RANKING AND ANALYSIS
(PG Diploma Lessons)
Course : PRA 704

Dr. VE. Sabarathnam
Dr.P.Mathialagan

2014

Department of Veterinary & Animal Husbandry Extension
and Entrepreneurship
TANUVAS, Madras Veterinary College
Chennai – 7
RANKING AND ANALYSIS

Unit I: Ranking in RRA & PRA: Definition of problem - type of ranking - methods of ranking material used - use of ranking in PRA. Wealth Ranking: Definition - use - steps - wealth score estimation - wealth categories - wealth ranking table - wealth ranking graphic

Unit II: Direct Matrix Ranking: Definition - for technology decision behaviour - for adoption over adoption - discontinuance - reinvention - active rejection - steps involved - utility value.

Unit III: Browse Tree Ranking: Definition - comparison - to scientific analysis - hints for browse I tree ranking - types - steps - table - use. Success Ranking: Concept - Definition - Principle - Steps related to one’s own profession - use

Unit IV: Livelihood Analysis: Definition - concept - diagram - variable - steps - utility examples. TAI - Concept - Definition - criteria as applicable to specific profession - steps - use. Measuring Sustainability of concerned profession in the village: Present status - impact of modern technology - steps - examples - caution - hints for making it sustainable. Decision Tree: Definition - concept - check list - steps in relation to profession - table - utility value.
UNIT I

Ranking in RRA

Ranking is the position of persons or things on a scale that shows how good or important they are in relation to other similar other people or things (Hornly, 2002). Ranking means placing in order from first to last (Chambers 1990)

Problem

Anything that remains unsolved is a problem. Anything that is difficult or anything that causes uncertainty or creates trouble or develops a doubt in the mind of a person with regard to his occupation and related activities should be conceived as a problem (Sabaratnam, 2002).

Different types of ranking

There are two types of ranking: 1) Verbal ranking and 2) Physical placement for ranking.

Verbal ranking refers to oral ranking and physical placement for ranking refers to physically placing thinns in the ground or a piece of paper as I, II, III, IV, etc.

Materials used for ranking

Seeds, stone, pellets of goat or sheep are used for ranking.

Ranking by weighting, but arbitrary scoring poses to difficulty, Ranking by weighting involves scoring. Each (problem) item is given a score, say between 0 or 1 and 5 or between 0 or 1 and 10, for each item (problem). This can be done verbally or physically placing counters. A ranking emerges from the scores. But, a number of times many problems are quite likely to have the same score. This method is good for relative weighting; but it does not usually separate out as clear as a ranking as more direct methods (Mearns 1998).

RAAKS: The first phase of Rapid Appraisal of Agricultural Knowledge Systems (RAAKS) is problems identification. This can be used to identify development activities of a region. (Monique, 1997).

Problem identification in agro-eco system analysis

Problem identification by and with rural people themselves leading to community action was used in agro-ecosystems analysis (Convey et al., 1987)

Ranking for research priority identification

Ranking methods, in general, appear a versatile tool, suitable for use in RRA (RRA/PRA). One of the potential uses of ranking is identification of priorities for research e.g. as a stage in finding out what people perceive as their needs and priorities (Chambers, 1988).

Production problem by farmers’ ranking

Potato production problems were ranked by farmers, according to their perceptions, in order of importance in Mantaro Valley in Peru and the problems reported in descending order were: 1) Climate 2) Insects 3) Lack of capital 4) Plant diseases 5) Cost of inputs 6) Lack of land 7) Cost of labor or lack of labor 8) Lack of irrigation and 9) Lack of technical knowledge. The series of questions asked here were 1) What is the most important problem you have in potato production? 2) What is the next most important? 3) And the next and so on. The responses of several different farmers to these questions can, then, be compiled as a table of ranked production problems (Rhoades, 1985).
Local people to identify development problems

The way people see problems depends directly on their personal experience and their own position relative to others in the community. Hence, local people are well placed to identify and understand development problems (Swift and Umer, 1991).

