig. 3.6). The containers were put under the emission devices in the dugout pits. The system was operated for 15 minutes each time and the discharge of emission devices was collected in the containers and measured with the help of measuring flaks. The measurements were replicated thrice. The measured values were converted to liter/hour and are given in Appendix-II.



#### Figure 3.6: Measurement of Discharge

The statistical analysis of discharge measurement was done to study the interaction of spacing and pressure head on the discharge. The results are given in Appendix-III.

#### 3.6 Measurement of Water Distribution Uniformity

The following measures for hydraulic performance evaluation as per BIS (1991)were selected.

- i) Uniformity coefficient
- ii) Emission uniformity
- iii) Coefficient of variation
- iv) Coefficient of manufacturing variation

Mathematically, the measures are expressed as under.

#### 3.6.1 Uniformity Coefficient (UC)

Uniformity coefficient is a statistical representation of the uniformity of drip irrigation. It is expressed as

UC =

.....(3.1)

#### 3.6.2 Emission Uniformity (EU)

It is the uniformity of emission from drip irrigation emission devices through a field and is expressed as.

 $EU = \frac{\text{Minimum rate of discharge}}{\text{Average rate of discharge}} \ge 100 \qquad ......(3.2)$ 

#### 3.6.3 Coefficient of Variation (CV)

The coefficient of variation is expressed as
Where,

Sq = Standard deviation of the discharge rate for the sample

= average discharge rate

#### **3.6.4 Coefficient of Manufacturing Variation (CMV)**

Coefficient of manufacturing variation is expressed as:

Where,

Sq = Standard deviation of the discharge rate for the sample

= average discharge rate

The discharge from different emission devices for the estimate of coefficient of manufacturing variation was measured at one point and under the same operating conditions. The measured values are given in Appendix-II.

#### 3.7 Development of Computer Software

The computer programme for software for hydraulic performance evaluation and calculation of head loss in drip irrigation system was written in C++ language. The detailed programme is given in Appendix-IV.

-24-

## **Results and Discussion**

The results present in this chapter are based on the experimental findings of the study "Performance evaluation of drip irrigation system with different emission devices". The results and discussion included hydraulic performance evaluation measures, the effect of spacing and operating pressure head on different measures, head loss in different parts of system, computer programme for software and interaction of the lateral spacing and operating pressure head on discharge for different emission devices.

### 4.1 Hydraulic Performance Evaluation Measures

Uniformity coefficient, emission uniformity, coefficient of variation and coefficient of manufacturing variation were identified to be the important measures for hydraulic performance evaluation of drip irrigation system.

### 4.2 Uniformity Coefficient

The values of uniformity coefficient were calculated from Equation 3.1 using the measured values of water collected in containers as explained in article 3.5 for different emission devices at different operating pressure heads and for different spacings. The variation of the hydraulic performance evaluation measures was studied for dripper, micro-tube, drip-in, drip tape at three operating pressure heads equal to 5m, 10m and 13m at three spacing:

- i)  $6m \ge 6m, 1 \ge 1m$  and  $0.5m \ge 0.5m$  for drippers and micro-tubes;
- ii) 6m x 0.6m, 1 x 0.6m, 0.5m x 0.6m for drip-in;
- iii)  $6m \ge 0.3m$ ,  $1m \ge 0.3m$  and  $0.5 \ge 0.3m$  for drip tape respectively.

### 4.2.1 Uniformity Coefficient for Dripper

The values of uniformity coefficient for drippers at different spacing and operating pressure heads are given in Table 4.1 and shown in Figure 4.1.

| Emission<br>Device | Spacing (meter) | Operating<br>pressure head<br>(meter) | Uniformity<br>coefficient<br>(percent) |
|--------------------|-----------------|---------------------------------------|----------------------------------------|
| Dripper            | 6 x 6           | 5                                     | 98.02                                  |
| Dripper            | 6 x 6           | 10                                    | 98.46                                  |
| Dripper            | 6 x 6           | 13                                    | 98.78                                  |
| Dripper            | 1 x 1           | 5                                     | 96.19                                  |
| Dripper            | 1 x 1           | 10                                    | 97.47                                  |
| Dripper            | 1 x 1           | 13                                    | 97.87                                  |
| Dripper            | 0.5 x 0.5       | 5                                     | 95.57                                  |
| Dripper            | 0.5 x 0.5       | 10                                    | 96.19                                  |
| Dripper            | 0.5 x 0.5       | 13                                    | 96.70                                  |

Table 4.1:Uniformity coefficient of drippers with different<br/>spacing and operating pressure heads

The values of uniformity coefficient for drippers at  $6m \times 6m$ ,  $1m \times 1m$  and  $0.5m \times 0.5m$  spacing for operating pressure head from 5 m to 13m varied from 98.02% to 98.78%, 96.19% to 97.87% and 95.57% to 96.70% respectively.

-26-

The maximum value of uniformity coefficient was for 6m x 6m spacing at 13m operating pressure head and the minimum value was at 0.5m x 0.5 spacing at 5m operating pressure head.

The average measured discharge decreased from 3.975 to 1.719 (l/h) as the spacing decreased from 6m x 6m to  $0.5m \times 0.5m$  (due to increase in number of emission devices). Thus the ratio of average deviation from average measured discharge to average measured discharge increased, hence uniformity coefficient decreased as the spacing decreased.

The average measured discharge increased from 2.498 to 3.975 (l/h) as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 6m). Thus the ratio of average deviation from average measured discharge to average measured discharge

decreased, hence uniformity coefficient increased as the operating pressure head increased.

### 4.2.2 Uniformity Coefficient for Micro-tubes

The values of uniformity coefficient for micro-tubes at different spacing and operating pressure heads are given in Table 4.2 and shown in Figure 4.2.

## Table 4.2:Uniformity coefficient of micro-tubes with<br/>different spacing and operating pressure heads

| Emission<br>Device | Spacing (meter) | Operating<br>pressure head<br>(meter) | Uniformity<br>coefficient<br>(percent) |
|--------------------|-----------------|---------------------------------------|----------------------------------------|
| Micro tube         | 6 x 6           | 5                                     | 78.40                                  |
| Micro tube         | 6 x 6           | 10                                    | 80.64                                  |
| Micro tube         | 6 x 6           | 13                                    | 82.43                                  |
| Micro tube         | 1 x 1           | 5                                     | 77.71                                  |
| Micro tube         | 1 x 1           | 10                                    | 78.27                                  |
| Micro tube         | 1 x 1           | 13                                    | 79.58                                  |
| Micro tube         | 0.5 x 0.5       | 5                                     | 73.91                                  |
| Micro tube         | 0.5 x 0.5       | 10                                    | 75.11                                  |
| Micro tube         | 0.5 x 0.5       | 13                                    | 76.56                                  |

The values of uniformity coefficient for micro-tubes at  $6m \times 6m$ ,  $1m \times 1m$  and  $0.5m \times 0.5m$  spacing for operating pressure head from 5m to 13m varied from 78.40% to 82.43%, 77.71% to 79.58% and 73.91% to 76.56% respectively.

The maximum value of uniformity coefficient was at  $6m ext{ x}$   $6m ext{ spacing at 13m operating pressure head and the minimum value was at <math>0.5m ext{ x} ext{ } 0.5 ext{ spacing and 5m operating pressure head.}$ 

The average measured discharge decreased from 54.478 to 15.734 (l/h) as the spacing decreased from 6m x 6m to 0.5m x 0.5m (due to increase in number of emission devices). Thus the ratio of average deviation from average measured discharge to average measured discharge increased, hence uniformity coefficient decreased as the spacing decreased.

The average measured discharge increased from 45.236 to 54.478 (l/h) as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 6m). Thus the ratio of average deviation from average measured discharge to average measured discharge decreased, hence uniformity coefficient increased as the operating pressure head increased.

### 4.2.3 Uniformity Coefficient for Drip-in

The values uniformity coefficient for drip-in at different spacing and operating pressure heads are given in Table 4.3 and shown in Figure 4.3.

The values of uniformity coefficient for drip-in at  $6m \times 0.6m$ ,  $1m \times 0.6m$  and  $0.5m \times 0.6m$  spacing for operating pressure head from 5m to 13m varied from 95.73% to 97.43%, 96.52% to 97.66% and 97.12% to 97.75% respectively.

# Table 4.3:Uniformity coefficient of drip-in with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Uniformity<br>coefficient<br>(percent) |
|--------------------|--------------------|---------------------------------------|----------------------------------------|
| Drip-in            | 6 x 0.6            | 5                                     | 95.73                                  |
| Drip-in            | 6 x 0.6            | 10                                    | 96.78                                  |
| Drip-in            | 6 x 0.6            | 13                                    | 97.43                                  |

-30-

| Drip-in | 1 x 0.6   | 5  | 96.52 |
|---------|-----------|----|-------|
| Drip-in | 1 x 0.6   | 10 | 97.05 |
| Drip-in | 1 x 0.6   | 13 | 97.66 |
| Drip-in | 0.5 x 0.6 | 5  | 97.12 |
| Drip-in | 0.5 x 0.6 | 10 | 97.48 |
| Drip-in | 0.5 x 0.6 | 13 | 97.75 |

The maximum value of uniformity coefficient was at  $0.5m ext{ x}$ 0.6m spacing at 13m operating pressure head and the minimum value was at 6m x 0.6m spacing at 5m operating pressure head.

The average measured discharge increased from 1.140 to 2.646 (l/h) as the spacing decrease from  $6m \ge 0.6m$  to  $0.5m \ge 0.6m$  (due to close lateral lines with constant emission points). Thus the ratio of average deviation from average measured discharge to average

measured discharge decreased, hence uniformity coefficient increased as the spacing decreased.

The average measured discharge increased from 1.140 to 2.437 (l/h) as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 0.6m). Thus, the ratio of average deviation from average measured discharge decreased, hence, uniformity coefficient increased as the operating pressure head increased.

### 4.2.4 Uniformity Coefficient for Drip tape

The values of uniformity coefficient for drip tape at different spacing and operating pressure heads are given in Table 4.4 and shown in Figure 4.4.

| Table 4.4: | Uniformity coefficient of drip tape with |
|------------|------------------------------------------|
|            | different spacing and operating pressure |
|            | heads                                    |

| Emission  | Spacing | Operating     | Uniformity  |
|-----------|---------|---------------|-------------|
| Device    | (meter) | pressure head | coefficient |
|           |         | (meter)       | (percent)   |
| Drip tape | 6 x 0.3 | 5             | 94.28       |
| Drip tape | 6 x 0.3 | 10            | 95.18       |
| Drip tape | 6 x 0.3 | 13            | 95.37       |
| Drip tape | 1 x 0.3 | 5             | 94.93       |
| Drip tape | 1 x 0.3 | 10            | 95.37       |

| Drip tape | 1 x 0.3   | 13 | 96.01 |
|-----------|-----------|----|-------|
| Drip tape | 0.5 x 0.3 | 5  | 95.22 |
| Drip tape | 0.5 x 0.3 | 10 | 95.89 |
| Drip tape | 0.5 x 0.3 | 13 | 96.93 |

The values of uniformity coefficient for drip tape at 6m x 0.3m,  $1m \ge 0.3m$  and  $0.5 \ge 0.3m$  spacing for operating pressure head from 5m to 13m varied from 94.28% to 95.37%, 94.93% to 96.01% and 95.22% to 96.93% respectively.

The maximum value of uniformity co-efficient was at 0.5m x 0.3m spacing at 13m operating pressure head and the minimum value was at 6m x 0.3m spacing at 5m operating pressure head.

The average measured discharge increased from 0.839 to 1.354 (l/h) as the spacing decrease from 6m x 0.3m to 0.5m x 0.3m (due to close lateral lines with constant emission points). Thus the ratio of average deviation from average measured discharge to average measured discharge decreased, hence uniformity coefficient increased as the spacing decreased.

The average measured discharge increased from 0.839 to 1.086 (l/h) as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 0.3m). Thus, the ratio of average deviation from average measured discharge decreased, hence, uniformity coefficient increased as the operating pressure head increased.

#### 4.3 Emission Uniformity

The values for emission uniformity were calculated from Equation 3.2 using the measured values of water collected in containers as explained in article 3.5 for different emission devices at different operating pressure heads and for different spacings.

#### 4.3.1 Emission Uniformity for Drippers

The values of emission uniformity for drippers at different spacing and operating pressure heads are given in Table 4.5 and shown in Figure 4.5.

# Table 4.5:Emission uniformity of drippers with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Emission<br>uniformity<br>(percent) |
|--------------------|--------------------|---------------------------------------|-------------------------------------|
| Dripper            | 6 x 6              | 5                                     | 95.45                               |
| Dripper            | 6 x 6              | 10                                    | 97.12                               |
| Dripper            | 6 x 6              | 13                                    | 97.51                               |
| Dripper            | 1 x 1              | 5                                     | 92.33                               |
| Dripper            | 1 x 1              | 10                                    | 94.15                               |
| Dripper            | 1 x 1              | 13                                    | 95.09                               |
| Dripper            | 0.5 x 0.5          | 5                                     | 91.91                               |
| Dripper            | 0.5 x 0.5          | 10                                    | 92.55                               |
| Dripper            | 0.5 x 0.5          | 13                                    | 92.79                               |

The values of emission uniformity for drippers at  $6m \ge 6m$ , 1m  $\ge 1m$  and 0.5m  $\ge 0.5m$  spacing for operating pressure head from 5m to 13m varied from 94.45% to 97.51%, 92.33% to 95.09% and 91.91% to 92.79% respectively.

The maximum value of emission uniformity was at  $6m ext{ x}$   $6m ext{ spacing at 13m operating pressure head and minimum value was at <math>0.5m ext{ x} ext{ 0.5m spacing at 5m operating pressure head.}$ 

The average measured discharge and minimum measured discharge decreased from 3.975 to 1.719 (l/h) and from 3.875 to 1.580

-37-

(l/h) respectively as spacing decreased from 6m x 6m to 0.5m x 0.5m (due to increase in number of emission devices). Thus the ratio of minimum discharge to average discharge decreased, hence emission uniformity decreased as the spacing decreased.

The average discharge and minimum discharge increased from 2.498 to 3.975 (l/h) and from 2.385 to 3.876 (l/h) respectively as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 6m). Thus ratio of minimum discharge to average discharge increased, hence emission uniformity increased as the operating pressure head increased.

#### 4.3.2 Emission Uniformity for Micro-tubes

The values of emission uniformity for micro-tubes at different spacing and operating pressure heads are given in Table 4.6 and shown in Figure 4.6.

# Table 4.6:Emission uniformity of micro-tubes with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Emission<br>uniformity<br>(percent) |
|--------------------|--------------------|---------------------------------------|-------------------------------------|
| Micro tube         | 6 x 6              | 5                                     | 60.55                               |
| Micro tube         | 6 x 6              | 10                                    | 62.94                               |
| Micro tube         | бхб                | 13                                    | 64.84                               |
| Micro tube         | 1 x 1              | 5                                     | 60.34                               |
| Micro tube         | 1 x 1              | 10                                    | 61.11                               |
| Micro tube         | 1 x 1              | 13                                    | 62.24                               |
| Micro tube         | 0.5 x 0.5          | 5                                     | 59.07                               |

| Micro tube | 0.5 x 0.5 | 10 | 60.05 |
|------------|-----------|----|-------|
| Micro tube | 0.5 x 0.5 | 13 | 60.84 |

The values of emission uniformity for micro-tubes at 6m x 6m,  $1m \ge 1m$  and  $0.5m \ge 0.5m$  spacing for operating pressure head from 5m to 13m varied from 60.55% to 64.84%, 60.34% to 62.24% and 59.07% to 60.84%, respectively.

-39-

The maximum value of emission uniformity was at 6m x 6m spacing at 13m operating pressure head and minimum value was at  $0.5m \ge 0.5m$  spacing at 5m operating pressure head.

The average measured discharge and minimum measured discharge decreased from 54.478 to 15.734 (l/h) and 35.328 to 9.295 (l/h) respectively as spacing decreased from 6m x 6m to  $0.5m \ge 0.5m$  (due to increase in number of emission devices). Thus the ratio of minimum discharge to average discharge is decreased, hence emission uniformity decreased as the spacing decreased.

The average discharge and minimum discharge increased from 45.236 to 54.478 (l/h) and 27.393 to 35.328 (l/h) respectively as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 6m). Thus ratio of minimum discharge to average discharge increased, hence emission uniformity increased as the operating pressure head increased.

### 4.3.3 Emission Uniformity for Drip-in

The values of emission uniformity for drip-in at different spacing and operating pressure heads are given in Table 4.7 and shown in Figure 4.7.

# Table 4.7:Emission uniformity of drip-in with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Emission<br>uniformity<br>(percent) |
|--------------------|--------------------|---------------------------------------|-------------------------------------|
| Drip-in            | 6 x 0.6            | 5                                     | 90.51                               |
| Drip-in            | 6 x 0.6            | 10                                    | 92.25                               |
| Drip-in            | 6 x 0.6            | 13                                    | 93.53                               |
| Drip-in            | 1 x 0.6            | 5                                     | 91.77                               |
| Drip-in            | 1 x 0.6            | 10                                    | 93.78                               |
| Drip-in            | 1 x 0.6            | 13                                    | 94.25                               |
| Drip-in            | 0.5 x 0.6          | 5                                     | 93.46                               |

| Drip-in | 0.5 x 0.6 | 10 | 94.40 |
|---------|-----------|----|-------|
| Drip-in | 0.5 x 0.6 | 13 | 94.74 |

The values of emission uniformity for drip-in  $6m \ge 0.6m$ ,  $1m \ge 0.6m$ , and  $0.5m \ge 0.6m$  spacing for operating pressure head from 5m to 13m varied from 90.51% to 93.53%, 91.77% to 94.25% and 93.46% to 94.74% respectively.

-42-

The maximum value of emission uniformity was at  $0.5m \times 0.6m$  spacing at 13m operating pressure head and the minimum value was at  $6m \times 0.6m$  at 5m operating pressure head.

The average measured discharge and minimum measured discharge increased from 1.140 to 2.646 (l/h) and 1.032 to 2.507 (l/h)

respectively as spacing decreased from 6m x 0.6m to 0.5m x 0.6m (due to close lateral lines with constant emission points). Thus ratio of minimum discharge to average increased, hence, emission uniformity increased as the spacing decreased.

The average discharge and minimum discharge increased from 1.140 to 2.437 (l/h) and 1.032 to 2.279 (l/h) respectively as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 0.6m). Thus the ratio of minimum discharge to average discharge increased, hence, emission uniformity increased as the operating pressure head increased.

#### 4.3.4 Emission Uniformity for Drip tape

The values of emission uniformity for drip tape at different spacing and operating pressure heads are given operating pressure heads are given in Table 4.8 and shown in Figure 4.8.

# Table 4.8:Emission uniformity of drip tape with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Emission<br>uniformity<br>(percent) |
|--------------------|--------------------|---------------------------------------|-------------------------------------|
| Drip tape          | 6 x 0.3            | 5                                     | 84.77                               |
| Drip tape          | 6 x 0.3            | 10                                    | 86.08                               |
| Drip tape          | 6 x 0.3            | 13                                    | 87.11                               |
| Drip tape          | 1 x 0.3            | 5                                     | 86.85                               |
| Drip tape          | 1 x 0.3            | 10                                    | 87.81                               |
| Drip tape          | 1 x 0.3            | 13                                    | 89.31                               |
| Drip tape          | 0.5 x 0.3          | 5                                     | 89.13                               |

-44-

| Drip tape | 0.5 x 0.3 | 10 | 90.87 |
|-----------|-----------|----|-------|
| Drip tape | 0.5 x 0.3 | 13 | 91.82 |

The values of emission uniformity for drip tape at  $6m \times 0.3m$ ,  $1m \times 0.3m$ ,  $0.5m \times 0.3m$  spacing for operating pressure head from 5m to 13m varied from 84.77% to 87.11%, 86.85% to 89.31% and 89.13% to 91.82% respectively.

-45-

The maximum value of emission uniformity was at  $0.5m \times 0.3m$  spacing at 13m operating pressure head and the minimum value was at  $6m \times 0.3m$  spacing at 5m operating pressure head.

The average measured discharge and minimum measured discharge increased from 0.839 to 1.354 (l/h) and 0.711 to 1.108 (l/h)

respectively as spacing decreased from  $6m \ge 0.3m$  to  $0.5m \ge 0.3m$  (due to close lateral lines with constant emission points). Thus ratio of minimum discharge to average increased, hence, emission uniformity increased as the spacing decreased.

The average discharge and minimum discharge increased from 0.839 to 1.240 (l/h) and 0.711 to 1.080 (l/h) respectively as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 0.3m). Thus the ratio of minimum discharge to average discharge increased, hence, emission uniformity increased as the operating pressure head increased.

### 4.4 Coefficient of Variation

The values of coefficients of variation were calculated from Equation 3.3 using the measured values of water collected in containers as explained in article 3.5 for different emission devices at different operating pressure heads and for different spacings.

#### 4.4.1 Coefficient of Variation for Drippers

The values of coefficient of variation for drippers at different spacing and operating pressure heads are given in Table 4.9 and shown in Figure 4.9.

# Table 4.9:Coefficient of variation of dripper with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Coefficient of<br>variation<br>(per cent) |
|--------------------|--------------------|---------------------------------------|-------------------------------------------|
| Dripper            | 6 x 6              | 5                                     | 2.57                                      |
| Dripper            | 6 x 6              | 10                                    | 1.93                                      |
| Dripper            | 6 x 6              | 13                                    | 1.53                                      |
| Dripper            | 1 x 1              | 5                                     | 4.48                                      |

-47-

| Dripper | 1 x 1         | 10 | 3.08 |
|---------|---------------|----|------|
| Dripper | 1 x 1         | 13 | 2.64 |
| Dripper | $0.5 \ge 0.5$ | 5  | 5.19 |
| Dripper | $0.5 \ge 0.5$ | 10 | 4.37 |
| Dripper | $0.5 \ge 0.5$ | 13 | 3.89 |

The values of coefficient of variation for drippers at 6m x 6m,  $1m \ge 1m$  and  $0.5m \ge 0.5m$  spacing for operating pressure head from 5m to 13m varied from 2.50% to 1.53%, 4.48% to 2.64% and 5.19% to 3.89%, respectively.

The maximum value of coefficient of variation was at  $5m \times 0.5m$  spacing at 5m operating pressure head and the minimum value was at  $6m \times 6m$  spacing at 13m operating pressure head.

-49-

The average measured discharge decreased from 3.975 to 1.719 (l/h) as spacing decreased from 6m x 6m to  $0.5m \ge 0.5m$  (due to increase in number of emission devices). Thus the ratio of standard deviation to average discharge increased from 0.0153 to 0.0519 as the spacing decreased from 6m x 6m to  $0.5m \ge 0.5m$ . Hence, coefficient of variation increased as the spacing decreased.

The, average discharge increased from 2.498 to 3.975 (l/h) as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 6m). Thus, the ratio of standard deviation to average discharge decreased from 0.0257 to 0.0153 as the operating pressure head increased from 5m to 13m. Hence, coefficient of variation decreased as the operating pressure head increased.

### 4.4.2 Coefficient of Variation for Micro-tubes

The values of coefficient of variation for micro-tubes at different spacing and operating pressure heads are given in Table 4.10 and shown in Figure 4.10.

# Table 4.10:Coefficient of variation of micro-tube with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Coefficient of<br>variation<br>(percent) |
|--------------------|--------------------|---------------------------------------|------------------------------------------|
| Micro tube         | 6 x 6              | 5                                     | 24.41                                    |
| Micro tube         | 6 x 6              | 10                                    | 22.36                                    |
| Micro tube         | 6 x 6              | 13                                    | 20.36                                    |
| Micro tube         | 1 x 1              | 5                                     | 25.89                                    |
| Micro tube         | 1 x 1              | 10                                    | 24.98                                    |
| Micro tube         | 1 x 1              | 13                                    | 24.57                                    |

| Micro tube | $0.5 \ge 0.5$ | 5  | 30.48 |
|------------|---------------|----|-------|
| Micro tube | $0.5 \ge 0.5$ | 10 | 29.89 |
| Micro tube | 0.5 x 0.5     | 13 | 27.05 |

The values of coefficient of variation for micro-tubes at 6m x 6m,  $1m \times 1m$  and  $0.5m \times 0.5m$  spacing for operating pressure head from 5m to 13m varied from 24.41% to 20.36%, 25.89% to 24.57% and 30.48% to 27.05% respectively.

-51-

The maximum value of coefficient of variation was for 5m x 0.5m spacing at 5m operating pressure head and the minimum value was for 6m x 6m spacing at 13m operating pressure head.

The average measured discharge decreased from 54.478 to 15.734 (l/h) as spacing decreased from  $6m \ge 6m \ge 0.5m \ge 0.5m$  (due

to increase in number of emission devices). Thus the ratio of standard deviation to average discharge increased from 0.2036 to 0.3048 as he spacing decreased from  $6m \ge 6m \ge 0.5m \ge 0.5m$ . Hence, coefficient of variation increased as the spacing decreased.

The, average discharge increased from 45.236 to 54.478 (l/h) as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 6m). Thus, the ratio of standard deviation to average discharge decreased from 0.2441 to 0.2036 as the operating pressure head increased from 5m to 13m. Hence, coefficient of variation decreased as the operating pressure head increased.

#### 4.4.3 Coefficient of Variation for Drip-in

The values of coefficient of variation for drip-in of different spacing and operating pressure heads are given in Table 4.11 and shown in Figure 4.11.

# Table 4.11:Coefficient of variation of drip-in with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Coefficient of<br>variation<br>(percent) |
|--------------------|--------------------|---------------------------------------|------------------------------------------|
| Drip-in            | 6 x 0.6            | 5                                     | 5.21                                     |
| Drip-in            | 6 x 0.6            | 10                                    | 3.81                                     |
| Drip-in            | 6 x 0.6            | 13                                    | 3.09                                     |
| Drip-in            | 1 x 0.6            | 5                                     | 4.29                                     |
| Drip-in            | 1 x 0.6            | 10                                    | 3.39                                     |
| Drip-in            | 1 x 0.6            | 13                                    | 2.95                                     |
| Drip-in            | 0.5 x 0.6          | 5                                     | 3.47                                     |
| Drip-in            | 0.5 x 0.6          | 10                                    | 2.97                                     |

-53-

| Drip-in 0.5 x 0.6 13 2.71 |
|---------------------------|
|---------------------------|

The values of coefficient of variation for drip-in at  $6m \times 0.6m$ ,  $1m \times 0.6m$  and  $0.5m \times 0.6m$  spacing for operating pressure head from 5m to 13m varied from 5.21% to 3.09%, 4.29% to 2.95% and 3.47% to 2.71% respectively.

The maximum value of coefficient of variation was at  $6m \times 0.6m$  spacing at 5m operating pressure head and the minimum value was at  $0.5m \times 0.6m$  spacing and at 13m operating pressure head.

The average measured discharge increased from 1.140 to 2.646 (l/h) as the spacing decreased from  $6m \ge 0.6m$  to  $0.5m \ge 0.6m$ 

(due to close spacing with constant emission points). Thus the ratio of standard deviation to average discharge decreased from 0.0699 to 0.0374 as the spacing decreased from  $6m \ge 0.6m$  to  $0.5m \ge 0.6m$ . Hence, coefficient of variation decreased as the spacing decreased.

The average discharge increased from 1.140 to 2.437 (l/h) as the operating pressure head increased from 5m to 13m for a particular spacing (6m x 0.6m). Thus, the ratio of standard deviation to average discharge decreased from 0.0521 to 0.0309 as the operating pressure head increased from 5m to 13m. Hence, coefficient of variation decreased as the operating pressure head increased.

#### 4.4.4 Coefficient of Variation for Drip tape

The values of coefficient of variation for drip tape at different spacing and operating pressure heads are given in Table 4.12 and shown in Figure 4.12.

# Table 4.12:Coefficient of variation of drip tape with<br/>different spacing and operating pressure<br/>heads

| Emission<br>Device | Spacing<br>(meter) | Operating<br>pressure head<br>(meter) | Coefficient of<br>variation<br>(percent) |
|--------------------|--------------------|---------------------------------------|------------------------------------------|
| Drip tape          | 6 x 0.3            | 5                                     | 6.99                                     |
| Drip tape          | 6 x 0.3            | 10                                    | 5.90                                     |
| Drip tape          | 6 x 0.3            | 13                                    | 5.76                                     |
| Drip tape          | 1 x 0.3            | 5                                     | 6.13                                     |
| Drip tape          | 1 x 0.3            | 10                                    | 5.56                                     |
| Drip tape          | 1 x 0.3            | 13                                    | 4.81                                     |
| Drip tape          | 0.5 x 0.3          | 5                                     | 5.71                                     |

| -57 | - |
|-----|---|
|-----|---|

| Drip tape | 0.5 x 0.3 | 10 | 4.84 |
|-----------|-----------|----|------|
| Drip tape | 0.5 x 0.3 | 13 | 3.74 |

The values of coefficient of variation for drip tape at  $6m \times 0.3m$ ,  $1m \times 0.3m$  and  $0.5m \times 0.3m$  spacing for operating pressured head from 5m to 13m varied from 6.99% to 5.76%, 6.13% to 4.81% and 5.71% to 3.74% respectively.

The maximum value of coefficient of variation was at  $6m \times 0.3m$  spacing at 5m operating pressure head and the minimum value was at  $0.5m \times 0.3m$  spacing at 13m operating pressure head.

The average measured discharge increased from 0.839 to 1.354 (l/h) as the spacing decreased from 6m x 0.3m to 0.5m x 0.3m

(due to close spacing with constant emission points). Thus the ratio of standard deviation to average discharge decreased from 0.0699 to 0.0374 as the spacing decreased from  $6m \ge 0.3m$  to  $0.5m \ge 0.3m$ . Hence, coefficient of variation decreased as the spacing decreased.

The average discharge increased from 0.839 to 1.086 (l/h) as the operating pressure head increased from 5m to 13m for particular spacing (6m x 0.3m). Thus, the ratio of standard deviation to average discharge decreased from 0.0699 to 0.0576 as the operating pressure head increased from 5m to 13m. Hence, coefficient of variation decreased as the operating pressure head increased.

#### 4.5 Coefficient of Manufacturing Variation

The values of coefficient of manufacturing variation were calculated from Equation 3.4 using the measured value of water collected in containers as explained in article 3.5 for different emission devices at different operating pressure heads (Appendix-II). The discharge was measured at one point under the same operating conditions. Thus for all spacing, the coefficient of manufacturing variation remained constant at a particular operating pressure head.

The values of coefficient of manufacturing variation for different emission devices at different operating pressure heads are given in Table 4.13 and shown in Figure 4.13.

# Table 4.13:Coefficient of manufacturing variation of<br/>different emission devices at different<br/>operating pressure heads

| Emission Device | Operating pressure<br>head (meter) | Coefficient of<br>manufacturing<br>variation (percent) |
|-----------------|------------------------------------|--------------------------------------------------------|
| Dripper         | 5                                  | 0.72                                                   |
| Dripper         | 10                                 | 0.60                                                   |
| Dripper         | 13                                 | 0.85                                                   |
| Micro-tube      | 5                                  | 0.14                                                   |

| Micro-tube | 10 | 0.10 |
|------------|----|------|
| Micro-tube | 13 | 0.09 |
| Drip-in    | 5  | 1.56 |
| Drip-in    | 10 | 1.18 |
| Drip-in    | 13 | 1.07 |
| Drip tape  | 5  | 1.75 |
| Drip tape  | 10 | 1.89 |
| Drip tape  | 13 | 1.95 |

The values of coefficient of manufacturing variation for drippers, micro-tubes, drip-in and drip tape for operating pressure head from 5m to 13m varied from 0.72% to 0.85%, 0.14% to 0.09%, 1.56% to 1.07% and 1.75% to 1.95% respectively.
The maximum value of coefficient of manufacturing variation was for drip tape at 13m operating pressure head and the minimum value was for micro-tubes at 5m operating pressure head.

The coefficient of manufacturing variation decreased with operating pressure head for micro-tube and drip-in, where as increased

-60-

for dripper and drip tape. The variation was largest for drip-in and smallest for micro-tube.

#### 4.6 Head Loss

The pressure head at different points in the system for different emission devices was measured with the help of mercury manometer and water manometer. The measured values of the pressure head in main line and lateral line for different emission devices at different operating pressure heads are given in Appendix-I. The head loss was calculated by loss in the pressure head in actual length of main line and lateral line for different emission devices considering Reduce Level (RL) of different point along the main line and the lateral line. The head loss was converted to m/100m by using following formula.

#### 4.6.1 Head Loss in Main Line and Lateral Line for Dripper

The values of head loss in main line and lateral line at different spacings and operating pressure heads for dripper are given in Table 4.14. The variation of the head loss with operating pressure head in the main line is shown in Figure 4.14 and for lateral line in Figure 4.15.

# Table 4.14:Head loss in different part of system for dripper<br/>at different operating pressure heads and spacing

| Spacing (meter) | Operating     | Head loss (m/100m) |              |  |  |  |
|-----------------|---------------|--------------------|--------------|--|--|--|
|                 | pressure head | Part of system     |              |  |  |  |
|                 | (meter)       | Main line          | Lateral line |  |  |  |
| 6 x 6           | 5             | 0.696              | 1.632        |  |  |  |
|                 | 10            | 0.809              | 1.803        |  |  |  |
|                 | 13            | 0.941              | 1.987        |  |  |  |

| 1 x 1     | 5  | 1.393 | 2.845 |
|-----------|----|-------|-------|
|           | 10 | 1.807 | 3.309 |
|           | 13 | 2.294 | 3.616 |
| 0.5 x 0.5 | 5  | 2.308 | 3.631 |
|           | 10 | 2.829 | 3.983 |
|           | 13 | 3.196 | 4.249 |

The values of head loss (m/100m) in main line for dripper at 6m x 6m, 1m x 1m and 0.5m x 0.5m spacing for operating pressure head from 5m to 13m varied from 0.696 to .941, 1.393 to 2.294 and 2.308 to 3.196 respectively.

-62-

The values of head loss (m/100m) in lateral line for dripper at 6m x 6m, 1m x 1m and 0.5m x 0.5m spacing for operating pressure head from 5m to 13m varied from 1.632 to 1.987, 2.845 to 3.616 and 3.631 to 4.249 respectively.

-63-

The head loss in main line and lateral line was maximum at 0.5m x 0.5m spacing at 13m operating pressure head and minimum at 6m x 6m spacing at 5m operating pressure head.

## 4.6.2 Head Loss in Main Line and Lateral Line for Micro-tubes

The values of head loss in main line and lateral line at different spacings and operating pressure heads for micro-tubes are given in Table 4.15. The variation of head loss with operating pressure head in main line is shown in Figure 4.16 and for lateral line is shown in Figure 4.17.

The values of head loss (m/100m) in main line for micro-tubes at 6m x 6m, 1m x 1m and 0.5m x 0.5m spacing for operating pressure head 5m to 13m varied from 3.405 to 4.148, 4.632 to 6.116 and 4.174 to 5.621 respectively.

Table 4.15: Head loss in different part of system for micro-tubes at different operating pressure heads and spacing

| Spacing (meter) | Operating     | Head loss      | (m/100m)     |  |  |
|-----------------|---------------|----------------|--------------|--|--|
|                 | pressure head | Part of system |              |  |  |
|                 | (meter)       | Main line      | Lateral line |  |  |
| 6 х б           | 5             | 3.405          | 4.402        |  |  |
|                 | 10            | 3.864          | 11.578       |  |  |
|                 | 13            | 4.148          | 15.822       |  |  |
| 1 x 1           | 5             | 4.632          | 9.104        |  |  |
|                 | 10            | 5.589          | 26.925       |  |  |
|                 | 13            | 6.119          | 37.750       |  |  |
| 0.5 x 0.5       | 5             | 4.174          | 13.244       |  |  |
|                 | 10            | 4.967          | 37.061       |  |  |
|                 | 13            | 5.621          | 51.456       |  |  |

-67-

The values of head loss (m/100m) in lateral line for micro-tubes 6m x 6m, 1m x 1m and 0.5m x 0.5m spacing for operating pressure head from 5m to 13m varied from 4.402 to 15.822, 9.104 to 37.750 and 13.244 to 51.456 respectively.

The head loss in main line was maximum at 1m x 1m spacing at 13m operating pressure head and minimum at 6m x 6m at 5m operating pressure head.

The head loss in lateral line was maximum at 0.5m x 0.5m spacing at 13m operating pressure head and minimum at 6m x 6m spacing at 5m operating pressure head.

The head loss increased both for main line and lateral line as the operating pressure head increased.

# 4.6.3 Head Loss in Main Line and Lateral Line for Drip-in

The values of head loss in main line and lateral line at different spacings and operating pressure heads for drip-in are given in Table 4.16. The variation of head loss with operating pressure head in main line was shown in Figure 4.18 and for lateral line in Figure 4.19.

| Table 4.16: | Head loss in different part of system for drip-in at |
|-------------|------------------------------------------------------|
|             | different operating pressure heads and spacing       |

| Spacing (meter) | Operating | Head loss (m/100m) |              |  |  |
|-----------------|-----------|--------------------|--------------|--|--|
|                 | (meter)   | Part of            | system       |  |  |
|                 |           | Main line          | Lateral line |  |  |
| 6 x 0.6         | 5         | 1.402              | 2.891        |  |  |
|                 | 10        | 2.317              | 3.665        |  |  |
|                 | 13        | 2.671              | 3.816        |  |  |
| 1 x 0.6         | 5         | 1.485              | 2.928        |  |  |
|                 | 10        | 2.329              | 3.681        |  |  |
|                 | 13        | 2.704              | 3.934        |  |  |
| 0.5 x 0.6       | 5         | 1.538              | 3.096        |  |  |
|                 | 10        | 2.405              | 3.713        |  |  |
|                 | 13        | 2.765              | 3.968        |  |  |

The values of head loss (m/100m) in main line for drip-in at 6m x 0.6m, 1m x 0.6m and 0.5m x 0.6m spacing for operating pressure head from 5m to 13m varied from 1.402 to 2.671, 1.485 to 2.704 and 1.538 to 2.765 respectively.

### -71-

The values of head loss (m/100m) in lateral line for drip-in at 6m x 0.6m, 1m x 0.6m and 0.5m x 0.6m spacing for operating pressure head from 5m to 13m varied from 2.891 to 3.816, 2.928 to 3.934 and 3.096 to 3.968 respectively. The head loss in main line and lateral line was maximum at 0.5m x 0.6m spacing at 13m operating pressure head and minimum at 6m x 0.6m spacing at 5m operating pressure head.

The head loss increased in main line and lateral line as the spacing decreased and as the operating pressure head increased.

#### 4.6.4 Head Loss in Main Line and Lateral Line for Drip tape

The values of head loss in main line and lateral line at different spacing and operating pressure heads for drip tape are given in Table 4.17. The variation of head loss with operating pressure head in main line is shown in Figure 4.20 and for lateral line in Figure 4.21.

| Table 4.17: | Head loss in different part of system for drip tape |
|-------------|-----------------------------------------------------|
|             | at different operating pressure heads and spacing   |

| Spacing (meter) | Operating     | Head loss      | (m/100m)     |  |  |
|-----------------|---------------|----------------|--------------|--|--|
|                 | pressure head | Part of system |              |  |  |
|                 | (meter)       | Main line      | Lateral line |  |  |
| 6 x 0.3         | 5             | 1.871          | 3.405        |  |  |
|                 | 10            | 2.366          | 3.749        |  |  |
|                 | 13            | 2.638          | 3.921        |  |  |
| 1 x 0.3         | 5             | 2.002          | 3.486        |  |  |
|                 | 10            | 2.511          | 3.787        |  |  |
|                 | 13            | 2.784          | 3.952        |  |  |
| 0.5 x 0.3       | 5             | 2.058          | 3.498        |  |  |
|                 | 10            | 2.599          | 3.855        |  |  |
|                 | 13            | 2.848          | 4.061        |  |  |

The values of head loss (m/100m) in main line for drip tape at 6m x 0.3m, 1m x 0.3m, and 0.5m x 0.3m spacing for operating pressure head from 5m to 13m varied from 1.871 to 2.638, 2.02 to 2.784 and 2.058 to 2.848 respectively.

-73-

The values of head loss (m/100m) in lateral line for drip tape at 6m x 0.3m, 1m x 0.3m and 0.5m x 0.3m spacing for operating pressure head from 5m to 13m varied from 3.405 to 3.921, 3.486 to 3.952 and 3.498 to 4.61 respectively. The head loss increased in main line and lateral line as the spacing decreased and as the operating pressure head increased.

## 4.6.5 Variation of Head Loss with Discharge in Main Line and Lateral Line for Different Emission Devices

The change in spacing and/or the change in operating pressure head results change in discharge in different components of the system. Therefore, the head loss for a given system may be related with the discharge.

The variation of the head loss with discharge in the main line and lateral line for different emission devices is shown Figure 4.22 to 4.29. The head loss both for the main line and lateral line increased at a decreasing rate as the discharge increased for all emission devices.

The variation of the head loss with the discharge both for main line and lateral can be expressed by the following equation.

where,

h = head loss (m/100m)

Q = discharge (liter/hour)

a, b = coefficients

The values of the coefficients, a and b in Equation 4.1 and the value of the coefficient of correlation ( $\mathbb{R}^2$ ) were calculated for different emission devices using simple correlation. The calculated values are given in Table 4.18.

Table 4.18:Values of coefficients a and b and coefficientof correlation (R2) of different equations formain line and lateral line for differentemission devices.

| Emission | Part of system |
|----------|----------------|
| Devices  |                |

|                 |       | Main line |       | Lateral Line          |       |                |  |
|-----------------|-------|-----------|-------|-----------------------|-------|----------------|--|
|                 | a     | b         | R2    | a                     | b     | R <sup>2</sup> |  |
| Dripper         | 0.056 | 0.576     | 0.987 | 0.490                 | 0.374 | 0.997          |  |
| Micro-tub<br>e  | 0.018 | 0.733     | 0.993 | 4.31x10 <sup>-7</sup> | 2.690 | 0.798          |  |
| Drip-in         | 0.012 | 0.816     | 0.998 | 0.488                 | 0.375 | 0.994          |  |
| Drip tape       | 0.008 | 0.881     | 0.998 | 0.484                 | 0.377 | 0.989          |  |
| All<br>combined | 0.045 | 0.610     | 0.987 | 0.045                 | 0.863 | 0.720          |  |

-77-

### -78-

### -79-

-80-

-81-

### -82-

-83-

-84-

-85-

## 4.6.6 Variation of Head Loss with Discharge in Main Line and Lateral Line Combined for All Emission Devices

The variation of the head loss with discharge in main line and lateral line combined for all emission devices is shown in Figure 4.30 and 4.31 respectively. The head loss increased at a decreasing rate as the discharged increased.



Figure 4.31: Variation of head loss with discharge in lateral line combined of all emission devices

The variation of the head loss with discharge combined for all emission devices can also be expressed by Equation 4.1. The values of the coefficients, a and b and coefficient of correlation ( $\mathbb{R}^2$ ) combined for all emission devices were calculated using simple correlation. The calculated values are given in Table 4.18.

The measured values of the head loss and the calculated values of the head loss from Equation 4.1 combined for all emission devices both for the main line and lateral line are given in Table 4.19. The calculated values from Equation 4.1 compared very well with the measured values.

#### 4.7 Computer Programme for Software

The computer programme for software for hydraulic performance evaluation measures and for calculation of head loss in drip irrigation system was written is C++ language and is given in Appendix-III. The values of different hydraulic performance evaluation measures and head loss in main line and lateral line were calculated using computer software (Table 4.20). The calculated values are same as the measured values. Thus the developed computer software for the calculation of hydraulic performance evaluation measures and head loss is correct.

## 4.8 Interaction of Lateral Spacing and Operating Pressure Heads on Discharge of Different Emission Devices

The interaction of lateral spacing and operating pressure heads on discharge of different emission devices was found by analysis of data using 3 factor RBD. By the analysis, mean Tables with C.D. was found (given in Appendix-IV). The interaction of lateral spacing and operating pressure heads on discharge of different emission devices is given is Table 4.21.

# Table 4.19:Measured head loss and calculated head loss combined for all emission devices at different<br/>spacing and different operating pressure head

| Emission<br>device | Spacing (m) | Operating<br>Pressure<br>head (m) | Discharge in<br>main line<br>(1/h) | Measured<br>Head loss in<br>main line<br>(m/100 m) | Head loss in<br>main line<br>calculated<br>by developed<br>equation<br>(m /100m) | Discharge in<br>Lateral line<br>(l/h) | Measured Head loss<br>in<br>Lateral line<br>(m/100 m) | Head loss in<br>Lateral line<br>Calculated<br>by developed<br>equation<br>(m /100m) |
|--------------------|-------------|-----------------------------------|------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|
| Drippers           | 6 x 6       | 5                                 | 74.95                              | 0.696                                              | 0.631                                                                            | 25.02                                 | 1.632                                                 | 0.718                                                                               |
| Drippers           | 6 x 6       | 10                                | 106.34                             | 0.809                                              | 0.781                                                                            | 35.77                                 | 1.803                                                 | 0.978                                                                               |
| Drippers           | 6 x 6       | 13                                | 121.08                             | 0.941                                              | 0.845                                                                            | 39.87                                 | 1.987                                                 | 1.074                                                                               |
| Drippers           | 1 x 1       | 5                                 | 329.64                             | 1.393                                              | 1.557                                                                            | 109.74                                | 2.845                                                 | 2.574                                                                               |
| Drippers           | 1 x 1       | 10                                | 481.98                             | 1.807                                              | 1.963                                                                            | 160.32                                | 3.309                                                 | 3.569                                                                               |
| Drippers           | 1 x 1       | 13                                | 617.04                             | 2.294                                              | 2.282                                                                            | 204.78                                | 3.616                                                 | 4.409                                                                               |
| Drippers           | 0.5 x 0.5   | 5                                 | 618.84                             | 2.308                                              | 2.286                                                                            | 206.28                                | 3.631                                                 | 4.437                                                                               |
| Drippers           | 0.5 x 0.5   | 10                                | 819.48                             | 2.829                                              | 2.713                                                                            | 273.84                                | 3.983                                                 | 5.665                                                                               |
| Drippers           | 0.5 x 0.5   | 13                                | 1039.68                            | 3.196                                              | 3.137                                                                            | 348.12                                | 4.249                                                 | 6.969                                                                               |
| Micro-tubes        | 6 x 6       | 5                                 | 1357.09                            | 3.405                                              | 3.691                                                                            | 446.4                                 | 4.402                                                 | 8.636                                                                               |
| Micro-tubes        | 6 x 6       | 10                                | 1542.54                            | 3.864                                              | 3.990                                                                            | 536.06                                | 11.578                                                | 10.113                                                                              |
| Micro-tubes        | 6 x 6       | 13                                | 1634.34                            | 4.148                                              | 4.134                                                                            | 570.41                                | 15.822                                                | 10.670                                                                              |
| Micro-tubes        | 1 x 1       | 5                                 | 1988.67                            | 4.632                                              | 4.659                                                                            | 669.58                                | 9.104                                                 | 12.253                                                                              |
| Micro-tubes        | 1 x 1       | 10                                | 2550.98                            | 5.589                                              | 5.423                                                                            | 853.01                                | 26.925                                                | 15.099                                                                              |
| Micro-tubes        | 1 x 1       | 13                                | 2934.89                            | 6.116                                              | 5.970                                                                            | 974.74                                | 37.750                                                | 16.941                                                                              |
| Micro-tubes        | 0.5 x 0.5   | 5                                 | 1699.34                            | 4.174                                              | 4.233                                                                            | 594.61                                | 13.244                                                | 11.060                                                                              |

| Micro-tubes | 0.5 x 0.5 | 10 | 2164.97 | 4.967 | 4.907 | 745.56 | 37.061 | 13.443             |
|-------------|-----------|----|---------|-------|-------|--------|--------|--------------------|
| Micro-tubes | 0.5 x 0.5 | 13 | 2589.7  | 5.621 | 5.473 | 916.16 | 51.456 | 16.050             |
| drip-in     | 6 x 0.6   | 5  | 342     | 1.402 | 1.592 | 117.5  | 2.891  | 2.73 Co-06<br>nt - |
| drip-in     | 6 x0.6    | 10 | 625.4   | 2.317 | 2.301 | 212.4  | 3.665  | 4.55 d             |
| drip-in     | 6 x0.6    | 13 | 731     | 2.671 | 2.531 | 247    | 3.816  | 5.18_              |
| drip-in     | 1 x0.6    | 5  | 355.4   | 1.485 | 1.630 | 120.7  | 2.928  | 2.789              |
| drip-in     | 1 x0.6    | 10 | 628.9   | 2.329 | 2.309 | 212.4  | 3.681  | 4.550              |
| drip-in     | 1 x0.6    | 13 | 766.5   | 2.704 | 2.605 | 261.5  | 3.934  | 5.444              |
| drip-in     | 0.5 x0.6  | 5  | 389.4   | 1.538 | 1.724 | 130.9  | 3.096  | 2.997              |
| drip-in     | 0.5 x0.6  | 10 | 654.7   | 2.405 | 2.366 | 220    | 3.713  | 4.690              |
| drip-in     | 0.5 x0.6  | 13 | 793.9   | 2.765 | 2.661 | 266.1  | 3.968  | 5.527              |
| Drip tape   | 6 x0.3    | 5  | 503.2   | 1.871 | 2.015 | 177    | 3.405  | 3.888              |
| Drip tape   | 6 x0.3    | 10 | 651.6   | 2.366 | 2.359 | 223.6  | 3.749  | 4.756              |
| Drip tape   | 6 x0.3    | 13 | 744     | 2.638 | 2.558 | 258.6  | 3.921  | 5.392              |
| Drip tape   | 1 x0.3    | 5  | 538.6   | 2.002 | 2.101 | 188.6  | 3.486  | 4.107              |
| Drip tape   | 1 x0.3    | 10 | 698.4   | 2.511 | 2.461 | 243    | 3.787  | 5.110              |
| Drip tape   | 1 x0.3    | 13 | 773.2   | 2.784 | 2.619 | 263.6  | 3.952  | 5.482              |
| Drip tape   | 0.5 x0.3  | 5  | 556.8   | 2.058 | 2.144 | 190.2  | 3.498  | 4.137              |
| Drip tape   | 0.5 x0.3  | 10 | 731.6   | 2.599 | 2.532 | 249.2  | 3.855  | 5.223              |
| Drip tape   | 0.5 x0.3  | 13 | 812.2   | 2.848 | 2.699 | 276    | 4.061  | 5.704              |

-69--

# Table 4.20:Calculated values of different measures and head loss by computer programme for<br/>different emission devices at different spacing and different operating pressure heads

| Emission<br>device | Spacing (m) | Operating<br>pressure | Uniformity<br>coefficient | Emission<br>uniformity | Coefficient<br>of variation | Coefficient of manufacturing | Head loss in main<br>line | Head loss in<br>Lateral line |
|--------------------|-------------|-----------------------|---------------------------|------------------------|-----------------------------|------------------------------|---------------------------|------------------------------|
|                    |             | head (m)              | (%)                       | (%)                    | (%)                         | variation (%)                | calculated                | calculated                   |
|                    |             |                       |                           |                        |                             |                              | by developed              | by developed                 |
|                    |             |                       |                           |                        |                             |                              | equation                  | equation                     |
|                    |             |                       |                           |                        |                             |                              | (m /100m)                 | (m /100m)                    |
| Drippers           | 6 x 6       | 5                     | 98.02                     | 95.45                  | 2.57                        | 0.72                         | 0.629                     | 1.631                        |
| Drippers           | 6 x 6       | 10                    | 98.46                     | 97.12                  | 1.93                        | 0.60                         | 0.779                     | 1.865                        |
| Drippers           | 6 x 6       | 13                    | 98.78                     | 97.51                  | 1.53                        | 0.85                         | 0.843                     | 1.943                        |
| Drippers           | 1 x 1       | 5                     | 96.19                     | 92.33                  | 4.48                        | 0.72                         | 1.551                     | 2.842                        |
| Drippers           | 1 x 1       | 10                    | 97.47                     | 94.15                  | 3.08                        | 0.60                         | 1.954                     | 3.277                        |
| Drippers           | 1 x 1       | 13                    | 97.87                     | 95.09                  | 2.64                        | 0.85                         | 2.272                     | 3.592                        |
| Drippers           | 0.5 x 0.5   | 5                     | 95.57                     | 91.91                  | 5.19                        | 0.72                         | 2.276                     | 3.602                        |
| Drippers           | 0.5 x 0.5   | 10                    | 96.19                     | 92.55                  | 4.37                        | 0.60                         | 2.700                     | 4.007                        |
| Drippers           | 0.5 x 0.5   | 13                    | 96.70                     | 92.79                  | 3.89                        | 0.85                         | 3.121                     | 4.385                        |
| Micro-tubes        | 6 x 6       | 5                     | 78.40                     | 60.55                  | 24.41                       | 0.14                         | 3.671                     | 4.409                        |
| Micro-tubes        | 6 x 6       | 10                    | 80.64                     | 62.94                  | 22.36                       | 0.10                         | 3.969                     | 11.491                       |
| Micro-tubes        | 6 x 6       | 13                    | 82.43                     | 64.84                  | 20.36                       | 0.09                         | 4.111                     | 15.905                       |
| Micro-tubes        | 1 x 1       | 5                     | 77.71                     | 60.34                  | 25.89                       | 0.14                         | 4.633                     | 9.459                        |
| Micro-tubes        | 1 x 1       | 10                    | 78.27                     | 61.11                  | 24.98                       | 0.10                         | 5.392                     | 24.148                       |
| Micro-tubes        | 1 x 1       | 13                    | 79.58                     | 62.24                  | 24.57                       | 0.09                         | 5.872                     | 40.472                       |
| Micro-tubes        | 0.5 x 0.5   | 5                     | 73.91                     | 59.07                  | 30.48                       | 0.14                         | 4.210                     | 14.655                       |

| Micro-tubes | 0.5 x 0.5 | 10 | 75.11 | 60.05 | 29.89 | 0.10 | 4.879 | 29.971   |
|-------------|-----------|----|-------|-------|-------|------|-------|----------|
| Micro-tubes | 0.5 x 0.5 | 13 | 76.56 | 60.84 | 27.05 | 0.09 | 5.442 | Contd 70 |
| drip-in     | 6 x 0.6   | 5  | 95.73 | 90.51 | 5.21  | 1.56 | 1.586 |          |
| drip-in     | 6 x0.6    | 10 | 96.78 | 92.25 | 3.81  | 1.18 | 2.290 |          |
| drip-in     | 6 x0.6    | 13 | 97.43 | 93.53 | 3.09  | 1.07 | 2.519 |          |
| drip-in     | 1 x0.6    | 5  | 96.52 | 91.77 | 4.29  | 1.56 | 1.623 | 2.945    |
| drip-in     | 1 x0.6    | 10 | 97.05 | 93.78 | 3.39  | 1.18 | 2.298 | 3.642    |
| drip-in     | 1 x0.6    | 13 | 97.66 | 94.25 | 2.95  | 1.07 | 2.593 | 3.938    |
| drip-in     | 0.5 x0.6  | 5  | 97.12 | 93.46 | 3.47  | 1.56 | 1.716 | 3.037    |
| drip-in     | 0.5 x0.6  | 10 | 97.48 | 94.40 | 2.97  | 1.18 | 2.355 | 3.690    |
| drip-in     | 0.5 x0.6  | 13 | 97.75 | 94.74 | 2.71  | 1.07 | 2.649 | 3.964    |
| Drip tape   | 6 x0.3    | 5  | 94.28 | 84.77 | 6.99  | 1.75 | 2.006 | 3.401    |
| Drip tape   | 6 x0.3    | 10 | 95.18 | 86.08 | 5.90  | 1.89 | 2.348 | 3.713    |
| Drip tape   | 6 x0.3    | 13 | 95.37 | 87.11 | 5.76  | 1.95 | 2.546 | 3.921    |
| Drip tape   | 1 x0.3    | 5  | 94.93 | 86.85 | 6.13  | 1.75 | 2.091 | 3.483    |
| Drip tape   | 1 x0.3    | 10 | 95.37 | 87.81 | 5.56  | 1.89 | 2.450 | 3.831    |
| Drip tape   | 1 x0.3    | 13 | 96.01 | 89.31 | 4.81  | 1.95 | 2.606 | 3.950    |
| Drip tape   | 0.5 x0.3  | 5  | 95.22 | 89.13 | 5.71  | 1.75 | 2.134 | 3.494    |
| Drip tape   | 0.5 x0.3  | 10 | 95.89 | 90.87 | 4.84  | 1.89 | 2.520 | 3.867    |
| Drip tape   | 0.5 x0.3  | 13 | 96.93 | 91.82 | 3.74  | 1.95 | 2.686 | 4.019    |

| Emission<br>Device | Spacing<br>(meter) | C.D. of<br>A x B x<br>C | C.D of<br>A x B | C.D of<br>A x C | C.D of<br>B x C | C.D of<br>A | C.D of<br>B | C.D of<br>C |
|--------------------|--------------------|-------------------------|-----------------|-----------------|-----------------|-------------|-------------|-------------|
|                    | 6 x 6              | N.S                     | 0.012           | 0.022           | 0.022           | 0.007       | 0.007       | 0.012       |
| Drippers           | 1 x1               | 0.024                   | 0.008           | 0.014           | 0.014           | 0.004       | 0.004       | 0.008       |
|                    | $0.5 \ge 0.5$      | 0.021                   | 0.007           | 0.012           | 0.012           | 0.004       | 0.004       | 0.007       |
|                    | 6 хб               | 0.828                   | 0.262           | 0.478           | 0.478           | 0.151       | 0.151       | 0.276       |
| Micro-tube<br>s    | 1 x1               | 1.505                   | 0.753           | 0.869           | 0.869           | 0.434       | 0.434       | 0.502       |
|                    | 0.5 x0.5           | 0.449                   | 0.259           | 0.259           | 0.259           | 0.150       | 0.150       | 0.150       |
| Drip-in            | 6 x0.6             | 0.019                   | 0.006           | 0.011           | 0.011           | 0.003       | 0.003       | N.S         |
|                    | 1 x0.6             | 0.017                   | 0.005           | 0.010           | 0.010           | 0.003       | 0.003       | 0.006       |
|                    | 0.5 x0.6           | 0.021                   | 0.007           | 0.012           | 0.012           | 0.004       | 0.004       | 0.007       |
|                    | 6 x0.3             | 0.021                   | 0.007           | 0.012           | 0.012           | 0.004       | 0.004       | 0.007       |
| Drip-tape          | 1 x0.3             | 0.018                   | 0.006           | 0.010           | 0.010           | 0.003       | 0.003       | 0.006       |
|                    | 0.5 x0.3           | 0.020                   | 0.006           | 0.012           | N.S             | 0.004       | 0.004       | N.S         |