Different methods of ranking the problems

Ranking means placing in order, from first to last. Ranking is useful for learning priorities of the people (Chambers, 1990). There are different methods of ranking like verbal ranking, ranking by counters and sticks for problem identification etc.

a) In verbal ranking, participants are asked to name the most important, and the next most important and so on, referring to problems or to a class of things like trees or crop varieties. Sometimes in quick light surveys, the frequencies with which an aspect is mentioned are summed to indicate its relative importance (Chambers, 1990).

b) Physical placement for ranking

Direct physical ranking is a quick method with inbuilt crosschecking when several people participate. Participants, here, physically place the entities in question or symbols such as pieces of paper, which represent them in rank order.

Material used for ranking

In direct physical ranking, counters and sticks are used for quantification. Seeds; small fruits, stones, goat droppings or other small and reasonably uniform counters can be used to quantify. Edible Counters like small fruits are popular, but perishable. Small stones are often easily collected but vary in size. Goat droppings are inedible and surprisingly standard in size, but otherwise unappealing. Large seeds are good on most counts and tamarind, lablab and others have been used. Sticks, (Jowar or other stalks or straight twigs) can be broken into different lengths and used to indicate relative magnitude (Chambers 1990.) Swift (1981) used a system for progressive ranking of problems using holes in the ground and stones. Here, farmers are asked to make a hole for each problem identified, put a stone in each and then progressively eliminate the least important transferring their stones to more important holes.

Ranking is not the end

Quantification or ranking are not ends in themselves. They are only a stage in learning, a means to an end. Their main value is often the unexpected questions they raise to be answered in other ways. What follows on, from a quantification or ranking interview, is often more important than the interview itself (Chambers, 1990).

RBQ - The follow up action for ranking

As ranking or arbitrary scoring ends up with the same score for many problems or items ranked (Means, 1988) and qualification and ranking are not ends in themselves, what follows on from quantification is often more important (Chambers 1990), a scientific method of finding out the relative importance of the various problems was invented by estimating a Rank Based Quotient (RBQ) and the magnitude value for different problems by using RBQ. Area for which the problem is applicable and the percentage loss caused by each problem for crop production problems or the number of animals or birds for live stock problems or number of houses for home management problems (Sabaratnam, 1988)
Follow up Work

The RBQ and Magnitude value techniques of Sabarathnam (1988) have been successfully used by Sabarathnam and Vennila (1996) to identify entomological problems of rice growers in Tanjore district of Tamil Nadu, to the technological needs of farm women in Andhra Pradesh by Waris (1997), to find out problems experienced in sheep rearing by Kumar (2000) and to estimate the technological needs of poultry farmers by Mathiyalagan (2000).

Thus, problems are to be identified and ranked for prioritization to formulate research and extension programs using rank based quotient -magnitude value techniques.

Ranking in PRA

Ranking is an important technique in PRA for problem identification, for finding the rich or poor people in a locality, for assessing technology, and for finding out the technology decision behavior of the farmers.

Use: Wealth ranking is used 1) to find out changes in welfare 2) to identify potential groups in a village and to assess the distribution of impact of a program on various households. It helps in selecting the right type of beneficiaries for various schemes.

Steps include:

I. Getting list of all households from panchayat office.
II. Writing in small pieces of papers, each house hold number and the head of the family.
III. Asking selected key informants to sort out the various papers into as many groups as possible according the wealth like very rich, rich, middle income, poor and very poor separately.
IV. Preparing a table and recording the response of the key informants separately indicating the category and house hold.
V. Let the key informants indicate criteria of their clarification of wealth ranking categories. Put them in another column of step IV.
VI. Repeat the process for 4 to 5 key informants of different neighborhood.
VII. Don't insist a key informant, if he cannot clarify a house hold.
VIII. Calculate wealth score for each house hold as per each key informant.