Table 4.21: Results of analysis

Where,

A x B x C = Interaction of lateral spacing and operating pressure heads on discharges

A x B = Interaction between operating pressure heads and lateral spacing

A x C = Interaction between operating pressure heads and discharges

B x C = Interaction between lateral spacing and discharges

A = operating pressure heads

B = Lateral spacing

C = Discharges

The CD of interaction of lateral spacing and operating pressure heads on discharge was maximum at  $1m \ge 1m$  spacing and minimum at  $6m \ge 6m$  spacing for drippers. The CD of interaction between operating pressure heads and lateral spacing was maximum at  $6m \ge 6m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD

of interaction between operating pressure heads and discharges was maximum at 6m x 6m spacing and minimum was at  $0.5m \times 0.5m$  spacing. The CD of interaction between lateral spacing and discharges was maximum at 6m x 6m spacing and minimum was at  $0.5m \times 0.5m$  spacing. The CD of operating pressure heads was maximum at 6m x 6m and minimum was at  $0.5m \times 0.5m$  spacing. The CD of lateral spacing was maximum at 6m x 6m spacing and minimum was at  $0.5m \times 0.5m$  spacing was maximum at 6m x 6m spacing and minimum was at  $0.5m \times 0.5m$  spacing. The CD of lateral spacing was maximum at 6m x 6m spacing and minimum was at  $0.5m \times 0.5m$  spacing and minimum was at  $0.5m \times 0.5m$  spacing. The CD of discharges was maximum at 6m x 6m spacing and minimum was at  $0.5m \times 0.5m$  spacing.

The CD of interaction of lateral spacing and operating pressure heads on discharge was maximum at  $1m \ge 1m$  spacing and minimum at  $0.5m \ge 0.5m$  spacing for micro-tubes. The CD of interaction between operating pressure heads and lateral spacing was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of interaction between operating pressure heads and discharges was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of interaction between operating and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of interaction between lateral spacing and discharges was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of operating pressure heads was maximum at  $1m \ge 1m$  and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of lateral spacing was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of discharges was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of discharges was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of discharges was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of discharges was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing. The CD of discharges was maximum at  $1m \ge 1m$  spacing and minimum was at  $0.5m \ge 0.5m$  spacing.

The CD of interaction of lateral spacing and operating pressure heads on discharge was maximum at  $0.5m \ge 0.6m$  spacing and minimum at  $1m \ge 0.6m$  spacing for drip-in. The CD of interaction between operating pressure heads and lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing and minimum was at  $1m \ge 0.6m$  spacing. The CD

-95-
of interaction between operating pressure heads and discharges was maximum at  $0.5m \ge 0.6m$  spacing and minimum was at  $1m \ge 0.6m$  spacing. The CD of interaction between lateral spacing and discharges was maximum at  $0.5m \ge 0.6m$  spacing and minimum was at  $1m \ge 0.6m$  spacing. The CD of operating pressure heads was maximum at  $0.5m \ge 0.6m$  and minimum was at  $1m \ge 0.6m$  and  $6m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing and minimum was at  $1m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing and minimum was at  $1m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing. The CD of lateral spacing was maximum at  $0.5m \ge 0.6m$  spacing. The CD of lateral spacing and minimum was at  $1m \ge 0.6m$  spacing. The CD of lateral spacing.

The CD of interaction of lateral spacing and operating pressure heads on discharge was maximum at  $6m \ge 0.3m$  spacing and minimum at  $1m \ge 0.3m$  spacing for drip tape. The CD of interaction between operating pressure heads and lateral spacing was maximum at  $6m \ge 0.3m$  spacing and minimum was at  $1m \ge 0.3m$  and  $0.5m \ge 0.3m$  spacing. The CD of interaction between operating pressure heads and discharges was maximum at  $6m \ge 0.3m$  and  $0.5m \ge 0.3m$  spacing and minimum was at  $1m \ge 0.3m$  spacing. The CD of interaction between operating pressure heads and minimum was at  $1m \ge 0.3m$  spacing. The CD of interaction between lateral spacing and discharges was maximum at  $6m \ge 0.3m$  spacing. The CD of operating pressure heads was maximum at  $6m \ge 0.3m$  and  $0.5m \ge 0.3m$  spacing and minimum was at  $1m \ge 0.3m$  spacing. The CD of lateral spacing was maximum at  $6m \ge 0.3m$  spacing. The CD of discharges was maximum at  $6m \ge 0.3m$  spacing and minimum was at  $0.5m \ge 0.3m$  spacing. The CD of minimum was at  $0.5m \ge 0.3m$  spacing. The CD of minimum was at  $0.3m \ge 0.3m$  spacing. The CD of minimum was at  $0.3m \ge 0.3m$  spacing. The CD of minimum was at  $0.3m \ge 0.3m$  spacing and minimum was at  $0.5m \ge 0.3m$  spacing. The CD of minimum was at  $0.3m \ge 0.3m$  spacing. The CD of minimum was at  $0.3m \ge 0.3m$  spacing. The CD of minimum was at  $0.3m \ge 0.3m$  spacing and minimum was at  $0.5m \ge 0.3m$  spacing.

# **Summary and Conclusion**

The present study was conducted for evaluation the effect of operating pressure head and spacing on different hydraulic performance evaluation measures of drip irrigation systems with different emission devices. The commonly used hydraulic performance evaluation measures were uniformity coefficient, emission uniformity, coefficient of variation and coefficient of manufacturing variation. The different emission devices were dripper, micro-tube, drip-in and drip tape. The experiment was conducted in the field laboratory of Soil and Water Engineering Department of College of Agricultural Engineering and Technology at CCS Haryana Agricultural University, Hisar. The selected spacings were i)  $6m \ge 6m$ ,  $1m \ge 0.6m$  and  $0.5m \ge 0.6m$  for dripper and micro-tube ii)  $6m \ge 0.3m$ ,  $1m \ge 0.3m$  and  $0.5m \ge 0.3m$  for drip tape. The operating pressure heads were 5m, 10m and 13m.

The measurements of discharge for calculation of hydraulic performance evaluation measures for each of the spacing, for each of operating pressure head and for each of emission devices were done by operating the system and putting the containers at 6m interval along the lateral line. The measurements of pressure head were done with the help of mercury manometer and water manometer at up stream and down stream end of main line and lateral line. The values of different hydraulic performance evaluation measures and head loss in main line and lateral line were calculated. The effect of the variation in the operating pressure head and in the spacing was studied. Empirical equations for calculations of the head loss with system discharge were developed. A computer software in C++ language was developed for calculation of the hydraulic performance evaluation measures and head loss in main line and lateral line of system. Some of the results of the study are as under:

- (1) The lowest values of uniformity coefficient and emission uniformity were 73.91% and 59.07%, respectively for micro-tubes at 0.5 x 0.5m spacing and at 5m operating pressure head. The highest values are 98.78% and 97.5% respectively for drippers at 6m x 6m spacing and at 13m operating pressure head.
- (2) The lowest value of coefficient of variation was 1.53% for dripper at 6m x 6m spacing and at 13m operating pressure head. The highest value was 30.48% for micro-tubes at 0.5m x 0.5m spacing and at 5m operating pressure head.
- (3) Uniformity coefficient and emission uniformity for drippers and micro-tubes, decreased as the spacing decreased, where as, for drip-in and drip tape, the uniformity coefficient and emission uniformity increased as the spacing decreased.
- (4) Coefficient of variation for drippers and micro-tubes, increased as the spacing decreased, where as for drip-in and drip tape, the coefficient of variation decreased as the spacing decreased.
- (5) Coefficient of manufacturing variation was lowest equal to0.09% for micro-tubes at 13m operating pressure head and

-98-

was highest equal to 1.95% for drip tape at 13m operating pressure head.

- (6) The uniformity coefficient and emission uniformity, at a particular spacing for all emission devices, increased as the operating pressure head increased, where as the coefficient of variation, decreased as the operating pressure head increased.
- (7) Head loss (m/100m) in main line was lowest equal to 0.696 for drippers at 6m x 6m spacing and at 5m operating pressure head and highest equal to 5.621 for micro-tubes at 0.5m x 0.5m spacing and at 13m operating pressure head.
- (8) The Head loss (m/100m) in lateral line was lowest equal to 1.632 for drippers at 6m x 6m spacing and at 5m operating pressure head. The highest value equal to 51.456 was for micro-tubes at 0.5 x 0.5m spacing and at 13m operating pressure head.
- (9) The head loss (m/100m) at a particular spacing, for all the emission devices increased as the operating pressure head increased.
- (10) The head loss in the main line and lateral lines for all the emissions devices increased at a decreasing rate. The variation of head loss (h) with discharge (Q) for each of the emissions devices as well as combined for all the emission devices could be expressed by following equation

where

a, b are coefficient

The values of coefficient of correlation ( $\mathbb{R}^2$ ) for different emission devices varied from 0.9981 to 0.9868 for main line and from 0.9974 to 0.7979 for lateral line of different emission devices. The values of coefficient of correlation ( $\mathbb{R}^2$ ) combined for all emission devices were 0.9871 and 0.7201 for main line and lateral line respectively.

(11) The computer prorgramme written in C++ language match the calculated values of different measures and head loss in different part of system for different emission devices with different spacing and operating pressure heads.

# <u>APPENDIX – I</u>

| Spacing   |                                 | Pressure he                       | ead (meter)                   |                           |  |
|-----------|---------------------------------|-----------------------------------|-------------------------------|---------------------------|--|
| (meter)   |                                 | Loca                              | tions                         |                           |  |
|           | Upstream<br>end of main<br>line | Downstream<br>end of main<br>line | Upstream<br>end of<br>lateral | Downstream<br>end lateral |  |
| бхб       | 5                               | 4.832                             | 4.681                         | 3.511                     |  |
|           | 10                              | 9.786                             | 9.603                         | 8.332                     |  |
|           | 13                              | 12.734                            | 12.530                        | 11.147                    |  |
| 1 x 1     | 5                               | 4.553                             | 4.327                         | 2.430                     |  |
|           | 10                              | 9.387                             | 9.129                         | 6.954                     |  |
|           | 13                              | 12.192                            | 11.919                        | 9.560                     |  |
| 0.5 x 0.5 | 5                               | 4.187                             | 3.909                         | 1.540                     |  |
|           | 10                              | 8.978                             | 8.669                         | 6.090                     |  |
|           | 13                              | 11.832                            | 11.509                        | 8.769                     |  |

# Measured values of pressure head at different locations for dripper

Measured values of pressure head at different locations for

# micro-tube

| Spacing   |                                 | Pressure he                       | ead (meter)                   |                           |  |
|-----------|---------------------------------|-----------------------------------|-------------------------------|---------------------------|--|
| (meter)   |                                 | Locat                             | ions                          |                           |  |
|           | Upstream<br>end of main<br>line | Downstream<br>end of main<br>line | Upstream<br>end of<br>lateral | Downstream<br>end lateral |  |
| бхб       | 5                               | 3.748                             | 3.416                         | 0.585                     |  |
|           | 10                              | 8.654                             | 8.200                         | 1.064                     |  |
|           | 13                              | 11.451                            | 11.070                        | 1.387                     |  |
| 1 x 1     | 5                               | 3.257                             | 2.824                         | 0.439                     |  |
|           | 10                              | 7.874                             | 7.392                         | 0.730                     |  |
|           | 13                              | 10.664                            | 10.156                        | 0.896                     |  |
| 0.5 x 0.5 | 5                               | 3.440                             | 3.049                         | 0.655                     |  |
|           | 10                              | 8.123                             | 7.679                         | 0.998                     |  |

| 13 | 10.862 | 10.377 | 1.105 |
|----|--------|--------|-------|

-2-

| Spacing   |                                 | Pressure he                       | ead (meter)                   |                           |  |
|-----------|---------------------------------|-----------------------------------|-------------------------------|---------------------------|--|
| (meter)   |                                 | Loca                              | tions                         |                           |  |
|           | Upstream<br>end of main<br>line | Downstream<br>end of main<br>line | Upstream<br>end of<br>lateral | Downstream<br>end lateral |  |
| 6 x 0.6   | 5                               | 4.549                             | 4.305                         | 2.381                     |  |
|           | 10                              | 9.183                             | 8.881                         | 6.492                     |  |
|           | 13                              | 12.042                            | 11.719                        | 9.239                     |  |
| 1 x 0.6   | 5                               | 4.516                             | 4.268                         | 2.321                     |  |
|           | 10                              | 9.178                             | 8.869                         | 6.471                     |  |
|           | 13                              | 12.028                            | 11.697                        | 9.147                     |  |
| 0.5 x 0.6 | 5                               | 4.495                             | 4.242                         | 2.194                     |  |
|           | 10                              | 9.148                             | 8.832                         | 6.414                     |  |
|           | 13                              | 12.004                            | 11.666                        | 9.095                     |  |

# Measured values of pressure head at different locations for drip-in

# Measured values of pressure head at different locations for drip

## tape

| Spacing   |                                 | Pressure he                       | ead (meter)                   |                           |  |
|-----------|---------------------------------|-----------------------------------|-------------------------------|---------------------------|--|
| (meter)   |                                 | Loca                              | tions                         |                           |  |
|           | Upstream<br>end of main<br>line | Downstream<br>end of main<br>line | Upstream<br>end of<br>lateral | Downstream<br>end lateral |  |
| 6 x 0.3   | 5                               | 4.362                             | 4.075                         | 1.842                     |  |
|           | 10                              | 9.164                             | 8.862                         | 6.422                     |  |
|           | 13                              | 12.055                            | 11.724                        | 9.181                     |  |
| 1 x 0.3   | 5                               | 4.309                             | 4.015                         | 1.734                     |  |
|           | 10                              | 9.106                             | 8.788                         | 6.325                     |  |
|           | 13                              | 11.996                            | 11.655                        | 9.094                     |  |
| 0.5 x 0.3 | 5                               | 4.287                             | 3.989                         | 1.700                     |  |
|           | 10                              | 9.070                             | 8.747                         | 6.244                     |  |

| -4- |
|-----|
|-----|

| 13 | 11.971 | 11.617 | 8.990 |
|----|--------|--------|-------|
|    |        |        |       |

#### APPENDIX - II

|       | LATERAL LINES |           |       |       |       |       |       |       |       |       |       |  |  |
|-------|---------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
|       | L             | <b>,1</b> |       |       | L     | 2     |       |       | L     | 3     |       |  |  |
| R1    | R2            | R3        | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |
| 2.620 | 2.608         | 2.668     | 2.632 | 2.618 | 2.614 | 2.630 | 2.621 | 2.641 | 2.665 | 2.677 | 2.661 |  |  |
| 2.564 | 2.552         | 2.528     | 2.548 | 2.532 | 2.500 | 2.552 | 2.528 | 2.572 | 2.552 | 2.564 | 2.563 |  |  |
| 2.544 | 2.532         | 2.516     | 2.531 | 2.504 | 2.548 | 2.520 | 2.524 | 2.540 | 2.520 | 2.488 | 2.516 |  |  |
| 2.548 | 2.496         | 2.544     | 2.529 | 2.476 | 2.524 | 2.536 | 2.512 | 2.552 | 2.524 | 2.540 | 2.539 |  |  |
| 2.492 | 2.484         | 2.500     | 2.492 | 2.468 | 2.488 | 2.444 | 2.467 | 2.508 | 2.464 | 2.516 | 2.496 |  |  |
| 2.488 | 2.468         | 2.472     | 2.476 | 2.484 | 2.460 | 2.472 | 2.472 | 2.476 | 2.484 | 2.456 | 2.472 |  |  |
| 2.468 | 2.500         | 2.452     | 2.473 | 2.480 | 2.436 | 2.492 | 2.469 | 2.496 | 2.532 | 2.520 | 2.516 |  |  |
| 2.484 | 2.432         | 2.504     | 2.473 | 2.460 | 2.444 | 2.424 | 2.443 | 2.504 | 2.460 | 2.512 | 2.492 |  |  |
| 2.448 | 2.460         | 2.456     | 2.455 | 2.418 | 2.390 | 2.402 | 2.403 | 2.484 | 2.428 | 2.480 | 2.464 |  |  |
| 2.397 | 2.429         | 2.405     | 2.410 | 2.392 | 2.364 | 2.400 | 2.385 | 2.399 | 2.371 | 2.407 | 2.392 |  |  |

## Measured values of discharge (liter/hour) for dripper at 6m x 6m spacing at 5m operating pressure head

## Measured values of discharge (liter/hour) for dripper at 6m x 6m spacing at 10m operating pressure head

|       |       |       |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
| L1    |       |       |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3    | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 3.712 | 3.684 | 3.736 | 3.711 | 3.668 | 3.688  | 3.652   | 3.669 | 3.632 | 3.620 | 3.650 | 3.634 |
| 3.692 | 3.640 | 3.632 | 3.655 | 3.632 | 3.620  | 3.616   | 3.623 | 3.600 | 3.532 | 3.584 | 3.572 |
| 3.632 | 3.624 | 3.668 | 3.641 | 3.604 | 3.576  | 3.548   | 3.576 | 3.548 | 3.500 | 3.524 | 3.524 |
| 3.616 | 3.596 | 3.540 | 3.584 | 3.580 | 3.548  | 3.568   | 3.565 | 3.572 | 3.528 | 3.560 | 3.553 |
| 3.548 | 3.580 | 3.568 | 3.565 | 3.528 | 3.520  | 3.512   | 3.520 | 3.540 | 3.512 | 3.536 | 3.529 |
| 3.556 | 3.544 | 3.536 | 3.545 | 3.512 | 3.544  | 3.492   | 3.516 | 3.504 | 3.480 | 3.512 | 3.499 |
| 3.540 | 3.492 | 3.556 | 3.529 | 3.516 | 3.524  | 3.544   | 3.528 | 3.528 | 3.516 | 3.492 | 3.512 |
| 3.528 | 3.552 | 3.572 | 3.551 | 3.488 | 3.480  | 3.468   | 3.479 | 3.492 | 3.492 | 3.480 | 3.488 |
| 3.496 | 3.516 | 3.524 | 3.512 | 3.460 | 3.408  | 3.460   | 3.443 | 3.472 | 3.440 | 3.448 | 3.453 |

| 3.480 | 3.452 | 3.500 | 3.477 | 3.440 | 3.424 | 3.472 | 3.445 | 3.448 | 3.428 | 3.460 | 3.445 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|

# Measured values of discharge (liter/hour) for dripper at 6m x 6m spacing at 13m operating pressure head

|       | LATERAL LINES |       |       |       |       |       |       |       |       |       |       |  |  |
|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| L1    |               |       |       |       | L     | ,2    |       |       | L     | 3     |       |  |  |
| R1    | R2            | R3    | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |
| 4.078 | 4.138         | 4.110 | 4.109 | 4.040 | 4.088 | 4.052 | 4.060 | 4.052 | 4.060 | 4.028 | 4.047 |  |  |
| 4.070 | 4.106         | 4.122 | 4.099 | 4.022 | 4.066 | 4.054 | 4.047 | 4.036 | 3.988 | 4.000 | 4.008 |  |  |
| 4.066 | 4.074         | 4.086 | 4.075 | 4.002 | 3.966 | 4.010 | 3.993 | 4.008 | 3.991 | 3.984 | 3.994 |  |  |
| 3.952 | 3.988         | 3.964 | 3.968 | 3.956 | 3.964 | 4.016 | 3.979 | 3.990 | 4.022 | 4.018 | 4.010 |  |  |
| 4.008 | 3.968         | 3.988 | 3.988 | 3.984 | 3.968 | 3.944 | 3.965 | 3.968 | 3.988 | 3.920 | 3.959 |  |  |
| 3.952 | 3.920         | 3.976 | 3.949 | 3.980 | 3.968 | 4.012 | 3.987 | 3.976 | 3.924 | 3.932 | 3.944 |  |  |
| 3.934 | 3.950         | 3.958 | 3.947 | 3.948 | 3.960 | 4.008 | 3.972 | 3.978 | 3.946 | 3.934 | 3.953 |  |  |
| 3.946 | 3.962         | 3.950 | 3.953 | 3.880 | 3.908 | 3.952 | 3.913 | 3.956 | 3.976 | 3.912 | 3.948 |  |  |
| 3.962 | 3.926         | 3.894 | 3.927 | 3.856 | 3.900 | 3.908 | 3.888 | 3.904 | 3.928 | 3.856 | 3.896 |  |  |
| 3.900 | 3.948         | 3.888 | 3.912 | 3.848 | 3.892 | 3.896 | 3.879 | 3.852 | 3.908 | 3.868 | 3.876 |  |  |

## Measured values of discharge (liter/hour) for dripper at 1m x 1m spacing at 5m operating pressure head

|       | LATERAL LINES |       |       |       |       |       |       |       |       |       |       |  |  |
|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| L1    |               |       |       |       | L     | 2     |       |       | L     | 3     |       |  |  |
| R1    | R2            | R3    | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |
| 2.008 | 2.020         | 1.988 | 2.005 | 1.984 | 1.972 | 1.956 | 1.971 | 1.948 | 1.960 | 1.968 | 1.959 |  |  |
| 1.956 | 1.928         | 1.940 | 1.941 | 1.936 | 1.920 | 1.912 | 1.923 | 1.928 | 1.948 | 1.940 | 1.939 |  |  |
| 1.892 | 1.900         | 1.912 | 1.901 | 1.860 | 1.872 | 1.861 | 1.864 | 1.896 | 1.860 | 1.868 | 1.875 |  |  |
| 1.764 | 1.748         | 1.808 | 1.773 | 1.892 | 1.888 | 1.880 | 1.887 | 1.852 | 1.848 | 1.860 | 1.853 |  |  |
| 1.808 | 1.792         | 1.784 | 1.795 | 1.856 | 1.840 | 1.848 | 1.848 | 1.820 | 1.832 | 1.812 | 1.821 |  |  |
| 1.772 | 1.784         | 1.780 | 1.779 | 1.740 | 1.752 | 1.788 | 1.760 | 1.788 | 1.780 | 1.792 | 1.787 |  |  |
| 1.760 | 1.748         | 1.768 | 1.759 | 1.768 | 1.764 | 1.776 | 1.769 | 1.872 | 1.888 | 1.880 | 1.880 |  |  |
| 1.796 | 1.812         | 1.824 | 1.811 | 1.712 | 1.700 | 1.728 | 1.713 | 1.848 | 1.840 | 1.828 | 1.839 |  |  |

| 1.780 | 1.792 | 1.800 | 1.791 | 1.720 | 1.704 | 1.720 | 1.715 | 1.816 | 1.824 | 1.804 | 1.815 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.748 | 1.728 | 1.740 | 1.739 | 1.700 | 1.688 | 1.684 | 1.691 | 1.756 | 1.732 | 1.728 | 1.739 |

Measured values of discharge (liter/hour) for dripper at 1m x 1m spacing at 10m operating pressure head

|       | LATERAL LINES |       |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | ,1    |       |       | L     | ,2    |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3    | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 2.852 | 2.840         | 2.824 | 2.839 | 2.804 | 2.816 | 2.836 | 2.819 | 2.820 | 2.792 | 2.804 | 2.805 |  |  |  |
| 2.760 | 2.772         | 2.740 | 2.757 | 2.784 | 2.764 | 2.772 | 2.773 | 2.788 | 2.768 | 2.780 | 2.779 |  |  |  |
| 2.740 | 2.728         | 2.716 | 2.728 | 2.720 | 2.728 | 2.744 | 2.731 | 2.736 | 2.736 | 2.688 | 2.720 |  |  |  |
| 2.632 | 2.616         | 2.644 | 2.631 | 2.756 | 2.748 | 2.724 | 2.743 | 2.712 | 2.712 | 2.692 | 2.705 |  |  |  |
| 2.684 | 2.660         | 2.672 | 2.672 | 2.696 | 2.680 | 2.700 | 2.692 | 2.648 | 2.648 | 2.620 | 2.639 |  |  |  |
| 2.576 | 2.568         | 2.592 | 2.579 | 2.668 | 2.652 | 2.676 | 2.665 | 2.640 | 2.640 | 2.644 | 2.641 |  |  |  |
| 2.600 | 2.612         | 2.628 | 2.613 | 2.640 | 2.648 | 2.628 | 2.639 | 2.708 | 2.708 | 2.700 | 2.705 |  |  |  |
| 2.676 | 2.680         | 2.696 | 2.684 | 2.556 | 2.528 | 2.572 | 2.552 | 2.700 | 2.700 | 2.684 | 2.695 |  |  |  |
| 2.628 | 2.644         | 2.660 | 2.644 | 2.508 | 2.500 | 2.556 | 2.521 | 2.656 | 2.656 | 2.680 | 2.664 |  |  |  |
| 2.580 | 2.508         | 2.624 | 2.571 | 2.536 | 2.544 | 2.520 | 2.533 | 2.580 | 2.580 | 2.592 | 2.584 |  |  |  |

## Measured values of discharge (liter/hour) for dripper at 1m x 1m spacing at 13m operating pressure head

|       | LATERAL LINES |           |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | <b>,1</b> |       |       | L     | ,2    |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3        | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 3.604 | 3.620         | 3.600     | 3.608 | 3.588 | 3.592 | 3.609 | 3.596 | 3.544 | 3.556 | 3.572 | 3.557 |  |  |  |
| 3.546 | 3.510         | 3.526     | 3.527 | 3.532 | 3.524 | 3.500 | 3.519 | 3.500 | 3.508 | 3.524 | 3.511 |  |  |  |
| 3.484 | 3.460         | 3.492     | 3.479 | 3.500 | 3.480 | 3.508 | 3.496 | 3.488 | 3.484 | 3.504 | 3.492 |  |  |  |
| 3.450 | 3.418         | 3.426     | 3.431 | 3.518 | 3.490 | 3.506 | 3.505 | 3.480 | 3.480 | 3.508 | 3.489 |  |  |  |
| 3.414 | 3.370         | 3.402     | 3.395 | 3.426 | 3.414 | 3.406 | 3.415 | 3.448 | 3.424 | 3.440 | 3.437 |  |  |  |
| 3.378 | 3.354         | 3.350     | 3.361 | 3.434 | 3.418 | 3.446 | 3.433 | 3.400 | 3.408 | 3.436 | 3.415 |  |  |  |
| 3.322 | 3.306         | 3.294     | 3.307 | 3.386 | 3.370 | 3.350 | 3.369 | 3.428 | 3.452 | 3.436 | 3.439 |  |  |  |

| 3.318 | 3.334 | 3.330 | 3.327 | 3.310 | 3.286 | 3.318 | 3.305 | 3.400 | 3.412 | 3.456 | 3.423 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 3.366 | 3.390 | 3.398 | 3.385 | 3.292 | 3.276 | 3.268 | 3.279 | 3.418 | 3.430 | 3.438 | 3.429 |
| 3.318 | 3.302 | 3.314 | 3.311 | 3.276 | 3.264 | 3.240 | 3.260 | 3.358 | 3.330 | 3.350 | 3.346 |

Measured values of discharge (liter/hour) for dripper at 0.5m x 0.5m spacing at 5m operating pressure head

|       |       |            |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|------------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | <i>,</i> 1 |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3         | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.885 | 1.897 | 1.865      | 1.882 | 1.894 | 1.870  | 1.878   | 1.881 | 1.878 | 1.898 | 1.890 | 1.889 |
| 1.829 | 1.833 | 1.813      | 1.825 | 1.830 | 1.822  | 1.810   | 1.821 | 1.821 | 1.841 | 1.829 | 1.830 |
| 1.792 | 1.820 | 1.808      | 1.807 | 1.806 | 1.778  | 1.790   | 1.791 | 1.789 | 1.805 | 1.797 | 1.797 |
| 1.769 | 1.753 | 1.737      | 1.753 | 1.728 | 1.740  | 1.752   | 1.740 | 1.756 | 1.736 | 1.744 | 1.745 |
| 1.740 | 1.712 | 1.732      | 1.728 | 1.720 | 1.704  | 1.716   | 1.713 | 1.708 | 1.728 | 1.720 | 1.719 |
| 1.716 | 1.700 | 1.684      | 1.700 | 1.704 | 1.668  | 1.676   | 1.683 | 1.700 | 1.680 | 1.696 | 1.692 |
| 1.664 | 1.680 | 1.668      | 1.671 | 1.658 | 1.650  | 1.642   | 1.650 | 1.682 | 1.674 | 1.630 | 1.662 |
| 1.622 | 1.642 | 1.634      | 1.633 | 1.651 | 1.639  | 1.635   | 1.642 | 1.643 | 1.655 | 1.647 | 1.648 |
| 1.602 | 1.630 | 1.614      | 1.615 | 1.648 | 1.620  | 1.628   | 1.632 | 1.639 | 1.651 | 1.625 | 1.638 |
| 1.571 | 1.591 | 1.579      | 1.580 | 1.599 | 1.583  | 1.611   | 1.598 | 1.616 | 1.596 | 1.608 | 1.607 |

## Measured values of discharge (liter/hour) for dripper at 0.5m x 0.5m spacing at 10m operating pressure head

|       | LATERAL LINES |           |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | <b>,1</b> |       |       | L     | ,2    |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3        | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 2.437 | 2.461         | 2.445     | 2.448 | 2.426 | 2.454 | 2.442 | 2.441 | 2.438 | 2.430 | 2.450 | 2.439 |  |  |  |
| 2.389 | 2.413         | 2.397     | 2.400 | 2.365 | 2.393 | 2.373 | 2.377 | 2.397 | 2.377 | 2.389 | 2.388 |  |  |  |
| 2.348 | 2.364         | 2.384     | 2.365 | 2.338 | 2.362 | 2.350 | 2.350 | 2.354 | 2.386 | 2.362 | 2.367 |  |  |  |
| 2.324 | 2.340         | 2.328     | 2.331 | 2.320 | 2.304 | 2.316 | 2.313 | 2.334 | 2.350 | 2.342 | 2.342 |  |  |  |
| 2.300 | 2.288         | 2.304     | 2.297 | 2.268 | 2.256 | 2.252 | 2.259 | 2.314 | 2.322 | 2.290 | 2.309 |  |  |  |
| 2.234 | 2.250         | 2.242     | 2.242 | 2.248 | 2.232 | 2.240 | 2.240 | 2.240 | 2.252 | 2.248 | 2.247 |  |  |  |
| 2.196 | 2.224         | 2.204     | 2.208 | 2.230 | 2.210 | 2.222 | 2.221 | 2.252 | 2.228 | 2.240 | 2.240 |  |  |  |

| 2.222 | 2.202 | 2.210 | 2.211 | 2.195 | 2.191 | 2.175 | 2.187 | 2.204 | 2.236 | 2.188 | 2.209 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2.208 | 2.200 | 2.188 | 2.199 | 2.146 | 2.142 | 2.118 | 2.135 | 2.200 | 2.188 | 2.180 | 2.189 |
| 2.120 | 2.128 | 2.112 | 2.120 | 2.114 | 2.098 | 2.110 | 2.107 | 2.123 | 2.095 | 2.111 | 2.110 |

|       | LATERAL LINES |           |       |       |       |       |       |           |       |       |       |  |  |  |
|-------|---------------|-----------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|--|--|--|
|       | L             | <b>,1</b> |       |       | L     | ,2    |       |           | L     | 3     |       |  |  |  |
| R1    | R2            | R3        | Avg.  | R1    | R2    | R3    | Avg.  | <b>R1</b> | R2    | R3    | Avg.  |  |  |  |
| 3.100 | 3.084         | 3.096     | 3.093 | 3.068 | 3.060 | 3.092 | 3.073 | 3.088     | 3.076 | 3.108 | 3.091 |  |  |  |
| 3.018 | 2.990         | 3.002     | 3.003 | 2.994 | 2.982 | 2.978 | 2.985 | 3.010     | 3.018 | 3.030 | 3.019 |  |  |  |
| 3.031 | 3.018         | 3.010     | 3.020 | 2.966 | 2.958 | 2.954 | 2.959 | 2.994     | 2.982 | 3.006 | 2.994 |  |  |  |
| 2.967 | 2.962         | 2.974     | 2.968 | 2.932 | 2.904 | 2.920 | 2.919 | 2.888     | 2.900 | 2.892 | 2.893 |  |  |  |
| 2.950 | 2.934         | 2.958     | 2.947 | 2.904 | 2.876 | 2.884 | 2.888 | 2.830     | 2.818 | 2.838 | 2.829 |  |  |  |
| 2.830 | 2.850         | 2.842     | 2.841 | 2.844 | 2.852 | 2.848 | 2.848 | 2.818     | 2.838 | 2.830 | 2.829 |  |  |  |
| 2.826 | 2.806         | 2.814     | 2.815 | 2.830 | 2.786 | 2.810 | 2.809 | 2.900     | 2.880 | 2.908 | 2.896 |  |  |  |
| 2.846 | 2.818         | 2.830     | 2.831 | 2.836 | 2.808 | 2.824 | 2.823 | 2.822     | 2.810 | 2.810 | 2.814 |  |  |  |
| 2.814 | 2.786         | 2.798     | 2.799 | 2.741 | 2.713 | 2.721 | 2.725 | 2.870     | 2.798 | 2.786 | 2.818 |  |  |  |
| 2.716 | 2.680         | 2.692     | 2.696 | 2.693 | 2.669 | 2.677 | 2.680 | 2.750     | 2.722 | 2.730 | 2.734 |  |  |  |

Measured values of discharge (liter/hour) for dripper at 0.5m x 0.5m spacing at 13m operating pressure head

# Measured values of discharge (liter/hour) for micro-tube at 6m x 6m spacing at 5m operating pressure head

|        | LATERAL LINES |           |        |        |        |        |        |        |        |        |        |  |  |  |
|--------|---------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
|        | L             | <b>,1</b> |        |        | L      | ,2     |        |        | L      | 3      |        |  |  |  |
| R1     | R2            | R3        | Avg.   | R1     | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   |  |  |  |
| 64.800 | 64.528        | 65.432    | 64.920 | 63.616 | 63.316 | 63.868 | 63.600 | 60.300 | 60.456 | 60.924 | 60.560 |  |  |  |
| 54.342 | 54.254        | 53.410    | 54.002 | 61.120 | 60.704 | 61.288 | 61.037 | 57.012 | 57.404 | 57.192 | 57.203 |  |  |  |
| 55.492 | 54.980        | 55.652    | 55.375 | 51.900 | 50.600 | 51.984 | 51.495 | 57.920 | 58.428 | 58.096 | 58.148 |  |  |  |
| 58.340 | 58.412        | 59.436    | 58.729 | 49.296 | 49.856 | 49.084 | 49.412 | 50.912 | 51.796 | 50.768 | 51.159 |  |  |  |
| 43.600 | 43.348        | 43.336    | 43.428 | 40.240 | 40.420 | 40.428 | 40.363 | 46.368 | 47.092 | 47.436 | 46.965 |  |  |  |
| 37.936 | 38.008        | 38.904    | 38.283 | 46.580 | 47.352 | 47.844 | 47.259 | 36.064 | 36.964 | 36.300 | 36.443 |  |  |  |
| 36.100 | 36.668        | 36.368    | 36.379 | 43.640 | 43.504 | 43.856 | 43.667 | 34.680 | 34.900 | 35.452 | 35.011 |  |  |  |
| 37.524 | 37.976        | 34.604    | 36.701 | 40.640 | 41.168 | 40.424 | 40.744 | 34.936 | 35.612 | 34.240 | 34.929 |  |  |  |
| 31.212 | 31.044        | 31.328    | 31.195 | 38.136 | 38.904 | 37.968 | 38.336 | 32.904 | 34.008 | 34.292 | 33.735 |  |  |  |

| 21.290 | 21.120 | 27.102 | 41.090 | 30.900 | 30.372 | 49.934 | 30.773 | 30.100 | 29.000 | 30.740 | 30.143 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 07 000 | 07 706 | 07 160 | 07 202 | 20.000 | 20 570 | 20.052 | 20 475 | 20 100 | 00 599 | 20 749 | 20 145 |

Measured values of discharge (liter/hour) for micro-tube at 6m x 6m spacing at 10m operating pressure head

|        | LATERAL LINES |           |        |        |        |        |        |        |        |        |        |  |  |  |
|--------|---------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
|        | L             | <b>,1</b> |        |        | L      | ,2     |        |        | L      | 3      |        |  |  |  |
| R1     | R2            | R3        | Avg.   | R1     | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   |  |  |  |
| 73.240 | 73.708        | 73.408    | 73.452 | 69.008 | 69.516 | 69.572 | 69.365 | 67.500 | 67.804 | 67.616 | 67.640 |  |  |  |
| 60.624 | 60.369        | 60.864    | 60.619 | 64.512 | 64.328 | 64.700 | 64.513 | 66.608 | 65.652 | 65.516 | 65.925 |  |  |  |
| 65.176 | 65.300        | 64.996    | 65.157 | 55.480 | 55.708 | 56.048 | 55.745 | 65.200 | 65.716 | 65.328 | 65.415 |  |  |  |
| 67.444 | 67.984        | 67.660    | 67.696 | 51.980 | 51.852 | 52.516 | 52.116 | 56.340 | 56.848 | 57.376 | 56.855 |  |  |  |
| 53.032 | 53.236        | 53.524    | 53.264 | 43.292 | 43.780 | 43.176 | 43.416 | 49.632 | 51.260 | 51.980 | 50.957 |  |  |  |
| 47.208 | 47.556        | 47.732    | 47.499 | 49.628 | 50.072 | 49.844 | 49.848 | 42.660 | 42.344 | 42.912 | 42.639 |  |  |  |
| 44.672 | 44.816        | 44.504    | 44.664 | 46.940 | 47.296 | 47.188 | 47.141 | 36.428 | 36.236 | 36.748 | 36.471 |  |  |  |
| 46.720 | 46.872        | 46.988    | 46.860 | 43.680 | 43.972 | 43.544 | 43.732 | 42.384 | 42.556 | 42.492 | 42.477 |  |  |  |
| 36.052 | 36.608        | 36.340    | 36.333 | 42.024 | 41.888 | 42.284 | 42.065 | 32.052 | 32.688 | 32.356 | 32.365 |  |  |  |
| 40.200 | 40.864        | 40.488    | 40.517 | 36.616 | 36.868 | 36.568 | 36.684 | 40.836 | 41.380 | 41.096 | 41.104 |  |  |  |

#### Measured values of discharge (liter/hour) for micro-tube at 6m x 6m spacing at 13m operating pressure head

|        | LATERAL LINES |           |        |        |        |        |        |        |        |        |        |  |  |  |
|--------|---------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
|        | L             | <b>,1</b> |        |        | L      | 2      |        |        | L      | 3      |        |  |  |  |
| R1     | R2            | R3        | Avg.   | R1     | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   |  |  |  |
| 76.500 | 75.488        | 77.416    | 76.468 | 71.656 | 71.192 | 72.488 | 71.779 | 70.360 | 69.328 | 69.784 | 69.824 |  |  |  |
| 63.368 | 64.388        | 63.172    | 63.643 | 67.680 | 67.484 | 67.940 | 67.701 | 67.700 | 67.060 | 67.408 | 67.389 |  |  |  |
| 67.896 | 69.160        | 67.352    | 68.136 | 52.520 | 53.008 | 52.676 | 52.735 | 68.408 | 68.116 | 68.652 | 68.392 |  |  |  |
| 69.828 | 71.804        | 70.916    | 70.849 | 55.532 | 55.944 | 54.860 | 55.445 | 59.900 | 59.624 | 60.312 | 59.945 |  |  |  |
| 58.740 | 56.492        | 58.084    | 57.772 | 45.780 | 46.240 | 45.584 | 45.868 | 53.920 | 54.008 | 53.576 | 53.835 |  |  |  |
| 49.648 | 47.768        | 48.972    | 48.796 | 53.152 | 53.456 | 53.236 | 53.281 | 46.912 | 46.732 | 47.120 | 46.921 |  |  |  |
| 47.220 | 49.460        | 47.728    | 48.136 | 50.680 | 49.988 | 50.408 | 50.359 | 39.908 | 39.668 | 40.144 | 39.907 |  |  |  |
| 48.572 | 49.344        | 50.024    | 49.313 | 48.304 | 48.728 | 48.900 | 48.644 | 46.216 | 45.912 | 45.748 | 45.959 |  |  |  |

| 42.640 | 41.964 | 43.500 | 42.701 | 46.112 | 45.884 | 47.316 | 46.437 | 34.960 | 35.740 | 35.284 | 35.328 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 44.388 | 45.312 | 44.084 | 44.595 | 39.580 | 39.948 | 39.016 | 39.515 | 44.392 | 44.728 | 44.900 | 44.673 |

Measured values of discharge (liter/hour) for micro-tube at 1m x 1m spacing at 5m operating pressure head

|        | LATERAL LINES |           |        |        |        |        |        |        |        |        |        |  |  |
|--------|---------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
|        | L             | <b>,1</b> |        |        | L      | ,2     |        |        | L      | ,3     |        |  |  |
| R1     | R2            | R3        | Avg.   | R1     | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   |  |  |
| 36.872 | 37.368        | 34.620    | 36.287 | 35.608 | 36.784 | 36.940 | 36.444 | 34.940 | 35.648 | 35.792 | 35.460 |  |  |
| 32.244 | 31.996        | 31.804    | 32.015 | 29.113 | 28.328 | 36.330 | 31.257 | 31.644 | 30.784 | 31.140 | 31.189 |  |  |
| 26.068 | 26.448        | 25.860    | 26.125 | 26.392 | 25.876 | 27.044 | 26.437 | 25.542 | 25.790 | 25.442 | 25.591 |  |  |
| 17.092 | 16.860        | 17.552    | 17.168 | 17.080 | 17.304 | 16.028 | 16.804 | 16.570 | 16.342 | 17.082 | 16.665 |  |  |

#### Measured values of discharge (liter/hour) for micro-tube at 1m x 1m spacing at 10m operating pressure head

|        | LATERAL LINES |        |        |        |        |        |        |        |        |        |        |  |  |
|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
|        | L             | 1      |        |        | L      | 2      |        |        | L      | 3      |        |  |  |
| R1     | R2            | R3     | Avg.   | R1     | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   |  |  |
| 49.696 | 48.564        | 49.540 | 49.267 | 46.796 | 46.104 | 45.990 | 46.297 | 46.638 | 47.418 | 47.214 | 47.090 |  |  |
| 38.080 | 39.264        | 38.972 | 38.772 | 38.420 | 38.764 | 38.184 | 38.456 | 38.875 | 38.533 | 39.241 | 38.883 |  |  |
| 31.724 | 31.200        | 31.552 | 31.492 | 29.432 | 29.980 | 30.088 | 29.833 | 33.713 | 33.217 | 34.005 | 33.645 |  |  |
| 24.584 | 24.888        | 24.440 | 24.637 | 25.048 | 25.628 | 24.736 | 25.137 | 21.240 | 21.980 | 21.736 | 21.652 |  |  |

#### Measured values of discharge (liter/hour) for micro-tube at 1m x 1m spacing at 13m operating pressure head

|                                                                                                                                                                         | LATERAL LINES |    |      |    |    |    |        |             |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|------|----|----|----|--------|-------------|--|--|--|--|--|
|                                                                                                                                                                         | L             | 1  |      | L2 |    |    |        | L3          |  |  |  |  |  |
| R1                                                                                                                                                                      | R2            | R3 | Avg. | R1 | R2 | R3 | Avg.   | R1 R2 R3 Av |  |  |  |  |  |
| 56.324         56.832         57.288         56.815         54.276         55.692         53.940         54.636         52.296         51.400         52.148         51 |               |    |      |    |    |    | 51.948 |             |  |  |  |  |  |

| 41.652 | 43.112 | 41.490 | 42.085 | 45.148 | 46.224 | 45.396 | 45.589 | 43.460 | 43.168 | 43.684 | 43.437 |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 38.312 | 37.780 | 38.460 | 38.184 | 39.784 | 38.656 | 39.568 | 39.336 | 35.756 | 34.900 | 36.216 | 35.624 |
| 25.326 | 25.826 | 24.962 | 25.371 | 27.648 | 27.188 | 26.296 | 27.044 | 28.676 | 29.744 | 28.820 | 29.080 |

|        |               |        |        |           |        |        |        |        |        | 01     |        |  |  |  |
|--------|---------------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|--------|--|--|--|
|        | LATERAL LINES |        |        |           |        |        |        |        |        |        |        |  |  |  |
|        | L             | ,1     |        |           | L      | 2      |        |        | L      | ,3     |        |  |  |  |
| R1     | R2            | R3     | Avg.   | <b>R1</b> | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   |  |  |  |
| 22.484 | 22.340        | 22.700 | 22.508 | 21.852    | 21.384 | 21.980 | 21.739 | 21.000 | 21.168 | 20.744 | 20.971 |  |  |  |
| 16.224 | 16.392        | 15.960 | 16.192 | 15.338    | 15.550 | 15.242 | 15.377 | 14.476 | 14.176 | 14.712 | 14.455 |  |  |  |
| 10.828 | 10.688        | 11.036 | 10.851 | 10.210    | 10.362 | 10.098 | 10.223 | 9.268  | 9.460  | 9.156  | 9.295  |  |  |  |

## Measured values of discharge (liter/hour) for micro-tube at 0.5m x 0.5m spacing at 5m operating pressure head

Measured values of discharge (liter/hour) for micro-tube at  $0.5m \ge 0.5m$  spacing at 10m operating pressure head

|        | LATERAL LINES |        |        |        |        |        |        |        |        |        |        |  |  |
|--------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|--|
|        | L             | ,1     |        |        | I      | .2     |        |        | L      | 3      |        |  |  |
| R1     | R2            | R3     | Avg.   | R1     | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   |  |  |
| 28.328 | 28.060        | 28.508 | 28.299 | 27.420 | 27.852 | 27.160 | 27.477 | 26.356 | 26.088 | 26.520 | 26.321 |  |  |
| 20.572 | 20.756        | 20.284 | 20.537 | 20.272 | 19.924 | 19.576 | 19.924 | 19.570 | 19.790 | 19.334 | 19.565 |  |  |
| 13.316 | 13.540        | 13.028 | 13.295 | 13.100 | 13.216 | 12.560 | 12.959 | 12.038 | 12.266 | 11.814 | 12.039 |  |  |

Measured values of discharge (liter/hour) for micro-tube at  $0.5m \ge 0.5m$  spacing at 13m operating pressure head

| LATERAL LINES |        |        |        |        |        |        |        |        |        |        |        |  |
|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
|               | L      | ,1     |        |        | L      | ,2     |        |        | L      | 3      |        |  |
| R1            | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   | R1     | R2     | R3     | Avg.   |  |
| 32.820        | 32.768 | 33.028 | 32.872 | 31.480 | 31.656 | 31.140 | 31.425 | 29.708 | 29.456 | 29.380 | 29.515 |  |
| 26.884        | 26.984 | 26.736 | 26.868 | 24.392 | 25.292 | 23.828 | 24.504 | 23.672 | 23.560 | 22.748 | 23.327 |  |
| 16.148        | 16.452 | 16.020 | 16.207 | 16.448 | 16.360 | 16.704 | 16.504 | 14.572 | 14.280 | 14.912 | 14.588 |  |

|       | LATERAL LINES |       |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | 1     |       |       | L     | ,2    |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3    | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 1.264 | 1.280         | 1.268 | 1.271 | 1.220 | 1.208 | 1.236 | 1.221 | 1.172 | 1.168 | 1.180 | 1.173 |  |  |  |
| 1.232 | 1.228         | 1.244 | 1.235 | 1.184 | 1.196 | 1.216 | 1.199 | 1.160 | 1.148 | 1.148 | 1.152 |  |  |  |
| 1.208 | 1.224         | 1.236 | 1.223 | 1.192 | 1.176 | 1.188 | 1.185 | 1.132 | 1.140 | 1.128 | 1.133 |  |  |  |
| 1.220 | 1.236         | 1.200 | 1.219 | 1.168 | 1.156 | 1.180 | 1.168 | 1.140 | 1.116 | 1.124 | 1.127 |  |  |  |
| 1.176 | 1.188         | 1.160 | 1.175 | 1.148 | 1.140 | 1.120 | 1.136 | 1.104 | 1.100 | 1.112 | 1.105 |  |  |  |
| 1.156 | 1.168         | 1.144 | 1.156 | 1.160 | 1.188 | 1.168 | 1.172 | 1.112 | 1.076 | 1.100 | 1.096 |  |  |  |
| 1.164 | 1.120         | 1.152 | 1.145 | 1.136 | 1.120 | 1.148 | 1.135 | 1.088 | 1.072 | 1.096 | 1.085 |  |  |  |
| 1.128 | 1.112         | 1.140 | 1.127 | 1.096 | 1.088 | 1.112 | 1.099 | 1.060 | 1.048 | 1.072 | 1.060 |  |  |  |
| 1.108 | 1.100         | 1.116 | 1.108 | 1.064 | 1.060 | 1.060 | 1.061 | 1.072 | 1.080 | 1.056 | 1.069 |  |  |  |
| 1.100 | 1.080         | 1.108 | 1.096 | 1.056 | 1.040 | 1.032 | 1.043 | 1.028 | 1.044 | 1.024 | 1.032 |  |  |  |

Measured values of discharge (liter/hour) for drip-in at 6m x 0.6m spacing at 5m operating pressure head

## Measured values of discharge (liter/hour) for drip-in at 6m x 0.6m spacing at 10m operating pressure head

|       | LATERAL LINES |           |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | <b>,1</b> |       |       | L     | 2     |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3        | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 2.224 | 2.252         | 2.236     | 2.237 | 2.190 | 2.178 | 2.194 | 2.187 | 2.164 | 2.148 | 2.172 | 2.161 |  |  |  |
| 2.204 | 2.220         | 2.212     | 2.212 | 2.166 | 2.150 | 2.158 | 2.158 | 2.142 | 2.130 | 2.166 | 2.146 |  |  |  |
| 2.202 | 2.182         | 2.190     | 2.191 | 2.135 | 2.155 | 2.130 | 2.140 | 2.118 | 2.106 | 2.126 | 2.117 |  |  |  |
| 2.158 | 2.150         | 2.166     | 2.158 | 2.116 | 2.112 | 2.132 | 2.120 | 2.100 | 2.108 | 2.089 | 2.099 |  |  |  |
| 2.124 | 2.140         | 2.132     | 2.132 | 2.090 | 2.110 | 2.094 | 2.098 | 2.068 | 2.074 | 2.060 | 2.067 |  |  |  |
| 2.116 | 2.108         | 2.108     | 2.111 | 2.052 | 2.068 | 2.060 | 2.060 | 2.040 | 2.056 | 2.032 | 2.043 |  |  |  |
| 2.090 | 2.110         | 2.078     | 2.093 | 2.056 | 2.036 | 2.048 | 2.047 | 2.008 | 2.028 | 2.000 | 2.012 |  |  |  |
| 2.062 | 2.059         | 2.065     | 2.062 | 2.014 | 2.034 | 2.026 | 2.025 | 1.962 | 1.990 | 1.974 | 1.975 |  |  |  |
| 2.044 | 2.028         | 2.040     | 2.037 | 1.998 | 2.018 | 2.002 | 2.006 | 1.944 | 1.936 | 1.956 | 1.945 |  |  |  |

| 2.018 2.000 1.998 <b>2.007</b> 1.900 1.962 1.902 <b>1.970</b> 1.920 1.912 1.930 <b>1.923</b> | 2.018 2.006 | 1.998 | 2.007 | 1.966 | 1.982 | 1.962 | 1.970 | 1.920 | 1.912 | 1.936 | 1.923 |
|----------------------------------------------------------------------------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|----------------------------------------------------------------------------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|

Measured values of discharge (liter/hour) for drip-in at 6m x 0.6m spacing at 13m operating pressure head

|       | LATERAL LINES |            |       |       |       |       |       |       |       |       |       |  |  |  |  |
|-------|---------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|
|       | L             | <i>,</i> 1 |       |       | I     | .2    |       |       | L     | 3     |       |  |  |  |  |
| R1    | R2            | R3         | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |  |
| 2.572 | 2.560         | 2.576      | 2.569 | 2.542 | 2.574 | 2.558 | 2.558 | 2.520 | 2.536 | 2.504 | 2.520 |  |  |  |  |
| 2.534 | 2.538         | 2.530      | 2.534 | 2.536 | 2.540 | 2.536 | 2.537 | 2.482 | 2.494 | 2.466 | 2.481 |  |  |  |  |
| 2.514 | 2.526         | 2.522      | 2.521 | 2.498 | 2.518 | 2.510 | 2.509 | 2.462 | 2.458 | 2.470 | 2.463 |  |  |  |  |
| 2.490 | 2.502         | 2.478      | 2.490 | 2.460 | 2.488 | 2.476 | 2.475 | 2.450 | 2.430 | 2.438 | 2.439 |  |  |  |  |
| 2.468 | 2.484         | 2.460      | 2.471 | 2.476 | 2.444 | 2.456 | 2.459 | 2.420 | 2.436 | 2.400 | 2.419 |  |  |  |  |
| 2.452 | 2.460         | 2.460      | 2.457 | 2.424 | 2.440 | 2.408 | 2.424 | 2.402 | 2.398 | 2.386 | 2.395 |  |  |  |  |
| 2.432 | 2.456         | 2.436      | 2.441 | 2.380 | 2.412 | 2.388 | 2.393 | 2.384 | 2.368 | 2.376 | 2.376 |  |  |  |  |
| 2.440 | 2.412         | 2.416      | 2.423 | 2.368 | 2.356 | 2.360 | 2.361 | 2.336 | 2.356 | 2.344 | 2.345 |  |  |  |  |
| 2.418 | 2.398         | 2.398      | 2.405 | 2.342 | 2.330 | 2.338 | 2.337 | 2.320 | 2.316 | 2.304 | 2.313 |  |  |  |  |
| 2.400 | 2.376         | 2.388      | 2.388 | 2.322 | 2.310 | 2.314 | 2.315 | 2.288 | 2.280 | 2.268 | 2.279 |  |  |  |  |