Each key informant has full freedom to use as many number of categories as possible. Since different key informants will use different number of wealth categories, they have to be brought into a uniform level for the purpose.
of comparison of scores given by different key informants for the various households. This can be done by a simple correction factor using a formula given below: The wealth categories are to be given the score as follows: If a key informant has classified the households into six categories, they can be given wealth score using the following formula:

\[\text{W.S} = \frac{n + 1 - c_i}{n} \times 100 \]

Where

- \(\text{W.S} \) = Wealth Score
- \(n \) = Number of categories used by the key informant
- \(c_i \) = \(i \)th wealth category in which a particular house number have been placed.

For example, if household number '1' is placed in 3rd category by the key informant, who had made six wealth categories, then, the wealth score of house number '1' as per the particular key informant will be:

\[\frac{n + 1 - c_3}{n} \times 100 = \frac{6 + 1 - c_3}{6} \times 100 \]

So, the household number '1' will have a wealth score of 66.66.

If household number '2' is placed in 5th category, its score will be:

\[\frac{n + 1 - c_5}{n} \times 100 = \frac{6 + 1 - c_5}{6} \times 100 \]

\[\frac{7.5}{6} \times 100 = 33.33 \]

So, the wealth score of the household number '2' will be 33.33.

Step IX: Calculate average wealth score for each household

Once the scores of all the key informants for all the households are calculated and recorded in the full paper, the scores of all the key informants for each household head are summed up and divided by the number of key informants who were involved in wealth categorization to get the average wealth score for that household. If any key informant has not categorized any household, then that key informant will not be included while dividing the total score of the household for getting average score.

\[\text{A.W.S} = \frac{\sum S_{KI}}{N} \times 100 \]

Where

- A.W.S. = Average wealth score.
- \(S_{KI} \) = Score of \(KI_i \) + Score of \(KI_j \) + Score \(KI_j \) for the \(i \)th household.

\[\frac{\sum S_{KI}}{N} \times 100 = 66.66 \]

\[\frac{3}{6} \times 100 = 66.66 \]
N = Number of key Informants

For example, if there are 6 key informants and the score given by key informants for a house are as follows (and one could not categorize the household).

Calculation of average Wealth Score

<table>
<thead>
<tr>
<th>House Numbers</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>30</td>
<td>-</td>
<td>45</td>
<td>25</td>
<td>50</td>
<td>20</td>
<td>(30 + 45 + 25 + 50 + 20 = 140)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\frac{140}{6} = 23.33)</td>
</tr>
</tbody>
</table>

Step X: Check the consistency of the scores of the different key informants. If the scores given by one key informant glaringly vary from that of other that means he has not understood the technique and his scores for all the respondents are to be deleted from further analysis.

Step XI: Now, arrange all the households according to the wealth categories. Here, if the key informants have used a different number of categorizations, the average number of wealth categories is to be taken. Use the formula

\[
\text{A.N.O.W.C.} = \frac{\sum CiK_i}{N}
\]

A.N.O.W.C. = Average Number of Wealth Categories

Where \(CiK_i\) = number of categories of ith key informant

N = number of key informants

For example, if there are 4 key informants and they used 5,4,3,4 categories then, the entire village community must be divided into 4 categories as follows

\[
\frac{5+4+3+4}{4} = \frac{16}{4} = 4
\]

The four categories could be:

Rich, Medium, Poor and Very Poor. In this case, all the households in the village are to be categorized into these 4 categories.

Step XII: All the wealth categories should have equal interval of scores. This can be done as follows: Find out the range of wealth score (R).

Range (R) = Highest household Score (H.Hh.S) -- Lowest Household Score (L.Hh.S)

\[
\text{E.I.V.} = \frac{R}{C}
\]

Where R is Range.

C Number of Wealth Categories (A.N.O.W.C.)

For 4 Wealth Categories:

If the C is 4.

\[
\text{HHhs} = 100
\]

\[
\text{L.Hhs} = 23
\]

Then R=100-23=77

\[
\frac{R}{C} = \frac{H.Hh.S - L.Hh.S}{C} = \frac{77}{4} = 19.25
\]
The four categories can be as follows

<table>
<thead>
<tr>
<th>I Category</th>
<th>II Category</th>
<th>III Category</th>
<th>IV Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich</td>
<td>Medium</td>
<td>Poor</td>
<td>Very Poor</td>
</tr>
</tbody>
</table>

Score Range for IV Category
Score Range for IV category i.e.
Last category i.e. Very poor Category

\[\text{Score Range for IV Category} = 23.01 \pm 38.50 \text{ to } 23 + 57.75 - (0.01) = 61.51 \text{ to } 80.74 \]

Score Range for III Category
i.e. Last but one category

\[\text{Score Range for III Category} = 23 \text{ to } 19.25 + 23 = 23 \text{ to } 42.25 \]

Score Range for II Category
Is Last but two categories i.e.

\[\text{Score Range for II Category} = (23)+(0.01)+(19.25 \text{ to } 23)+(19.25 \times 2) = 42.26 \text{ to } 61.50 \]

Score Range for I Category
i.e. Rich Category

\[\text{Score Range for I Category} = (23) + (19.25 \times 3) + (L.Hh.S) \times (E.I.V.
\times 4) = 23 + 57.75 \text{ to } (23 + 77) \times 80.75 \text{ to } 100.75 \]

Thus the score ranges for 4 wealth categories of a village, where Lowest Household Wealth Score is 23 and Highest Household Wealth Score is 100, will be as follows:

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Category</th>
<th>Score Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rich</td>
<td>80.75 to 100</td>
</tr>
<tr>
<td>2.</td>
<td>Medium</td>
<td>61.51 to 80.74</td>
</tr>
<tr>
<td>3.</td>
<td>Poor</td>
<td>42.26 to 61.50</td>
</tr>
<tr>
<td>4.</td>
<td>Very Poor</td>
<td>23.00 to 42.25</td>
</tr>
</tbody>
</table>

For 5 Wealth Categories

If C is 5.

\[\begin{align*}
\text{H.Hh.S.} &= 100 \\
\text{L.Hh.S.} &= 20 \\
\text{Then } R &= 100-20 = 80
\end{align*} \]

Ranking and Analysis (PG Diploma Lessons)
E.I.V = \frac{R}{C} = \frac{H.Hh.S - L.Hh.S}{C} = \frac{80}{5} = 16

The five categories can be as follows:

<table>
<thead>
<tr>
<th>I Category</th>
<th>II Category</th>
<th>III Category</th>
<th>IV Category</th>
<th>V Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Rich</td>
<td>Rich</td>
<td>Medium</td>
<td>Poor</td>
<td>Very Poor</td>
</tr>
</tbody>
</table>

Score Range for V Category

Score Range for

V Category i.e.last Category = (L.Hh.S) to (L.Hh.S) + (E.I.V)
= 20 to (20) + (16)

i.e. Very Poor Category
= 20 to (20) + (16)
= 20 to 36.

Score Range for IV Category

Score Range for

IV Category i.e.last but one Category = (L.Hh.S) + (0.01) + (E.I.V) to (L.Hh.S) + (E.I.V X 2)

i.e. Poor Category
= 20 + (0.01) + (16) to (20) + (16 X 2)
= 36.01 to 52

Score Range for III Category

Score Range for

III Category i.e.last but two Category = (L.Hh.S) + (0.01) + (E.I.V X 2) to (L.Hh.S) + (E.I.V X 3)

i.e. Medium Category
= 20 + (0.01) + (16 X 2) to (20) + (16 X 3)
= 52.01 to 68

Score Range for II Category

Score Range for

II Category i.e.last but 3 Category = (L.Hh.S) + (0.01) + (E.I.V X 3) to (L.Hh.S) + (E.I.V X 4)
i.e. Rich Category
= 20 + (0.01) + (16 X 3) to (20) + (16 X 4) = 64
= 68.01 to 84