#### Measured values of discharge (liter/hour) for drip-in at 1m x 0.6m spacing at 5m operating pressure head

|       |       |       |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | 1     |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3    | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.288 | 1.300 | 1.272 | 1.287 | 1.268 | 1.276  | 1.256   | 1.267 | 1.236 | 1.248 | 1.220 | 1.235 |
| 1.260 | 1.268 | 1.248 | 1.259 | 1.248 | 1.264  | 1.240   | 1.251 | 1.212 | 1.220 | 1.204 | 1.212 |
| 1.252 | 1.240 | 1.260 | 1.251 | 1.216 | 1.224  | 1.220   | 1.220 | 1.184 | 1.180 | 1.192 | 1.185 |
| 1.228 | 1.208 | 1.236 | 1.224 | 1.220 | 1.204  | 1.208   | 1.211 | 1.200 | 1.208 | 1.184 | 1.197 |
| 1.216 | 1.232 | 1.204 | 1.217 | 1.176 | 1.180  | 1.188   | 1.181 | 1.180 | 1.192 | 1.176 | 1.183 |
| 1.184 | 1.200 | 1.168 | 1.184 | 1.164 | 1.152  | 1.180   | 1.165 | 1.148 | 1.140 | 1.156 | 1.148 |
| 1.160 | 1.168 | 1.152 | 1.160 | 1.156 | 1.160  | 1.140   | 1.152 | 1.132 | 1.112 | 1.140 | 1.128 |
| 1.168 | 1.180 | 1.156 | 1.168 | 1.172 | 1.180  | 1.160   | 1.171 | 1.104 | 1.100 | 1.092 | 1.099 |

| 1.180 | 1.172 | 1.168 | 1.173 | 1.152 | 1.164 | 1.144 | 1.153 | 1.100 | 1.108 | 1.080 | 1.096 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.148 | 1.144 | 1.136 | 1.143 | 1.124 | 1.120 | 1.136 | 1.127 | 1.088 | 1.100 | 1.072 | 1.087 |

Measured values of discharge (liter/hour) for drip-in at 1m x 0.6m spacing at 10m operating pressure head

|       |       |           |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-----------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | <b>,1</b> |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3        | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 2.228 | 2.212 | 2.236     | 2.225 | 2.196 | 2.188  | 2.204   | 2.196 | 2.190 | 2.170 | 2.198 | 2.186 |
| 2.210 | 2.202 | 2.198     | 2.203 | 2.163 | 2.155  | 2.175   | 2.164 | 2.164 | 2.148 | 2.176 | 2.163 |
| 2.194 | 2.190 | 2.178     | 2.187 | 2.140 | 2.140  | 2.144   | 2.141 | 2.136 | 2.140 | 2.132 | 2.136 |
| 2.172 | 2.168 | 2.160     | 2.167 | 2.124 | 2.128  | 2.116   | 2.123 | 2.122 | 2.098 | 2.110 | 2.110 |
| 2.150 | 2.154 | 2.134     | 2.146 | 2.108 | 2.092  | 2.116   | 2.105 | 2.082 | 2.070 | 2.094 | 2.082 |
| 2.118 | 2.110 | 2.130     | 2.119 | 2.076 | 2.080  | 2.088   | 2.081 | 2.054 | 2.060 | 2.058 | 2.057 |
| 2.084 | 2.092 | 2.068     | 2.081 | 2.056 | 2.068  | 2.052   | 2.059 | 2.030 | 2.054 | 2.014 | 2.033 |
| 2.058 | 2.050 | 2.070     | 2.059 | 2.040 | 2.052  | 2.032   | 2.041 | 2.017 | 2.029 | 2.001 | 2.016 |
| 2.040 | 2.052 | 2.028     | 2.040 | 2.028 | 2.020  | 2.008   | 2.019 | 1.984 | 1.976 | 1.988 | 1.983 |
| 2.012 | 2.000 | 2.020     | 2.011 | 1.998 | 1.986  | 1.990   | 1.991 | 1.970 | 1.954 | 1.974 | 1.966 |

## Measured values of discharge (liter/hour) for drip-in at 1m x 0.6m spacing at 13m operating pressure head

|       |       |       |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | ,1    |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3    | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 2.700 | 2.712 | 2.684 | 2.699 | 2.628 | 2.648  | 2.616   | 2.631 | 2.580 | 2.576 | 2.588 | 2.581 |
| 2.675 | 2.680 | 2.660 | 2.672 | 2.612 | 2.632  | 2.600   | 2.615 | 2.552 | 2.540 | 2.564 | 2.552 |
| 2.680 | 2.684 | 2.672 | 2.679 | 2.596 | 2.600  | 2.592   | 2.596 | 2.544 | 2.552 | 2.536 | 2.544 |
| 2.648 | 2.660 | 2.636 | 2.648 | 2.564 | 2.548  | 2.576   | 2.563 | 2.560 | 2.560 | 2.556 | 2.559 |
| 2.664 | 2.652 | 2.672 | 2.663 | 2.580 | 2.576  | 2.588   | 2.581 | 2.528 | 2.512 | 2.540 | 2.527 |
| 2.564 | 2.556 | 2.584 | 2.568 | 2.548 | 2.556  | 2.540   | 2.548 | 2.496 | 2.500 | 2.512 | 2.503 |
| 2.612 | 2.600 | 2.628 | 2.613 | 2.520 | 2.512  | 2.524   | 2.519 | 2.468 | 2.456 | 2.480 | 2.468 |

| 2.548 | 2.544 | 2.560 | 2.551 | 2.496 | 2.500 | 2.504 | 2.500 | 2.452 | 2.460 | 2.448 | 2.453 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2.556 | 2.560 | 2.552 | 2.556 | 2.472 | 2.480 | 2.460 | 2.471 | 2.424 | 2.436 | 2.416 | 2.425 |
| 2.504 | 2.512 | 2.500 | 2.505 | 2.460 | 2.456 | 2.444 | 2.453 | 2.408 | 2.416 | 2.400 | 2.408 |

Measured values of discharge (liter/hour) for drip-in at 0.5m x 0.6m spacing at 5m operating pressure head

|       |       |       |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | ,1    |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3    | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.388 | 1.404 | 1.380 | 1.391 | 1.372 | 1.360  | 1.388   | 1.373 | 1.352 | 1.336 | 1.360 | 1.349 |
| 1.368 | 1.380 | 1.360 | 1.369 | 1.352 | 1.344  | 1.356   | 1.351 | 1.340 | 1.312 | 1.344 | 1.332 |
| 1.380 | 1.368 | 1.348 | 1.365 | 1.332 | 1.340  | 1.320   | 1.331 | 1.308 | 1.300 | 1.320 | 1.309 |
| 1.312 | 1.320 | 1.316 | 1.316 | 1.300 | 1.312  | 1.292   | 1.301 | 1.324 | 1.320 | 1.296 | 1.313 |
| 1.292 | 1.284 | 1.280 | 1.285 | 1.316 | 1.324  | 1.300   | 1.313 | 1.312 | 1.300 | 1.288 | 1.300 |
| 1.272 | 1.260 | 1.288 | 1.273 | 1.332 | 1.300  | 1.280   | 1.304 | 1.276 | 1.292 | 1.264 | 1.277 |
| 1.304 | 1.308 | 1.312 | 1.308 | 1.248 | 1.244  | 1.264   | 1.252 | 1.260 | 1.280 | 1.244 | 1.261 |
| 1.288 | 1.288 | 1.280 | 1.285 | 1.264 | 1.280  | 1.248   | 1.264 | 1.280 | 1.280 | 1.268 | 1.276 |
| 1.268 | 1.260 | 1.248 | 1.259 | 1.228 | 1.244  | 1.236   | 1.236 | 1.248 | 1.260 | 1.252 | 1.253 |
| 1.248 | 1.240 | 1.236 | 1.241 | 1.220 | 1.212  | 1.208   | 1.213 | 1.236 | 1.228 | 1.240 | 1.235 |

# Measured values of discharge (liter/hour) for drip-in at 0.5m x 0.6m spacing at 10m operating pressure head

|       | LATERAL LINES |       |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | ,1    |       |       | L     | 2     |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3    | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 2.288 | 2.309         | 2.272 | 2.290 | 2.312 | 2.288 | 2.256 | 2.285 | 2.254 | 2.270 | 2.230 | 2.251 |  |  |  |
| 2.268 | 2.280         | 2.260 | 2.269 | 2.298 | 2.274 | 2.238 | 2.270 | 2.240 | 2.248 | 2.212 | 2.233 |  |  |  |
| 2.244 | 2.252         | 2.236 | 2.244 | 2.256 | 2.248 | 2.228 | 2.244 | 2.218 | 2.230 | 2.202 | 2.217 |  |  |  |
| 2.230 | 2.218         | 2.226 | 2.225 | 2.228 | 2.240 | 2.220 | 2.229 | 2.200 | 2.176 | 2.188 | 2.188 |  |  |  |
| 2.226 | 2.222         | 2.194 | 2.214 | 2.215 | 2.207 | 2.199 | 2.207 | 2.174 | 2.154 | 2.170 | 2.166 |  |  |  |
| 2.192 | 2.200         | 2.180 | 2.191 | 2.198 | 2.170 | 2.174 | 2.181 | 2.158 | 2.138 | 2.134 | 2.143 |  |  |  |

| 2.190 | 2.178 | 2.182 | 2.183 | 2.166 | 2.158 | 2.178 | 2.167 | 2.150 | 2.130 | 2.122 | 2.134 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2.160 | 2.164 | 2.148 | 2.157 | 2.145 | 2.113 | 2.133 | 2.130 | 2.099 | 2.095 | 2.087 | 2.094 |
| 2.128 | 2.120 | 2.136 | 2.128 | 2.104 | 2.096 | 2.100 | 2.100 | 2.078 | 2.090 | 2.070 | 2.079 |
| 2.102 | 2.090 | 2.110 | 2.101 | 2.096 | 2.076 | 2.088 | 2.087 | 2.057 | 2.069 | 2.053 | 2.060 |

Measured values of discharge (liter/hour) for drip-in at 0.5m x 0.6m spacing at 13m operating pressure head

|       |       |       |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | ,1    |       |       | I      | .2      |       |       | L     | ,3    |       |
| R1    | R2    | R3    | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 2.784 | 2.768 | 2.792 | 2.781 | 2.764 | 2.776  | 2.744   | 2.761 | 2.736 | 2.716 | 2.752 | 2.735 |
| 2.680 | 2.668 | 2.688 | 2.679 | 2.728 | 2.740  | 2.720   | 2.729 | 2.712 | 2.700 | 2.724 | 2.712 |
| 2.740 | 2.720 | 2.756 | 2.739 | 2.696 | 2.700  | 2.688   | 2.695 | 2.660 | 2.668 | 2.680 | 2.669 |
| 2.652 | 2.660 | 2.640 | 2.651 | 2.672 | 2.656  | 2.684   | 2.671 | 2.680 | 2.684 | 2.668 | 2.677 |
| 2.716 | 2.696 | 2.732 | 2.715 | 2.688 | 2.680  | 2.660   | 2.676 | 2.672 | 2.600 | 2.660 | 2.644 |
| 2.540 | 2.564 | 2.588 | 2.564 | 2.668 | 2.676  | 2.672   | 2.672 | 2.644 | 2.664 | 2.624 | 2.644 |
| 2.672 | 2.680 | 2.660 | 2.671 | 2.572 | 2.560  | 2.588   | 2.573 | 2.624 | 2.648 | 2.640 | 2.637 |
| 2.604 | 2.620 | 2.596 | 2.607 | 2.556 | 2.540  | 2.560   | 2.552 | 2.592 | 2.600 | 2.604 | 2.599 |
| 2.628 | 2.640 | 2.612 | 2.627 | 2.520 | 2.528  | 2.540   | 2.529 | 2.556 | 2.568 | 2.548 | 2.557 |
| 2.568 | 2.576 | 2.580 | 2.575 | 2.504 | 2.500  | 2.516   | 2.507 | 2.532 | 2.540 | 2.544 | 2.539 |

## Measured values of discharge (liter/hour) for drip tape at 6m x 0.3m spacing at 5m operating pressure head

|       | LATERAL LINES |       |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | ,1    |       |       | L     | ,2    |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3    | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 0.948 | 0.928         | 0.960 | 0.945 | 0.920 | 0.908 | 0.936 | 0.921 | 0.876 | 0.856 | 0.892 | 0.875 |  |  |  |
| 0.940 | 0.908         | 0.944 | 0.931 | 0.904 | 0.888 | 0.920 | 0.904 | 0.856 | 0.840 | 0.860 | 0.852 |  |  |  |
| 0.916 | 0.912         | 0.920 | 0.916 | 0.872 | 0.860 | 0.880 | 0.871 | 0.812 | 0.800 | 0.832 | 0.815 |  |  |  |
| 0.892 | 0.880         | 0.888 | 0.887 | 0.844 | 0.832 | 0.848 | 0.841 | 0.828 | 0.824 | 0.801 | 0.818 |  |  |  |
| 0.856 | 0.848         | 0.860 | 0.855 | 0.820 | 0.800 | 0.828 | 0.816 | 0.800 | 0.780 | 0.840 | 0.807 |  |  |  |

| 0.884 | 0.900 | 0.880 | 0.888 | 0.832 | 0.840 | 0.820 | 0.831 | 0.776 | 0.764 | 0.792 | 0.777 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.900 | 0.888 | 0.916 | 0.901 | 0.840 | 0.860 | 0.833 | 0.844 | 0.748 | 0.728 | 0.768 | 0.748 |
| 0.868 | 0.860 | 0.848 | 0.859 | 0.816 | 0.828 | 0.808 | 0.817 | 0.764 | 0.744 | 0.780 | 0.763 |
| 0.852 | 0.836 | 0.860 | 0.849 | 0.796 | 0.768 | 0.788 | 0.784 | 0.744 | 0.724 | 0.760 | 0.743 |
| 0.824 | 0.808 | 0.836 | 0.823 | 0.772 | 0.760 | 0.776 | 0.769 | 0.712 | 0.696 | 0.724 | 0.711 |

|       |       |       |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | 1     |       |       | L      | 2       |       |       | L     | 3     |       |
| R1    | R2    | R3    | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.124 | 1.230 | 1.202 | 1.185 | 1.173 | 1.165  | 1.197   | 1.178 | 1.162 | 1.142 | 1.174 | 1.159 |
| 1.192 | 1.184 | 1.176 | 1.184 | 1.150 | 1.138  | 1.170   | 1.153 | 1.138 | 1.130 | 1.142 | 1.137 |
| 1.158 | 1.142 | 1.178 | 1.159 | 1.126 | 1.094  | 1.162   | 1.127 | 1.112 | 1.120 | 1.120 | 1.117 |
| 1.138 | 1.130 | 1.150 | 1.139 | 1.103 | 1.095  | 1.115   | 1.104 | 1.110 | 1.086 | 1.130 | 1.109 |
| 1.116 | 1.108 | 1.132 | 1.119 | 1.083 | 1.075  | 1.095   | 1.084 | 1.078 | 1.098 | 1.102 | 1.093 |
| 1.100 | 1.112 | 1.108 | 1.107 | 1.062 | 1.046  | 1.074   | 1.061 | 1.071 | 1.083 | 1.075 | 1.076 |
| 1.094 | 1.090 | 1.098 | 1.094 | 1.046 | 1.054  | 1.030   | 1.043 | 1.044 | 1.020 | 1.032 | 1.032 |
| 1.084 | 1.092 | 1.072 | 1.083 | 1.028 | 1.040  | 1.020   | 1.029 | 0.995 | 1.015 | 0.995 | 1.002 |
| 1.062 | 1.074 | 1.050 | 1.062 | 1.006 | 1.010  | 0.990   | 1.002 | 0.973 | 0.981 | 0.965 | 0.973 |
| 1.048 | 1.056 | 1.040 | 1.048 | 0.992 | 1.000  | 0.980   | 0.991 | 0.940 | 0.936 | 0.928 | 0.935 |

Measured values of discharge (liter/hour) for drip tape at 6m x 0.3m spacing at 10m operating pressure head

# Measured values of discharge (liter/hour) for drip tape at 6m x 0.3m spacing at 13m operating pressure head

|       |       |       |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | ,1    |       |       | L      | 2       |       |       | L     | 3     |       |
| R1    | R2    | R3    | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.378 | 1.370 | 1.394 | 1.381 | 1.330 | 1.306  | 1.350   | 1.329 | 1.278 | 1.258 | 1.298 | 1.278 |
| 1.356 | 1.352 | 1.372 | 1.360 | 1.306 | 1.290  | 1.326   | 1.307 | 1.248 | 1.240 | 1.260 | 1.249 |
| 1.342 | 1.322 | 1.350 | 1.338 | 1.284 | 1.260  | 1.300   | 1.281 | 1.225 | 1.213 | 1.245 | 1.228 |
| 1.322 | 1.310 | 1.330 | 1.321 | 1.264 | 1.260  | 1.265   | 1.263 | 1.221 | 1.205 | 1.233 | 1.220 |
| 1.300 | 1.316 | 1.284 | 1.300 | 1.256 | 1.244  | 1.272   | 1.257 | 1.198 | 1.194 | 1.214 | 1.202 |
| 1.280 | 1.292 | 1.272 | 1.281 | 1.238 | 1.230  | 1.250   | 1.239 | 1.186 | 1.170 | 1.190 | 1.182 |
| 1.268 | 1.260 | 1.280 | 1.269 | 1.220 | 1.200  | 1.236   | 1.219 | 1.172 | 1.152 | 1.160 | 1.161 |
| 1.244 | 1.228 | 1.260 | 1.244 | 1.182 | 1.206  | 1.190   | 1.193 | 1.138 | 1.146 | 1.142 | 1.142 |
| 1.224 | 1.212 | 1.240 | 1.225 | 1.162 | 1.186  | 1.170   | 1.173 | 1.110 | 1.098 | 1.118 | 1.109 |

| 1.206 | 1.182 | 1.230 | 1.206 | 1.146 | 1.158 | 1.162 | 1.155 | 1.079 | 1.067 | 1.095 | 1.080 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|

|       | LATERAL LINES |           |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | <b>,1</b> |       |       | L     | ,2    |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3        | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 1.004 | 1.024         | 1.000     | 1.009 | 0.972 | 0.960 | 0.984 | 0.972 | 0.940 | 0.928 | 0.952 | 0.940 |  |  |  |
| 0.984 | 1.000         | 0.972     | 0.985 | 0.948 | 0.940 | 0.960 | 0.949 | 0.904 | 0.892 | 0.920 | 0.905 |  |  |  |
| 0.952 | 0.964         | 0.960     | 0.959 | 0.916 | 0.908 | 0.932 | 0.919 | 0.868 | 0.860 | 0.884 | 0.871 |  |  |  |
| 0.932 | 0.952         | 0.940     | 0.941 | 0.900 | 0.896 | 0.904 | 0.900 | 0.840 | 0.824 | 0.848 | 0.837 |  |  |  |
| 0.960 | 0.928         | 0.960     | 0.949 | 0.928 | 0.940 | 0.920 | 0.929 | 0.832 | 0.844 | 0.820 | 0.832 |  |  |  |
| 0.928 | 0.920         | 0.936     | 0.928 | 0.896 | 0.888 | 0.904 | 0.896 | 0.860 | 0.876 | 0.864 | 0.867 |  |  |  |
| 0.908 | 0.916         | 0.900     | 0.908 | 0.872 | 0.872 | 0.880 | 0.875 | 0.824 | 0.832 | 0.836 | 0.831 |  |  |  |
| 0.940 | 0.948         | 0.928     | 0.939 | 0.880 | 0.896 | 0.860 | 0.879 | 0.812 | 0.800 | 0.820 | 0.811 |  |  |  |
| 0.916 | 0.920         | 0.920     | 0.919 | 0.864 | 0.876 | 0.848 | 0.863 | 0.828 | 0.824 | 0.808 | 0.820 |  |  |  |
| 0.888 | 0.900         | 0.900     | 0.896 | 0.832 | 0.840 | 0.824 | 0.832 | 0.784 | 0.768 | 0.788 | 0.780 |  |  |  |

Measured values of discharge (liter/hour) for drip tape at 1m x 0.3m spacing at 5m operating pressure head

## Measured values of discharge (liter/hour) for drip tape at 1m x 0.3m spacing at 10m operating pressure head

|       |       |           |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-----------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | <b>,1</b> |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3        | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.280 | 1.304 | 1.268     | 1.284 | 1.248 | 1.240  | 1.260   | 1.249 | 1.200 | 1.184 | 1.220 | 1.201 |
| 1.264 | 1.272 | 1.260     | 1.265 | 1.216 | 1.228  | 1.236   | 1.227 | 1.188 | 1.172 | 1.200 | 1.187 |
| 1.236 | 1.228 | 1.248     | 1.237 | 1.196 | 1.208  | 1.200   | 1.201 | 1.136 | 1.128 | 1.144 | 1.136 |
| 1.212 | 1.220 | 1.236     | 1.223 | 1.200 | 1.220  | 1.184   | 1.201 | 1.164 | 1.148 | 1.168 | 1.160 |
| 1.248 | 1.236 | 1.256     | 1.247 | 1.164 | 1.160  | 1.148   | 1.157 | 1.100 | 1.088 | 1.116 | 1.101 |
| 1.220 | 1.204 | 1.236     | 1.220 | 1.144 | 1.176  | 1.132   | 1.151 | 1.112 | 1.100 | 1.128 | 1.113 |
| 1.188 | 1.184 | 1.200     | 1.191 | 1.116 | 1.096  | 1.120   | 1.111 | 1.088 | 1.080 | 1.100 | 1.089 |
| 1.168 | 1.148 | 1.180     | 1.165 | 1.132 | 1.120  | 1.140   | 1.131 | 1.064 | 1.076 | 1.076 | 1.072 |
| 1.176 | 1.180 | 1.164     | 1.173 | 1.124 | 1.112  | 1.120   | 1.119 | 1.052 | 1.036 | 1.060 | 1.049 |

| 1.148 | 1.156 | 1.136 | 1.147 | 1.100 | 1.096 | 1.088 | 1.095 | 1.032 | 1.024 | 1.012 | 1.023 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       |       |       |       |       |       |       |       |       |       |       |       |

Measured values of discharge (liter/hour) for drip tape at 1m x 0.3m spacing at 13m operating pressure head

|       |       |           |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-----------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | <b>,1</b> |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3        | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.414 | 1.398 | 1.422     | 1.411 | 1.380 | 1.396  | 1.368   | 1.381 | 1.354 | 1.370 | 1.346 | 1.357 |
| 1.378 | 1.382 | 1.390     | 1.383 | 1.366 | 1.376  | 1.358   | 1.367 | 1.326 | 1.322 | 1.330 | 1.326 |
| 1.350 | 1.374 | 1.368     | 1.364 | 1.328 | 1.316  | 1.340   | 1.328 | 1.300 | 1.316 | 1.320 | 1.312 |
| 1.342 | 1.350 | 1.330     | 1.341 | 1.310 | 1.314  | 1.298   | 1.307 | 1.288 | 1.280 | 1.300 | 1.289 |
| 1.336 | 1.328 | 1.320     | 1.328 | 1.284 | 1.280  | 1.292   | 1.285 | 1.252 | 1.268 | 1.264 | 1.261 |
| 1.314 | 1.302 | 1.330     | 1.315 | 1.271 | 1.287  | 1.275   | 1.278 | 1.250 | 1.262 | 1.238 | 1.250 |
| 1.294 | 1.290 | 1.294     | 1.293 | 1.259 | 1.251  | 1.275   | 1.262 | 1.244 | 1.240 | 1.232 | 1.239 |
| 1.280 | 1.272 | 1.264     | 1.272 | 1.254 | 1.238  | 1.250   | 1.247 | 1.212 | 1.212 | 1.220 | 1.215 |
| 1.248 | 1.236 | 1.260     | 1.248 | 1.224 | 1.212  | 1.248   | 1.228 | 1.200 | 1.188 | 1.192 | 1.193 |
| 1.232 | 1.216 | 1.240     | 1.229 | 1.198 | 1.190  | 1.218   | 1.202 | 1.144 | 1.160 | 1.148 | 1.151 |

#### Measured values of discharge (liter/hour) for drip tape at 0.5m x 0.3m spacing at 5m operating pressure head

|       | LATERAL LINES |       |       |       |       |       |       |       |       |       |       |  |  |  |
|-------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
|       | L             | ,1    |       |       | L     | 2     |       |       | L     | 3     |       |  |  |  |
| R1    | R2            | R3    | Avg.  | R1    | R2    | R3    | Avg.  | R1    | R2    | R3    | Avg.  |  |  |  |
| 1.042 | 1.030         | 1.034 | 1.035 | 0.990 | 1.002 | 1.014 | 1.002 | 0.972 | 0.996 | 0.980 | 0.983 |  |  |  |
| 1.030 | 1.014         | 1.006 | 1.017 | 0.970 | 0.978 | 0.990 | 0.979 | 0.960 | 0.968 | 0.952 | 0.960 |  |  |  |
| 1.010 | 0.994         | 0.990 | 0.998 | 0.967 | 0.963 | 0.971 | 0.967 | 0.934 | 0.950 | 0.942 | 0.942 |  |  |  |
| 0.986 | 0.966         | 0.970 | 0.974 | 0.972 | 0.952 | 0.968 | 0.964 | 0.912 | 0.940 | 0.920 | 0.924 |  |  |  |
| 0.971 | 0.947         | 0.955 | 0.958 | 0.936 | 0.960 | 0.856 | 0.917 | 0.906 | 0.918 | 0.910 | 0.911 |  |  |  |
| 0.956 | 0.928         | 0.944 | 0.943 | 0.944 | 0.920 | 0.928 | 0.931 | 0.897 | 0.905 | 0.893 | 0.898 |  |  |  |
| 0.924 | 0.936         | 0.928 | 0.929 | 0.918 | 0.906 | 0.910 | 0.911 | 0.880 | 0.896 | 0.884 | 0.887 |  |  |  |
| 0.920 | 0.900         | 0.908 | 0.909 | 0.898 | 0.882 | 0.890 | 0.890 | 0.860 | 0.872 | 0.868 | 0.867 |  |  |  |

| 0.884 | 0.872 | 0.900 | 0.885 | 0.880 | 0.860 | 0.868 | 0.869 | 0.831 | 0.867 | 0.855 | 0.851 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.870 | 0.850 | 0.862 | 0.861 | 0.834 | 0.854 | 0.850 | 0.846 | 0.816 | 0.840 | 0.824 | 0.827 |

|       |       |       |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | ,1    |       |       | L      | ,2      |       |       | L     | ,3    |       |
| R1    | R2    | R3    | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.336 | 1.356 | 1.328 | 1.340 | 1.306 | 1.312  | 1.282   | 1.300 | 1.282 | 1.258 | 1.290 | 1.277 |
| 1.308 | 1.320 | 1.304 | 1.311 | 1.280 | 1.304  | 1.268   | 1.284 | 1.262 | 1.250 | 1.274 | 1.262 |
| 1.304 | 1.292 | 1.292 | 1.296 | 1.272 | 1.264  | 1.260   | 1.265 | 1.238 | 1.234 | 1.250 | 1.241 |
| 1.276 | 1.300 | 1.260 | 1.279 | 1.244 | 1.260  | 1.240   | 1.248 | 1.218 | 1.210 | 1.230 | 1.219 |
| 1.254 | 1.266 | 1.250 | 1.257 | 1.226 | 1.206  | 1.242   | 1.225 | 1.208 | 1.188 | 1.204 | 1.200 |
| 1.238 | 1.230 | 1.246 | 1.238 | 1.194 | 1.210  | 1.218   | 1.207 | 1.180 | 1.192 | 1.172 | 1.181 |
| 1.226 | 1.206 | 1.218 | 1.217 | 1.180 | 1.196  | 1.196   | 1.191 | 1.158 | 1.174 | 1.154 | 1.162 |
| 1.200 | 1.186 | 1.190 | 1.192 | 1.182 | 1.174  | 1.170   | 1.175 | 1.156 | 1.128 | 1.140 | 1.141 |
| 1.176 | 1.190 | 1.168 | 1.178 | 1.164 | 1.144  | 1.176   | 1.161 | 1.128 | 1.112 | 1.136 | 1.125 |
| 1.154 | 1.166 | 1.146 | 1.155 | 1.154 | 1.130  | 1.150   | 1.145 | 1.112 | 1.096 | 1.116 | 1.108 |