Score Range for I Category

Score Range for

I Category i.e.last but 4 Category = (L.Hh.S) + (0.01) + (E.I.V X 4) to (L.Hh.S) + (E.I.V X 5)
i.e. Very Rich Category
= 20 + (0.01) + (16 X 4) to (20) + (16 X 5)
= 84.01 to 100

Thus, the score ranges for five wealth categories of a village, where the lowest household wealth score is 20 and the Highest Household Wealth Score is 100, will be as follows:

Ranking and Analysis (PG Diploma Lessons)
<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Category</th>
<th>Score range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Very Rich</td>
<td>84.01 to 100</td>
</tr>
<tr>
<td>2.</td>
<td>Rich</td>
<td>68.01 to 84</td>
</tr>
<tr>
<td>3.</td>
<td>Medium</td>
<td>52.01 to 68</td>
</tr>
<tr>
<td>4.</td>
<td>Poor</td>
<td>36.01 to 52</td>
</tr>
<tr>
<td>5.</td>
<td>Very Poor</td>
<td>20 to 36</td>
</tr>
</tbody>
</table>

For 3 Wealth Categories.

If C is 3; L.Hh.S. = 25; H.Hh.S. = 100

Then R = 100 – 25 = 75

\[\frac{R}{C} = \frac{75}{3} = 25 = \text{E.I.V} = 25 \]

The three categories are as follows:

<table>
<thead>
<tr>
<th>I Category</th>
<th>II Category</th>
<th>III Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rich</td>
<td>Medium</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Score Range for III Category

Score range for III Category

i.e. last category = L.Hh.S. to (L.Hh.S.) + (E.I.V.)

i.e. Poor category = 25 to (25 + 25)

= 25 to 50.

Score Range for II Category

Score range for II Category

i.e. last but one category = L.Hh.S. + (E.I.V.) + (0.01) to (L.Hh.S.) + (E.I.V. x 2)

i.e. Medium category = 25 + (25) + (0.01) to (25) + (25 X 2)

= 50.01 to 75

Score Range for I Category

Score range for I Category

i.e. last but two category = L.Hh.S. + (0.01) + (E.I.V. X 2) to (E.I.V.) + (E.I.V.) X 3

i.e. Rich category = 25 + 0.01 + (25 X 2) to (25) + (25 X 3)

= 75.01 to 100

Thus, the score ranges for three wealth categories of a village, where the Lowest Household Score is 25 and the highest Household Score is 100, will be as follows:

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Category</th>
<th>Score range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rich</td>
<td>75.01 to 100</td>
</tr>
<tr>
<td>2.</td>
<td>Medium</td>
<td>50.01 to 75.00</td>
</tr>
<tr>
<td>3.</td>
<td>Poor</td>
<td>25.00 to 50.00</td>
</tr>
</tbody>
</table>

Step XIII: Prepare the final Wealth Ranking table for the village as follows for 4 wealth categories:
for selecting beneficiaries for specific programmes which aim at uplifting the weaker sections of the society.

1. For assessing the impact of specific schemes aimed at specific wealth category, knowledge of wealth ranking of the households in the village is essential.

2. Wealth ranking is also useful for chalking out coping strategies, discovering opportunities, identifying problems and possible solutions.

3. Wealth ranking augments the discovery of local indicators and criteria for wealth categorization and well-being of the rural society.

4. Wealth ranking is specially useful when a development agency has to pick up the richest person in the village or the poorest person in the village in a specific situation. If a technology is to be introduced which is low cost in nature to the poor people in a village, wealth ranking has to be done. If a training programme is meant for families belonging to average income, then, the participants for the training programme can be selected from the wealth analysis of the village households in a village. In such cases, the ins and outs of every household in the village may not be known to all the key informants. If such a situation arises, then neighbourhood - wise wealth ranking may be taken up.

Pre-cautions

1. Wealth ranking technique is useful for a small village having about 50 to 150 households. But, the technique will pose problems if the households are too many like 300 or 400 etc.
2. Inhabitants of different villages will have different self images. Hence, it is not advisable to compare wealth ranking scores of one village with that of another village. This is because key informants of rich castes may rate themselves poor than the castes that are really very poor.

3. In a village, where an egalitarian ideology exists, wealth ranking may not be advisable. This is because the villagers may take exception to the very idea of being divided into different wealth categories.

4. If a village is having experience in getting subsidies from government or non-government schemes, wealth ranking may not produce reliable results with regard to social-class stratification of that village. This is because the key informants may suppress the truth regarding the wealth of the villagers.

UNIT II

Direct Matrix Ranking (DMR) for Technology Decision Matrix.

The term matrix refers to arrangement of numbers, symbols etc., in rows and columns, treating the whole as a single quantity.

Direct Matrix Ranking

Direct Matrix Ranking for technology decision behavior refers to placing different technologies in columns in the order of importance like I, II, III etc., according to their worthiness with regard to a specific criterion or reason related to a specific behavioral decision like adoption, discontinuance, over-adoption, reconvention and active rejection, as perceived by villagers, and placing them in rows directly.

Use: Preferences, attitudes and priorities of the villagers towards anything can be known matrix ranking. This has immense value for action plan preparation and its implementation for any profession.

Technique: Key informants are used for this purpose. This is done after completing technology map. Separate matrices are prepared for each behaviour. All technologies found in technology map are used for matrix ranking.

Readings: Chapter 27 Direct Matrix Ranking, Pages 199 to 256 of R/R/PRA for Agriculture (Book).
UNIT III

a) Economic Plant Ranking

Ranking of plant refers to ranking of different (plants) herbs, shrubs, trees found in and around the village by the villagers with regard to the degree to which the different parts of plant can be used for different purposes like agriculture, livestock, home-science, horticulture, forestry, agri – engineering, sericulture, dairy, rural development , social work, etc.,

A herb is a plant with soft stem whose leaves / seeds / flowers / or other parts are used for the flavor of food, in medicines / in daily life or different occupations of the villagers. It dies after flowering.

A shrub is a large plant that is smaller than a tree that has several stems of wood coming from the ground.

A tree is a tall plant that can live for a long time. It has a thick wooden stem from which branches usually grow with leaves, on them.

Economic plants are identified by making a plant transect with key informants. Note down the names of the plants in local language (and in English if possible) collect a sample of plants. Ask the key informants which part is used for what purpose. Ask them to rank in terms of economic importance. Let the KIS rank all the plants in terms of their utility value and availability. Convert ranks into scores. Prepare a table with these details i.e. Name of the plant in English and local language, part used purpose, availability, ranked scores and criteria of ranking. The knowledge can be used in action plan preparation.

E.P Ranking Steps

Step I: Identify key informants for EPR.

Step II: Make an E.P Transect with in the village boundary to identify economic plants.

Step III: Note down geographically the plants in a boundary transect sheet as they are found in the village geography. Collect samples of each of the economic plants.

Step IV: Ask the key informants to indicate which part of the plant is used for what purpose.

Step V: If there are more plants for the same purpose, ask the KIs to rank them.

Step VI: Ask them the basis of ranking.

Step VII: Prepare a table or tables like this on the use-basis.

<table>
<thead>
<tr>
<th>Name of the Plant</th>
<th>Type</th>
<th>Part Used</th>
<th>Purpose</th>
<th>Rank</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step VIII: Do triangulation for scientific evidence if possible.

Step IX: Use the knowledge in action plan preparation wherever possible.

Success Ranking

Success ranking refers to positioning or placing or scaling programs, phenomena, schemes or individuals as I, II, III, IV etc. according to certain criteria, characteristics, quality or indicators with regard to achievement of a desired goal.
It includes the following steps

I. Identify programs related to village upliftment for which success ranking is to be done.

II. Get the list of households who are the beneficiaries of the programs or projects.

III. Identify the key informants among the beneficiaries from different neighborhoods.

IV. Prepare bits of papers.

V. Write one house number and house owner or beneficiary in each paper.

VI. Make different groups of key informants so that all neighborhoods are represented in each group.

VII. Request the key informants-groups to rank households to the degree to which each household was successful, with regard to the program objectives, as I, II, III, IV, V etc. in their own perception.