Measured values of discharge (liter/hour) for drip tape at 0.5m x 0.3m spacing at 10m operating pressure head

## Measured values of discharge (liter/hour) for drip tape at 0.5m x 0.3m spacing at 13m operating pressure head

|       |       |           |       |       | LATERA | L LINES |       |       |       |       |       |
|-------|-------|-----------|-------|-------|--------|---------|-------|-------|-------|-------|-------|
|       | L     | <b>,1</b> |       |       | L      | ,2      |       |       | L     | 3     |       |
| R1    | R2    | R3        | Avg.  | R1    | R2     | R3      | Avg.  | R1    | R2    | R3    | Avg.  |
| 1.444 | 1.464 | 1.460     | 1.456 | 1.420 | 1.448  | 1.440   | 1.436 | 1.400 | 1.416 | 1.420 | 1.412 |
| 1.428 | 1.440 | 1.436     | 1.435 | 1.404 | 1.400  | 1.412   | 1.405 | 1.384 | 1.392 | 1.396 | 1.391 |
| 1.396 | 1.368 | 1.408     | 1.391 | 1.380 | 1.388  | 1.368   | 1.379 | 1.380 | 1.372 | 1.360 | 1.371 |
| 1.412 | 1.400 | 1.384     | 1.399 | 1.396 | 1.372  | 1.380   | 1.383 | 1.356 | 1.360 | 1.344 | 1.353 |
| 1.380 | 1.384 | 1.388     | 1.384 | 1.360 | 1.340  | 1.352   | 1.351 | 1.328 | 1.344 | 1.300 | 1.324 |
| 1.348 | 1.332 | 1.340     | 1.340 | 1.344 | 1.356  | 1.344   | 1.348 | 1.340 | 1.324 | 1.316 | 1.327 |
| 1.356 | 1.380 | 1.360     | 1.365 | 1.316 | 1.344  | 1.328   | 1.329 | 1.304 | 1.288 | 1.292 | 1.295 |
| 1.336 | 1.328 | 1.348     | 1.337 | 1.324 | 1.300  | 1.308   | 1.311 | 1.312 | 1.320 | 1.304 | 1.312 |
| 1.360 | 1.376 | 1.368     | 1.368 | 1.300 | 1.284  | 1.288   | 1.291 | 1.280 | 1.268 | 1.276 | 1.275 |
| 1.340 | 1.316 | 1.324     | 1.327 | 1.280 | 1.268  | 1.276   | 1.275 | 1.252 | 1.244 | 1.232 | 1.243 |

Measured values of discharge (liter/hour) at one point for different emission devices at different operating pressure head

|        |                         |        |             |             | EMISSION  | DEVICE |                       |         |             |              |            |
|--------|-------------------------|--------|-------------|-------------|-----------|--------|-----------------------|---------|-------------|--------------|------------|
|        | Dripper                 |        | N           | licro-tube  |           |        | Dripin                |         |             | Driptape     |            |
| Operat | ting pressur<br>(meter) | e head | Operating p | ressure hea | d (meter) | Operat | ing pressu<br>(meter) | re head | Operating p | oressure hea | ad (meter) |
| 5      | 10                      | 13     | 5           | 10          | 13        | 5      | 10                    | 13      | 5           | 10           | 13         |
| 2.720  | 3.872                   | 4.408  | 65.060      | 74.972      | 78.716    | 1.524  | 2.400                 | 2.852   | 1.036       | 1.288        | 1.460      |
| 2.704  | 3.844                   | 4.392  | 65.088      | 75.024      | 78.776    | 1.488  | 2.368                 | 2.816   | 0.992       | 1.236        | 1.388      |
| 2.736  | 3.888                   | 4.460  | 65.072      | 75.000      | 78.744    | 1.480  | 2.360                 | 2.808   | 1.000       | 1.244        | 1.408      |
| 2.728  | 3.868                   | 4.432  | 65.048      | 74.984      | 78.720    | 1.504  | 2.384                 | 2.836   | 1.032       | 1.280        | 1.440      |
| 2.740  | 3.892                   | 4.476  | 64.944      | 74.848      | 78.552    | 1.516  | 2.400                 | 2.848   | 0.980       | 1.220        | 1.380      |
| 2.712  | 3.860                   | 4.400  | 65.060      | 75.000      | 78.732    | 1.500  | 2.380                 | 2.820   | 1.020       | 1.272        | 1.436      |
| 2.688  | 3.832                   | 4.372  | 65.028      | 74.976      | 78.700    | 1.468  | 2.340                 | 2.780   | 1.008       | 1.248        | 1.404      |
| 2.760  | 3.920                   | 4.500  | 64.904      | 74.784      | 78.440    | 1.504  | 2.392                 | 2.840   | 1.040       | 1.296        | 1.460      |
| 2.720  | 3.860                   | 4.408  | 65.100      | 75.040      | 78.784    | 1.488  | 2.360                 | 2.808   | 1.024       | 1.288        | 1.440      |
| 2.740  | 3.888                   | 4.468  | 64.920      | 74.820      | 78.488    | 1.448  | 2.320                 | 2.760   | 0.988       | 1.228        | 1.380      |
| 2.756  | 3.908                   | 4.488  | 64.976      | 74.904      | 78.612    | 1.536  | 2.420                 | 2.876   | 1.000       | 1.240        | 1.396      |
| 2.720  | 3.872                   | 4.424  | 65.000      | 74.936      | 78.660    | 1.500  | 2.376                 | 2.824   | 1.024       | 1.280        | 1.448      |
| 2.732  | 3.880                   | 4.456  | 65.080      | 75.020      | 78.768    | 1.476  | 2.348                 | 2.800   | 1.012       | 1.264        | 1.428      |
| 2.696  | 3.844                   | 4.392  | 64.956      | 74.860      | 78.552    | 1.460  | 2.324                 | 2.776   | 0.996       | 1.236        | 1.392      |
| 2.720  | 3.864                   | 4.440  | 65.012      | 74.956      | 78.700    | 1.508  | 2.392                 | 2.836   | 1.004       | 1.248        | 1.400      |

# APPENDIX - III

#### Drippers at $6m \times 6m$ spacing Mean table for $A \times B \times C$

|                               | <b>c</b> <sub>1</sub> | с <sub>2</sub> | c <sub>3</sub> | C4    | с <sub>5</sub> | с <sub>6</sub> | С <sub>7</sub> | C8    | C9    | c <sub>10</sub> |
|-------------------------------|-----------------------|----------------|----------------|-------|----------------|----------------|----------------|-------|-------|-----------------|
| $A_1B_1$                      | 2.632                 | 2.548          | 2.531          | 2.529 | 2.492          | 2.476          | 2.473          | 2.473 | 2.455 | 2.410           |
| $A_1B_2$                      | 2.621                 | 2.528          | 2.524          | 2.512 | 2.467          | 2.472          | 2.469          | 2.443 | 2.403 | 2.385           |
| $A_1B_3$                      | 2.661                 | 2.563          | 2.516          | 2.539 | 2.496          | 2.472          | 2.516          | 2.492 | 2.464 | 2.392           |
| $A_2B_1$                      | 3.711                 | 3.655          | 3.641          | 3.584 | 3.565          | 3.545          | 3.529          | 3.551 | 3.512 | 3.477           |
| $A_2B_2$                      | 3.669                 | 3.623          | 3.576          | 3.565 | 3.520          | 3.516          | 3.528          | 3.479 | 3.443 | 3.445           |
| $A_2B_3$                      | 3.634                 | 3.572          | 3.524          | 3.553 | 3.529          | 3.499          | 3.512          | 3.488 | 3.453 | 3.445           |
| $A_3B_1$                      | 4.109                 | 4.099          | 4.075          | 3.968 | 3.988          | 3.949          | 3.947          | 3.953 | 3.927 | 3.912           |
| $A_3B_2$                      | 4.060                 | 4.047          | 3.993          | 3.979 | 3.965          | 3.987          | 3.972          | 3.913 | 3.888 | 3.876           |
| A <sub>3</sub> B <sub>3</sub> | 4.047                 | 4.008          | 3.994          | 4.010 | 3.959          | 3.944          | 3.953          | 3.948 | 3.896 | 3.876           |

CD for  $A \times B \times C$  = N.S.

#### Mean table for $A \ge B$

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | Mean  |
|----------------|----------------|----------------|----------------|-------|
| A <sub>1</sub> | 2.502          | 2.482          | 2.511          | 2.498 |
| A <sub>2</sub> | 3.577          | 3.536          | 3.521          | 3.545 |
| A <sub>3</sub> | 3.993          | 3.968          | 3.963          | 3.975 |
| Mean           | 3.357          | 3.329          | 3.332          |       |

 CD for A
 = 0.007 

 CD for B
 = 0.007 

CD for A x B = 0.012

#### Mean Table for A x C

|                | C1                | C <sub>2</sub> | C <sub>3</sub> | C4    | C5    | C <sub>6</sub> | C7    | C <sub>8</sub> | C9    | C <sub>10</sub> | Mean      |
|----------------|-------------------|----------------|----------------|-------|-------|----------------|-------|----------------|-------|-----------------|-----------|
| A1             | 2.63<br>8         | 2.54<br>6      | 2.52<br>4      | 2.527 | 2.485 | 2.473          | 2.486 | 2.469          | 2.441 | 2.396           | 2.49<br>8 |
| A2             | 3.67<br>1         | 3.61<br>6      | 3.58<br>0      | 3.568 | 3.538 | 3.520          | 3.523 | 3.506          | 3.469 | 3.456           | 3.54<br>5 |
| A <sub>3</sub> | 4.07<br>2         | 4.05<br>2      | 4.02<br>1      | 3.986 | 3.971 | 3.960          | 3.957 | 3.938          | 3.904 | 3.889           | 3.97<br>5 |
| Mean           | 3.46<br>0         | 3.40<br>5      | 3.37<br>5      | 3.360 | 3.331 | 3.318          | 3.322 | 3.304          | 3.271 | 3.247           |           |
| CD for A       | D  for  A = 0.007 |                |                |       |       |                |       |                |       |                 |           |

CD for C = 0.007CD for C = 0.012CD for A x C = 0.022

#### Mean Table for $B \ge C$

|                | C1        | C2    | C <sub>3</sub> | C <sub>4</sub> | C5    | с <sub>6</sub> | C7    | C <sub>8</sub> | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-------|----------------|----------------|-------|----------------|-------|----------------|-------|-----------------|-----------|
| В <sub>1</sub> | 3.48<br>4 | 3.434 | 3.416          | 3.360          | 3.348 | 3.324          | 3.317 | 3.326          | 3.298 | 3.267           | 3.35<br>7 |

| B <sub>2</sub> | 3.45<br>0 | 3.399 | 3.364 | 3.352 | 3.317 | 3.325 | 3.323 | 3.278 | 3.245 | 3.236 | 3.32<br>9 |
|----------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
| B <sub>3</sub> | 3.44<br>7 | 3.381 | 3.345 | 3.367 | 3.328 | 3.305 | 3.327 | 3.309 | 3.271 | 3.238 | 3.33<br>2 |
| Mea<br>n       | 3.46<br>0 | 3.405 | 3.375 | 3.360 | 3.331 | 3.318 | 3.322 | 3.304 | 3.271 | 3.247 |           |

 $\begin{array}{rcl} \text{CD for B} &= 0.007 \\ \text{CD for C} &= 0.012 \end{array}$ 

 $CD \text{ for } B \times C = 0.022$ 

#### -XXIII-

#### Drippers of 1m x 1m spacing

#### Mean table for Ax B x C

|                               | <b>c</b> <sub>1</sub> | с <sub>2</sub> | c3    | C4    | с <sub>5</sub> | с <sub>б</sub> | с <sub>7</sub> | C8        | Cg        | c <sub>10</sub> |
|-------------------------------|-----------------------|----------------|-------|-------|----------------|----------------|----------------|-----------|-----------|-----------------|
| $A_1B_1$                      | 2.005                 | 1.941          | 1.901 | 1.773 | 1.795          | 1.779          | 1.759          | 1.81<br>1 | 1.79<br>1 | 1.73<br>9       |
| $A_1B_2$                      | 1.971                 | 1.923          | 1.864 | 1.887 | 1.848          | 1.760          | 1.769          | 1.71<br>3 | 1.71<br>5 | 1.69<br>1       |
| A <sub>1</sub> B <sub>3</sub> | 1.959                 | 1.939          | 1.875 | 1.853 | 1.821          | 1.787          | 1.880          | 1.83<br>9 | 1.81<br>5 | 1.73<br>9       |
| $A_2B_1$                      | 2.839                 | 2.757          | 2.728 | 2.631 | 2.672          | 2.579          | 2.613          | 2.68<br>4 | 2.64<br>4 | 2.57<br>1       |
| $A_2B_2$                      | 2.819                 | 2.773          | 2.731 | 2.743 | 2.692          | 2.665          | 2.639          | 2.55<br>2 | 2.52<br>1 | 2.53<br>3       |
| A <sub>2</sub> B <sub>3</sub> | 2.805                 | 2.779          | 2.720 | 2.705 | 2.639          | 2.641          | 2.705          | 2.69<br>5 | 2.66<br>4 | 2.58<br>4       |
| A <sub>3</sub> B <sub>1</sub> | 3.608                 | 3.527          | 3.479 | 3.431 | 3.395          | 3.361          | 3.307          | 3.32<br>7 | 3.38<br>5 | 3.31<br>1       |
| A <sub>3</sub> B <sub>2</sub> | 3.596                 | 3.519          | 3.496 | 3.505 | 3.415          | 3.433          | 3.369          | 3.30<br>5 | 3.27<br>9 | 3.26<br>0       |
| A <sub>3</sub> B <sub>3</sub> | 3.557                 | 3.511          | 3.492 | 3.489 | 3.437          | 3.415          | 3.439          | 3.42<br>3 | 3.42<br>9 | 3.34<br>6       |

CD for A x B x C = 0.024

#### Mean table for A x B

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | Mean  |
|----------------|----------------|----------------|----------------|-------|
| A <sub>1</sub> | 1.829          | 1.814          | 1.851          | 1.831 |
| A <sub>2</sub> | 2.672          | 2.667          | 2.694          | 2.677 |
| A <sub>3</sub> | 3.413          | 3.418          | 3.454          | 3.428 |
| Mean           | 2.638          | 2.633          | 2.666          |       |

CD for A = 0.004CD for B = 0.004

CD for  $A \times B = 0.008$ 

#### Mean Table for A x C

|                | C1        | C2        | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-----------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| A <sub>1</sub> | 1.97<br>8 | 1.93<br>4 | 1.88<br>0      | 1.838          | 1.821 | 1.775          | 1.803 | 1.788 | 1.773 | 1.723           | 1.83<br>1 |
| A <sub>2</sub> | 2.82<br>1 | 2.77<br>0 | 2.72<br>6      | 2.693          | 2.668 | 2.628          | 2.652 | 2.644 | 2.610 | 2.563           | 2.67<br>7 |
| A <sub>3</sub> | 3.58<br>7 | 3.51<br>9 | 3.48<br>9      | 3.475          | 3.416 | 3.403          | 3.372 | 3.352 | 3.364 | 3.306           | 3.42<br>8 |
| Mean           | 2.79<br>5 | 2.74<br>1 | 2.69<br>8      | 2.669          | 2.635 | 2.602          | 2.609 | 2.594 | 2.582 | 2.530           |           |

## -XXIV-

| CD for A     | = 0.004 |
|--------------|---------|
| CD for C     | = 0.008 |
| CD for A x C | = 0.014 |

#### Mean Table for B x C

|                | C1        | C2    | C3    | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C <sub>8</sub> | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-------|-------|----------------|-------|----------------|-------|----------------|-------|-----------------|-----------|
| В1             | 2.81<br>7 | 2.742 | 2.703 | 2.612          | 2.621 | 2.573          | 2.560 | 2.607          | 2.606 | 2.540           | 2.63<br>8 |
| B <sub>2</sub> | 2.79<br>5 | 2.738 | 2.697 | 2.711          | 2.652 | 2.619          | 2.592 | 2.523          | 2.505 | 2.495           | 2.63<br>3 |
| B <sub>3</sub> | 2.77<br>4 | 2.743 | 2.696 | 2.683          | 2.632 | 2.614          | 2.675 | 2.652          | 2.652 | 2.636           | 2.66<br>6 |
| Mea<br>n       | 2.79<br>5 | 2.741 | 2.698 | 2.669          | 2.635 | 2.602          | 2.609 | 2.594          | 2.582 | 2.530           |           |

CD for B = 0.004

CD for C = 0.008CD for B x C = 0.014
# -XXV-

#### Drippers of $0.5m \ge 0.5m$ spacing Mean table for Ax B $\ge$ C

|                               | <b>c</b> <sub>1</sub> | c <sub>2</sub> | c3    | C4    | с <sub>5</sub> | с <sub>6</sub> | с <sub>7</sub> | C8        | Cg        | c <sub>10</sub> |
|-------------------------------|-----------------------|----------------|-------|-------|----------------|----------------|----------------|-----------|-----------|-----------------|
| A <sub>1</sub> B <sub>1</sub> | 1.882                 | 1.825          | 1.807 | 1.753 | 1.728          | 1.700          | 1.671          | 1.63<br>3 | 1.61<br>5 | 1.58<br>0       |
| $A_1B_2$                      | 1.881                 | 1.821          | 1.791 | 1.740 | 1.713          | 1.683          | 1.650          | 1.64<br>2 | 1.63<br>2 | 1.59<br>8       |
| A <sub>1</sub> B <sub>3</sub> | 1.889                 | 1.830          | 1.797 | 1.745 | 1.719          | 1.692          | 1.662          | 1.64<br>8 | 1.63<br>8 | 1.60<br>7       |
| A <sub>2</sub> B <sub>1</sub> | 2.448                 | 2.400          | 2.365 | 2.331 | 2.297          | 2.242          | 2.208          | 2.21<br>1 | 2.19<br>9 | 2.12<br>0       |
| A <sub>2</sub> B <sub>2</sub> | 2.441                 | 2.377          | 2.350 | 2.313 | 2.259          | 2.240          | 2.221          | 2.18<br>7 | 2.13<br>5 | 2.10<br>7       |
| A <sub>2</sub> B <sub>3</sub> | 2.439                 | 2.388          | 2.367 | 2.342 | 2.309          | 2.247          | 2.240          | 2.20<br>9 | 2.18<br>9 | 2.11<br>0       |
| A3B1                          | 3.039                 | 3.003          | 3.020 | 2.968 | 2.947          | 2.841          | 2.815          | 2.83<br>1 | 2.79<br>9 | 2.69<br>6       |
| A <sub>3</sub> B <sub>2</sub> | 3.073                 | 2.985          | 2.959 | 2.919 | 2.888          | 2.848          | 2.809          | 2.82<br>3 | 2.72<br>5 | 2.68<br>0       |
| A <sub>3</sub> B <sub>3</sub> | 3.091                 | 3.019          | 2.994 | 2.893 | 2.829          | 2.829          | 2.896          | 2.81<br>4 | 2.81<br>8 | 2.73<br>4       |

CD for  $A \times B \times C$  = 0.021

## Mean table for A x B

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | Mean  |
|----------------|----------------|----------------|----------------|-------|
| A <sub>1</sub> | 1.719          | 1.715          | 1.723          | 1.719 |
| A <sub>2</sub> | 2.282          | 2.263          | 2.284          | 2.276 |
| A <sub>3</sub> | 2.901          | 2.871          | 2.892          | 2.888 |
| Mean           | 2.301          | 2.283          | 2.299          |       |

| CD for A | = 0.004 |
|----------|---------|
| CD for B | = 0.004 |
|          |         |

CD for A x B = 0.007

## Mean Table for $A \ge C$

|                | C1        | C2        | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-----------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| A <sub>1</sub> | 1.88<br>4 | 1.82<br>5 | 1.79<br>8      | 1.746          | 1.720 | 1.692          | 1.661 | 1.641 | 1.629 | 1.595           | 1.71<br>9 |
| A <sub>2</sub> | 2.44<br>3 | 2.38<br>8 | 2.36<br>1      | 2.329          | 2.288 | 2.243          | 2.223 | 2.203 | 2.174 | 2.112           | 2.27<br>6 |
| A <sub>3</sub> | 3.08<br>6 | 3.00<br>2 | 2.99<br>1      | 2.927          | 2.888 | 2.839          | 2.840 | 2.823 | 2.781 | 2.703           | 2.88<br>8 |
| Mean           | 2.47<br>1 | 2.40<br>5 | 2.38<br>3      | 2.334          | 2.299 | 2.258          | 2.241 | 2.222 | 2.195 | 2.137           |           |

CD for A = 0.004

# -XXVI-

CD for C = 0.007 CD for  $A \ge C$  = 0.012

#### Mean Table for B x C

|                | C1        | C2    | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| B <sub>1</sub> | 2.47<br>4 | 2.409 | 2.397          | 2.350          | 2.324 | 2.261          | 2.231 | 2.225 | 2.204 | 2.132           | 2.30<br>1 |
| В <sub>2</sub> | 2.46<br>5 | 2.394 | 2.367          | 2.324          | 2.287 | 2.257          | 2.226 | 2.217 | 2.164 | 2.128           | 2.28<br>3 |
| B <sub>3</sub> | 2.47<br>3 | 2.412 | 2.386          | 2.327          | 2.285 | 2.256          | 2.266 | 2.224 | 2.215 | 2.150           | 2.29<br>9 |
| Mea<br>n       | 2.47<br>1 | 2.405 | 2.383          | 2.334          | 2.299 | 2.258          | 2.241 | 2.222 | 2.195 | 2.137           |           |

 CD for B
 = 0.004 

 CD for C
 = 0.007 

CD for  $B \ge C$  = 0.012

### Micro-tubes of 6m x 6m spacing

Mean table for Ax B x C

|                               | c <sub>1</sub> | с <sub>2</sub> | c3     | C4     | с <sub>5</sub> | с <sub>б</sub> | с <sub>7</sub> | С <sub>8</sub> | C9         | c <sub>10</sub> |
|-------------------------------|----------------|----------------|--------|--------|----------------|----------------|----------------|----------------|------------|-----------------|
| $A_1B_1$                      | 64.920         | 54.002         | 55.375 | 58.729 | 43.428         | 38.283         | 36.379         | 36.70<br>1     | 31.19<br>5 | 27.39<br>3      |
| A <sub>1</sub> B <sub>2</sub> | 63.600         | 61.037         | 51.495 | 49.415 | 40.363         | 47.259         | 43.667         | 40.74<br>4     | 38.33<br>6 | 30.47<br>5      |
| A <sub>1</sub> B <sub>3</sub> | 60.560         | 57.203         | 58.148 | 51.159 | 46.965         | 36.443         | 35.011         | 34.92<br>9     | 33.73<br>5 | 30.14<br>5      |
| A <sub>2</sub> B <sub>1</sub> | 73.452         | 60.619         | 65.157 | 67.696 | 53.264         | 47.499         | 44.664         | 46.86<br>0     | 36.33<br>3 | 40.51<br>7      |
| A <sub>2</sub> B <sub>2</sub> | 69.365         | 64.513         | 55.745 | 52.116 | 43.416         | 49.848         | 47.141         | 43.73<br>2     | 42.06<br>5 | 36.68<br>4      |
| A <sub>2</sub> B <sub>3</sub> | 67.640         | 65.925         | 65.415 | 56.855 | 50.957         | 42.639         | 36.471         | 42.47<br>7     | 32.36<br>5 | 41.10<br>4      |
| A <sub>3</sub> B <sub>1</sub> | 76.468         | 63.643         | 68.136 | 70.849 | 57.772         | 48.796         | 48.136         | 49.31<br>3     | 42.70<br>1 | 44.59<br>5      |
| A <sub>3</sub> B <sub>2</sub> | 71.779         | 67.701         | 52.735 | 55.445 | 45.868         | 53.281         | 50.359         | 48.64<br>4     | 46.43<br>7 | 39.51<br>5      |
| A <sub>3</sub> B <sub>3</sub> | 69.824         | 67.389         | 68.392 | 59.945 | 53.835         | 46.921         | 39.907         | 45.95<br>9     | 35.32<br>8 | 44.67<br>3      |

CD for  $A \times B \times C = 0.828$ 

#### Mean table for $A \times B$

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | Mean   |
|----------------|----------------|----------------|----------------|--------|
| A <sub>1</sub> | 44.640         | 46.639         | 44.430         | 45.236 |
| A2             | 53.606         | 50.463         | 50.185         | 51.418 |

# -XXVII-

| A <sub>3</sub> |         | 57.041 | 53.176 | 53.217 | 54.478 |
|----------------|---------|--------|--------|--------|--------|
| Mean           |         | 51.763 | 50.093 | 49.277 |        |
| CD for A       | = 0.151 |        |        |        |        |

CD for B = 0.151

CD for A x B = 0.262

#### Mean Table for A x C

|                | C1    | C2    | c <sub>3</sub> | C4    | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean  |
|----------------|-------|-------|----------------|-------|-------|----------------|-------|-------|-------|-----------------|-------|
| A1             | 63.02 | 57.41 | 55.00          | 53.10 | 43.58 | 40.66          | 38.35 | 37.45 | 34.42 | 29.33           | 45.23 |
|                | 7     | 4     | 6              | 0     | 5     | 1              | 2     | 8     | 2     | 8               | 6     |
| A2             | 70.15 | 63.68 | 62.10          | 58.88 | 49.21 | 46.66          | 42.75 | 44.35 | 36.92 | 39.43           | 51.41 |
|                | 2     | 6     | 6              | 9     | 2     | 2              | 9     | 6     | 1     | 5               | 8     |
| A <sub>3</sub> | 72.69 | 66.24 | 63.08          | 62.08 | 52.49 | 49.66          | 46.13 | 47.97 | 41.48 | 42.92           | 54.47 |
|                | 0     | 4     | 8              | 0     | 2     | 6              | 4     | 2     | 9     | 8               | 8     |
| Mea            | 68.62 | 62.44 | 60.06          | 58.02 | 48.43 | 45.66          | 42.41 | 43.26 | 37.61 | 37.23           |       |
| n              | 3     | 8     | 6              | 3     | 0     | 3              | 5     | 2     | 1     | 3               |       |

CD for A = 0.151CD for C = 0.276

CD for A x C = 0.478

#### Mean Table for B x C

|                | C1     | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | с <sub>5</sub> | C <sub>6</sub> | C7     | C <sub>8</sub> | C9     | C <sub>10</sub> | Mean   |
|----------------|--------|----------------|----------------|----------------|----------------|----------------|--------|----------------|--------|-----------------|--------|
| B1             | 71.613 | 59.421         | 62.889         | 65.758         | 51.488         | 44.859         | 43.060 | 44.292         | 36.743 | 37.502          | 51.763 |
| B <sub>2</sub> | 68.248 | 64.417         | 53.325         | 52.324         | 43.216         | 50.129         | 47.056 | 44.373         | 42.280 | 35.558          | 50.091 |
| B <sub>3</sub> | 66.008 | 63.506         | 63.985         | 55.986         | 50.586         | 42.001         | 37.129 | 41.122         | 33.809 | 38.641          | 49.277 |
| Mean           | 68.623 | 62.448         | 60.066         | 58.023         | 48.430         | 45.663         | 42.415 | 43.262         | 37.611 | 37.233          |        |