VIII. Note down the ranking of each group for each household in a field notebook in a tabular form.

IX. When one key informant Group completes success ranking of all households, request them to mention the criteria used in deciding the level of success and the criterion most important one for success or failure.

X. Let other KIGS do success ranking one by one.

XI. Find out whether any household was left out by any KIG or whether criteria are there for different groups.

XII. Calculate success rank score for each household as per each KIG.

XIII. Calculate average success ranking score for each household.

XIV. Based on average score, classify the households into final success ranks taking the range of average score used by different KIGS into account.

XV. Analyze the criteria used by different groups to find out the common criteria for success ranking as per the perception of community.

Use

1. It can be used for finding out the success of different development programs.

2. It gives a clue to set criteria of success for new development programs.

Readings: Chapter 37. Success Ranking Pages 341 to 343.
Unit IV

Livelihood Analysis

Concept: Livelihood analysis refers to finding out the degree to which the pattern of life differs from one social class to another social class in terms of size of family, type of house, technology adoption pattern, size of land holding, annual income, sources of income, food habits, expenditure pattern, indebtedness, savings, type of animals owned, migrants in household, seasonal variation in expenditure, crisis management, sources of food, material possession, education of children etc.,

Use: For preparing efficient, practical and feasible action plans for enrichment of various sections of society so as to make a socialistic pattern of the society. It can be used for selecting beneficiaries for various schemes implemented by government and non-government organizations. (Eg: Distribution of priceless goats and cows in Tamil Nadu)

Technique: It is done after wealth ranking is completed.

Steps

I. Select one household from each wealth category.

II. Use the common criteria of wealth ranking for livelihood analysis table.

III. Collect Data from Villagers.

IV. Prepare L.A. table.

V. Give one copy to each of PRA team members.

VI. Let them read the L.A. table.

VII. One PRA member can collect from one wealth category member spare key.

VIII. Apply triangulation principle for cross-checking of data.

Step X. Prepare diagrams, pie-charts and pictorial graphs, for each datum.

XI. Show the diagrams etc., to the concerned villagers for concurrence.

XII. Show the diagram to KIS, if any.

XIII. Modify the diagram and tables us suggested by key informants.

XIV. Note down the names of villages, KIs, below the table sheet.

XV. Note down PRA team members who collected data at the bottom of the table and mention PRA facilitator’s name.

XVI. Use the livelihood analysis for action plan preparation, for beneficiary selection for different categories, for village enrichment training programs, etc.

Many other criteria specific to a village can also be explored and incorporated in the livelihood analysis which will be a contribution for PRA literature by the individual student.

Readings: Chapter 33, Livelihood Analysis Pages 322 to 321 of R/R/ PRA Book for Agriculture of VAMSARAVATH Publishers, Hyderabad.

Decision Tree analysis: Concept – Definition – Principle – Steps related to one’s own profession – use.
Decision Tree is a horizontal picture indicating the various reasons or criteria, their score, rank based on the score and for specific decisions like adoption, over adoption, reinvention etc., for various technology. Thus separate decision trees are to be drawn for each behavior like

- Adoption
- Over adoption
- Discontinuance
- Active Rejection and
- Reinvention

Steps:

I. Technology map is drawn
II. Direct matrix ranking is done.
III. Final Matrix score table is taken for all decision.
IV. Decision tree is prepared for each decision.
V. This decision tree is used for action plan preparation.

Use: Useful for action plan preparation and for selection of beneficiaries for different government scheme. For introduction of developed technologies by various research organizations development departments.

Sustainable Analysis: Concept Steps Used – Index developed.

Index: The word 'sustainability' refers to the ability of anything that can continue or be continued for a long time.