#### -XXVIII-

# Microb-tubes of 1m x 1m spacing

#### Mean table for $A \ge B \ge C$

|                               | c <sub>1</sub> | C2     | C <sub>3</sub> | C4     |
|-------------------------------|----------------|--------|----------------|--------|
| A <sub>1</sub> B <sub>1</sub> | 36.287         | 32.015 | 26.125         | 17.168 |
| A <sub>1</sub> B <sub>2</sub> | 36.444         | 31.257 | 26.437         | 16.804 |
| A <sub>1</sub> B <sub>3</sub> | 35.460         | 31.189 | 25.591         | 16.665 |
| A <sub>2</sub> B <sub>1</sub> | 49.267         | 38.772 | 31.492         | 24.637 |
| A <sub>2</sub> B <sub>2</sub> | 46.297         | 38.456 | 29.833         | 25.137 |
| A <sub>2</sub> B <sub>3</sub> | 47.090         | 38.883 | 33.645         | 21.652 |
| A <sub>3</sub> B <sub>1</sub> | 56.815         | 42.085 | 38.184         | 25.371 |
| A <sub>3</sub> B <sub>2</sub> | 54.636         | 45.589 | 39.336         | 27.044 |
| A <sub>3</sub> B <sub>3</sub> | 51.948         | 43.437 | 35.624         | 29.080 |
|                               | 1 505          |        |                |        |

CD for A x B x C = 1.505

#### Mean table for A x B

|                | B <sub>1</sub> | B2     | B <sub>3</sub> | Mean   |
|----------------|----------------|--------|----------------|--------|
| A <sub>1</sub> | 27.899         | 27.736 | 27.226         | 27.620 |
| A <sub>2</sub> | 36.042         | 34.931 | 35.318         | 35.430 |
| A <sub>3</sub> | 40.614         | 41.651 | 40.022         | 40.762 |
| Mean           | 34.851         | 34.773 | 34.189         |        |

CD for A = 0.434

CD for B = 0.434

CD for  $A \times B = 0.753$ 

#### Mean Table for A x C

|                | C1     | C2     | C3     | C <sub>4</sub> | Mean   |
|----------------|--------|--------|--------|----------------|--------|
| A <sub>1</sub> | 36.064 | 31.487 | 26.051 | 16.879         | 27.620 |
| A <sub>2</sub> | 47.551 | 38.704 | 31.657 | 23.809         | 35.430 |
| A <sub>3</sub> | 54.466 | 43.704 | 37.715 | 27.165         | 40.762 |
| Mean           | 46.027 | 37.965 | 31.808 | 22.618         |        |

CD for C = 0.502

CD for A = 0.434

# CD for A x C = 0.0.869

#### Mean Table for $B \ge C$

|                | C1     | C2     | C3     | C <sub>4</sub> | Mean   |
|----------------|--------|--------|--------|----------------|--------|
| B <sub>1</sub> | 47.456 | 37.624 | 31.934 | 22.392         | 34.851 |
| B <sub>2</sub> | 45.792 | 38.434 | 31.869 | 22.995         | 34.773 |
| B <sub>3</sub> | 44.833 | 37.837 | 31.620 | 22.466         | 34.189 |

# -XXIX-

| Mean         | 46.027  | 37.965 | 31.808 | 22.618 |  |
|--------------|---------|--------|--------|--------|--|
| CD for B     | = 0.434 |        |        |        |  |
| CD for C     | = 0.502 |        |        |        |  |
| CD for B x C | = 0.869 |        |        |        |  |

#### Micro-tubes of $0.5m \ge 0.5m$ spacing

#### Mean table for Ax B x C

|                               | c <sub>1</sub> | C2     | С <sub>3</sub> |
|-------------------------------|----------------|--------|----------------|
| A <sub>1</sub> B <sub>1</sub> | 22.508         | 16.192 | 10.851         |
| A <sub>1</sub> B <sub>2</sub> | 21.739         | 15.377 | 10.223         |
| A <sub>1</sub> B <sub>3</sub> | 20.971         | 14.455 | 9.295          |
| A <sub>2</sub> B <sub>1</sub> | 28.229         | 20.537 | 13.295         |
| A <sub>2</sub> B <sub>2</sub> | 27.477         | 19.924 | 12.959         |
| A <sub>2</sub> B <sub>3</sub> | 26.321         | 19.565 | 12.039         |
| A <sub>3</sub> B <sub>1</sub> | 32.872         | 26.868 | 16.207         |
| A <sub>3</sub> B <sub>2</sub> | 31.425         | 24.504 | 16.504         |
| A <sub>3</sub> B <sub>3</sub> | 29.515         | 23.327 | 14.588         |

CD for A x B x C = 0.449

#### Mean table for $A \ge B$

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | Mean   |
|----------------|----------------|----------------|----------------|--------|
| A <sub>1</sub> | 16.517         | 15.780         | 14.907         | 17.734 |
| A <sub>2</sub> | 20.710         | 20.120         | 19.308         | 20.046 |
| A3             | 25.316         | 24.144         | 22.476         | 23.979 |
| Mean           | 20.848         | 20.015         | 18.897         |        |
| CD  for  A = 0 | 0.150          |                |                |        |

CD for B = 0.150

CD for A x B = 0.259

#### Mean Table for A x C

|                    | C1     | C2     | C3     | Mean   |  |  |  |  |
|--------------------|--------|--------|--------|--------|--|--|--|--|
| A1                 | 21.739 | 15.341 | 10.123 | 15.734 |  |  |  |  |
| A <sub>2</sub>     | 27.366 | 20.009 | 12.764 | 20.046 |  |  |  |  |
| A <sub>3</sub>     | 31.271 | 24.900 | 15.766 | 23.979 |  |  |  |  |
| Mean               | 26.792 | 20.083 | 12.884 |        |  |  |  |  |
| CD for A = $0.150$ |        |        |        |        |  |  |  |  |

CD for C = 0.150

CD for A x C = 0.259

# -XXX-

#### Mean Table for B x C

|                | C1     | C2     | C <sub>3</sub> | Mean   |
|----------------|--------|--------|----------------|--------|
| B <sub>1</sub> | 27.893 | 21.199 | 13.451         | 20.848 |
| B <sub>2</sub> | 26.880 | 19.935 | 13.229         | 20.015 |
| B <sub>3</sub> | 25.602 | 19.115 | 11.974         | 18.897 |
| Mean           | 26.792 | 20.083 | 12.884         |        |

CD for B = 0.150

CD for C = 0.150

CD for B x C = 0.259

#### Drip-in of $6m \ge 0.6m$ spacing

Mean table for Ax B x C

|                               | <b>c</b> <sub>1</sub> | C2    | C3    | C4    | с <sub>5</sub> | с <sub>б</sub> | С <sub>7</sub> | С <mark>8</mark> | C9        | c <sub>10</sub> |
|-------------------------------|-----------------------|-------|-------|-------|----------------|----------------|----------------|------------------|-----------|-----------------|
| A <sub>1</sub> B <sub>1</sub> | 1.271                 | 1.235 | 1.223 | 1.219 | 1.175          | 1.156          | 1.145          | 1.12<br>7        | 1.10<br>8 | 1.09<br>6       |
| $A_1B_2$                      | 1.221                 | 1.199 | 1.185 | 1.168 | 1.136          | 1.172          | 1.135          | 1.09<br>9        | 1.06<br>1 | 1.04<br>3       |
| A <sub>1</sub> B <sub>3</sub> | 1.173                 | 1.152 | 1.133 | 1.127 | 1.105          | 1.096          | 1.085          | 1.06<br>0        | 1.06<br>9 | 1.03<br>2       |
| A <sub>2</sub> B <sub>1</sub> | 2.237                 | 2.212 | 2.191 | 2.158 | 2.132          | 2.111          | 2.093          | 2.06<br>2        | 2.03<br>7 | 2.00<br>7       |
| A <sub>2</sub> B <sub>2</sub> | 2.187                 | 2.158 | 2.140 | 2.120 | 2.098          | 2.060          | 2.047          | 2.02<br>5        | 2.00<br>6 | 1.97<br>0       |
| A <sub>2</sub> B <sub>3</sub> | 2.161                 | 2.146 | 2.117 | 2.099 | 2.067          | 2.043          | 2.012          | 1.97<br>5        | 1.94<br>5 | 1.92<br>3       |
| A <sub>3</sub> B <sub>1</sub> | 2.569                 | 2.534 | 2.521 | 2.490 | 2.471          | 2.457          | 2.441          | 2.42<br>3        | 2.40<br>5 | 2.38<br>8       |
| A <sub>3</sub> B <sub>2</sub> | 2.558                 | 2.537 | 2.509 | 2.475 | 2.459          | 2.424          | 2.393          | 2.36<br>1        | 2.33<br>7 | 2.31<br>5       |
| A <sub>3</sub> B <sub>3</sub> | 2.520                 | 2.481 | 2.463 | 2.439 | 2.419          | 2.395          | 2.376          | 2.34<br>5        | 2.31<br>3 | 2.27<br>9       |

CD for A x B x C = 0.119

#### Mean table for A x B

|                    | B <sub>1</sub> | B <sub>2</sub> | B3    | Mean  |  |  |  |  |
|--------------------|----------------|----------------|-------|-------|--|--|--|--|
| A <sub>1</sub>     | 1.175          | 1.142          | 1.103 | 1.140 |  |  |  |  |
| A <sub>2</sub>     | 2.124          | 2.081          | 2.049 | 2.085 |  |  |  |  |
| A <sub>3</sub>     | 2.475          | 2.437          | 2.403 | 2.437 |  |  |  |  |
| Mean               | 1.923          | 1.887          | 1.852 |       |  |  |  |  |
| CD  for  A = 0.003 |                |                |       |       |  |  |  |  |

CD for B = 0.003

CD for A x B = 0.006

# -XXXI-

Mean Table for A x C

|                | C1               | C2        | с <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|------------------|-----------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| A1             | 1.22<br>2        | 1.19<br>5 | 1.18<br>0      | 1.171          | 1.139 | 1.141          | 1.122 | 1.095 | 1.080 | 1.057           | 1.14<br>0 |
| A <sub>2</sub> | 2.19<br>5        | 2.17<br>2 | 2.14<br>9      | 2.126          | 2.099 | 2.071          | 2.050 | 2.021 | 1.996 | 1.967           | 2.08<br>5 |
| A <sub>3</sub> | 2.54<br>9        | 2.51<br>7 | 2.49<br>8      | 2.468          | 2.449 | 2.426          | 2.404 | 2.376 | 2.352 | 2.327           | 2.43<br>7 |
| Mean           | 1.98<br>9        | 1.96<br>1 | 1.94<br>2      | 1.922          | 1.896 | 1.879          | 1.859 | 1.831 | 1.809 | 1.784           |           |
| CD for A       | CD for A = 0.003 |           |                |                |       |                |       |       |       |                 |           |

CD for C = N.S.

CD for A x C = 0.011

#### Mean Table for B x C

|                | C1        | C2    | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| В1             | 2.02<br>6 | 1.994 | 1.978          | 1.956          | 1.926 | 1.908          | 1.893 | 1.870 | 1.850 | 1.830           | 1.92<br>3 |
| В <sub>2</sub> | 1.98<br>9 | 1.965 | 1.945          | 1.921          | 1.898 | 1.885          | 1.858 | 1.828 | 1.801 | 1.776           | 1.88<br>7 |
| B <sub>3</sub> | 1.95<br>2 | 1.926 | 1.904          | 1.888          | 1.864 | 1.845          | 1.824 | 1.794 | 1.776 | 1.744           | 1.85<br>2 |
| Mea<br>n       | 1.98<br>9 | 1.961 | 1.942          | 1.922          | 1.896 | 1.879          | 1.859 | 1.831 | 1.809 | 1.784           |           |

CD for B = 0.003CD for C = N.S.

 $CD \text{ for } B \ge C = 0.011$ 

Drip-in of 1m x 0.6m spacing

Mean table for Ax B x C

|                               | <b>c</b> <sub>1</sub> | c <sub>2</sub> | c <sub>3</sub> | C4    | с <sub>5</sub> | с <sub>6</sub> | с <sub>7</sub> | с <sub>8</sub> | C9        | c <sub>10</sub> |
|-------------------------------|-----------------------|----------------|----------------|-------|----------------|----------------|----------------|----------------|-----------|-----------------|
| A <sub>1</sub> B <sub>1</sub> | 1.287                 | 1.259          | 1.251          | 1.224 | 1.217          | 1.184          | 1.160          | 1.16<br>8      | 1.17<br>3 | 1.14<br>3       |
| A <sub>1</sub> B <sub>2</sub> | 1.267                 | 1.251          | 1.220          | 1.211 | 1.181          | 1.165          | 1.152          | 1.17<br>1      | 1.15<br>3 | 1.12<br>7       |
| A <sub>1</sub> B <sub>3</sub> | 1.235                 | 1.212          | 1.185          | 1.197 | 1.183          | 1.148          | 1.128          | 1.09<br>9      | 1.09<br>6 | 1.08<br>7       |
| A <sub>2</sub> B <sub>1</sub> | 2.225                 | 2.203          | 2.187          | 2.167 | 2.146          | 2.119          | 2.081          | 2.05<br>9      | 2.04<br>0 | 2.01<br>1       |
| A <sub>2</sub> B <sub>2</sub> | 2.196                 | 2.164          | 2.141          | 2.123 | 2.105          | 2.081          | 2.059          | 2.04<br>1      | 2.01<br>9 | 1.99<br>1       |
| A <sub>2</sub> B <sub>3</sub> | 2.186                 | 2.163          | 2.136          | 2.110 | 2.082          | 2.057          | 2.033          | 2.01<br>6      | 1.98<br>3 | 1.96<br>6       |
| A <sub>3</sub> B <sub>1</sub> | 2.699                 | 2.672          | 2.679          | 2.648 | 2.663          | 2.568          | 2.613          | 2.55<br>1      | 2.55<br>6 | 2.50<br>5       |

# -XXXII-

|                                          |         |       |       |       |       | 0         | 1         | 3         |
|------------------------------------------|---------|-------|-------|-------|-------|-----------|-----------|-----------|
| A <sub>3</sub> B <sub>3</sub> 2.581 2.55 | 2 2.544 | 2.559 | 2.527 | 2.503 | 2.468 | 2.45<br>3 | 2.42<br>5 | 2.40<br>8 |

CD for A x B x C = 0.017

### Mean table for $A \ge B$

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | Mean  |
|----------------|----------------|----------------|----------------|-------|
| A <sub>1</sub> | 1.207          | 1.190          | 1.157          | 1.184 |
| A <sub>2</sub> | 2.124          | 2.092          | 2.073          | 2.096 |
| A <sub>3</sub> | 2.615          | 2.548          | 2.502          | 2.555 |
| Mean           | 1.982          | 1.943          | 1.911          |       |
|                | 000            |                |                |       |

CD for A = 0.003CD for B = 0.003

CD for A x B = 0.005

#### Mean Table for $A \ge C$

|                | C1        | C2        | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-----------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| A1             | 1.26<br>3 | 1.24<br>0 | 1.21<br>9      | 1.211          | 1.194 | 1.166          | 1.147 | 1.146 | 1.141 | 1.119           | 1.18<br>4 |
| A <sub>2</sub> | 2.20<br>2 | 2.17<br>7 | 2.15<br>5      | 2.133          | 2.111 | 2.086          | 2.058 | 2.039 | 2.014 | 1.989           | 2.09<br>6 |
| A <sub>3</sub> | 2.63<br>7 | 2.61<br>3 | 2.60<br>6      | 2.590          | 2.590 | 2.540          | 2.533 | 2.501 | 2.484 | 2.456           | 2.55<br>5 |
| Mean           | 2.03<br>4 | 2.01<br>0 | 1.99<br>3      | 1.978          | 1.965 | 1.930          | 1.913 | 1.895 | 1.880 | 1.855           |           |
| CD for A       | 1         | = 0.003   |                |                |       |                |       |       |       |                 |           |

 CD for A
 = 0.003 

 CD for C
 = 0.006 

CD for A x C = 0.010

#### Mean Table for B x C $\,$

|                | $C_1$     | C <sub>2</sub> | c <sub>3</sub> | C4    | C5    | с <sub>6</sub> | C <sub>7</sub> | C <sub>8</sub> | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|----------------|----------------|-------|-------|----------------|----------------|----------------|-------|-----------------|-----------|
| В <sub>1</sub> | 2.07<br>0 | 2.045          | 2.039          | 2.013 | 2.009 | 1.957          | 1.952          | 1.926          | 1.923 | 1.886           | 1.98<br>2 |
| В <sub>2</sub> | 2.03<br>1 | 2.010          | 1.986          | 1.965 | 1.956 | 1.932          | 1.910          | 1.904          | 1.881 | 1.857           | 1.94<br>3 |
| B <sub>3</sub> | 2.00<br>1 | 1.976          | 1.955          | 1.955 | 1.930 | 1.903          | 1.876          | 1.856          | 1.835 | 1.820           | 1.91<br>1 |
| Mea<br>n       | 2.03<br>4 | 2.010          | 1.993          | 1.978 | 1.965 | 1.930          | 1.913          | 1.895          | 1.880 | 1.855           |           |

CD for B = 0.003

CD for C = 0.006

CD for  $B \ge C$  = 0.010

-XXXIII-

# -XXXIV-

### Drip-in of 0.5m x 0.6m spacing

# Mean table for Ax B x C

|                               | c <sub>1</sub> | C2    | c3    | C4    | с <sub>5</sub> | с <sub>6</sub> | с <sub>7</sub> | С <sub>8</sub> | C9        | c <sub>10</sub> |
|-------------------------------|----------------|-------|-------|-------|----------------|----------------|----------------|----------------|-----------|-----------------|
| A <sub>1</sub> B <sub>1</sub> | 1.391          | 1.369 | 1.365 | 1.316 | 1.285          | 1.273          | 1.308          | 1.28<br>5      | 1.25<br>9 | 1.24<br>1       |
| A <sub>1</sub> B <sub>2</sub> | 1.373          | 1.351 | 1.331 | 1.301 | 1.313          | 1.304          | 1.252          | 1.26<br>4      | 1.23<br>6 | 1.21<br>3       |
| A <sub>1</sub> B <sub>3</sub> | 1.349          | 1.332 | 1.309 | 1.313 | 1.300          | 1.277          | 1.261          | 1.27<br>6      | 1.25<br>3 | 1.23<br>5       |
| A <sub>2</sub> B <sub>1</sub> | 2.290          | 2.269 | 2.244 | 2.225 | 2.214          | 2.191          | 2.183          | 2.15<br>7      | 2.12<br>8 | 2.10<br>1       |
| A <sub>2</sub> B <sub>2</sub> | 2.285          | 2.270 | 2.244 | 2.229 | 2.207          | 2.181          | 2.167          | 2.13<br>0      | 2.10<br>0 | 2.08<br>7       |
| A <sub>2</sub> B <sub>3</sub> | 2.251          | 2.233 | 2.217 | 2.188 | 2.166          | 2.143          | 2.134          | 2.09<br>4      | 2.07<br>9 | 2.06<br>0       |
| A <sub>3</sub> B <sub>1</sub> | 2.781          | 2.679 | 2.739 | 2.651 | 2.715          | 2.564          | 2.671          | 2.60<br>7      | 2.62<br>7 | 2.57<br>5       |
| A <sub>3</sub> B <sub>2</sub> | 2.761          | 2.729 | 2.695 | 2.671 | 2.676          | 2.672          | 2.573          | 2.55<br>2      | 2.52<br>9 | 2.50<br>7       |
| A <sub>3</sub> B <sub>3</sub> | 2.735          | 2.712 | 2.669 | 2.677 | 2.644          | 2.644          | 2.637          | 2.59<br>9      | 2.55<br>7 | 2.53<br>9       |

CD for  $A \times B \times C$  = 0.021

### Mean table for $A \ge B$

|                | B <sub>1</sub> | B <sub>2</sub> | B3    | Mean  |
|----------------|----------------|----------------|-------|-------|
| A <sub>1</sub> | 1.309          | 1.294          | 1.291 | 1.298 |
| A <sub>2</sub> | 2.200          | 2.190          | 2.157 | 2.182 |
| A <sub>3</sub> | 2.661          | 2.637          | 2.641 | 2.646 |
| Mean           | 2.057          | 2.040          | 2.030 |       |

| CD for A     | = 0.004 |
|--------------|---------|
| CD for B     | = 0.004 |
| CD for A x B | = 0.007 |

# Mean Table for A x C

|                | C1        | C2        | C <sub>3</sub> | C <sub>4</sub> | C5    | с <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-----------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| A <sub>1</sub> | 1.37<br>1 | 1.35<br>1 | 1.33<br>5      | 1.310          | 1.300 | 1.285          | 1.274 | 1.275 | 1.249 | 1.230           | 1.29<br>8 |
| A <sub>2</sub> | 2.27<br>5 | 2.25<br>8 | 2.23<br>5      | 2.214          | 2.196 | 2.172          | 2.162 | 2.127 | 2.102 | 2.082           | 2.18<br>2 |
| A <sub>3</sub> | 2.75<br>9 | 2.70<br>7 | 2.70<br>1      | 2.666          | 2.678 | 2.627          | 2.627 | 2.586 | 2.571 | 2.540           | 2.64<br>6 |
| Mean           | 2.13<br>5 | 2.10<br>5 | 2.09<br>0      | 2.063          | 2.058 | 2.028          | 2.021 | 1.996 | 1.974 | 1.951           |           |

# -XXXV-

| CD for A     | = 0.004 |
|--------------|---------|
| CD for C     | = 0.007 |
| CD for A x C | = 0.012 |

#### Mean Table for $B \ge C$

|                | C1        | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|----------------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| B <sub>1</sub> | 2.15<br>4 | 2.106          | 2.116          | 2.064          | 2.071 | 2.009          | 2.054 | 2.016 | 2.004 | 1.972           | 2.05<br>7 |
| В <sub>2</sub> | 2.14<br>0 | 2.117          | 2.090          | 2.067          | 2.065 | 2.052          | 1.998 | 1.982 | 1.955 | 1.936           | 2.04<br>0 |
| B <sub>3</sub> | 2.11<br>2 | 2.092          | 2.065          | 2.060          | 2.037 | 2.022          | 2.011 | 1.989 | 1.963 | 1.944           | 2.03<br>0 |
| Mea<br>n       | 2.13<br>5 | 2.105          | 2.090          | 2.063          | 2.058 | 2.028          | 2.021 | 1.996 | 1.974 | 1.951           |           |

CD for B = 0.004

CD for C = 0.007

CD for  $B \ge C$  = 0.012

## -XXXVI-

#### Drip tape of 6m x 0.3m spacing

# Mean table for Ax B x C

|                               | c <sub>1</sub> | с <sub>2</sub> | c3    | C4    | с <sub>5</sub> | с <sub>б</sub> | с <sub>7</sub> | С <sub>8</sub> | C9   | C <sub>10</sub> |
|-------------------------------|----------------|----------------|-------|-------|----------------|----------------|----------------|----------------|------|-----------------|
| $A_1B_1$                      | 0.945          | 0.931          | 0.916 | 0.887 | 0.855          | 0.888          | 0.901          | 0.85           | 0.84 | 0.82            |
|                               |                |                |       |       |                |                |                | 9              | 9    | 3               |
| $A_1B_2$                      | 0.921          | 0.904          | 0.871 | 0.841 | 0.816          | 0.831          | 0.844          | 0.81           | 0.78 | 0.76            |
|                               |                |                |       |       |                |                |                | 7              | 4    | 9               |
| A <sub>1</sub> B <sub>3</sub> | 0.875          | 0.852          | 0.815 | 0.818 | 0.807          | 0.777          | 0.748          | 0.76           | 0.74 | 0.71            |
|                               |                |                |       |       |                |                |                | 3              | 3    | 1               |
| $A_2B_1$                      | 1.185          | 1.184          | 1.159 | 1.139 | 1.119          | 1.107          | 1.094          | 1.08           | 1.06 | 1.04            |
|                               |                |                |       |       |                |                |                | 3              | 2    | 8               |
| $A_2B_2$                      | 1.178          | 1.153          | 1.127 | 1.104 | 1.084          | 1.061          | 1.043          | 1.02           | 1.00 | 0.99            |
|                               |                |                |       |       |                |                |                | 9              | 2    | 1               |
| $A_2B_3$                      | 1.159          | 1.137          | 1.117 | 1.109 | 1.093          | 1.076          | 1.032          | 1.00           | 0.97 | 0.93            |
|                               |                |                |       |       |                |                |                | 2              | 3    | 5               |
| $A_3B_1$                      | 1.381          | 1.360          | 1.338 | 1.321 | 1.300          | 1.281          | 1.269          | 1.24           | 1.22 | 1.20            |
|                               |                |                |       |       |                |                |                | 4              | 5    | 6               |
| A <sub>3</sub> B <sub>2</sub> | 1.329          | 1.307          | 1.281 | 1.263 | 1.257          | 1.239          | 1.219          | 1.19           | 1.17 | 1.15            |
|                               |                |                |       |       |                |                |                | 3              | 3    | 5               |
| A <sub>3</sub> B <sub>3</sub> | 1.278          | 1.249          | 1.228 | 1.220 | 1.202          | 1.182          | 1.161          | 1.14           | 1.10 | 1.08            |
|                               |                |                |       |       |                |                |                | 2              | 9    | 0               |

CD for A x B x C = 0.021

### Mean table for $A \ge B$

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | Mean  |
|----------------|----------------|----------------|----------------|-------|
| A <sub>1</sub> | 0.885          | 0.840          | 0.791          | 0.839 |
| A <sub>2</sub> | 1.118          | 1.077          | 1.063          | 1.086 |
| A <sub>3</sub> | 1.293          | 1.242          | 1.185          | 1.240 |
| Mean           | 1.099          | 1.053          | 1.013          |       |

| CD for A     | = 0.004 |
|--------------|---------|
| CD for B     | = 0.004 |
| CD for A x B | = 0.007 |

### Mean Table for A x C

|                | C1        | C <sub>2</sub> | C <sub>3</sub> | C4    | C5    | с <sub>6</sub> | C7    | C <sub>8</sub> | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|----------------|----------------|-------|-------|----------------|-------|----------------|-------|-----------------|-----------|
| A <sub>1</sub> | 0.91<br>4 | 0.89<br>6      | 0.86<br>7      | 0.849 | 0.826 | 0.832          | 0.831 | 0.813          | 0.792 | 0.768           | 0.83<br>9 |
| A <sub>2</sub> | 1.17<br>4 | 1.15<br>8      | 1.13<br>5      | 1.117 | 1.099 | 1.081          | 1.056 | 1.038          | 1.012 | 0.991           | 1.08<br>6 |
| A <sub>3</sub> | 1.32<br>9 | 1.30<br>6      | 1.28<br>2      | 1.268 | 1.253 | 1.234          | 1.216 | 1.193          | 1.169 | 1.147           | 1.24<br>0 |
| Mean           | 1.13<br>9 | 1.12<br>0      | 1.09<br>5      | 1.078 | 1.059 | 1.049          | 1.035 | 1.015          | 0.991 | 0.969           |           |

# -XXXVII-

| CD for A     | = 0.004 |
|--------------|---------|
| CD for C     | = 0.007 |
| CD for A x C | = 0.012 |

#### Mean Table for B x C

|                | C1        | C2    | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| B <sub>1</sub> | 1.17<br>0 | 1.158 | 1.138          | 1.116          | 1.091 | 1.092          | 1.088 | 1.062 | 1.046 | 1.026           | 1.09<br>9 |
| В <sub>2</sub> | 1.14<br>3 | 1.121 | 1.093          | 1.070          | 1.053 | 1.044          | 1.035 | 1.013 | 0.986 | 0.972           | 1.05<br>3 |
| B <sub>3</sub> | 1.10<br>4 | 1.079 | 1.053          | 1.049          | 1.034 | 1.012          | 0.980 | 0.969 | 0.941 | 0.909           | 1.01<br>3 |
| Mea<br>n       | 1.13<br>9 | 1.120 | 1.095          | 1.078          | 1.059 | 1.049          | 1.035 | 1.015 | 0.991 | 0.969           |           |

CD for B = 0.004

CD for C = 0.007

CD for  $B \ge C$  = 0.012

# -XXXVIII-

### Drip tape of 1m x 0.3m spacing

# Mean table for Ax B x C

|                               | c <sub>1</sub> | c <sub>2</sub> | c <sub>3</sub> | C4    | с <sub>5</sub> | с <sub>6</sub> | с <sub>7</sub> | С <sub>8</sub> | C9        | c <sub>10</sub> |
|-------------------------------|----------------|----------------|----------------|-------|----------------|----------------|----------------|----------------|-----------|-----------------|
| A <sub>1</sub> B <sub>1</sub> | 1.009          | 0.985          | 0.959          | 0.941 | 0.949          | 0.928          | 0.908          | 0.93<br>9      | 0.91<br>9 | 0.89<br>6       |
| A <sub>1</sub> B <sub>2</sub> | 0.972          | 0.949          | 0.919          | 0.900 | 0.929          | 0.896          | 0.875          | 0.87<br>9      | 0.86<br>3 | 0.83<br>2       |
| A <sub>1</sub> B <sub>3</sub> | 0.940          | 0.905          | 0.871          | 0.837 | 0.832          | 0.867          | 0.831          | 0.81<br>1      | 0.82<br>0 | 0.78<br>0       |
| A <sub>2</sub> B <sub>1</sub> | 1.284          | 1.265          | 1.237          | 1.223 | 1.247          | 1.220          | 1.191          | 1.16<br>5      | 1.17<br>3 | 1.14<br>7       |
| A <sub>2</sub> B <sub>2</sub> | 1.249          | 1.227          | 1.201          | 1.201 | 1.157          | 1.151          | 1.111          | 1.13<br>1      | 1.11<br>9 | 1.09<br>5       |
| A <sub>2</sub> B <sub>3</sub> | 1.201          | 1.187          | 1.136          | 1.160 | 1.101          | 1.113          | 1.089          | 1.07<br>2      | 1.04<br>9 | 1.02<br>3       |
| A3B1                          | 1.411          | 1.383          | 1.364          | 1.341 | 1.328          | 1.315          | 1.293          | 1.27<br>2      | 1.24<br>8 | 1.22<br>9       |
| A <sub>3</sub> B <sub>2</sub> | 1.381          | 1.367          | 1.328          | 1.307 | 1.285          | 1.278          | 1.262          | 1.24<br>7      | 1.22<br>8 | 1.20<br>2       |
| A <sub>3</sub> B <sub>3</sub> | 1.357          | 1.326          | 1.312          | 1.289 | 1.261          | 1.250          | 1.239          | 1.21<br>5      | 1.19<br>3 | 1.15<br>1       |

CD for A x B x C = 0.018

### Mean table for $A \ge B$

|                | В1    | B <sub>2</sub> | B <sub>3</sub> | Mean  |
|----------------|-------|----------------|----------------|-------|
| A <sub>1</sub> | 0.943 | 0.901          | 0.849          | 0.898 |
| A <sub>2</sub> | 1.215 | 1.164          | 1.113          | 1.164 |
| A <sub>3</sub> | 1.318 | 1.289          | 1.259          | 1.289 |
| Mean           | 1.159 | 1.118          | 1.074          |       |

CD for A = 0.003CD for B = 0.003

CD for A x B = 0.006

### Mean Table for A x C

|                | C1        | C2        | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-----------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| A1             | 0.97<br>4 | 0.94<br>7 | 0.91<br>6      | 0.893          | 0.904 | 0.897          | 0.871 | 0.876 | 0.867 | 0.836           | 0.89<br>8 |
| A <sub>2</sub> | 1.24<br>5 | 1.22<br>6 | 1.19<br>2      | 1.195          | 1.168 | 1.161          | 1.130 | 1.123 | 1.114 | 1.088           | 1.16<br>4 |
| A <sub>3</sub> | 1.38<br>3 | 1.35<br>9 | 1.33<br>5      | 1.312          | 1.292 | 1.281          | 1.264 | 1.245 | 1.223 | 1.194           | 1.28<br>9 |
| Mean           | 1.20<br>1 | 1.17<br>7 | 1.14<br>7      | 1.133          | 1.121 | 1.113          | 1.089 | 1.081 | 1.068 | 1.039           |           |

# -XXXIX-

| CD for A     | = 0.003 |
|--------------|---------|
| CD for C     | = 0.006 |
| CD for A x C | = 0.010 |

#### Mean Table for $B \ge C$

|                | C1        | C2    | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C <sub>7</sub> | C <sub>8</sub> | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-------|----------------|----------------|-------|----------------|----------------|----------------|-------|-----------------|-----------|
| В <sub>1</sub> | 1.23<br>5 | 1.211 | 1.187          | 1.168          | 1.175 | 1.154          | 1.130          | 1.125          | 1.113 | 1.091           | 1.15<br>9 |
| В <sub>2</sub> | 1.20<br>1 | 1.181 | 1.149          | 1.136          | 1.124 | 1.108          | 1.082          | 1.086          | 1.070 | 1.043           | 1.11<br>8 |
| B <sub>3</sub> | 1.16<br>6 | 1.139 | 1.106          | 1.096          | 1.065 | 1.077          | 1.053          | 1.032          | 1.021 | 0.984           | 1.07<br>4 |
| Mea<br>n       | 1.20<br>1 | 1.177 | 1.147          | 1.133          | 1.121 | 1.113          | 1.089          | 1.081          | 1.068 | 1.039           |           |

CD for B = 0.003

CD for C = 0.006

CD for  $B \ge C$  = 0.010

Drip tape of  $0.5m \ge 0.3m$  spacing

Mean table for Ax B x C

|                               | <b>c</b> <sub>1</sub> | C2    | c <sub>3</sub> | C4    | с <sub>5</sub> | с <sub>б</sub> | С <sub>7</sub> | С <sub>8</sub> | Cg        | c <sub>10</sub> |
|-------------------------------|-----------------------|-------|----------------|-------|----------------|----------------|----------------|----------------|-----------|-----------------|
| A <sub>1</sub> B <sub>1</sub> | 1.035                 | 1.017 | 0.998          | 0.974 | 0.958          | 0.943          | 0.929          | 0.90<br>9      | 0.88<br>5 | 0.86<br>1       |
| $A_1B_2$                      | 1.002                 | 0.979 | 0.967          | 0.964 | 0.917          | 0.931          | 0.911          | 0.89<br>0      | 0.86<br>9 | 0.84<br>6       |
| A <sub>1</sub> B <sub>3</sub> | 0.983                 | 0.960 | 0.942          | 0.924 | 0.911          | 0.898          | 0.887          | 0.86<br>7      | 0.85<br>1 | 0.82<br>7       |
| A <sub>2</sub> B <sub>1</sub> | 1.340                 | 1.311 | 1.296          | 1.279 | 1.257          | 1.238          | 1.217          | 1.19<br>2      | 1.17<br>8 | 1.15<br>5       |
| A <sub>2</sub> B <sub>2</sub> | 1.300                 | 1.284 | 1.265          | 1.248 | 1.225          | 1.207          | 1.191          | 1.17<br>5      | 1.16<br>1 | 1.14<br>5       |
| A <sub>2</sub> B <sub>3</sub> | 1.277                 | 1.262 | 1.241          | 1.219 | 1.200          | 1.181          | 1.162          | 1.14<br>1      | 1.12<br>5 | 1.10<br>8       |
| А <sub>3</sub> В <sub>1</sub> | 1.456                 | 1.435 | 1.391          | 1.399 | 1.384          | 1.340          | 1.365          | 1.33<br>7      | 1.36<br>8 | 1.32<br>7       |
| A <sub>3</sub> B <sub>2</sub> | 1.436                 | 1.405 | 1.379          | 1.383 | 1.351          | 1.348          | 1.329          | 1.31<br>1      | 1.29<br>1 | 1.27<br>5       |
| A <sub>3</sub> B <sub>3</sub> | 1.412                 | 1.391 | 1.371          | 1.353 | 1.324          | 1.327          | 1.295          | 1.31<br>2      | 1.27<br>5 | 1.24<br>3       |

CD for A x B x C = 0.020

#### Mean table for $A \ge B$

|                | B <sub>1</sub> | B <sub>2</sub> | B <sub>3</sub> | Mean  |
|----------------|----------------|----------------|----------------|-------|
| A <sub>1</sub> | 0.951          | 0.928          | 0.905          | 0.928 |
| A2             | 1.246          | 1.220          | 1.192          | 1.219 |

| A <sub>3</sub> | 1.380 | 1.351 | 1.330 | 1.354 |
|----------------|-------|-------|-------|-------|
| Mean           | 1.192 | 1.166 | 1.142 |       |

CD for  $A \times B = 0.006$ 

#### Mean Table for A x C

|                | C1        | C2        | C <sub>3</sub> | C <sub>4</sub> | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|-----------|----------------|----------------|-------|----------------|-------|-------|-------|-----------------|-----------|
| A <sub>1</sub> | 1.00<br>7 | 0.98<br>5 | 0.96<br>9      | 0.954          | 0.929 | 0.924          | 0.909 | 0.889 | 0.869 | 0.844           | 0.92<br>8 |
| A <sub>2</sub> | 1.30<br>6 | 1.28<br>6 | 1.26<br>7      | 1.249          | 1.227 | 1.209          | 1.190 | 1.170 | 1.155 | 1.136           | 1.21<br>9 |
| A <sub>3</sub> | 1.43<br>5 | 1.41<br>0 | 1.38<br>0      | 1.378          | 1.353 | 1.338          | 1.330 | 1.320 | 1.311 | 1.281           | 1.35<br>4 |
| Mean           | 1.24<br>9 | 1.22<br>7 | 1.20<br>5      | 1.194          | 1.170 | 1.157          | 1.143 | 1.126 | 1.112 | 1.087           |           |

CD for A = 0.004CD for C = NS

CD for A x C = 0.012

### Mean Table for B x C

|                | C1        | C <sub>2</sub> | C <sub>3</sub> | C4    | C5    | C <sub>6</sub> | C7    | C8    | C9    | C <sub>10</sub> | Mean      |
|----------------|-----------|----------------|----------------|-------|-------|----------------|-------|-------|-------|-----------------|-----------|
| B <sub>1</sub> | 1.27<br>7 | 1.254          | 1.228          | 1.217 | 1.199 | 1.174          | 1.170 | 1.146 | 1.144 | 1.114           | 1.19<br>2 |
| В <sub>2</sub> | 1.24<br>6 | 1.223          | 1.204          | 1.198 | 1.164 | 1.162          | 1.144 | 1.125 | 1.107 | 1.088           | 1.16<br>6 |
| B <sub>3</sub> | 1.22<br>4 | 1.204          | 1.184          | 1.166 | 1.145 | 1.135          | 1.114 | 1.107 | 1.084 | 1.059           | 1.14<br>2 |
| Mea<br>n       | 1.24<br>9 | 1.227          | 1.205          | 1.194 | 1.170 | 1.157          | 1.143 | 1.126 | 1.112 | 1.087           |           |

CD for B = 0.004

CD for C = N.S.

CD for  $B \ge C$  = NS

```
APPENDIX - IV
```

```
COMPUTER PROGRAMME FOR SOFTWARE FOR HYDRAULIC PERFORMANCE EVALUATION
AND CALCULATION OF HEAD LOSS IN DRIP IRRIGATION SYSTEM
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<fstream.h>
#include<stdlib.h>
void main()
{
front:
float a[100],i,j,k;
int n;
float std[100];
float uc,mean,avgdiv,avg,y=0;
char nm;
const MAX = 10;
char line[MAX];
clrscr();
cout<<"Choices"<<endl;</pre>
cout<<endl;</pre>
cout<<"1.To Calculate U.C., E.U.,C.V. Of Equation\n";</pre>
cout<<"2.To Calculate C.M.V Of Equation\n";</pre>
cout<<"3.To Calculate Head Loss For Main Line combined for all
Emission Devices\n";
cout<<"4.To Calculate Head Loss for Lateral Line combined for all
Emission Devices \n";
cout<<endl;</pre>
cout<<"Enter Your Choice As Given Above:-> ";
scanf("%d",&n);
clrscr();
float small = 0.00;
i = 0;
switch(n)
{
case 1:
      i=0;
      ifstream infile("data1.txt");
      while (infile)
      {
            infile.getline(line,MAX);
            a[i] = atof(line);
            avg+= a[i];
            if (i==0)
             {
            small = a[i];
             }
            if (small>a[i] && a[i]>0)
             {
            small = a[i];
             }
      if (a[i]==0)
      {
            k=0;
            mean=0;
```

```
-XLI-
```

-XXIII-

# -XLII-

```
y=0;
             k=i;
            mean=avg/k;
             for(i=0;i<k;i++)</pre>
             {
             std[i]=fabs(mean-a[i]);
             y+=std[i];
             }
             avgdiv=0;
             avgdiv=y/k;
clrscr();
             printf("Entered Data Is:-\n");
             for(i=0;i<k;i+=2)</pre>
             {
                   printf("%7.3f, %7.3f \n",a[i],a[i+1]);
             }
             uc=0;
             uc=(1-(avgdiv/mean))*100;
             printf("\n U.C.:- %f",uc);
             for (i=0;i<k;i++)</pre>
             {
                   for(int j=0;j<k-1;j++)</pre>
                   {
                          if(a[j]>a[j+1])
                          {
                          float m=a[j];
                          a[j]=a[j+1];
                          a[j+1]=m;
                          }
                    }
             }
             float vc=0;
             //vc=(a[1]/mean)*100;
             //cout<<endl<<small;</pre>
             //getch();
             vc = (small/mean) *100;
             printf("\n E.U.:- %f",vc);
             float stdev[100],st=0;
             for(i=0;i<k;i++)</pre>
             {
             stdev[i]=(a[i]-mean) * (a[i]-mean);
             st=st+stdev[i];
             }
             float sd=0;
             sd=sqrt(st/k);
             float cv=0;
             cv=(sd/mean)*100;
            printf("\n C.V.:- %f",cv);
             getch();
      avg = 0;
      i=-1;
      }
      ++i;
      }
      break;
```

# -XLIII-

```
case 2:
      avg = 0;
      ifstream infile2("data2.txt");
      i=0;
      while (infile2)
      {
             infile2.getline(line,MAX);
             a[i] = atof(line);
             avg+= a[i];
             if (i==0)
             {
             small = a[i];
             }
             if (small>a[i] && a[i]>0)
             {
             small = a[i];
             }
      if (a[i]==0)
      {
             k=0;
            mean=0;
             y=0;
             k=i;
            mean=avg/k;
             for(i=0;i<k;i++)</pre>
             {
             std[i]=fabs(mean-a[i]);
             y+=std[i];
             }
             avgdiv=0;
             avgdiv=y/k;
//////
            clrscr();
            printf("Entered Data Is:-\n");
            for(i=0;i<k;i+=2)</pre>
             {
                   printf("%7.3f, %7.3f \n",a[i],a[i+1]);
             }
             float cmv[100],cdv=0;
             for(i=0;i<k;i++)</pre>
             {
             cmv[i]=(a[i]-mean) * (a[i]-mean);
             cdv+=cmv[i];
             }
             float cd=0;
             cd=sqrt(cdv/k);
             float cvv=0;
             cvv=(cd/mean)*100;
            printf("\n C.M.V.:- %f",cvv);
             getch();
      avg = 0;
      i=-1;
      }
      ++i;
      }
```

# -XLIV-

```
break;
case 3:
            clrscr();
            printf("Head loss in Main Line combined for all emission
devices \n");
            float dismain;
            printf("Enter The Value Of Discharge: ");
            scanf("%f",&dismain);
            float headloss=0.045141*pow(dismain, 0.609704);
            printf("HeadLoss :- %f", headloss);
            break;
case 4:
            clrscr();
            printf("Head loss in Lateral Line combined for all
emission devices: \n");
            float drip;
            printf("Enter The Value Of Discharge: ");
            scanf("%f",&drip);
            float headloss2=0.044706*pow(drip,0.862723);
            printf("HeadLoss :- %f",headloss2);
            break;
}
getch();
clrscr();
printf("DO YOU WANT TO CONTINUE AGAIN THEN ENTER y OTHER WISE ENETR n
\n");
scanf("%s",&nm);
if(nm=='y')
goto front;
else
{
clrscr();
printf("THANK YOU");
getch();
}
}
```

# **Literature Cited**

- Ahmed, Al-Amound 1995. "Significance of energy losses due to emitter connections in trickle irrigation lines." Journal of Agricultural Engg. Research. 1-5.
- Al-Karghouli, Ferro A. and Minasian, A. 1992. "Emission uniformity of drip irrigation system. "*Plasticulture* (94): 33-38.
- Bagerello, V., Ferro, V., Provenzano, G. and Puma, D. 1997. "Evaluating pressure losses in drip irrigation lines". Journal of Irrigation and Drainage Engg. 123(1): 1-7.
- Bhatnagar, P.R. and Srivastava, R.C. 2003. "Gravity fed drip irrigation system for hilly terraces of north west Himalayas". Irrigation Sciences. 21(4): 151-157.
- BIS (1991). "Irrigation equipment and system-evaluation of field irrigation efficiency-guidelines". **IS** 13062: 1-13.
- Braltz, V.F. and Kesner, C.D. 1983. "Drip Irrigation field uniformity estimation". *Trans. Of ASAE*. **26**(5): 1361-1369.
- Braltz, V.F., Wu, I.P. and Giffin, H.M. 1981. "Manufacturing variation and drip irrigation uniformity". *Trans of ASAE*. **24**(1): 113-119.
- Buendia, Espinoza, J.C., Palacios Valez, E., Chavez, Marles, J. and Rojes Martinez, B. 2004. "Impact of pressurized irrigation system performance on productivity of eight crops in Guanajuato, Maxico". Agrociencia-Monlecillo. **38**(5): 477-486.
- Camp, C.R., Sodler, E.J. and Yoder, R.E. 1997. "Irrigation scheduling of Table grape cultivars in Chile". *Evapotranspiration and Irrigation*

Scheduling Proceeding of International Conference, Sanantonia, USA. 335-340.

- Capra, A. and Tamburino, V. 1995. "Evaluation and control of distribution uniformity in farm irrigation system". International Commission on Irrigation and Draiange, Rome; Italy. Ft 15.1-Ft. 15.8.
- Charles Burt, Robert Walker, Start Styles and John Parrish. 2000. "Irrigation Evaluation" *Dept. of Water Resources, California, USA*.
- Correia, J.F. 1990. "Evaluation of hydraulic characteristics of emitters". *Proceedings of XIth International Congress on the use of the plastic in Agriculture, New Delhi, India.* B 137-B143.
- Gozen, V. and Hakgoren, F. 2000. "Problems and solutions proposals related to system planning in Kumluca region of Antalya". Ziraat Fakultesi Dergisi Akdeniz Universitesi. 13(2): 145-148.
- Hassanli, A. and Sepaskash, A. 2001. "Evaluation of drip irrigation systems (a case study of citrus gardens in Darab)". Journal of Science and Technology of Agriculture and Natural Resources. 4(2): 13-28.
- Holsambre, D.G. 1996. "Status of drip irrigation system in Maharashtra.". Microirrigation for a changing world: conserving resources/preserving the environment, proceeding of fifth International Microirrigation Congress, Orlando, USA. 497-501.
- Howell, T.A. and Barinas, F.A. 1980. "Pressure losses across tickle irrigation fittings and emitters". *Trans. of ASAE.* **23**(4): 928-933.
- Jadhav, S.T. and Firake, N.N. 2003. "Suitability of drip irrigation scheduling approaches for summer groundnut". *Journal of Maharashtra Agri. University.* **28**(1): 115-116.

- Jonas, S., Spiess, L.B. and Rapp, E. 1975. "Evaluation of emitters for tickle irrigation". *Canadian Agri. Engg.* **17**(1): 28-30.
- Kale, M.U., Chandra, A. and Lambe, S.P. 2000. "Performance evaluation of microjet system". Journal of Maharastra Agri. University. 25(3): 298-299.
- Karnak, H., Dagan, E., Demir, S. and Yalcn, S. 2004. "Determination of hydraulic performance of trickle irrigation emitters used in irrigation systems in Herran Plain." *Turkish Journal of Agriculture* and Forestry. **28**(4): 223-230.
- Keller, J. and Karmeli, D. 1974. "Trickle irrigation design parameters". *Trans. of ASAE.* **17**(4): 678-684.
- Killer, J. and Karmeli, D. 1975. "Trickle irrigation design." Rain Bird Sprinkler Manufacturing Corp., Glendora, CA. 133 pp.
- Krishnan, M. and Ravikumar, V. 2002. "A software for design of subunits with the tapered pipe in non uniform slop". J. of Agri. Engg. 29(4): 28-36.
- Madarmootoo, C.A. and Khartri, K.C. 1988. "Hydraulic performance of five different trickles irrigation emitters". Canadian Agri. Engg. 30(1): 1-4.
- Mostafazadeh, B. and Kahnoufi, M. 2002. "The effect of irrigation water temperature on discharage for some Iranian emitter in trickle irrigation". Journal of Science and Technology of agriculture and Natural Resources. **6**(1): 31-43.
- Mostafazadeh, B. and Nia, A.H.M. 2000. "The effect of different chemical components of irrigation water on water on emitter clogging in trickle irrigation". *Iranian Journal of Agricultural Sciences.* **3**(3): 497-511.

- Nakayama, F.S., Bucks, D.A. and Clemmens, A.J. 1979. "Assessing trickle emitter application uniformity". *Trans. of ASAE.* 22(4): 816-821.
- Oguzer, V. and Vilmaz, E. 1991. "A study on hydraulic characteristics of some foreign and domestic made dripper used in drip irrigation system". *Doga Turk Tarm Ve Ormanclk Dergisi*. **15**(1): 121-128.
- Ozekici, B. and Sneed, R.E. 1990. "Effect of manufacturing variation on trickle irrigation uniformity". *American Society of Agricultural Engineers*. 2638-2644.
- Qui-Yuan Feng, Luo-Jinyeo and Menge Ge. 2004. "The effect of water saving and production increment by drip irrigation schedules". *Wuhan university Journal of Natural Science*. **9**(4): 493-497.
- Rajput, T.B.S. and Patel, N. 2003. "Users guide for DRIPD:-a software for designing drip irrigation system". Water Technology Centre, Indian Agri. Research Institute, New Delhi.
- Reddy, K.Y., Tiwari, K.N. and Ravindra, V. 2000. "Hydraulic analysis of trickle irrigation system for economic design". International Agricultural Engineering Journal. 9(2): 81-95.
- Salomon, K. 1979. "Manufacturing variation of trickle emitter". *Trans.* of ASAE. **22**(5): 1034-1038.
- Senzanje, A., Masti, K. and Rwakatiwani, P. 2004. "Assessment of technical performance and operational limits of a low cost drip irrigation system for peri-urban and small holder farmers". *Discovery and Innovation.* 16(1/2): 85-97.
- Shrivastava, P.K., Parikh, M.M. and Raman, S. 1990. "Performance testing of some commercial emitter". Proc. XXVI Annual Convention of ISAE held at CCS HAU, Hisar. ID/90-34: 189.

- Singh, K.K., Rao, Y.P. and Kumar, S. 1990. "Comparative performance of plastic drip irrigation systems". Proceeding of XIth International congress on the use of plastic in Agriculture, New Delhi, India. B119-B124.
- Singh, P. 1999. "Pressurized Irrigation system towards enhanced water use efficiency". Theme Paper XXXIV ISAE Annual Convention, CCS HAU, Hisar. pp. 1-12.
- Wu, I.P. and Gitlin, H.M. 1974. "Drip irrigation designs based on uniformity". Trans. of ASAE. 17(3): 429-432.
- Yardem, H. and Damir, V. 2003. "Effects of design faults of screen type filters used in drip irrigation system on head losses". Age Universitiesi Ziraat Fakultesi Dergisi Bornova, Turkey. 40(2): 81-88.

#### ABSTRACT

| Title of thesis                 | :     | Hydraulic Performance Evaluation of Drip<br>Irrigation System with Different Emission<br>Devices |  |  |  |  |  |  |  |
|---------------------------------|-------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Name of the degree holder       | :     | SANDEEP KUMAR                                                                                    |  |  |  |  |  |  |  |
| Admission number :              |       | 2003AE215M                                                                                       |  |  |  |  |  |  |  |
| Title of degree                 | :     | Master of Technology, Agricultural Engineering (Soil and Water Engineering)                      |  |  |  |  |  |  |  |
| Major Advisor                   |       | Dr. Pratap Singh, Dean, COAE&T                                                                   |  |  |  |  |  |  |  |
| Members of Advisory             |       | Dr. R.K. Jhorar, Asstt. Prof. SWE                                                                |  |  |  |  |  |  |  |
| Committee                       |       | Dr. A.K. Kapoor, Prof. Soil Science,                                                             |  |  |  |  |  |  |  |
|                                 |       | Dr. S.D. Batra, Ass. Prof. Maths and Stats.                                                      |  |  |  |  |  |  |  |
|                                 |       | Dr. Balwan Singh, Ass. Prof. Soil Science                                                        |  |  |  |  |  |  |  |
| Degree awarding University      | ity : | Chaudhary Charan Singh                                                                           |  |  |  |  |  |  |  |
|                                 |       | Haryana Agricultural University,                                                                 |  |  |  |  |  |  |  |
|                                 |       | Hisar-125 004                                                                                    |  |  |  |  |  |  |  |
| Year of award of degree :       |       | 2005                                                                                             |  |  |  |  |  |  |  |
| Major subject                   | :     | Soil and Water Engineering                                                                       |  |  |  |  |  |  |  |
| finor subject :                 |       | Soil Science                                                                                     |  |  |  |  |  |  |  |
| Total number of pages in thesis | :     | 78 + 36 + v                                                                                      |  |  |  |  |  |  |  |
| Number of words in the abstract | :     | 475 Approx.                                                                                      |  |  |  |  |  |  |  |

# **Keywords:** Uniformity coefficient, emission uniformity, coefficient of variation, coefficient of manufacturing variation, dripper, micro-tube, drip-in, drip tape, pressure head

Studies were conducted to evaluate the effect of operating pressure head and spacing on different hydraulic performance evaluation measures of drip irrigation systems with different emission devices. The commonly used hydraulic performance evaluation measures considered were uniformity coefficient, emission uniformity, coefficient of variation and coefficient of manufacturing variation. The different emission devices were dripper, micro-tube, drip-in and drip tape. The experiments were conducted in the field laboratory of Soil and Water Engineering Department, College of Agricultural Engineering and Technology, CCS Haryana Agricultural University, Hisar. The selected spacings were i)  $6m \times 6m$ ,  $1m \times 6m$  and  $0.5m \times 0.5m$  for dripper and micro-tube, ii)  $6m \times 0.6m$ ,  $1m \times 0.6m$  and  $0.5m \times 0.6m$ for drip-in and iii)  $6m \times 0.3m$ ,  $1m \times 0.3m$  and  $0.5m \times 0.3m$  for drip tape. The operating pressure heads were 5m, 10m and 13m.

The measurement of discharge for calculation of hydraulic performance evaluation measures was done by operating the system and putting the containers at

# -XXII-

6m interval along the lateral lines. The measurement of pressure head was done with the help of mercury manometer and water manometer at up stream and down stream end of main line and lateral line. The values of different hydraulic performance evaluation measures and head loss in main line and lateral line were calculated. The values of uniformity coefficient and emission uniformity decreased for dripper and micro-tube and increased for drip-in and rip tape, as the spacing decreased. The values of uniformity coefficient and emission uniformity for all emission devices increased as the operating pressure head increased at a particular spacing. The values of coefficient of variation increased for dripper and micro-tube and decreased for drip-in and drip tape, as the spacing decreased. The values of coefficient of variation for all emission devices decreased as the operating pressure head increased at a particular spacing. The values of coefficient of manufacturing variation was maximum for drip tape and minimum for micro-tube. The values of head loss in main line and lateral line for different emission devices increased as the spacing decreased and increased as the operating pressure head increased. The head loss in the main line and lateral line also increased at a decreasing rate with discharge and the variation can be expressed with a power equation. The values of the coefficients in the power relationship between head loss and discharge were calculated for each emission device and also combined for all emission devices. The coefficient of correlation for the combined equation was 0.9871 for main line and 0.7201 for lateral line. A computer software in C++ language was developed for calculation of the hydraulic performance evaluation measures and head loss in main line and lateral line of system. The values obtained from the computer software were equal to the measured values.

### **MAJOR ADVISOR**

#### SIGNATURE OF STUDENT

HEAD OF THE DEPARTMENT